JPH032312A - Production of low-phosphorus pig iron - Google Patents

Production of low-phosphorus pig iron

Info

Publication number
JPH032312A
JPH032312A JP13395989A JP13395989A JPH032312A JP H032312 A JPH032312 A JP H032312A JP 13395989 A JP13395989 A JP 13395989A JP 13395989 A JP13395989 A JP 13395989A JP H032312 A JPH032312 A JP H032312A
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
dephosphorizing
slag
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13395989A
Other languages
Japanese (ja)
Inventor
Makoto Fukagawa
深川 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13395989A priority Critical patent/JPH032312A/en
Publication of JPH032312A publication Critical patent/JPH032312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively raise Mn concentration in dephosphorized pig iron without adversely affecting dephosphorizing capacity by blowing Mn ore fines through furnace-bottom tuyeres into iron bath at the time of dephosphorizing molten pig iron. CONSTITUTION:A dephosphorizing agent is added to molten pig iron and oxygen gas is top-blown while performing bottom-blown gas agitation, by which the dephosphorization of the molten pig iron is carried out. At this time, Mn ore fines 9 are blown through furnace-bottom tuyeres (bottom-blowing nozzles) 9 into the iron bath, or, Mn sintered ores prepared by exerting sintering by the addition and mixing of powdered slagging agent and coke fines are added from the upper part of the furnace together with the dephosphorizing agent 8, or, both means mentioned above are simultaneously carried out. Simultaneously, dephosphorizing treatment is performed while maintaining the temp. of the molten pig iron by top-blowing oxygen gas 7 through a top-blowing lance 6. By this method, the dephosphorizing treatment for molten pig iron and the raising of Mn concentration in molten pig iron by means of smelting reduction of Mn oxide can be simultaneously attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、溶銑脱燐処理の際に溶銑中[Mn]濃度を
も同時に上昇させて高[Mn] ?M度鋼の製造を有利
化するための、溶銑の[Mn]上昇脱燐処理方法に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention simultaneously increases the [Mn] concentration in hot metal during hot metal dephosphorization treatment to achieve high [Mn]? The present invention relates to a method for dephosphorizing hot metal to increase [Mn] in order to advantageously manufacture M-grade steel.

〈従来技術とその課題〉 近年、低燐鋼をより一層低いコストで安定溶製する手段
の開発を目指して様々な研究がなされるようになったが
、このような状況の中で、最近では製鋼トータルコスト
のミニマム化や低燐鋼の安定溶製に関し次のような溶銑
の予備脱燐法、即ち、(al  トーピード内の溶銑に
生石灰系のフラックス又はソーダ灰をインジェクション
することで予備脱燐を行う方法。
<Prior art and its challenges> In recent years, various studies have been conducted with the aim of developing stable melting methods for low-phosphorus steel at even lower costs. Regarding the minimization of the total cost of steelmaking and the stable production of low-phosphorus steel, the following preliminary dephosphorization method of hot metal is proposed. How to do it.

(bl  取鍋内の溶銑に生石灰系のフラックスをイン
ジェクションしたリブラスティング(吹き付け)するこ
とで予備脱燐を行う方法。
(bl) A method of performing preliminary dephosphorization by reblasting (spraying) injected quicklime-based flux to hot metal in a ladle.

(C1高炉鋳床樋中の溶銑に生石灰系のフラックスをブ
ラスティングして予備脱燐を行う方法。
(A method in which preliminary dephosphorization is performed by blasting quicklime-based flux to the hot metal in the C1 blast furnace casthouse gutter.

が提案され、一部実用化もなされるようになった。have been proposed, and some have even been put into practical use.

しかし、前記(al及び(b)の方法では脱燐を“脱燐
剤の浮上過程で進行する反応(トランジトリ−・リアク
ター・リアクション)”に頼るため脱燐フラックスの利
用効率が必ずしも良くなく、また処理時間が長くかかる
分だけ処理時の抜熱が大きくなって溶銑温度が低下する
と言う問題があり、方、前記(C1の方法では脱燐処理
が高炉から出銑された直後の溶銑に施されることがら脱
燐処理温度が約1400℃と高く、従って到達P含有量
が十分に満足できるレベルになり難いとの指摘がなされ
ていた。
However, in the above methods (al and (b)), the dephosphorization relies on "a reaction that progresses during the floating process of the dephosphorizing agent (transitary reactor reaction)", so the efficiency of using the dephosphorizing flux is not necessarily good, and There is a problem that the longer the treatment time, the more heat is removed during the treatment and the temperature of the hot metal decreases. It has been pointed out that the dephosphorization treatment temperature is as high as about 1400° C., and therefore it is difficult to achieve a sufficiently satisfactory P content.

その上、溶銑脱燐フラックスとして生石灰等を用いる場
合には、その後の転炉吹錬で使用される生石灰等の量を
も合わせて考えると、前記何れの方法も、“予備脱燐工
程を省いて転炉のみでの脱燐を行う方法”に比べて必要
造滓剤量(生石灰等の量)の低減効果はそれほど顕著で
あるとは言えなかった。
Furthermore, when using quicklime etc. as a hot metal dephosphorization flux, considering the amount of quicklime etc. used in the subsequent converter blowing, both of the above methods are effective in eliminating the preliminary dephosphorization step. It could not be said that the effect of reducing the required amount of slag forming agent (amount of quicklime, etc.) was not so remarkable compared to the method of dephosphorizing using only a converter.

そこで、上記状況を踏まえた本発明者等は、先に、第1
図で略示されるような「上下両吹き機能を有した2基の
転炉形式の炉を使用するとともに、そのうちの一方を脱
燐炉1、他方を脱炭炉2とし、前記脱燐炉1内へ注入し
た溶銑3に前記脱炭炉2で発生した転炉滓4を主成分と
する精錬剤の添加を行い、攪拌ガス吹き込みノズル5に
よる底吹きガス攪拌を実施しつつランス6より酸素ガス
を上吹きして脱燐炉1の溶銑3の温度を1400℃以下
に保ちなから溶銑脱燐を行った後、得られた脱燐溶銑を
脱炭炉2にて脱炭並びに仕上脱燐することにより、極め
て少ない量の造滓剤でもって通常燐レベルの鋼或いは低
燐鋼を作業性良く低コストで製造し得るようにした製鋼
方法」 を確立し、特願昭61−132517号として提案した
Therefore, based on the above situation, the present inventors first conducted the first
As shown schematically in the figure, two converter-type furnaces having both upper and lower blowing functions are used, and one of them is used as a dephosphorization furnace 1 and the other as a decarburization furnace 2, and the dephosphorization furnace 1 A refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the molten iron 3, and oxygen gas is added from the lance 6 while bottom blowing gas is stirred by the stirring gas blowing nozzle 5. After dephosphorizing the hot metal while keeping the temperature of the hot metal 3 in the dephosphorization furnace 1 below 1400°C by top-blowing, the obtained dephosphorized hot metal is decarburized and final dephosphorized in the decarburization furnace 2. As a result, we established a steel manufacturing method that enables the production of steel with normal phosphorus levels or low phosphorus steel with good workability and low cost with an extremely small amount of slag forming agent, and proposed it as Japanese Patent Application No. 132517/1986. did.

なお、本発明者等が先に提案した上記発明は、「全製鋼
工程を通じての造滓剤の必要量はスラグとメタルとを向
流的に接触させる“スラグ−メタル向流精錬”によると
きが最も少なくて良いが、実際上は該向流精錬の完全な
実現は殆ど不可能であり、現状において最も労少なく造
滓剤の使用量を抑え得る可能性を秘めた製鋼手段として
挙げ得るものは、脱燐工程を2段階に分割し、その下工
程で発生するスラグを上工程の脱燐剤として使用する方
法以外に見当たらない」との認識の下に、該“転炉滓再
利用による製鋼法”に関し、作業安定性、脱燐効率或い
は設備コスト等の面での問題点解消を目指した研究によ
る次の知見事項(八)〜(F)、即ち、 (A)  溶銑の脱燐処理においては脱燐効率からみて
処理温度を出来るだけ低くする方が良いが、該温度が余
りに低(なり過ぎると次工程での不都合を引き起こす上
、処理後スラグへの粒鉄ロスが多くなると言う問題が生
じるので、該温度は1200〜1400℃、好ましくは
1300〜1350℃程度が最も良好である。しかし、
実際作業では脱燐剤の添加そのものが処理温度を低下す
る大きな要因となるので上記温度を保持するのは極めて
困難であるが、脱燐処理時に少量の酸素ガスを吹き込む
ことによって前記処理温度が安定かつ容易に維持される
The above invention previously proposed by the present inventors states that ``the required amount of slag-forming agent throughout the entire steelmaking process is sometimes determined by ``slag-metal countercurrent refining'' in which slag and metal are brought into contact with each other in a countercurrent manner. Although it is possible to use the least amount of slag refining agents, it is almost impossible to completely realize countercurrent refining in practice, and at present, the most labor-intensive steelmaking method that has the potential to reduce the amount of slag-forming agent used is Recognizing that there is no other way than to divide the dephosphorization process into two stages and use the slag generated in the lower process as a dephosphorizing agent in the upper process, we decided to develop steelmaking by reusing converter slag. The following findings (8) to (F) are based on research aimed at resolving problems in terms of work stability, dephosphorization efficiency, equipment cost, etc., i.e., (A) In the dephosphorization process of hot metal. It is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature is too low, it will cause problems in the next process, and there will be problems such as increased loss of granulated iron to the slag after treatment. occurs, so the temperature is most preferably about 1200 to 1400°C, preferably about 1300 to 1350°C.However,
In actual work, it is extremely difficult to maintain the above temperature because the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, but by blowing a small amount of oxygen gas during the dephosphorization process, the processing temperature can be stabilized. and easily maintained.

(B)  フラックスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の調整もさ
ることながら、脱燐平衡状態を達成するための十分な攪
拌を欠くことができないが、高温の溶銑を高能率脱燐す
るに十分満足できる効率の良い攪拌を短時間に実現する
ためには、処理容器底部から吹き込まれるガスによるガ
ス攪拌が最も好ましい。
(B) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorizing efficiency, it is necessary to adjust the treatment temperature as described above, as well as to lack sufficient stirring to achieve a dephosphorizing equilibrium state. However, in order to achieve satisfactory and efficient stirring in a short time for highly efficient dephosphorization of high-temperature hot metal, gas stirring using gas blown from the bottom of the processing vessel is most preferable.

(C)  加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフォーミングのための十分なフリーボ
ード(場面から容器上端までの距離)が必要である。
(C) In addition, in order to perform an efficient dephosphorization process, the processing vessel must have sufficient freeboard (distance from the scene to the top of the vessel) for slag forming.

(D)  スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライニングの
使用が好ましい。
(D) In order to reduce erosion of the processing vessel refractories due to slag and increase dephosphorization work efficiency, it is preferable to use a basic lining.

(E)2段階脱燐工程を含む製鋼法において脱燐作業能
率を上げるためには処理容器からの排滓能率を無視する
ことができず、排滓が容易な処理容器の使用を欠かせな
い。
(E) In order to increase the efficiency of dephosphorization in a steelmaking process that includes a two-stage dephosphorization process, the efficiency of removing slag from the processing container cannot be ignored, and it is essential to use a processing container that allows easy removal of slag. .

(F)  高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集塵機)が必要である。
(F) In order to mass-produce high-quality steel with good workability, sufficient exhaust gas treatment equipment (dust collector) is necessary.

(G)  これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から攪拌ガスを4
人できる上下両吹き機能を有した複合吹錬転炉が理想的
であり、これを使用して前述した“2段階脱燐工程を含
む製鋼法“を実施すると、全製鋼工程を通じての造滓剤
の使用量が極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できる。
(G) Taking these conditions into consideration, a converter-type furnace is recommended as the hot metal dephosphorization treatment vessel, and it is also possible to
A combined blowing converter with both upper and lower blowing functions that can be performed by humans is ideal, and if this is used to carry out the above-mentioned "steel manufacturing method that includes a two-stage dephosphorization process", the slag forming agent will be used throughout the entire steel manufacturing process. Even if only a small amount of phosphor is used, dephosphorization can be carried out efficiently and high-quality steel can be mass-produced with high efficiency.

を基に完成されたものである。It was completed based on.

そして、この本発明者等が先に提案した方法は、使用造
滓剤量を極力抑えた低コスト操業でもって低燐鋼を安定
して製造することができ、高品質鋼を安価に提供する上
で極めて有利であった。
The method previously proposed by the present inventors can stably produce low-phosphorus steel with low-cost operation that minimizes the amount of slag-forming agent used, and provides high-quality steel at a low cost. It was extremely advantageous.

しかも、該提案は、転炉精錬(脱炭炉精錬)の際にMn
12.石を投入し、精錬時の[Mnlロスの軽減や溶M
id [Mnl上昇を図ることをも示唆しており、高M
n鋼を溶製する場合でも非常に有益なものであった。
Moreover, this proposal requires Mn during converter refining (decarburization furnace refining).
12. Input stones to reduce Mnl loss and melt Mn during refining.
id [It also suggests that the aim is to increase Mnl;
It was also very useful when melting n-steel.

特に、近年、厚板鋼材の品質安定化と低コスト化要求が
強まってきたことに対処し、高Mnj!@をできるだけ
低い価格で溶製しようとの研究が盛んに行われており、
これらのうちの最も有効な手段として“転炉内の溶銑に
マンガン鉱石を投入して酸素吹錬を行うことで終点[M
nl tM度を上昇させる転炉精錬方法”が挙げられる
が、上記提案の方法によって造滓剤使用量の低減が可能
となり、このことによってマンガン鉱石投入によるmW
4 [Mnl上昇をより効果的に行うことが可能となっ
たのである。
In particular, in response to the increasing demand for quality stabilization and cost reduction of thick steel plates in recent years, high Mnj! A lot of research is being carried out to melt @ at the lowest possible price.
The most effective method among these is to introduce manganese ore into the hot metal in the converter and perform oxygen blowing to achieve the final point [M
The method proposed above makes it possible to reduce the amount of slag-forming agent used, which reduces mW by inputting manganese ore.
4 [It became possible to increase Mnl more effectively.

ただ、上記提案の方法では、マンガン鉱石の添加を脱炭
炉で行うことを主眼とし、これによって脱炭炉終点の[
Mnl :a度を上昇させることが大きな狙いであり、
脱燐炉でのマンガン鉱石の添加にはそれほど重きを置い
たものではなく、〔転炉滓+酸化鉄+蛍石〕を主成分と
する脱燐晴錬剤に所望により添加する副次的なものでし
かなかった。
However, the method proposed above focuses on adding manganese ore in the decarburization furnace, and thereby
Mnl: The main aim is to increase the a degree,
The addition of manganese ore in the dephosphorization furnace does not place much emphasis on the addition of manganese ore, but is added as a secondary additive to the dephosphorization refining agent whose main components are [converter slag + iron oxide + fluorite]. It was just a thing.

そして、この時の脱炭炉におけるマンガン鉱石添加可能
量は“脱燐銑の温度と溶銑[C]濃度”及び“脱炭炉終
点温度と溶# [C]濃度”によって決定されるもので
あり、従って、実際には添加主体となる脱炭炉でのマン
ガン鉱石添加可能量も精々溶鉄トン当り15〜20kg
程度に過ぎず、脱炭炉終点[Mnl tri度も0.7
〜0.9重量%程度にしかならないものであった。
The amount of manganese ore that can be added to the decarburization furnace at this time is determined by the "dephosphorization temperature and hot metal [C] concentration" and the "decarburization furnace end temperature and hot metal [C] concentration." Therefore, in reality, the amount of manganese ore that can be added in the decarburization furnace, which is the main source of addition, is at most 15 to 20 kg per ton of molten iron.
The decarburization furnace end point [Mnl tri degree is also 0.7
The amount was only about 0.9% by weight.

これに対して、高めのMn含有量が要求される製品の[
Mnl tM度は1.5重量%程度とかなり高いものが
多く、そのため足りない分はやはり高価なフェロマンガ
ン等の添加で補う必要があり、本発明者等が先に提案し
た上記方法は、このような観点からすれば今−歩物足り
ない点のあることがその後の検討によって強く認識され
るに至ったのである。
On the other hand, products that require a higher Mn content [
The Mnl tM degree is often quite high, around 1.5% by weight, so it is necessary to compensate for the deficiency by adding expensive ferromanganese, etc. The above method proposed by the present inventors From this point of view, subsequent studies have led to the strong recognition that there are some shortcomings.

即ち、精錬後のフェI:Iマンガン添加量を減らして高
Mrf4の製造コストをより低減するためには脱炭炉終
点[Mnl ’lIN度を更に上げることが必要である
が、前述した理由によりマンガン鉱石の添加・溶融還元
可能量に限界があることから、単に脱炭炉でのマンガン
鉱石添加量を増やす策は採用することができなかった。
That is, in order to further reduce the production cost of high Mrf4 by reducing the Fe I:I manganese addition amount after refining, it is necessary to further increase the degree of Because there is a limit to the amount of manganese ore that can be added and melted down, it was not possible to simply increase the amount of manganese ore added in the decarburization furnace.

もっとも、溶銑予備処理による脱燐銑にマンガン鉱石を
投入しMn濃度の高い溶鋼を転炉精錬(転炉を1基だけ
使用した通常の精錬)する際の終点[Mn] tM度を
より一層向上させる手段として、コークスのような炭材
を添加するのが有効である事実も知られてはいる。しか
しながら、この方法を“先に提案した方法での脱炭精錬
”に適用したとしてもコークス使用による費用増を招く
ばかりか、吹込み酸素費用も上昇し、吹錬時間の延長(
生産性の低下)、コークスからの[S]上昇、コークス
からの豚石上昇、脈石を中和するために添加する生石灰
量の上昇9脈石及び生石灰量上昇の結果としてのスラグ
量増大によるマンガン鉱石還元歩留の低下等が生じ、成
る程度のコスト低減効果は認められるものの、コークス
を添加せずにマンガン鉱石を添加して溶融還元する場合
と同じ[Mn]上昇量で比較すると、コークス使用時の
便益が小さくなるのを否定できなかった。
However, manganese ore is added to dephosphorized pig iron by hot metal pretreatment to further improve the end point [Mn] tM degree when molten steel with a high Mn concentration is refined in a converter (normal refining using only one converter). It is also known that it is effective to add a carbonaceous material such as coke as a means to achieve this. However, even if this method is applied to "decarburization refining using the method proposed earlier," not only will the cost increase due to the use of coke, but the cost of blown oxygen will also increase, and the blowing time will be extended (
(Decrease in productivity), increase in [S] from coke, increase in slag from coke, increase in amount of quicklime added to neutralize gangue9 Increase in amount of slag as a result of increase in amount of gangue and quicklime Although it is recognized that there is a cost reduction effect to the extent that there is a decrease in the manganese ore reduction yield, etc., when comparing the same amount of [Mn] increase as when manganese ore is added and melted and reduced without adding coke, coke It could not be denied that the benefits during use would be smaller.

このようなことから、本発明の目的は、上下両吹き機能
を有した転炉形式の炉に注銑した溶銑に脱燐剤を添加し
、底吹ガス攪拌を行いつつ酸素ガスを上吹きしてコスト
の安い溶銑脱燐を目指す際、同時に、脱燐能に悪影響を
及ぼすことなく脱燐銑の[Mn3 r=度を効果的に上
昇させ得る手段を見出すことに置かれた。
Therefore, the object of the present invention is to add a dephosphorizing agent to hot metal poured into a converter-type furnace having both top and bottom blowing functions, and to top blow oxygen gas while stirring the bottom blowing gas. When aiming at low-cost dephosphorization of hot metal, it was also necessary to find a means to effectively increase the [Mn3 r= degree of dephosphorized pig iron without adversely affecting the dephosphorizing ability.

〈課題を解決するための手段〉 そして、本発明者等は上記目的を達成すべく様々な観点
に立って鋭意研究を重ねたところ、新たに次のような知
見を得るに至ったのである。即ち、(al  先に特願
昭61−13251号として提案した溶銑脱燐法におい
て、脱燐溶銑の[Mn]?W度上5.1のためにマンガ
ン鉱石添加を行う場合、マンガン鉱石を粉状として脱燐
炉の底吹羽口から溶銑中に吹き込むか、“マンガン鉱石
粉に石灰石、珪砂等の造滓剤とコークス粉を添加・混合
して焼成したマンガン焼結鉱”をMn源等とし、これを
脱燐剤(生石灰、蛍石、転炉滓等)と共に添加して精錬
を行えば、添加するマンガン鉱石も溶銑脱燐のための酸
化剤として効果的に作用することとなる上、)容銑品質
や操業に何らの悪影響を及ぼずことなく該脱燐炉で処理
された脱燐溶銑中[MnlFi度を最大眼窩めることが
可能となること fb)  そして、得られた高[Mn]C度の脱燐銑を
脱炭炉に収容し、更にマンガン鉱石を含む造滓剤を投入
して脱炭精錬を行うと、全体として極力少ない造滓剤使
用量の下で、低燐でかつ[Mnl?W度の高い鋼をコス
ト安く高能率で安定溶製することが可能となること。
<Means for Solving the Problems> In order to achieve the above object, the present inventors conducted extensive research from various viewpoints, and as a result, the following new knowledge was obtained. That is, (al) In the hot metal dephosphorization method previously proposed in Japanese Patent Application No. 13251/1983, when manganese ore is added to increase the degree of [Mn]?W of the dephosphorized hot metal to 5.1, the manganese ore is powdered. Either it is blown into the hot metal from the bottom blowing tuyere of a dephosphorization furnace, or it can be used as a Mn source, such as "manganese sintered ore made by adding and mixing manganese ore powder with slag-forming agents such as limestone and silica sand, and coke powder". If this is added together with a dephosphorizing agent (quicklime, fluorite, converter slag, etc.) and refined, the added manganese ore will also effectively act as an oxidizing agent for hot metal dephosphorization. ,) in the dephosphorized hot metal processed in the dephosphorization furnace without having any adverse effect on the volume quality or operation [it is possible to maximize the MnlFi degreefb) and the obtained high If dephosphorized pig iron with [Mn]C degree is stored in a decarburization furnace and a slag agent containing manganese ore is added for decarburization refining, the overall amount of slag forming agent used is as small as possible. Phosphorus dekatsu [Mnl? It is possible to stably produce steel with a high W degree at low cost and with high efficiency.

(C)  従って、脱炭炉精錬での終点[Mn]が従来
の手段に比して目立って高くなり (脱炭炉のみでマン
ガン鉱石添加吹錬を行う場合の限界値よりも遥かに高い
終点[Mn]?ffi度が得られる)、マンガン合金鉄
の顕著な節減が可能となること。
(C) Therefore, the end point [Mn] in decarburization furnace refining is noticeably higher than that in conventional methods (the end point is much higher than the limit value when manganese ore addition blowing is performed only in a decarburizer). [Mn]?ffi degree), it is possible to significantly reduce the amount of manganese alloy iron.

本発明は、上記知見等に基づいてなされたものであり、
[上下両吹き機能を有する転炉形式の炉内に注銑した溶
銑に脱燐剤(脱燐造滓剤)を添加し、底吹ガス攪拌を行
いつつ酸素ガスを上吹きして溶銑脱燐を行うに際して、
第2図に示すように炉底羽口(底吹ノズル)5 からマ
ンガン鉱石粉(鉄マンガン鉱石粉も含む)9 を鉄浴中
に吹き込むか、又は第3図に示すように前記脱燐剤(脱
燐造滓剤)8と共に“粉状マンガン鉱石に粉状造滓剤及
びコクス粉を添加・混合して焼成したマンガン焼結鉱”
10を炉上部から添加するか、或いはこの両手段を同時
に実施すると共に、上吹ランス6からは酸素ガス7を上
吹きして溶銑温度の糾−持を図りなから脱燐処理を実施
し、溶銑脱燐処理とマンガン酸化物溶融還元による溶銑
[Mn]濃度の上昇とを同時に達成し得るようにした点
」に特徴を有するものである。
The present invention has been made based on the above findings, etc.
[A dephosphorizing agent (dephosphorizing slag agent) is added to the hot metal poured into a converter type furnace that has both upper and lower blowing functions, and oxygen gas is blown upward while stirring the bottom blowing gas to dephosphorize the hot metal. When carrying out
As shown in FIG. 2, manganese ore powder (including ferromanganese ore powder) 9 is blown into the iron bath from the bottom tuyere (bottom blowing nozzle) 5, or as shown in FIG. (Dephosphorization slag agent) 8 and “manganese sintered ore made by adding and mixing powdered slag agent and coke powder to powdered manganese ore”
10 is added from the upper part of the furnace, or both of these methods are carried out at the same time, and oxygen gas 7 is blown upward from the top blowing lance 6 to maintain the temperature of the hot metal, and the dephosphorization process is carried out. It is characterized by the fact that it is possible to simultaneously achieve hot metal dephosphorization treatment and increase in hot metal [Mn] concentration by melting and reducing manganese oxides.

〈作用〉 なお、脱燐溶銑の[Mn] ?W度上昇のために脱燐炉
へ添加するマンガン鉱石を粉状として炉底羽口から吹き
込むか、或いはマンガン焼結鉱の形態で使用するのは次
の理由による。
<Effect> In addition, [Mn] of dephosphorized hot metal? The reason why manganese ore is added to the dephosphorization furnace in order to increase the degree of W is either blown into the furnace bottom through the tuyere in the form of powder or used in the form of manganese sintered ore for the following reason.

マンガン鉱石粉を  きする理由 マンガン鉱石は、マンガン酸化物を主成分とすると共に
、脈石として主にSi 02+ AN z Oxを含有
しているが、その融点は1700℃以上と難溶性である
。そのため、脱燐処理時の1400°C以下の温度条件
下でマンガン鉱石を炉上部から添加すると、マンガン鉱
石の溶解が遅いので溶融還元による[Mnl上昇の進行
が遅滞する上、スラグ中のMn OQfj1度が上昇し
てスラグ融点の急上昇を招き、スラグ流動性の悪化のた
め脱燐にも悪影響が及ぶ。
Reasons for producing manganese ore powder Manganese ore has manganese oxide as its main component and mainly contains Si 02+ AN z Ox as gangue, but its melting point is 1700° C. or higher and it is hardly soluble. Therefore, if manganese ore is added from the upper part of the furnace under the temperature condition of 1400°C or less during dephosphorization treatment, the dissolution of the manganese ore is slow, and the progress of the increase in [Mnl] due to smelting reduction is delayed, and the Mn OQfj1 in the slag is The temperature rises, leading to a sudden rise in the slag melting point, and dephosphorization is also adversely affected due to deterioration of slag fluidity.

ところが、マンガン鉱石を粉状として炉底羽口から溶鉄
中へ吹き込んだ場合には、 M110g+ 2 C=Mn+ 2 Co     ・
・・(1)なる還元反応が迅速に進行する結果、マンガ
ン歩留が飛躍的に向上することに加えてスラグの流動性
も良好に保たれ、脱燐能も悪化しない。
However, when powdered manganese ore is blown into the molten iron from the bottom tuyere, M110g+ 2C=Mn+ 2Co ・
... (1) As a result of the rapid progress of the reduction reaction, the manganese yield is dramatically improved, and the fluidity of the slag is maintained well, and the dephosphorization ability is not deteriorated.

即ち、吹き込まれたマンガン鉱石粉は溶銑中に分散され
た状態で溶銑中を上昇するが、この場合にはマンガン鉱
石と溶銑との反応界面積が非常に大きいために+1)式
の反応が迅速に進み、しかもこの反応によってマンガン
鉱石中のマンガン酸化物量が減少するとMn0−5iO
□−ARzO、系の低融点(1200−1300℃)ス
ラグが生成し、溶解が速やかに進行する。つまり、吹き
込まれたマンガン鉱石粉が鉄浴中を上昇する間に一部の
マンガン酸化物が速やかに還元されるため、鉄浴上スラ
グ層に到達した時点では溶解の進行が迅速化されるわけ
である。
That is, the injected manganese ore powder rises through the hot metal while being dispersed in the hot metal, but in this case, the reaction of equation +1) is rapid because the reaction interface area between the manganese ore and the hot metal is very large. , and when the amount of manganese oxide in the manganese ore decreases due to this reaction, Mn0-5iO
□-ARzO, a low melting point (1200-1300°C) slag of the system is generated, and dissolution proceeds rapidly. In other words, some manganese oxides are quickly reduced while the injected manganese ore powder rises in the iron bath, so when it reaches the slag layer above the iron bath, the progress of dissolution is accelerated. It is.

その結果、トップスラグの流動性は良好に維持できてト
ップスラグ−鉄浴間の反応が迅速に起こり、スラグ中マ
ンガン酸化物の還元による[Mnl上昇及び脱燐反応が
円滑に進行するようになる。
As a result, the fluidity of the top slag can be maintained well, and the reaction between the top slag and the iron bath occurs quickly, and the reduction of manganese oxides in the slag allows the increase in Mnl and the dephosphorization reaction to proceed smoothly. .

従って脱燐に悪影響が及ぶこともなく、脱燐と同時に[
Mnl上昇を高歩留で実施できることとなる。
Therefore, there is no negative effect on dephosphorization, and at the same time [
This means that Mnl can be increased with high yield.

吹き込むマンガン鉱石粉の粒度は1鶴以下程度のもので
良いが、流送の面からは100メツシユ以下程度が好ま
しい。
The particle size of the manganese ore powder to be blown in may be about 1 mesh or less, but from the viewpoint of flow, it is preferably about 100 mesh or less.

マンガン焼結鉱を 用する理由 マンガン鉱石を脱燐炉の上部から直接添加しても、溶融
還元による[Mnl上昇が遅い上、脱燐にも悪影響が及
ぶことは記述の通りであるが、粉状としたマンガン鉱石
に石灰石、ドロマイト等の粉状造滓剤とコークス粉を添
加し混合した後焼成したマンガン焼結鉱石をMn源とし
て添加した場合には、マンガン鉱石の溶解が極めて迅速
に進行するようになってマンガン酸化物の還元反応が速
やかに進み、高歩留で溶銑中[Mnl上昇が可能となる
上、スラグの流動性も良好に保たれて脱燐能も悪化しな
い。
Reasons for using manganese sintered ore Even if manganese ore is added directly from the top of the dephosphorization furnace, the increase in [Mnl] due to smelting reduction is slow, and as described above, dephosphorization is also adversely affected. When manganese sintered ore, which is prepared by adding and mixing powdered slag-forming agents such as limestone and dolomite and coke powder to shaped manganese ore and then calcining the mixture, is added as a Mn source, the dissolution of the manganese ore proceeds extremely quickly. As a result, the reduction reaction of manganese oxides proceeds rapidly, making it possible to increase [Mnl] in the hot metal with a high yield, and maintaining good fluidity of the slag, so that the dephosphorization ability does not deteriorate.

つまり、前記焼結鉱はマンガン鉱石に比べて融点が非常
に低く、そのため溶銑脱燐処理のような1400℃以下
の低温条件下でも速やかに滓化する。そして、上下両吹
き機態を有する。転炉形式の炉の底吹羽目からの底吹ガ
ス攪拌によりスラグ−メタル間反応が迅速に進行する結
果、高歩留でマンガン酸化物が還元されることとなって
[Mnl上昇が可能となる。しかも、スラグの流動性が
良好に保たれるので、脱燐反応も円滑に進行するように
なる訳である。
In other words, the sintered ore has a much lower melting point than manganese ore, and therefore quickly turns into slag even under low-temperature conditions of 1400° C. or lower, such as during hot metal dephosphorization treatment. It also has an upper and lower blow mechanism. As the slag-metal reaction progresses quickly due to bottom-blown gas agitation from the bottom blowing surface of a converter-type furnace, manganese oxides are reduced at a high yield, making it possible to increase [Mnl]. . Moreover, since the fluidity of the slag is maintained well, the dephosphorization reaction also proceeds smoothly.

従って、マンガン焼結鉱を炉底羽口から吹き込む場合と
同様に、所望の脱燐能が十分に維持されつつ、高歩留で
[Mnl上昇を図ることが可能となる。
Therefore, as in the case of injecting manganese sintered ore from the bottom tuyere, it is possible to increase [Mnl] with a high yield while sufficiently maintaining the desired dephosphorizing ability.

なお、前記マンガン焼結鉱は、マンガン鉱石粉に石灰石
、ドロマイト等の粉状造滓剤を加え、更にコークス粉を
添加して混合した後、ドヮイトロイド式又はグリナワル
ト式焼結機によりコークスの燃焼熱にて1100〜14
00℃で焼成して製造することができる。この焼成の際
、マンガン鉱石粉は粉状造滓剤と同化してMMno−5
in  PdlzOz−CaO−MgOを主体とした低
融点(1100〜1300℃)スラグを生成し、焼結が
行われる。
The manganese sintered ore is produced by adding a powdered slag-forming agent such as limestone or dolomite to manganese ore powder, and then adding and mixing coke powder. 1100-14 at
It can be manufactured by firing at 00°C. During this firing, the manganese ore powder is assimilated with the powdered slag forming agent and becomes MMno-5.
A low melting point (1100 to 1300°C) slag mainly composed of in PdlzOz-CaO-MgO is produced and sintered.

そして、マンガン焼結鉱製造時の造滓剤配合は、焼結鉱
中の〔(χCaO+2Mg0)/ (χSing))が
0.3〜2.0となることを目安として行うのが望まし
い。
It is desirable to mix the slag forming agent during the production of manganese sintered ore so that [(χCaO+2Mg0)/(χSing)) in the sintered ore is 0.3 to 2.0.

これは、後述の実施例で示すように脱燐処理温度(14
00℃以下〕でのマンガン焼結鉱(マンガン鉱石)の滓
化を促進するためであり、この範囲外では滓化・還元が
遅れ、その結果マンガン歩留が悪化する懸念があるため
である。
This is the dephosphorization treatment temperature (14
This is to promote slag formation of manganese sintered ore (manganese ore) at temperatures below 00°C. Outside this range, slag formation and reduction will be delayed, and as a result, there is a concern that the manganese yield will deteriorate.

また、マンガン焼結鉱の粒度は脱燐炉での滓化性向上の
ためには小さい程良好であるが、マンガン焼結鉱は本来
的に滓化性に冨んでいることもあり、粒径100鶴程度
でも特に不都合を来すことがないし、これより大きくて
も使用可能である。
In addition, the smaller the particle size of manganese sinter is, the better it is in order to improve the slag formation in the dephosphorization furnace, but since manganese sinter is inherently rich in slag formation, the particle size Even if it is about 100 cranes, there will be no particular inconvenience, and even if it is larger than this, it can be used.

ところで、本発明に係る溶銑脱燐処理を実施するに当っ
ては、脱燐炉での処理温度を1400℃以下に調整する
のが良い。なぜなら、溶銑処理温度がこれよりも高くな
ると脱炭ばかりが進行してスラグ中の酸化剤量が低くな
ると共に、熱力学的にも1400℃以上では脱燐が悪化
するためである。
By the way, when carrying out the hot metal dephosphorization treatment according to the present invention, it is preferable to adjust the treatment temperature in the dephosphorization furnace to 1400° C. or lower. This is because if the hot metal treatment temperature is higher than this, only decarburization will progress and the amount of oxidizing agent in the slag will decrease, and thermodynamically, dephosphorization will deteriorate at 1400° C. or higher.

しかし、余りに低温になるとスラグへの粒鉄ロスが増加
するほか、その後の脱炭炉にて溶鋼中の[Mn]c5度
を高める上でも問題がある。
However, if the temperature is too low, the loss of granular iron to the slag increases, and there is also a problem in increasing the [Mn]c5 degree in the molten steel in the subsequent decarburization furnace.

即ち、マンガン鉱石の溶融還元は Mn0z + 2 [C] = [Mn] + 2CO
なる吸熱反応で進行する(マンガン鉱石の冷却能はスク
ラップの約2.5倍もある)。従って、マンガン鉱石添
加可能量(溶融還元可能量)は溶銑の温度及び[C]?
m度が高いほど多くなる。そのため、脱燐処理は溶銑の
温度及び[C]濃度が高い状態で完了することが、脱炭
炉におけるマンガン鉱石添加可能量を上昇させ、脱炭炉
での終点[Mn] 濃度を高める上で好ましい。ここで
、温度と[C]濃度が高い状態で脱燐処理を完了し易い
ように、脱P炉に注湯する溶銑温度及び溶銑[C]濃度
をできるだけ高くすることが先ず考えられるが、高炉の
出銑温度や高炉銑の[C]濃度を大きく変えることは技
術的にもコスト的にも問題がある。従って、脱燐処理時
に溶銑の温度と[C]濃度(即ら溶銑の顕熱と潜熱の合
計)をできるだけ下げないことが重要である。
That is, the melting reduction of manganese ore is Mn0z + 2 [C] = [Mn] + 2CO
(The cooling capacity of manganese ore is about 2.5 times that of scrap). Therefore, the amount that can be added to manganese ore (the amount that can be reduced by melting) depends on the temperature of the hot metal and [C]?
The higher the m degree, the more. Therefore, completing the dephosphorization process while the hot metal temperature and [C] concentration are high increases the amount of manganese ore that can be added in the decarburization furnace and increases the final [Mn] concentration in the decarburization furnace. preferable. Here, in order to easily complete the dephosphorization process while the temperature and [C] concentration are high, the first idea is to raise the temperature and [C] concentration of the hot metal poured into the deP furnace as high as possible. Large changes in the tapping temperature and [C] concentration of blast furnace pig iron are problematic both technically and cost-wise. Therefore, it is important to keep the temperature and [C] concentration of the hot metal (ie, the sum of the sensible heat and latent heat of the hot metal) as low as possible during the dephosphorization process.

従って、脱燐炉での処理温度は1400℃以下の領域の
中で可能な限り高めに維持するのが良い。
Therefore, it is preferable to maintain the treatment temperature in the dephosphorization furnace as high as possible within the range of 1400° C. or lower.

このような処理温度の維持は、上吹きランスからの酸素
ガス吹き込み或いは炉底羽口からの酸素ガス吹き込みの
併用によって行われる。つまり、上記脱燐炉での酸素ガ
ス吹き込みは、脱燐処理温度を保証するために行われる
のである。従って、ここでの上吹き酸素ランスは通常の
転炉ランスでも良いが、脱燐用に新作した小流量ランス
であっても良い。そして、使用酸素ガス量は処理前の溶
銑温度や珪素含有量、転炉滓の温度、脱燐炉の温もり具
合、目的とする処理溶銑温度等によって決定されるが、
概ね2ONm’八以下で良く、通常は5〜1ONm’/
lが効果的である。因に、このときの脱炭量は0.5%
程度である。
This treatment temperature is maintained by blowing oxygen gas from the top blowing lance or by blowing oxygen gas from the bottom tuyere. In other words, the oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used is determined by the temperature and silicon content of the hot metal before treatment, the temperature of the converter slag, the warmth of the dephosphorization furnace, the desired temperature of the hot metal to be treated, etc.
Generally, it should be less than 2ONm'8, usually 5 to 1ONm'/
l is effective. Incidentally, the amount of decarburization at this time is 0.5%
That's about it.

しかし、炉底羽口よりマンガン鉱石粉を吹き込む場合、
マンガン鉱石粉を多量(10kg八以上)に吹込んで[
Mnl上昇を図ろうとするには、吸熱反応(Mnの還元
反応)の熱補償のために溶銑中の[C]を酸素により更
に多量に燃焼させる必要がある。
However, when manganese ore powder is injected from the bottom tuyere,
Inject a large amount (more than 10 kg) of manganese ore powder [
In order to increase Mnl, it is necessary to burn a larger amount of [C] in the hot metal with oxygen in order to compensate for the heat of the endothermic reaction (reduction reaction of Mn).

ただ、前述した、脱炭炉でのMn添加量を上昇させるた
めには脱燐後の[C] レベルをできるだけ高くするこ
とが有利である。
However, in order to increase the amount of Mn added in the decarburization furnace as described above, it is advantageous to make the [C] level after dephosphorization as high as possible.

そこで、底吹羽口よりマンガン鉱石粉と共に炭材粉(コ
ークス、石炭等)を鉄浴中に吹き込むことにより[C]
の減少を抑制し、脱燐処理後の[C]レベルをできるだ
け高くする方法が有効となる。
Therefore, by blowing carbonaceous powder (coke, coal, etc.) into the iron bath together with manganese ore powder from the bottom blowing tuyere, [C]
An effective method is to suppress the decrease in [C] level after dephosphorization treatment and to make the [C] level as high as possible.

炉上部より炭材を添加する方法では、粉状のものを使用
した場合、大半が飛散してしまい、また塊状のものを使
用した場合は浸炭速度が著しく遅いため十分に[C]上
昇効果を発揮できない。
In the method of adding carbonaceous material from the top of the furnace, if powdered material is used, most of it will scatter, and if lumpy material is used, the carburizing speed will be extremely slow, so the [C] increasing effect cannot be sufficiently achieved. I can't perform.

なお、マンガン鉱石粉と共に吹き込む炭材粉の粒度は、
マンガン鉱石粉と同様にl ni以下程度のもので良い
が、やはり流送の面から100メツシユ以下程度が望ま
しい。
The particle size of the carbonaceous powder that is injected together with the manganese ore powder is
As with manganese ore powder, it may be about l ni or less, but from the viewpoint of transportation, it is preferably about 100 mesh or less.

マンガン鉱石粉及び炭材粉の吹込み方法であるが、同一
の羽目からでも別々の羽目からでも吹き込んで構わない
Regarding the method of blowing manganese ore powder and carbonaceous powder, they may be blown from the same or different sidings.

吹き込む炭材量は、マンガン鉱石の還元及び送酸による
脱C景に相当する量程度が望ましく、この場合、脱燐処
理による[C]の減少は最小限に抑制できる。
The amount of carbon material injected is desirably an amount equivalent to the reduction of manganese ore and the removal of carbon by oxygen feeding, and in this case, the decrease in [C] due to the dephosphorization process can be suppressed to a minimum.

また、底吹羽口よりマンガン鉱石粉と共に粉状の造滓剤
(生石灰、蛍石等)を吹き込むことも可能である。
It is also possible to blow powdered slag-forming agents (quicklime, fluorite, etc.) together with the manganese ore powder from the bottom blowing tuyere.

本発明方法において使用する「上下両吹き機能を有した
転炉形式の炉」としては、現在使われている“上下吹き
複合吹錬転炉”が最も好ましいが、特に脱燐炉は精錬条
件が脱炭炉よりもマイルドであるため炉内体を更に小さ
くしても良いことから、脱燐専用に新設した炉を使用し
てもコスト的にそれほどの影響はない。
The currently used "top and bottom blowing combined blowing converter" is the most preferable as the "converter-type furnace with both top and bottom blowing functions" used in the method of the present invention, but the dephosphorization furnace in particular has different refining conditions. Because it is milder than a decarburization furnace, the furnace interior can be made even smaller, so even if a new furnace is used specifically for dephosphorization, there is not much of an impact on the cost.

脱燐炉での精錬剤(脱燐造滓剤)としては、生石灰、蛍
石及び脱炭炉で発生する転炉滓を主成分とするものが使
用されるが、例えば、 生石灰:0〜80重量%。
As the refining agent (dephosphorization slag agent) in the dephosphorization furnace, those whose main components are quicklime, fluorite, and converter slag generated in the decarburization furnace are used, for example, quicklime: 0 to 80 weight%.

蛍石:0〜50重量%。Fluorite: 0-50% by weight.

転炉滓:0〜80m1% の配合組成のものが推奨される。Converter slag: 0-80m1% A formulation with the following composition is recommended.

この精錬剤は、勿論上記組成に限定されるわけではなく
、付加的に生石灰を配合しても良いし、CaC1z、 
Nano ・Sing、 Na1COz等を加えても良
い。そして、転炉滓以外のこれら脱燐剤原料は滓化性の
面から小さい粒径程好ましいが、−Mに使われている程
度のものであれば何ら差し支えない。
This refining agent is, of course, not limited to the above composition, and may additionally contain quicklime, CaC1z,
Nano・Sing, Na1COz, etc. may be added. The smaller the particle size of these dephosphorizing agent raw materials other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of the same size as used in -M.

マンガン鉱石粉又はマンガン焼結鉱の溶融還元(自身は
酸化剤として作用する)量は、添加量によっても異なる
が、例えば投入1110kg/lで[Mn]増加量は0
.3〜0.4%程度である。なお、マンガン鉱石粉又は
マンガン焼結鉱として適用されるマンガン鉱石は、これ
に代えて鉄−マンガン鉱石を用゛いても良いことは言う
までもない。
The amount of smelting reduction of manganese ore powder or manganese sinter (itself acts as an oxidizing agent) varies depending on the amount added, but for example, when inputting 1110 kg/l, the amount of increase in [Mn] is 0.
.. It is about 3 to 0.4%. It goes without saying that iron-manganese ore may be used instead of manganese ore used as manganese ore powder or manganese sinter.

なお、マンガン鉱石粉又はマンガン焼結鉱の添加歩留を
高くするためにはスラグ塩基度を2.5以上にした方が
有利である。その理由を第4図を用いて説明する。
In addition, in order to increase the addition yield of manganese ore powder or manganese sintered ore, it is advantageous to set the slag basicity to 2.5 or more. The reason for this will be explained using FIG. 4.

第4図は“脱燐炉のスラグ中(Mn) (実際はMnO
の形態であるMn分を重量%で表わしたもの)と溶銑[
Mn]との比(Mn分配比)”と“スラグ塩基度”との
関係を示したものであるが、この第4図からも明らかな
ように、塩基度が高くなるほど(Mn)/[Mn]は小
さくなることが分かる。つまり、スラグ塩基度が高いほ
ど酸化マンガンは還元され易くなり、スラグ塩基度が2
.5以上の領域ではこの傾向が最も強くなって一定化す
ることを確認できる(なお、スラグ塩基度が高くなるほ
ど脱硫も進行し易くなり、CaO/SiO□が3の場合
には脱硫率が60%程度になることも確認済みである)
Figure 4 shows “(Mn) in the slag of the dephosphorization furnace (actually MnO
Mn content expressed in weight percent) and hot metal [
This figure shows the relationship between the ratio of Mn] to slag basicity (Mn distribution ratio) and slag basicity.As is clear from Figure 4, the higher the basicity, the more ] becomes smaller.In other words, the higher the slag basicity, the easier it is for manganese oxide to be reduced;
.. It can be confirmed that this tendency becomes strongest and becomes constant in the region of 5 or more (note that desulfurization progresses more easily as the slag basicity increases, and when CaO/SiO□ is 3, the desulfurization rate is 60%). It has also been confirmed that the
.

脱燐炉で使用される精錬剤(脱燐造滓剤)の量は溶製す
る鋼の[P] レベルにより決定されるが、通常は30
〜60kg/を程度で良い。
The amount of refining agent (dephosphorization slag agent) used in the dephosphorization furnace is determined by the [P] level of the steel to be melted, but usually 30
~60kg/weight is sufficient.

さて、脱燐炉で精錬剤の一部として使用される転炉滓と
しては、脱炭炉で発生した溶融状態のものが熱経済的に
も脱燐フラックスの滓化性の面からも好ましいが(この
ように溶融状態のものを用いる場合には耐火物を内張す
した鍋を介して脱燐炉に注滓される)、取り扱いの容易
さ等を考慮して脱炭炉で得られたものを一旦冷却凝固さ
せ、粒状又は塊状に破砕してから用いても良い(なお、
この時も熱的な面からスラグの温度は高い程良い)。
Now, as the converter slag used as part of the refining agent in the dephosphorization furnace, the molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (When using a molten substance like this, it is poured into a dephosphorization furnace through a pot lined with a refractory). It may be used after cooling and solidifying the material and crushing it into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the slag temperature, the better.)

ただ、この場合、脱燐炉での滓化性向上のために粒径は
小さい程良好であるが、転炉滓は本来滓化性に富んでい
ることもあって粒径が100 msを下回る程度でも格
別な不都合を来たすことがないし、これより大きくても
使用可能である。
However, in this case, the smaller the particle size is, the better it is in order to improve the slag formation in the dephosphorization furnace, but since the converter slag is naturally rich in slag formation, the particle size is less than 100 ms. Even if the size is larger, it will not cause any particular inconvenience, and it can be used even if it is larger than this.

ところで、この発明に係る処理法を実施する場合には、
出来れば適用される溶銑の事前脱硫処理を行うのが良い
。その第一の理由として該処理法では脱硫の進行が極め
て鈍いことが挙げられるが、他方では、事前脱硫してい
ない溶銑を用いた場合には転炉スラグ中のS含有量が上
昇し、次のチャージにおける溶鉄S含を量を高めること
も懸念されるからである。なお、前記事前脱硫は通常行
われている溶銑脱硫方法の何れによっても良い。
By the way, when implementing the treatment method according to this invention,
If possible, it is better to perform a preliminary desulfurization treatment on the applied hot metal. The first reason is that the progress of desulfurization is extremely slow in this treatment method, but on the other hand, when hot metal that has not been desulfurized in advance is used, the S content in the converter slag increases, and the This is because there is also concern about increasing the amount of molten iron S content in the charge. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods.

更に、この方法に適用される原料溶銑のSi含有量も低
い程好ましい。なぜなら、溶銑中のSi含有量が多くな
るほど脱燐炉でのスラグ塩基度が低下して脱燐能が落ち
、全体での生石灰等の使用量が増加するためである。そ
れ故、溶銑のSi含有量は出来れば0.3%以下、好ま
しくは0.2%以下に調整しておくのが良策である。な
お、脱炭炉の条件から処理後の溶銑温度を少しでも高く
したいような場合、溶銑のSi含有量は0.2%程度の
方が有利なこともあり、工場のローカル条件によって決
定すべきである。
Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases. Therefore, it is a good idea to adjust the Si content of the hot metal to 0.3% or less, preferably 0.2% or less. In addition, if it is desired to raise the hot metal temperature after treatment due to the conditions of the decarburization furnace, it may be advantageous to set the Si content of the hot metal to about 0.2%, so it should be determined according to the local conditions of the factory. It is.

次に、この発明を比較例と対比した実施例により更に具
体的に説明する。
Next, the present invention will be explained in more detail with reference to examples in comparison with comparative examples.

〈実施例〉 比較例 1 トーピード内で脱硫・脱珪処理した第1表に示される成
分組成の溶銑250トンを脱燐炉として使用する上下両
吹き複合吹錬転炉に注銑し、これに脱燐造滓剤と脱燐酸
化剤としての鉄鉱石10kg/lを混合状態で炉上部よ
り添加して約12分間の脱燐処理を行った。
<Example> Comparative Example 1 250 tons of hot metal having the composition shown in Table 1, which had been desulfurized and desiliconized in a torpedo, was poured into an upper and lower double blowing combined blowing converter used as a dephosphorization furnace, and Dephosphorization treatment was carried out for about 12 minutes by adding a mixed 10 kg/l of iron ore as a dephosphorization slag agent and a dephosphorization agent from the upper part of the furnace.

脱燐造滓剤としては、ケース1では生石灰8kg/lと
蛍石4kg八とを、ケース2では転炉滓を冷却して30
mm以下の粒径に破砕したちの25kg/lと蛍石8k
g/lとを添加した。
As the dephosphorization slag agent, in case 1, 8 kg/l of quicklime and 4 kg/l of fluorite were used, and in case 2, the converter slag was cooled to 30 kg/l.
25kg/l and 8k of fluorite crushed to a particle size of mm or less
g/l was added.

なお、使用した脱燐炉(上下両吹き複合吹錬転炉)の操
業条件は第2表に示した通りであり、ケス1及びケース
2とも同一の操業条件とした。
The operating conditions of the dephosphorization furnace used (upper and lower double blowing combined blowing converter) were as shown in Table 2, and the operating conditions were the same for Case 1 and Case 2.

このようにして得られた脱燐溶銑の成分組成を第3表に
示したが、ケースlの場合では[P]が0.025%、
  [Mn]が0.12%、ケース2の場合では[P]
が0.015%、  [Mn]が0.14%と言う結果
が得られた。
The composition of the dephosphorized hot metal thus obtained is shown in Table 3. In case 1, [P] is 0.025%;
[Mn] is 0.12%, and in case 2, [P]
The results showed that [Mn] was 0.015% and [Mn] was 0.14%.

比較例 2 脱燐炉内に注銑した第4表に示される成分組成の脱硫・
脱珪溶銑250トンに、脱燐造滓剤と、脱燐酸化剤とし
てマンガン鉱石(粒径30龍以下。
Comparative Example 2 Desulfurization and iron with the composition shown in Table 4 poured into a dephosphorization furnace.
250 tons of desiliconized hot metal, a dephosphorizing slag agent, and manganese ore (particle size of 30 dragons or less) as a dephosphorizing agent.

χT、Mn=50)  12kg八とを混合状態で炉上
部より添加し、脱燐処理を行った。
χT, Mn=50) was added in a mixed state from the upper part of the furnace to perform dephosphorization treatment.

脱燐造滓剤配合条件は、ケース3では前記比較例1のケ
ース1と、またケース4では前記ケース2の場合と同様
とした。なお、上記以外のテスト条件は比較例1と同様
とした。
The blending conditions for the dephosphorizing slag agent were the same in Case 3 as in Case 1 of Comparative Example 1, and in Case 4 as in Case 2. Note that the test conditions other than the above were the same as in Comparative Example 1.

このようにして得られた脱燐溶銑の成分を第5表に示し
たが、ケース3の場合には[P] :0.040%と脱
燐が悪化し、[Mn]も0.35%となってマンガン歩
留が低いことが確認された。
The components of the dephosphorized hot metal obtained in this way are shown in Table 5. In case 3, the dephosphorization was poor at [P]: 0.040%, and [Mn] was also 0.35%. It was confirmed that the manganese yield was low.

また、ケース4の場合も[P] :0.025%と若干
脱燐が悪化し、[Mn]は0.47%となっていてケス
3に比べれば良好ながらも、十分に高いマンガン歩留を
得ることができないことが確認された。
In addition, in case 4, the dephosphorization is slightly worse with [P]: 0.025%, and [Mn] is 0.47%, which is better than case 3, but the manganese yield is sufficiently high. It has been confirmed that it is not possible to obtain

更に、脱燐処理後のスラグの性状を調査したところ、ケ
ース3,4ともスラグが完全に溶融していない(半溶融
状態である)ことが判明したが、特にケース3の場合は
滓化性が悪かった。この滓化性の悪化が脱燐並びにマン
ガン歩留の低下原因と考えられる。
Furthermore, when the properties of the slag after the dephosphorization treatment were investigated, it was found that in both cases 3 and 4, the slag was not completely melted (it was in a semi-molten state). was bad. This deterioration in slag formation is thought to be the cause of dephosphorization and a decrease in manganese yield.

なお、ケース4がケース3に比べ比較的良好な結果が得
られた理由は、ケース4の場合には転炉滓を使用したの
で他の脱燐造滓剤(生石灰、蛍石等)に比べて滓化性が
良好であったためと考えられる。
The reason why case 4 gave relatively better results than case 3 is that because converter slag was used in case 4, it was less effective than other dephosphorization slag agents (quicklime, fluorite, etc.). This is thought to be due to the good slagability.

実施例 l 脱燐炉内に注銑した第6表に示される成分組成の脱硫・
脱珪溶銑250トンに脱燐造滓剤を混合状態で上下両吹
き転炉上部より添加し、底吹羽口からN2ガスをキャリ
アガスとしてマンガン鉱石粉(粒度100メツシユ以下
)を1.5kg/m1n−tの量で8分間吹込み(トー
タル吹込み量12kg/l)、続く4分間はN2ガスの
みを吹込んで、全体で12分間の脱燐処理を実施した。
Example 1 Desulfurization of the component composition shown in Table 6 poured into a dephosphorization furnace.
A mixture of 250 tons of desiliconized hot metal and a dephosphorizing slag agent was added from the top of both the upper and lower blowing converters, and 1.5 kg of manganese ore powder (particle size of 100 mesh or less) was added from the bottom blowing tuyeres using N2 gas as a carrier gas. The dephosphorization treatment was performed for 12 minutes in total by blowing in an amount of mln-t for 8 minutes (total blowing amount 12 kg/l), and then blowing only N2 gas for the following 4 minutes.

なお、マンガン鉱石吹込み中も吹込み後も、キャリアガ
スを含む底吹N2ガス吹込み量は0.15N of/m
1n−tとなるように調整した。
The amount of bottom-blown N2 gas including carrier gas during and after manganese ore injection was 0.15N of/m.
It was adjusted to be 1 nt.

脱燐造滓剤配合条件は、ケース5では前記ケースlの場
合と、またケース6では前記ケース2の場合と同じとし
た。なお、上記以外のテスト条件は、比較例2と同様と
した。
The blending conditions for the dephosphorizing slag agent were the same in case 5 as in case 1, and in case 6 as in case 2. Note that the test conditions other than the above were the same as those in Comparative Example 2.

このような処理によって得られた脱燐溶銑の成分組成を
第7表に示したが、ケース5では[P]が0.026%
で[Mn]が0.48%、ケース6では[P]が0.0
15%で[Mn]が0.58%と、脱燐率、マンガン歩
留とも前記ケース3及びケース4に比べ著しく向上し、
ケース1及びケース2に比べ遜色のない結果が得られた
The composition of the dephosphorized hot metal obtained by such treatment is shown in Table 7, and in case 5, [P] is 0.026%.
In case 6, [Mn] is 0.48%, and in case 6, [P] is 0.0.
At 15%, [Mn] was 0.58%, which significantly improved the dephosphorization rate and manganese yield compared to Case 3 and Case 4.
Results comparable to those of Case 1 and Case 2 were obtained.

これらの結果からも、本発明に係る方法によると、脱燐
を悪化することなくマンガン鉱石を高歩留で溶融還元し
て、脱燐溶銑の効果的な[Mn]上昇を図れることが明
らかである。
From these results, it is clear that according to the method of the present invention, manganese ore can be melt-reduced at a high yield without deteriorating dephosphorization, and it is possible to effectively increase [Mn] in dephosphorized hot metal. be.

実施例 2 第8表に示した成分組成の脱硫・脱珪溶銑250トンを
対象に上下両吹き転炉による脱燐処理テストを実施した
。テスト条件は、炉底羽口からN2ガスをキャリアーガ
スとしてマンガン鉱石粉(粒度100メツシユ以下)及
びコークス粉(粒度100メソシユ以下)をそれぞれ2
 kg/m1n−を及び0.3kg/min、 tで1
3分間吹込み(トータルそれぞれ26kg八及び3.9
kg/l)、続く4分間はN2ガスのみを底吹きし、全
体で17分間の脱燐処理を実施した。なお、マンガン鉱
石粉及びコークス粉の吹込み後も、キャリアガスを含む
底吹N2ガス吹込み量は0.15Nnf/5in−tと
なるように調整した。
Example 2 A dephosphorization treatment test was conducted using an upper and lower blowing converter using 250 tons of desulfurized and desiliconized hot metal having the composition shown in Table 8. The test conditions were as follows: Manganese ore powder (particle size of 100 mesh or less) and coke powder (particle size of 100 mesh or less) were each fed from the bottom tuyere using N2 gas as a carrier gas.
kg/m1n- and 0.3 kg/min, 1 at t
Blow for 3 minutes (total of 26 kg and 3.9 kg, respectively)
kg/l), and only N2 gas was blown from the bottom for the next 4 minutes, resulting in a total of 17 minutes of dephosphorization treatment. Note that even after the manganese ore powder and coke powder were blown, the amount of bottom-blown N2 gas containing carrier gas was adjusted to 0.15 Nnf/5 in-t.

脱燐造滓剤配合条件は、ケース7では前記ケース1の場
合と、またケース8では前記ケース2の場合と同じとし
た。なお、上記以外のテスト条件は実施例1と同様とし
た。
The mixing conditions for the dephosphorizing slag agent were the same in case 7 as in case 1, and in case 8 as in case 2. Note that the test conditions other than the above were the same as in Example 1.

このようにして得られた脱燐溶銑の成分組成を第9表に
示すが、脱燐、マンガン歩留とも良好な結果が得られて
いることが分かる。
The composition of the dephosphorized hot metal thus obtained is shown in Table 9, and it can be seen that good results were obtained in both dephosphorization and manganese yield.

ここで、マンガン鉱石吹込み量アップによる熱補償のた
め、上吹送酸時間を5分間(上吹酸素量で3 N of
/l)延長して脱燐処理を行ったが(送酸置場とマンガ
ン鉱石置場で[C]は実施例1に比べ更に約0゜25%
減少すると計算される)、コークス粉吹込みにより[C
1fi&少を防止でき、脱燐後の[C]レベルを高く維
持できることが確認された。
Here, in order to compensate for the heat by increasing the amount of manganese ore injected, the top blowing oxygen time was increased to 5 minutes (the top blowing oxygen amount was 3 N of
/l) Dephosphorization treatment was carried out for an extended period of time ([C] at the acid storage site and manganese ore storage site was approximately 0°25% more than in Example 1).
), and by coke dust injection, [C
It was confirmed that 1fi&low could be prevented and the [C] level after dephosphorization could be maintained at a high level.

実施例 3 脱燐炉(上下両吹き転炉)内に注銑した第1θ表に示さ
れる成分組成の脱硫・脱珪溶銑250トンに、脱燐造滓
剤と第11表に示す成分組成のマンガン焼結K(粒径3
0賎以下):12kg/lを混合状態で炉上部より添加
し、脱燐処理を行った。
Example 3 250 tons of desulfurized and desiliconized hot metal having the composition shown in Table 1θ was poured into a dephosphorization furnace (both upper and lower blowing converter), and a dephosphorization slag agent and a composition of composition shown in Table 11 were added. Manganese sintered K (particle size 3
0): 12 kg/l was added in a mixed state from the upper part of the furnace to perform dephosphorization treatment.

脱燐造滓剤配合条件はケース9では、前記ケス1の場合
と、またケース10では前記ケース2の場合と同じとし
た。なお、上記以外のテスト条件は、比較例2と同様と
した。
The mixing conditions for the dephosphorizing slag agent were the same in case 9 as in case 1, and in case 10 as in case 2. Note that the test conditions other than the above were the same as those in Comparative Example 2.

そして、使用したマンガン焼結鉱は以下の方法により製
造したものであった。
The manganese sintered ore used was manufactured by the following method.

即ち、比較例2で用いたものと同じマンガン鉱石を粒度
3曹朧以下に粉砕し、このマンガン鉱石粉に粒度3關以
下の石灰石粉及びドロマイト粉を加え、更にコークス粉
を加え混合した後、ドワイトロイド式焼結機にて焼成し
た。なお、石灰石粉。
That is, the same manganese ore used in Comparative Example 2 was crushed to a particle size of 3 C or less, limestone powder and dolomite powder with a particle size of 3 C or less were added to this manganese ore powder, and coke powder was further added and mixed. Sintered using a Dwight Lloyd sintering machine. In addition, limestone powder.

ドロマイトワ)、コークス粉の配合量はそれぞれマンガ
ン鉱石粉トン当り20kg、  60kg及び100k
gである。
Dolomitewa) and coke powder content are 20kg, 60kg and 100kg per ton of manganese ore powder, respectively.
It is g.

このようにして得られた脱燐溶銑の成分組成を第12表
に示すが、ケース9では[P]が0.027%で[Mn
]が0.48%、そしてケース10のでは[P]が0.
014%で[Mn]が0.59%と、脱燐率、マンガン
歩留とも前記ケース3及びケース4に比べて著しく向上
し、前記、ケースl及びケース2に比べて遜色のない結
果が得られた。
The composition of the dephosphorized hot metal thus obtained is shown in Table 12. In case 9, [P] was 0.027% and [Mn
] is 0.48%, and in case 10, [P] is 0.48%.
014% and [Mn] was 0.59%, both the dephosphorization rate and manganese yield were significantly improved compared to Case 3 and Case 4, and results comparable to Case 1 and Case 2 were obtained. It was done.

実施例 4 マンガン焼結鉱の製造に当って、造滓剤(石灰石、ドロ
マイト等)の配合を種々変えたマンガン焼結鉱を作成し
、実施例3のケース9と同様の操業条件で脱燐処理を実
施した。なお、各テストとも、マンガン焼結鉱中の造滓
剤(石灰石、ドロマイト)と脱燐造滓剤(生石灰、軽焼
ドロマイト蛍石)を総合した“全造滓剤配合量”及び“
配合比”は一定とした。
Example 4 In manufacturing manganese sintered ore, manganese sintered ore was prepared with various combinations of slag-forming agents (limestone, dolomite, etc.) and dephosphorized under the same operating conditions as Case 9 of Example 3. Processing was carried out. In addition, in each test, the total amount of slag-forming agents (limestone, dolomite) and dephosphorization-forming slag agents (quicklime, light calcined dolomite fluorite) in manganese sintered ore, and
The blending ratio was kept constant.

これらのテスト結果を第5図に示す。The results of these tests are shown in FIG.

第5図に示される結果からは、本発明法によって良好な
脱燐を維持しながら効果的な[Mn]上昇を図れること
が確認できるが、マンガン焼結鉱中の(Ca O+−g
o)/5i02を0.3〜2.0に調整することが脱燐
率及びマンガン歩留を良好に確保する上で好ましいこと
も明らかである。
The results shown in Figure 5 confirm that the method of the present invention can effectively increase [Mn] while maintaining good dephosphorization.
It is also clear that it is preferable to adjust o)/5i02 to 0.3 to 2.0 in order to ensure a good dephosphorization rate and manganese yield.

なお、第5図に示される結果は、処理温度1400℃以
下と言う低温域でのマンガン焼結鉱の滓化の良否により
マンガン歩留及び脱燐率が大きく影響されることを示し
ており、(CaO+ Mg0)/St Ozが0.3〜
2.0の範囲を外れるとマンガン焼結鉱の滓化が遅れ、
その結果マンガン歩留が悪化すると共にスラグの流動性
悪化により脱燐も悪くなるものと考えられる。
The results shown in Figure 5 indicate that the manganese yield and dephosphorization rate are greatly affected by the quality of slag formation of manganese sintered ore at a low temperature range of 1400°C or lower. (CaO+Mg0)/StOz is 0.3~
If it is outside the range of 2.0, the slag formation of manganese sintered ore will be delayed,
As a result, it is thought that the manganese yield deteriorates and the dephosphorization also deteriorates due to the deterioration of the fluidity of the slag.

なお、前記実施例では、脱燐溶銑の[Mn]上昇のため
にマンガン鉱石粉の底吹き又はマンガン焼結鉱の上添加
の何れかの結果のみを示したが、両方法を同時に実施し
た場合にも良好な結果が得られたことは言うまでもない
In addition, in the above example, only the results of bottom blowing of manganese ore powder or top addition of manganese sintered ore were shown to increase [Mn] in dephosphorized hot metal, but when both methods are carried out simultaneously Needless to say, good results were obtained.

〈効果の総括〉 以上に説明した如く、この発明によれば、上下両吹き機
能を有する転炉形式の炉での脱燐処理において、脱燐に
悪影響を及ぼすことなく同時にマンガン鉱石(マンガン
鉱石粉、マンガン焼結鉱)を高歩留で溶融還元して脱燐
溶銑中[Mn]を効果的に上昇せしめることができ、次
工程である脱炭炉吹錬を通じて顕著な鋼中[Mn]上昇
が可能となってフェロマンガン添加量を大幅に節減でき
るなど、製鋼コストの大幅な合理化が可能となり、産業
上極めて有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, manganese ore (manganese ore powder , manganese sinter) can be smelted and reduced at a high yield to effectively increase the [Mn] in the dephosphorized hot metal, and the next step, decarburization furnace blowing, can significantly increase the [Mn] in the steel. This makes it possible to significantly reduce the amount of ferromanganese added, which makes it possible to significantly rationalize steel manufacturing costs, and brings extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、先に提案した製鋼法によるプロセスを説明し
た概念図である。 第2図は、本発明方法の説明図である。 第3図は、本発明に係る別法の説明図である。 第4図は、脱燐炉でのマンガン分配比とスラグ塩基度と
の関係を示すグラフである。 第5図は、実施例で得られたところの、マンガン焼結鉱
中の(CaO+Mg0)/Stowとマンガン歩留及び
脱燐率との関係を示すグラフである。 図面において、 l・・・脱燐炉、    2・・・脱炭炉。 3・・・溶銑、     4・・・転炉滓。 4′・・・脱燐スラグ。 5・・・攪拌ガス吹き込みノズル(炉底羽口)。 6・・・ランス、    7・・・酸素。 8・・・脱燐造滓剤、  9・・・マンガン鉱石粉。 10・・・マンガン焼結鉱。 第1図
FIG. 1 is a conceptual diagram illustrating the process of the steel manufacturing method proposed above. FIG. 2 is an explanatory diagram of the method of the present invention. FIG. 3 is an explanatory diagram of another method according to the present invention. FIG. 4 is a graph showing the relationship between the manganese distribution ratio and the slag basicity in the dephosphorization furnace. FIG. 5 is a graph showing the relationship between (CaO+Mg0)/Stow in manganese sintered ore, manganese yield, and dephosphorization rate, obtained in Examples. In the drawings, 1... Dephosphorization furnace, 2... Decarburization furnace. 3... Hot metal, 4... Converter slag. 4'...Dephosphorization slag. 5... Stirring gas blowing nozzle (furnace bottom tuyere). 6...Lance, 7...Oxygen. 8... Dephosphorization slag agent, 9... Manganese ore powder. 10... Manganese sintered ore. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)上下両吹き機能を有する転炉形式の炉に注銑した
溶銑に脱燐剤を添加し、底吹ガス攪拌を行いつつ酸素ガ
スを上吹きして溶銑脱燐を行うに際して、炉底羽口から
マンガン鉱石粉を鉄浴中に吹き込んで溶銑中[Mn]の
上昇と脱燐とを同時に行うことを特徴とする、溶銑脱燐
方法。
(1) When dephosphorizing the hot metal by adding a dephosphorizing agent to the hot metal poured into a converter type furnace that has both top and bottom blowing functions, and performing bottom blowing gas agitation and top blowing oxygen gas, A hot metal dephosphorization method characterized by blowing manganese ore powder into an iron bath through a tuyere to simultaneously raise [Mn] in the hot metal and dephosphorize it.
(2)炉底羽口からマンガン鉱石粉と共に炭材粉をも鉄
浴中に吹き込むことを特徴とする、請求項1記載の溶銑
脱燐方法。
(2) The method for dephosphorizing hot metal according to claim 1, characterized in that carbonaceous powder is also blown into the iron bath together with manganese ore powder from the hearth bottom tuyere.
(3)上下両吹き機能を有する転炉形式の炉に注銑した
溶銑に脱燐剤を添加し、底吹ガス撹拌を行いつつ酸素ガ
スを上吹きして溶銑脱燐を行うに際して、上記脱燐剤と
共に粉状マンガン鉱石に粉状造滓剤及びコークス粉を添
加・混合して焼成したマンガン焼結鉱を添加し溶銑中[
Mn]の上昇と脱燐とを同時に行うことを特徴とする、
溶銑脱燐方法。
(3) When dephosphorizing the hot metal by adding a dephosphorizing agent to the hot metal poured into a converter-type furnace with both top and bottom blowing functions, and performing bottom blowing gas agitation and top blowing oxygen gas, Manganese sintered ore, which is prepared by adding and mixing powdered slag-forming agent and coke powder to powdered manganese ore together with a phosphorizing agent, is added to the hot metal [
Mn] and dephosphorization are carried out at the same time,
Hot metal dephosphorization method.
(4)上下両吹き機能を有する転炉形式の炉に注銑した
溶銑に脱燐剤を添加し、底吹ガス撹拌を行いつつ酸素ガ
スを上吹きして溶銑脱燐を行うに際して、上記脱燐剤と
共に粉状マンガン鉱石に粉状造滓剤及びコークス粉を添
加・混合して焼成したマンガン焼結鉱を添加すると共に
、炉底羽口からマンガン鉱石粉を鉄浴中に吹き込むこと
により溶銑中[Mn]の上昇と脱燐とを同時に行うこと
を特徴とする、溶銑脱燐方法。
(4) When dephosphorizing the hot metal by adding a dephosphorizing agent to the hot metal poured into a converter-type furnace with both top and bottom blowing functions and by blowing oxygen gas upward while stirring the bottom blowing gas, Hot metal is produced by adding manganese sintered ore, which is made by adding and mixing a powdered slag-forming agent and coke powder to powdered manganese ore together with a phosphorous agent, and then firing the manganese ore powder into the iron bath through the bottom tuyere. A hot metal dephosphorization method characterized by simultaneously performing an increase in medium [Mn] and dephosphorization.
(5)脱燐銑を脱炭用転炉で吹錬する際に発生する転炉
滓を脱燐剤成分として使用することを特徴とする、請求
項1乃至4項の何れかに記載の溶銑脱燐方法。
(5) The hot metal according to any one of claims 1 to 4, characterized in that converter slag generated when dephosphorizing pig iron is blown in a decarburizing converter is used as a dephosphorizing agent component. Dephosphorization method.
JP13395989A 1989-05-26 1989-05-26 Production of low-phosphorus pig iron Pending JPH032312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13395989A JPH032312A (en) 1989-05-26 1989-05-26 Production of low-phosphorus pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13395989A JPH032312A (en) 1989-05-26 1989-05-26 Production of low-phosphorus pig iron

Publications (1)

Publication Number Publication Date
JPH032312A true JPH032312A (en) 1991-01-08

Family

ID=15117082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13395989A Pending JPH032312A (en) 1989-05-26 1989-05-26 Production of low-phosphorus pig iron

Country Status (1)

Country Link
JP (1) JPH032312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095139A (en) * 2006-10-11 2008-04-24 Sumitomo Metal Ind Ltd Method for improving dischargeability of slag after dephosphorization treatment, and method for dephosphorizing molten pig iron using the same
CN102242239A (en) * 2011-07-28 2011-11-16 首钢总公司 Molten iron pre-dephosphorization method by utilizing top and bottom combined blown converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095139A (en) * 2006-10-11 2008-04-24 Sumitomo Metal Ind Ltd Method for improving dischargeability of slag after dephosphorization treatment, and method for dephosphorizing molten pig iron using the same
CN102242239A (en) * 2011-07-28 2011-11-16 首钢总公司 Molten iron pre-dephosphorization method by utilizing top and bottom combined blown converter

Similar Documents

Publication Publication Date Title
JP2015218338A (en) Molten iron refining method by converter type refining furnace
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
US4891064A (en) Method of melting cold material including iron
JPH032312A (en) Production of low-phosphorus pig iron
JPH01147011A (en) Steelmaking method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPH0557327B2 (en)
JPS6393813A (en) Steel making method
JPS62290815A (en) Steel making method
JPS59159963A (en) Production of high chromium molten metal
JPH0433844B2 (en)
JPH01142009A (en) Steel making method
JP2587286B2 (en) Steelmaking method
JPS6247417A (en) Melt refining method for scrap
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH0437133B2 (en)
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPS6126752A (en) Manufacture of low-phosphorus and high-manganese iron alloy by melt reduction
JPS646242B2 (en)
JPH0841519A (en) Steelmaking method
JP2755027B2 (en) Steelmaking method
JPH04323312A (en) Method for dephosphorizing molten iron