JPH0433844B2 - - Google Patents

Info

Publication number
JPH0433844B2
JPH0433844B2 JP62303665A JP30366587A JPH0433844B2 JP H0433844 B2 JPH0433844 B2 JP H0433844B2 JP 62303665 A JP62303665 A JP 62303665A JP 30366587 A JP30366587 A JP 30366587A JP H0433844 B2 JPH0433844 B2 JP H0433844B2
Authority
JP
Japan
Prior art keywords
dephosphorization
furnace
hot metal
slag
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62303665A
Other languages
Japanese (ja)
Other versions
JPH01147012A (en
Inventor
Katsuhiko Arai
Mitsuhiro Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30366587A priority Critical patent/JPH01147012A/en
Publication of JPH01147012A publication Critical patent/JPH01147012A/en
Publication of JPH0433844B2 publication Critical patent/JPH0433844B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、2基の上下両吹き複合吹錬炉を用
い、工程の途中で熱源不足を起こすことなく良好
な作業性の下で品質の良好な鋼をコスト安く溶製
し得ると共に、溶銑脱硫予備処理の省略も可能な
製鋼方法に関するものである。 <背景技術> 近年、低燐鋼をより一層低いコストで安定溶製
する手段の開発を目指して様々な研究がなされる
ようになつたが、このような状況の中で、製鋼ト
ータルコストのミニマム化や低燐鋼の安定溶製に
関し次のような溶銑の予備脱燐法、即ち、 (a) トーピード内の溶銑に生石灰系のフラツクス
又はソーダ灰をインジエクシヨンすることで予
備脱燐を行う方法、 (b) 取鍋内の溶銑に生石灰系のフラツクスをイン
ジエクシヨンしたりブラステイング(吹き付
け)することで予備脱燐を行う方法、 (c) 高炉鋳床樋中の溶銑に生石灰系のフラツクス
をブラステイングして予備脱燐を行う方法、 が提案され、一部実用化もなされるようになつ
た。 しかし、前記(a)及び(b)の方法では脱燐を“脱燐
剤の浮上過程で進行する反応(トランジトリー・
リアクター・リアクシヨン)”に頼るため脱燐フ
ラツクスの利用効率が必ずしも良くなく、また処
理時間が長くかかる分だけ処理時の抜熟が大きく
なつて溶銑温度が低下すると言う問題があり、一
方、前記(c)の方法では脱燐処理が高炉から出銑さ
れた直後の溶銑に施されることから脱燐処理温度
が約1400℃と高く、従つて到達P含有量が十分に
満足できるレベルになり難いとの指摘がなされて
いた。 その上、溶銑脱燐フラツクスとして生石灰等を
用いる場合には、その後の転炉吹錬で使用される
生石灰等の量をも合わせて考えると、前記何れの
方法も、“予備脱燐工程を省いて転炉のみでの脱
燐を行う方法”に比べて必要造滓剤量(生石灰等
の量)の低減効果はそれほど顕著であるとは言え
なかつた。 そこで、上記状況を踏まえた本出願人は、先
に、第4図で略示されるような「上下両吹き機能
を有した2基の転炉形式の炉を使用するととも
に、そのうちの一方を脱燐1、他方を脱炭炉2
とし、前記脱燐炉1内へ注入した溶銑3に前記脱
炭2で発生した転炉滓4を主成分とする精錬剤
の添加を行い、撹拌ガス吹き込みノズル5による
底吹きガス撹拌を実施しつつランス6より酸素ガ
スを上吹きして脱燐炉1の溶銑3の温度を1400℃
以下に保ちながら溶銑脱燐を行つた後、得られた
脱燐溶銑を脱炭炉2にて脱炭並びに仕上脱燐する
ことにより、極めて少ない量の造滓剤でもつて通
常燐レベルの鋼或いは低燐鋼を作業性良く低コス
トで製造し得るようにした製鋼方法」を特願昭61
−132517号として提案した。 なお、本出願人が先に提案したところの上記発
明は、「金製鋼工程を通じて造滓剤の必要量はス
ラグとメタルとを向流的に接触させる“スラグ−
メタル向流精錬”によるときが最も少なくて良い
が、実際上は該向流精錬の完全な実現は殆ど不可
能であり、現状において最も労少なく造滓剤の使
用量を抑え得る可能性を秘めた製鋼手段として挙
げ得るものは、脱燐工程を2段階に分割し、その
下工程で発生するスラグを上工程の脱燐剤として
使用する方法以外に見当たらない」との発明者の
認識の下に、作業安定性、脱燐効率或いは設備コ
スト等の面での不利が予想された該“転炉滓再利
用による製鋼法”に関し、その問題点解消を目指
した研究での次の知見事項(A)〜(F)、即ち、 (A) 溶銑の脱燐処理においては脱燐効率からみて
処理温度を出来るだけ低くする方が良いが、該
温度が余りに低くなり過ぎると次工程での不都
合を引き起こす上、処理後スラグへの粒鉄ロス
が多くなると言う問題が生じるので、該温度は
1300〜1350℃程度が最も良好である。しかし、
実際作業では脱燐剤の添加そのものが処理温度
を低下する大きな要因となるので多少低目の上
記温度を保持するのは極めて困難であるが、脱
燐処理時に少量の酸素ガスを吹き込むことによ
つて前記処理温度が安定かつ容易に維持され
る、 (B) フラツクスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の
調整もさることながら、脱燐平衡状態を達成す
るための十分な撹拌を欠くことができないが、
高温の溶銑を高能率脱燐するに十分満足できる
効率の良い撹拌を短時間に実現するためには、
処理容器底部から吹き込まれるガスによるガス
撹拌が最も好ましい、 (C) 加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフオーミングのための十分な
フリーボード(湯面から容器上端までの距離)
が必要である、 (D) スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライ
ニングの使用が好ましい、 (E) 2段階脱燐工程を含む製鋼法において脱燐作
業能率を上げるためには処理容器からの排滓能
率を無視することができず、排滓が容易な処理
容器の使用を欠かせない、 (F) 高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集塵機)が必要である。 (G) これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から撹拌
ガスを導入できる上下両吹き機能を有した複合
吹錬転炉が理想的であり、これを使用して前述
した“2段階脱燐工程を含む製鋼法”を実施す
ると、金製鋼工程を通じて造滓剤の使用量が極
く少なくても十分に効率の良い脱燐がなされ、
高品質鋼を作業能率良く量産できる。 を基に完成されたものである。 そして、この本出願人が先に提案した方法は、
使用造滓剤量を極力抑えた低コスト操業でもつて
低燐鋼を安定して製造することができ、高品質鋼
を安価に提供する上で極めて有利な製鋼方法であ
つた。 しかしながら、実際操業を通じた本発明者等の
その後の検討により、先に提案した上記方法で
は、脱燐処理が上下両吹き機能を有した複合吹錬
転炉で実施される関係上どうしても吹込み酸素ガ
スや脱燐剤による溶銑中[C]の消費が多くな
り、次の脱炭炉精錬時の熱源が不足しがちとなつ
て脱炭精錬に支障を招く懸念のあることが指摘さ
れることとなつた。その上、「脱燐炉での精錬は
脱燐工程である」との認識の下に、脱燐炉のスラ
グ組成や酸素ポテンシヤル等を脱硫の進行しない
条件に設定されがちであつたことから、予め炉外
で溶銑脱硫処理を施すことが重要な条件となつて
おり、この点からの温度低下やコスト面でのロス
が見過ごすことのできない不利となつていた。 <問題点を解決するための手段> そこで、本発明者等は、上下両吹き機能を有し
た2基の転炉形式の炉のうちの一方を脱燐炉、他
方を脱炭炉として溶銑の精錬を行うと言う“先に
提案された製鋼方法”の利点を生かしつつ、しか
も前述した問題点を回避することによつて、高品
質鋼を安定した作業性の下でコスト安く溶製する
方法を見出すべく研究を続けたところ、次のよう
な新たな知見を得るに至つた。即ち、 (a) 脱燐炉での精錬の際、精錬剤の装入と同時に
塊状或いは粉状の炭材をも添加すると、その炭
素の一部が溶銑中に溶け込んで脱炭工程での熱
源を増すと共に、該脱燐炉においては上吹き酸
素により溶銑面に浮遊する炭材が選択的に燃焼
することとなり、これによつて溶銑中[C]の
酸化減少が少なくなることから、脱炭工程にお
ける熱源である溶銑中[C]濃度を十分に確保
した脱燐精錬が実施できること。 (b) この場合、例えば特開昭57−57811号公報や
特開昭60−75506号公報に記載された“トーピ
ードカー内又は溶銑鍋中での炭材添加”の場合
のように、『添加炭材を微粉化して特別の装置
(インジエクシヨン装置等)で吹き込まないと
溶銑中[C]の均一で効率の良い濃化が叶わ
ず、結局コスト高につながる』との憶測もなさ
れたが、複合吹錬炉を使用する場合には精錬時
に底吹きによる強撹拌作用が働き、このため微
粉化等の加工を施すことなく塊状又は粒状の炭
材を投入しても十分な成果を挙げることができ
るので、既存の添加剤投入装置を使用した“コ
スト高を伴わない通常の添加剤投入手段”をそ
のまま炭材の投入に適用できること。 (c) また、この場合に、添加炭材によるスラグの
還元が生じて脱燐不良を来たすことも懸念され
たが、炭材添加によつて溶銑中[C]濃度が上
昇するので εP C=12.8 なる式で表わされる活量係数が増大し、かつ底
吹きガスの撹拌作用によつて脱燐スラグとメタ
ルとの接触頻度も増えることから、懸念される
ような極端な脱燐悪化につながらないこと。 (d) 更に、上述のような炭材添加により、炭材中
に含有される硫黄分に起因した溶銑中硫黄濃度
の上昇が懸念されるが、それぞれ脱燐と脱炭の
役割を担わせる2基の複合吹錬炉を用いた前記
製鋼法においては、炭素添加によつて還元性雰
囲気とした脱燐炉でのスラグ組成調整さえ適当
に行えば脱燐と同時に十分な脱硫をも進行させ
ることが可能となり、炭材からのSピツクアツ
プによる悪影響を回避できるばかりか、溶銑の
脱硫予備処理を省略することも容認できるよう
になること。 この発明は、上記知見に基づいてなされたもの
であり、 「第1図に示される如く、上下両吹き機能を有
した2基の転炉形式の炉のうちの一方を脱燐炉
1、他方を脱炭炉2として溶銑の精錬を行う製鋼
方法において、溶銑を前記脱燐炉1内へ注入した
後、これに前記脱炭炉2で発生した転炉滓4を主
成分とする精錬剤と上吹き酸素により燃焼されて
減少する溶銑中炭素を補償するための炭材とを添
加し、撹拌ガス吹込みノズル5による底吹きガス
撹拌を行いつつ、ランス6より酸素ガスを上吹き
して溶銑脱燐を行う工程と、得られた脱燐溶銑を
脱炭炉2にて精錬する工程とを含ませることによ
り、熱源不足を生じることなく、良好な作業性の
下で高品質鋼をコスト安く製造し得るようにした
点」 に特徴を有するものである。 ここで、前記「上下両吹き機能を有した転炉形
式の炉」としては現在使われている“上下吹き複
合吹錬転炉”が最も好ましいが、特に脱燐炉につ
いては、精錬条件が脱炭炉よりもマイルドである
ため炉自体を更に小さくしても良いので、脱燐専
用に新設してもコスト的にそれほどの影響はな
い。 なお、脱燐炉における上吹き酸素ランスは通常
の転炉ランスでも良いが、脱燐用に新作した小流
量ランスであつても良い。そして、ここでの吹込
み酸素ガス量は処理前の溶銑温度や珪素含有量、
転炉滓の温度、脱燐炉の温もり具合、目的とする
処理溶銑温度等によつて決定されるが、0.6〜
1.0Nm3/min・t程度の流量に調整した場合に
は特に溶銑面に浮遊する投入炭材の選択的燃焼が
安定し、溶銑中[C]の酸化減少を効果的に抑え
ることが可能となるので、この時点での吹込み酸
素ガス量はできればこの範囲に調整するのが良
い。 脱燐炉での精錬剤(媒溶剤)としては、脱炭炉
で発生した転炉滓を主成分とするもの(転炉滓の
他に生石灰、蛍石、マンガン鉱石、鉄鉱石等の通
常の添加剤が適宜配合される)が使用されるが、
例えば、 転炉滓:40〜80重量%、 酸化鉄:20〜60重量%、 蛍石:0〜20重量% の如き配合組成のものが推奨される。 この場合、スラグ塩基度を2.4〜3.0に調整して
スラグとメタルのS分配比を30以上にとれば、脱
燐と同時に脱硫も十分に進行するので添加炭材か
らのSピツクアツプによる溶銑品質劣化を抑え得
るばかりか、溶銑の脱硫予備処理を省略すること
も可能となるので極めて望ましいことである。 なお、第2図はスラグ塩基度とS分配との関係
を示したグラフであるが、この第2図からも、脱
燐のみに重点を置いた低い塩基度のスラグを使用
する場合に比べ、脱燐炉においても使用スラグの
塩基度を高くするほど脱硫率が向上することが明
らかである。そして、この事実と媒溶剤増による
コスト増や出湯歩留低下等のバランスを考慮する
と、スラグ塩基度は2.4〜3.0に調整するのが最も
好ましいと言える。なお、炭材無添加であつて
も、この塩基度に調整することにより、脱硫効果
を同程度に得られる。 脱燐炉で使用される精錬剤(媒溶剤)の量は溶
製する鋼の[P]レベルにより決定されるが、通
常は30〜60Kg/t程度で良い。 ところで、脱燐炉で使用される精錬剤の主成分
たる転炉滓としては、脱炭炉で発生した溶融状態
のものが熱経済的にも脱燐フラツクスの滓化性の
面からも好ましいが(このように溶融状態のもの
を用いる場合には耐火物を内張りした鍋を介して
脱燐炉に注滓される)、取り扱いの容易さ等を考
慮して脱炭炉で得られたものを一旦冷却凝固さ
せ、これを粒状又は塊状に破砕してから用いても
良い。ただ、この場合、脱燐炉での滓化性向上の
ために粒径は小さい程良好であるが、転炉滓は本
来滓化性に富んでいることもあつて粒径が100mm
を下回る程度でも格別な不都合を来たすことがな
いし、これより大きくても使用可能である。 使用される転炉滓は、タイミングとしては前回
チヤージのものが良いが、それ以前の脱炭炉から
出したものや、他の向上の脱炭炉で発生したもの
でも良いことは言うまでもない。 一方、本発明において精錬剤と共に添加される
炭材は格別にその種類が制限されるものではな
く、形態も塊状、粒状、粉状の何れであつても良
いことから、安価な石炭やコークス等をそのまま
で適用することができ、しかもインジエクシヨン
操作を行うための特殊な添加装置も必要としな
い。更に、炭材添加量も格別に指定されるもので
はなく、例えば溶銑トン当り5〜15Kg程度添加す
れば十分である。 なお、脱燐炉での溶銑処理温度は1400℃以下
(1250〜1350℃程度)に抑えることが望ましい。
なぜなら、溶銑処理温度がこれよりも高くなると
脱炭ばかりが進行してスラグ中の酸化剤量が低く
なり、脱燐率が悪化することが懸念されるためで
ある。しかし、「余りに低温になるとスラグへの
粒鉄ロスが増加する」との事実を考慮することも
必要である。そして、このような処理温度の維持
はランスからの酸素ガス吹き込みによつて添加炭
材を燃焼させることで行われる。つまり、上記脱
燐炉での酸素ガス吹き込みは、脱燐処理温度を保
証するために実施されると言つても過言ではな
い。 ところで、脱燐剤として用いる鉄鉱石を脱燐炉
での吹錬の末期及びリンシング(吹錬終了後の底
吹きのみによる撹拌)中に投入する手法を採用す
れば、“スラグ温度の低下”や“吹錬末期のスラ
グ中酸素ポテンシヤルの上昇”等の効果によりP
分配を好ましい状態に維持することができるの
で、炭材添加故の溶銑中[C]濃度上昇による前
記活量係数の増大や、強撹拌によるスラグとメタ
ルとの接触頻度の増加等の作用と相俟つて処理後
のPレベルをより安定に低く抑えることができ
る。 炉底から吹き込む撹拌ガスとしてはAr,CO2
CO,N2,O2,空気等の何れであつても良い。そ
して、脱燐炉の炉底ガス撹拌の程度は通常の上下
両吹き複合吹錬におけると同程度(0.03〜0.2N
m3/t)で良いが、脱燐速度の向上を狙つてこれ
よりも更に多くして良いことは勿論である。 以上のような条件で脱燐処理を行うと、通常、
20分以内で所望の脱燐或いは脱燐と脱硫を完了す
ることができる。 脱炭炉での吹錬は、基本的には通常の“炉外で
脱燐・脱硫された溶銑”を吹錬する場合と同じで
あり、このとき、終点での溶鋼のMn含有量向上
を目的として生石灰やドロマイトを中心とする造
滓剤の他にマンガン鉱石や鉄マンガン鉱石を添加
することもできる。 上述のように、本発明は、「複合吹錬炉の強撹
拌を利用しつつ極く安価な炭材の投入を行うだけ
で、次工程での熱源となる[C]濃度の高い脱
硫・脱燐溶銑を炭材からのSのピツクアツプなし
に、更には予めの脱硫処理をも必要とせずに安定
溶製し(因に炭材の添加なしに精錬を行うと、上
吹き酸素によつて約0.5%もの溶銑中[C]が酸
化され、失われる)、これを次工程である複合吹
錬炉での脱炭処理に付すことで、使用造滓剤量少
なく、しかも十分な熱的余裕をもつて高品質の鋼
を溶製し得るようにしたもの」であるが、推奨さ
れる処理工程例として、第3図でも示したような
次の工程を挙げることができる。即ち、 第1工程:高炉出銑後の溶銑を脱燐炉へ注銑す
る。 第2工程:脱燐剤として用いる転炉滓を装入す
ると同時に、通常の添加剤投入シユートにより炭
材を投入する。 第3工程:溶銑[Si]量と転炉滓量とを考慮
し、塩基度が2.4〜3.0になるように所定の媒溶剤
を投入する。 第4工程:脱燐悪化防止の目的で、吹錬末期及
びリンシング中に鉄鉱石を投入して温度調整を行
う。 第5工程:脱燐炉から出湯した脱燐銑を脱炭炉
に注銑し、精錬を行う。 続いて、この発明を実施例により比較例と対比
しながら更に具体的に説明する。 <実施例> まず、第1表に示した範囲の成分組成を有する
高炉溶銑を“脱燐炉として使用する250トン上下
両吹き複合吹錬転炉”に注銑し、第2表に示す条
件で脱燐吹錬を行つた。
<Industrial Application Field> This invention uses two upper and lower double blowing composite blowing furnaces to melt high-quality steel at a low cost and with good workability without running out of heat source during the process. The present invention relates to a steelmaking method that allows for the production of steel, and also allows for the omission of hot metal desulfurization preliminary treatment. <Background technology> In recent years, various studies have been conducted with the aim of developing means to stably melt low-phosphorus steel at even lower costs. The following methods of preliminary dephosphorization of hot metal are used for the stable melting of low phosphorus steels: (b) Preliminary dephosphorization by injecting or blasting quicklime-based flux onto hot metal in a ladle; (c) Blasting quicklime-based flux onto hot metal in a blast furnace cast bed trough. A method of performing preliminary dephosphorization using phosphorescence has been proposed, and some of it has been put into practical use. However, in methods (a) and (b) above, dephosphorization is a "reaction that progresses during the floating process of the dephosphorizing agent (transitary reaction)".
Because the dephosphorization flux is not always efficiently used because it relies on the ``reactor reaction'', there is also the problem that the longer the treatment time, the greater the ripening during treatment and the lowering of the hot metal temperature. In method c), the dephosphorization treatment is performed on hot metal immediately after being tapped from the blast furnace, so the dephosphorization treatment temperature is as high as approximately 1400℃, and therefore it is difficult to reach a sufficiently satisfactory level of P content. Furthermore, when using quicklime etc. as flux for hot metal dephosphorization, considering the amount of quicklime etc. used in the subsequent converter blowing, both of the above methods Compared to the "method of omitting the preliminary dephosphorization step and performing dephosphorization only in a converter," the effect of reducing the amount of required slag forming agent (amount of quicklime, etc.) could not be said to be that remarkable. Based on the above situation, the present applicant first used two converter-type furnaces with both upper and lower blowing functions as schematically shown in FIG. , the other is decarburization furnace 2
Then, a refining agent whose main component is the converter slag 4 generated in the decarburization 2 is added to the hot metal 3 injected into the dephosphorization furnace 1, and bottom-blown gas is stirred by the stirring gas injection nozzle 5. While blowing oxygen gas upward from lance 6, the temperature of hot metal 3 in dephosphorization furnace 1 is raised to 1400℃.
After dephosphorizing the hot metal while maintaining the following conditions, the obtained dephosphorized hot metal is decarburized and final dephosphorized in the decarburization furnace 2 to produce steel with a normal phosphorus level or A patent application was filed in 1983 for a steel manufacturing method that enables low-phosphorus steel to be produced with good workability and at low cost.
- Proposed as No. 132517. The above-mentioned invention previously proposed by the present applicant is based on the concept that ``the required amount of slag-forming agent during the gold and steel making process is determined by the slag-forming agent, which brings the slag and metal into contact with each other in a countercurrent manner.''
Countercurrent refining of metals is the most effective method, but in reality, it is almost impossible to fully realize countercurrent refining. Based on the inventor's understanding, the only possible method for producing steel that could be used is to divide the dephosphorization process into two stages and use the slag generated in the lower process as a dephosphorizing agent in the upper process. Regarding the "steel manufacturing method by reusing converter slag," which was expected to have disadvantages in terms of work stability, dephosphorization efficiency, equipment cost, etc., the following findings were made in the research aimed at resolving the problems ( A) to (F), that is, (A) In the dephosphorization treatment of hot metal, it is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature becomes too low, it may cause problems in the next process. This temperature is
A temperature of about 1300 to 1350°C is best. but,
In actual work, the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, so it is extremely difficult to maintain the above-mentioned somewhat low temperature. (B) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorization efficiency, it is necessary to adjust the treatment temperature as described above. Adequate agitation to achieve equilibrium is essential, but
In order to achieve efficient stirring in a short time that is sufficient for highly efficient dephosphorization of high-temperature hot metal,
Gas agitation using gas injected from the bottom of the processing vessel is most preferable. distance)
(D) In order to reduce erosion of the processing vessel refractories caused by slag and increase dephosphorization work efficiency, it is preferable to use a basic lining. (E) Steel manufacturing including a two-step dephosphorization process In order to increase the efficiency of dephosphorization in the method, the efficiency of removing slag from the processing container cannot be ignored, and it is essential to use a processing container that allows easy removal of slag. For mass production, sufficient exhaust gas treatment equipment (dust collector) is required. (G) Considering these conditions, a converter-type furnace is ideal as a hot metal dephosphorization treatment vessel, especially a combined blowing converter with a top and bottom blowing function that allows stirring gas to be introduced from the bottom of the furnace. When this is used to carry out the above-mentioned "steel manufacturing method including two-stage dephosphorization process", sufficiently efficient dephosphorization can be achieved throughout the gold steel manufacturing process even if the amount of slag forming agent used is extremely small.
High-quality steel can be mass-produced with high efficiency. It was completed based on. The method previously proposed by the applicant is
It was an extremely advantageous steel manufacturing method in that low phosphorus steel could be stably produced at a low cost with the amount of slag used being kept to a minimum, and high quality steel could be provided at low cost. However, as a result of subsequent studies by the present inventors through actual operations, it was found that in the method proposed earlier, the dephosphorization process is carried out in a composite blowing converter having both upper and lower blowing functions, and therefore blowing oxygen is unavoidable. It has been pointed out that there is a concern that the consumption of [C] in hot metal by gas and dephosphorizing agents will increase, and that the heat source for the next decarburization furnace refining will tend to be insufficient, which will hinder decarburization refining. Summer. Furthermore, based on the understanding that ``refining in a dephosphorization furnace is a dephosphorization process,'' the slag composition and oxygen potential of the dephosphorization furnace were often set to conditions that would prevent desulfurization from proceeding. It is an important condition to desulfurize the hot metal beforehand outside the furnace, and the resulting temperature drop and cost loss are disadvantages that cannot be overlooked. <Means for Solving the Problems> Therefore, the inventors of the present invention devised a system for converting molten pig iron by using one of the two converter-type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. A method of melting high-quality steel at a low cost with stable workability while taking advantage of the previously proposed steelmaking method of refining and avoiding the problems mentioned above. As we continued our research to discover this, we came to the following new findings. (a) When refining in a dephosphorization furnace, if lump or powdered carbon is added at the same time as charging the refining agent, some of the carbon will dissolve into the hot metal and become a heat source in the decarburization process. At the same time, in the dephosphorization furnace, top-blown oxygen selectively burns the carbonaceous material floating on the surface of the hot metal, which reduces the oxidation loss of [C] in the hot metal. Dephosphorization refining can be carried out while ensuring a sufficient [C] concentration in hot metal, which is the heat source in the process. (b) In this case, as in the case of "addition of carbonaceous material in a torpedo car or hot metal pot" described in JP-A-57-57811 and JP-A-60-75506, It was speculated that unless the material is pulverized and blown using a special device (such as an injector), the [C] in the hot metal cannot be uniformly and efficiently concentrated, leading to higher costs. When using a smelting furnace, a strong stirring effect is activated by bottom blowing during refining, and for this reason, sufficient results can be achieved even if lump or granular carbonaceous material is input without processing such as pulverization. , ``A normal additive injection method that does not involve high costs'' using an existing additive injection device can be applied as is to the injection of carbonaceous material. (c) In this case, there was also a concern that the slag would be reduced by the added carbonaceous material, resulting in poor dephosphorization, but since the [C] concentration in the hot metal would increase due to the addition of the carbonaceous material, ε P C = 12.8 The activity coefficient expressed by the formula increases, and the frequency of contact between the dephosphorizing slag and metal increases due to the stirring action of the bottom blowing gas, so this does not lead to the extreme deterioration of dephosphorization as feared. thing. (d) Furthermore, with the addition of carbonaceous materials as described above, there is a concern that the sulfur concentration in hot metal will increase due to the sulfur content contained in the carbonaceous materials. In the aforementioned steelmaking method using a composite blowing furnace, if the slag composition in the dephosphorization furnace is made into a reducing atmosphere by adding carbon, sufficient desulfurization can proceed simultaneously with dephosphorization. This not only makes it possible to avoid the adverse effects of S pick-up from carbonaceous materials, but also makes it acceptable to omit desulfurization preliminary treatment of hot metal. This invention was made based on the above knowledge, and it is said that ``As shown in Fig. 1, one of the two converter-type furnaces having both upper and lower blowing functions is dephosphorizing furnace 1, and the other is In a steelmaking method in which hot metal is refined using a decarburization furnace 2, after the hot metal is injected into the dephosphorization furnace 1, a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal. A carbon material is added to compensate for the carbon in the hot metal that is reduced by being burned by the top-blown oxygen, and while the bottom-blown gas is stirred by the stirring gas injection nozzle 5, oxygen gas is blown upward from the lance 6 to form the hot metal. By including the dephosphorization process and the process of refining the obtained dephosphorized hot metal in the decarburization furnace 2, high-quality steel can be produced at a low cost with good workability without running out of heat source. It is characterized by the fact that it can be manufactured easily. Here, as the above-mentioned "converter type furnace with both top and bottom blowing functions", the currently used "top and bottom blowing combined blowing converter" is most preferable, but especially for the dephosphorization furnace, the refining conditions are Since it is milder than a charcoal furnace, the furnace itself can be made even smaller, so even if a new furnace is built specifically for dephosphorization, there will not be much of an impact on the cost. Note that the top-blowing oxygen lance in the dephosphorization furnace may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas blown here depends on the temperature of the hot metal before treatment, the silicon content,
It is determined by the temperature of the converter slag, the degree of warmth of the dephosphorization furnace, the target temperature of hot metal to be treated, etc., but from 0.6 to
When the flow rate is adjusted to about 1.0Nm 3 /min・t, the selective combustion of the input carbon material floating on the surface of the hot metal becomes stable, and it is possible to effectively suppress the oxidation reduction of [C] in the hot metal. Therefore, the amount of oxygen gas blown at this point should be adjusted within this range if possible. The refining agent (solvent) in the dephosphorization furnace is one whose main component is converter slag generated in the decarburization furnace (in addition to converter slag, ordinary substances such as quicklime, fluorite, manganese ore, iron ore, etc.) are used. Additives are added as appropriate) are used, but
For example, the recommended composition is converter slag: 40-80% by weight, iron oxide: 20-60% by weight, and fluorite: 0-20% by weight. In this case, if the slag basicity is adjusted to 2.4 to 3.0 and the S distribution ratio between slag and metal is set to 30 or more, desulfurization will proceed sufficiently at the same time as dephosphorization, resulting in deterioration of hot metal quality due to S pick-up from the added carbon material. This is extremely desirable because it not only makes it possible to suppress the amount of heat generated, but also makes it possible to omit desulfurization pretreatment of the hot metal. Fig. 2 is a graph showing the relationship between slag basicity and S distribution, and from this Fig. 2 it can be seen that compared to using a slag with low basicity that focuses only on dephosphorization, It is clear that the higher the basicity of the slag used in the dephosphorization furnace, the higher the desulfurization rate. Considering this fact and the balance between increased cost due to the increase in solvent and decreased yield of tapped water, it is most preferable to adjust the slag basicity to 2.4 to 3.0. Note that even if no carbonaceous material is added, the same degree of desulfurization effect can be obtained by adjusting the basicity to this level. The amount of refining agent (solvent) used in the dephosphorization furnace is determined by the [P] level of the steel to be melted, but is usually about 30 to 60 kg/t. By the way, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (If the molten material is used in this way, it is poured into the dephosphorization furnace through a pot lined with refractory material.) Considering ease of handling, etc., the material obtained in the decarburization furnace is used. It may be used after being once cooled and solidified and then crushed into granules or chunks. However, in this case, the smaller the particle size is, the better it is in order to improve the slag formation in the dephosphorization furnace, but since the converter slag is inherently highly slag formation, the particle size is 100 mm.
Even if it is smaller than this, no particular inconvenience will occur, and even if it is larger than this, it can be used. The timing of the converter slag to be used is preferably from the previous charge, but it goes without saying that it may also be from a previous decarburization furnace or from another improved decarburization furnace. On the other hand, the type of carbonaceous material added together with the refining agent in the present invention is not particularly limited, and may be in any form such as lumps, granules, or powders, so cheap coal, coke, etc. can be applied as is, and does not require special addition equipment for injection operation. Further, the amount of carbon material to be added is not particularly specified, and it is sufficient to add about 5 to 15 kg per ton of hot metal, for example. Note that it is desirable to suppress the hot metal treatment temperature in the dephosphorization furnace to 1400°C or less (approximately 1250 to 1350°C).
This is because if the hot metal treatment temperature is higher than this, decarburization will only progress, the amount of oxidizing agent in the slag will decrease, and there is a concern that the dephosphorization rate will deteriorate. However, it is also necessary to take into account the fact that ``if the temperature is too low, the loss of granular iron to the slag will increase.'' The treatment temperature is maintained by burning the added carbonaceous material by blowing oxygen gas from a lance. In other words, it is no exaggeration to say that the oxygen gas injection in the dephosphorization furnace is carried out to ensure the dephosphorization treatment temperature. By the way, if a method is adopted in which iron ore used as a dephosphorizing agent is introduced into the final stage of blowing in a dephosphorizing furnace and during rinsing (stirring only by bottom blowing after blowing), it is possible to "lower the slag temperature" and Due to the effects of “increasing the oxygen potential in the slag at the final stage of blowing”, P
Since the distribution can be maintained in a favorable state, it is compatible with effects such as an increase in the activity coefficient due to an increase in the [C] concentration in hot metal due to the addition of carbonaceous materials, and an increase in the frequency of contact between slag and metal due to strong stirring. In addition, the P level after processing can be kept low more stably. Stirring gases blown from the bottom of the furnace include Ar, CO 2 ,
It may be any of CO, N 2 , O 2 , air, etc. The degree of agitation of the bottom gas in the dephosphorization furnace is the same as in normal double blowing combined blowing (0.03 to 0.2N
m 3 /t), but it is of course possible to increase the amount even more with the aim of improving the dephosphorization rate. When dephosphorization is performed under the above conditions, usually
Desired dephosphorization or dephosphorization and desulfurization can be completed within 20 minutes. Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized and desulfurized outside the furnace. For this purpose, manganese ore or ferromanganese ore can also be added in addition to slag-forming agents mainly composed of quicklime and dolomite. As mentioned above, the present invention is capable of desulfurization and desulfurization with a high concentration of [C], which will serve as the heat source in the next process, by simply adding extremely inexpensive carbonaceous material while utilizing the strong stirring of the composite blowing furnace. Phosphorus hot metal can be stably produced without picking up S from carbonaceous materials, and furthermore, without requiring any prior desulfurization treatment (in fact, if refining is carried out without adding carbonaceous materials, approximately As much as 0.5% of [C] in the hot metal is oxidized and lost), but by subjecting it to decarburization treatment in the next step, a composite blowing furnace, the amount of slag forming agent used is reduced and sufficient thermal margin is maintained. The following steps, as shown in FIG. 3, can be cited as examples of recommended processing steps. That is, the first step: hot metal after being tapped from the blast furnace is poured into a dephosphorization furnace. 2nd step: At the same time as charging the converter slag used as a dephosphorizing agent, carbon material is charged using a normal additive charging chute. Third step: Considering the amount of hot metal [Si] and the amount of converter slag, a predetermined solvent is added so that the basicity is 2.4 to 3.0. Fourth step: In order to prevent dephosphorization from deteriorating, iron ore is added at the end of blowing and during rinsing to adjust the temperature. Fifth step: The dephosphorized pig iron discharged from the dephosphorization furnace is poured into the decarburization furnace and refined. Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples. <Example> First, blast furnace hot metal having a composition in the range shown in Table 1 was poured into a "250 ton upper and lower double blowing combined blowing converter used as a dephosphorization furnace" under the conditions shown in Table 2. We carried out dephosphorization blowing.

【表】【table】

【表】【table】

【表】 (注) *印は、本発明で規定する条件から外れている
ことを示す。
[Table] (Note) * indicates that the conditions are outside the conditions specified in the present invention.

【表】 この吹錬結果を第2表に併せて示す。 第2表に示された脱燐炉での吹錬結果からも明
らかなように、精錬剤と共に炭材を添加して精錬
を行つた本発明法では脱燐に何らの悪影響もな
く、しかも炭素添加を行わなかつた比較法に比し
て処理後の[C]濃度上昇率及び脱硫率が遥かに
優れることが確認できる。 ここで、脱硫に注目すると、本発明法では上記
精錬によつて十分な脱硫が進行するので予備脱硫
処理の必要性はないが、比較法では脱硫効果が少
なく、従つて前処理により脱硫を行う必要のある
ことが分かる。 なお、この脱燐炉での処理後温度は、“次工程
の脱炭炉精錬における熱余裕”と“脱燐の安定”
の両者を狙い、1300℃を目標に鉄鉱石又はMn鉱
石を用いて調整したものである。 続いて、脱燐炉での精錬が終了した前記溶銑を
“脱炭炉として使用する250トン上下両吹き複合錬
転炉”に注銑し、第3表に示す条件で脱炭吹錬を
行つた。 このよにうして得られた溶鋼の出鋼温度を第3
表に併せて示す。 この結果、本発明で規定する条件通りに溶銑の
処理を行うと、金製鋼工程で消費される生石灰量
が極めて少なく、しかも前処理による溶銑の脱硫
を必要とせずに低い[S]濃度の低燐鋼を十分な
熱余裕をもつて安定溶製できることが確認され
た。 <効果の総括> 以上説明した如く、この発明によれば、良好な
作業性の下で、高品質の鋼を能率良く低コストで
溶製することが可能となるなど、産業上有用な効
果がもたらされる。
[Table] The blowing results are also shown in Table 2. As is clear from the blowing results in the dephosphorization furnace shown in Table 2, the method of the present invention, in which carbonaceous material is added together with the refining agent for refining, has no adverse effect on dephosphorization; It can be confirmed that the [C] concentration increase rate and desulfurization rate after treatment are far superior to the comparative method in which no addition was made. Here, focusing on desulfurization, in the method of the present invention, sufficient desulfurization proceeds through the above-mentioned refining, so there is no need for preliminary desulfurization treatment, but in the comparative method, the desulfurization effect is small, and therefore desulfurization is performed by pretreatment. I understand what is needed. The temperature after treatment in this dephosphorization furnace is determined by the “thermal margin in the next step of decarburization furnace refining” and the “stability of dephosphorization”.
The temperature was adjusted using iron ore or Mn ore with the aim of achieving both of these conditions, and aiming for a temperature of 1300℃. Next, the hot metal that had been refined in the dephosphorization furnace was poured into a ``250-ton upper and lower double blowing combined refining converter used as a decarburizer'' and decarburized blowing was carried out under the conditions shown in Table 3. Ivy. The tapping temperature of the molten steel obtained in this way is
It is also shown in the table. As a result, if hot metal is treated according to the conditions specified in the present invention, the amount of quicklime consumed in the gold and steel making process is extremely small, and the [S] concentration can be reduced without the need for desulfurization of the hot metal by pretreatment. It was confirmed that phosphor steel can be stably produced with sufficient heat margin. <Summary of Effects> As explained above, the present invention has industrially useful effects such as making it possible to melt high-quality steel efficiently and at low cost with good workability. brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明プロセスの概念図である。第
2図は、脱燐炉精錬におけるスラグ塩基度とS分
配との関係を示すグラフである。第3図は、本発
明に従つた処理工程例の説明図である。第4図
は、先に提案した製鋼法に係るプロセスの概念図
である。 図面において、1……脱燐炉、2……脱炭炉、
3……溶銑、4……転炉滓、4′……転炉滓を主
成分とする脱燐スラグ、5……撹拌ガス吹込みノ
ズル、6……ランス。
FIG. 1 is a conceptual diagram of the process of the present invention. FIG. 2 is a graph showing the relationship between slag basicity and S distribution in dephosphorization furnace refining. FIG. 3 is an explanatory diagram of an example of a processing step according to the present invention. FIG. 4 is a conceptual diagram of the process related to the steel manufacturing method proposed earlier. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace,
3...Hot metal, 4...Converter slag, 4'...Dephosphorization slag mainly composed of converter slag, 5...Stirring gas injection nozzle, 6...Lance.

Claims (1)

【特許請求の範囲】 1 上下両吹き機能を有した2基の転炉形式の炉
のうちの一方を脱燐炉、他方を脱炭炉として溶銑
の精錬を行う製鋼方法であつて、溶銑を前記脱燐
炉内へ注入した後、これに前記脱炭炉で発生した
転炉滓を主成分とする精錬剤と上吹き酸素により
燃焼されて減少する溶銑中炭素を補償するための
炭材とを添加し、底吹きガス撹拌を行いつつ酸素
ガスを上吹きして溶銑脱燐を行う工程と、得られ
た脱燐溶銑を脱炭炉にて精錬する工程とを含んで
成ることを特徴とする製鋼方法。 2 前記溶銑脱燐工程を、添加炭素による還元雰
囲気中にて脱硫が同時に進行するスラグ組成下で
実施する、特許請求の範囲第1項に記載の製鋼方
法。
[Scope of Claims] 1. A steelmaking method in which hot metal is refined by using one of two converter type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. After being injected into the dephosphorization furnace, a refining agent mainly composed of converter slag generated in the decarburization furnace and a carbon material for compensating for the carbon in the hot metal that is burned by top-blown oxygen and reduced. The method is characterized by comprising a step of dephosphorizing the hot metal by adding and top-blowing oxygen gas while stirring the bottom-blown gas, and a step of refining the obtained dephosphorized hot metal in a decarburization furnace. steel making method. 2. The steelmaking method according to claim 1, wherein the hot metal dephosphorization step is carried out under a slag composition in which desulfurization simultaneously proceeds in a reducing atmosphere with added carbon.
JP30366587A 1987-12-01 1987-12-01 Steelmaking method Granted JPH01147012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30366587A JPH01147012A (en) 1987-12-01 1987-12-01 Steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30366587A JPH01147012A (en) 1987-12-01 1987-12-01 Steelmaking method

Publications (2)

Publication Number Publication Date
JPH01147012A JPH01147012A (en) 1989-06-08
JPH0433844B2 true JPH0433844B2 (en) 1992-06-04

Family

ID=17923749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30366587A Granted JPH01147012A (en) 1987-12-01 1987-12-01 Steelmaking method

Country Status (1)

Country Link
JP (1) JPH01147012A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID26484A (en) 1997-12-26 2001-01-11 Nippon Kokan Kk METHOD OF PURPLE IRON PURPLE AND PURPLE REDUCTION METHOD TO PRODUCE PASS IRON
JP4743072B2 (en) * 2006-10-11 2011-08-10 住友金属工業株式会社 Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag
JP4743078B2 (en) * 2006-10-24 2011-08-10 住友金属工業株式会社 Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215706A (en) * 1984-04-11 1985-10-29 Kobe Steel Ltd Pretreating method of molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215706A (en) * 1984-04-11 1985-10-29 Kobe Steel Ltd Pretreating method of molten iron

Also Published As

Publication number Publication date
JPH01147012A (en) 1989-06-08

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5440733B2 (en) Hot metal refining method
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPS63195209A (en) Steel making method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JPH0433844B2 (en)
JP3458890B2 (en) Hot metal refining method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JP4461495B2 (en) Dephosphorization method of hot metal
JP4192503B2 (en) Manufacturing method of molten steel
JPH0437135B2 (en)
JPS6393813A (en) Steel making method
JPH0557327B2 (en)
JPH0471965B2 (en)
JPS6247417A (en) Melt refining method for scrap
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JP2587286B2 (en) Steelmaking method
JPH0214404B2 (en)
JPH032312A (en) Production of low-phosphorus pig iron
JPH0437134B2 (en)
JPH0641608B2 (en) Two-stage countercurrent refining steelmaking process using compound converter
JPS61139614A (en) Manufacture of steel
JPS6126752A (en) Manufacture of low-phosphorus and high-manganese iron alloy by melt reduction
JPS6213406B2 (en)
JPH02182820A (en) Refining method for increasing mn-content in molten steel in converter