JPH0437133B2 - - Google Patents

Info

Publication number
JPH0437133B2
JPH0437133B2 JP2682687A JP2682687A JPH0437133B2 JP H0437133 B2 JPH0437133 B2 JP H0437133B2 JP 2682687 A JP2682687 A JP 2682687A JP 2682687 A JP2682687 A JP 2682687A JP H0437133 B2 JPH0437133 B2 JP H0437133B2
Authority
JP
Japan
Prior art keywords
dephosphorization
furnace
hot metal
slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2682687A
Other languages
Japanese (ja)
Other versions
JPS63195210A (en
Inventor
Nobuhide Aoki
Yoshio Watanabe
Katsuhiko Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2682687A priority Critical patent/JPS63195210A/en
Publication of JPS63195210A publication Critical patent/JPS63195210A/en
Publication of JPH0437133B2 publication Critical patent/JPH0437133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、鉄分ロス少なく、かつ全製鋼工程
を通じての生石灰使用量を極力抑えつつ高能率脱
燐を行い、品質の良好な鋼をコスト安く溶製する
方法に関するものである。 〈従来技術とその問題点〉 近年、各種鋼材に対する品質要求は日増しに高
度化しており、これにともなつて製鋼法にも各種
の工夫が試みられ、様々な新しい手法が導入され
てきた。 このような中にあつて、最近、低燐鋼をより一
層低いコストで安定溶製する手段の開発に大きな
期待が寄せられるようになり、その実現に向けて
多くの研究が積み重ねられている。 ところで、製鋼トータルコストのミニマム化や
低燐鋼の安定溶製に関しては、従来、次のような
溶銑の予備脱燐法が提案され、一部実用化もなさ
れている。即ち、 トーピードカー内の溶銑に生石灰系の脱燐剤
又はソーダ灰をインジエクシヨンすることで予
備脱燐を行う方法、 取鍋内の溶銑に生石灰系のフラツクスをイン
ジエクシヨンしたりブラステイング(吹き付
け)することで予備脱燐を行う方法、 高炉鋳床樋中で溶銑に生石灰系のフラツクス
をブラステインブして予備脱燐を行う方法。 しかしながら、前記)及び)の方法による
と比較的低い到達P含有量レベルを達成すること
はできるが、脱燐を“脱燐剤の浮上過程で進行す
る反応(トランジトリー・リアクター・リアクシ
ヨン)”に頼るため脱燐フラツクスの利用効率が
必ずしも良くなく、また処理時間が長くかかる分
だけ処理時の抜熱が大きくなつて溶銑温度が低下
すると言う問題があり、一方、前記)の方法で
は処理後の溶銑温度を先の2つの方法より高く保
つことができるが、脱燐処理が高炉から出銑され
た直後の溶銑に施される関係上、脱燐処理温度が
高過ぎて到達P含有量レベルそのものが前記)
及び)の方法よりも悪くなるとの不都合があつ
て何れも決して満足できるものではなかつた。 その上、溶銑脱燐フラツクスとして生石灰等を
用いる場合には、その後の転炉吹錬で使用される
生石灰等の量をも合わせて考えると、前記いずれ
の方法によつても“該予備脱燐工程を省いて転炉
のみでの脱燐を行う方法”に比べて必要造滓剤量
(生石灰等の量)はそれほど大きく低減されない
ことも指摘されていたのである。 そこで、“製鋼コストに大きく影響する造滓剤
使用量を極力抑えることが可能で、しかも格別に
新規な設備を必要とすることなく品質の良好な鋼
を高能率生産し得る方法を開発すること”の必要
性を強く認識した本出願人は、 「全製鋼工程を通じての造滓剤の必要量はスラ
グとメタルとを向流的に接触させる“スラグ−メ
タル向流精錬”によるときが最も少なくて良い
が、実際上は該向流精錬の完全な実現は殆ど不可
能であり、現状において最も労少なく造滓剤の使
用量を抑え得る可能性を秘めた製鋼手段として挙
げ得るものは、脱燐工程を2段階に分割してその
下工程で発生するスラグを上工程の脱燐剤として
使用する方法(即ち、溶銑脱燐用フラツクスの主
成分として転炉滓を用いる方法であつて、例えば
本出願人が先に特公昭55−30042号として提案し
たところの“転炉滓を炉外精錬での溶銑脱燐フラ
ツクスとして再利用する方法”に代表されるも
の)である」 との基礎的研究結果を踏まえ、しかも 「これまでに提案された転炉滓再利用による製
鋼法は、炉外精錬を併用することもあつて効率の
良い作業条件を安定して確保するのが非常に困難
である上、脱燐効率も期待されるほどには高くな
く、また量産のためには格別の排ガス集塵機や脱
燐スラグの排滓設備を必要とするなど、高品質鋼
の量産手段としては今一歩躊躇されるものでしか
ない」 と言う実作業上の問題点にも着目した上で、次に
示す如き新規な製鋼方法を提案した(特願昭61−
132517号)。 即ち、第4図に示したように、 『上下両吹き機能を有した2基の転炉形式の炉
を使用すると共に、そのうちの一方を脱燐炉1、
他方を脱炭炉2とし、脱燐炉1内へ注入した溶銑
3に脱炭炉2で発生した転炉滓4を主成分とする
精錬剤の添加を行い、攪拌ガス吹き込みノズル5
による底吹きガス攪拌を実施しつつランス6より
酸素ガスを上吹きして脱燐炉1の溶銑3の温度を
1400℃以下に保ちながら溶銑脱燐を行つた後、得
られた脱燐溶銑を脱炭炉2にて脱炭する方法』で
ある。そして、この方法によると、極めて少ない
量の造滓剤でもつて通常燐レベルの鋼或いは低燐
鋼を作業性良く低コストで製造することが可能と
なつた。 なお、上記方法による利点の主なものを具体的
に列挙すると次の通りである。 転炉滓を溶銑脱燐フラツクスとして用いる
“2段向流精錬”であるため、全製鋼工程での
生石灰使用量が従来法に比べて大幅に減少し、
低燐鋼を極めて少ない生石灰量で吹錬すること
を可能とする。 転炉滓中のFeOの有効利用がなされ、粒鉄や
地金の回収率が向上する。 一般に、脱炭炉でマンガン鉱石や鉄マンガン
鉱石を使用した場合にはこれらの約半分はMn
にまで還元されずに酸化物としてスラグ中に残
るが、この発明の方法においては、該スラグを
溶銑脱燐フラツクスとして再使用するので上記
残留鉱石の有効利用がなされ、溶銑における
“[Mn]ロスの軽減”或いは“[Mn]上昇”に
役立つ。 使用する炉が転炉形式の炉であるので、例え
ば脱燐炉の場合でも、出鋼口から脱燐銑のみを
鍋中へ出銑してから炉内のスラグを溶滓鍋に排
出でき、他の脱燐法におけるよりも除滓が簡単
である。 使用する炉が上下両吹き機能を有した転炉形
式の炉であるので溶銑の強攪拌が出来て短時間
処理が可能となり、従つて抜熱量が少なく、他
の脱燐処理法に比して熱経済上極めて有利であ
る。特に溶融転炉滓を用いる場合にはその顕熱
分だけ更に熱経済的に有利となる。 脱燐炉で発生するスラグは、遊離石灰が少な
い(フリーのCaOが1%以下である)ため路盤
材としての有効利用も可能である。 使用する炉が2つであるので、炉体に付着す
るP2O5に起因した脱燐不良の懸念は全くない。
つまり、脱燐炉では高P2O5のスラグが、そし
て脱炭炉では低P2O5スラグしか付着しないの
で脱炭炉での脱燐不良が起こらない。 しかも、溶融転炉滓を使用する場合には、脱
燐炉では溶銑を装入した後に溶融転炉滓が入れ
られるので、急激な爆発的反応が起きる心配が
ない。 底吹きガス攪拌を行いつつ脱燐を行うので、
従来の溶銑脱燐法の場合のように脱燐剤を粉状
近くにまで細かく粉砕しておく必要がなく、そ
の分のコスト低減が可能となる。 遊休転炉がある場合には、これを直ちに脱燐
炉として使うことが出来、格別な設備を準備す
る必要がない。また、例えば転炉1/2基操業を
行つている工場の場合には、一方の炉を脱燐炉
とし、転炉2/2基操業のような形で設備投資な
くこの発明の実施が可能である。そして、レン
ガ寿命のために何れか一方を築炉する必要が生
じた場合にはこの間だけ転炉1基のみで従来の
転炉吹錬を行つて遊休炉を出さない方策も講じ
られ、非常に柔軟性に富んだ精錬が可能であ
る。 上述したように、本出願人が先に提案した“転
炉形式の2基の炉を使用する製鋼方法”には極め
て多くの利点があり、特に低燐鋼の製造手段とし
て優れた効果を得られるものであつたが、その後
の多くの実際操業を通じた更なる検討の中から、
「該方法には従来法に比べての利点が十分に確認
されはするものの、数多くの操業実績を仔細に分
析すると、時々に応じて鉄分ロスにバラツキが見
られる上、到達Pレベルにも多少の不安定性が認
められる」ことが明らかとなつたのである。 〈問題点を解決する手段〉 そこで本発明者等は、僅かではあるが前記“転
炉形式の2基の炉を使用する製鋼方法”に認めら
れる鉄分ロスや到達Pレベルのバラツキをも抑制
し、その操業性をより一層安定させるべく研究を
行つた結果、 「鉄分ロスのバラツキは脱燐炉での脱燐精錬時
に主として生じるものであり、特にその時の精錬
スラグ中のCaF2割合が極めて重要な役割を果た
していて、蛍石を投入することにより該精錬スラ
グ中のCaF2割合を高目に調整すると鉄分ロスを
安定して低く抑えることが出来る」 との知見を得るに至つたのである。 この発明は、上記知見に基づいてなされたもの
であり、 上下両吹き機能を有した2基の転炉形式の炉の
うちの一方を脱燐炉、他方を脱炭炉として溶銑の
精錬を行うに当つて、前記脱燐炉内へ注入した溶
銑に前記脱炭炉で発生した転炉滓を主成分とする
と共に、スラグ中のCaF2割合が14〜20%となる
量の蛍石を含む精錬剤を添加し、底吹きガス攪拌
を行いつつ酸素ガスを上吹きして溶銑温度を1400
℃以下に保ちながら溶銑脱燐を行い、得られた脱
燐溶銑を脱炭炉に注銑し溶銑トン当たり7Kg以上
の生石灰量を確保した精錬剤を投入して脱炭並び
に仕上脱燐することにより、鉄分ロスや生石灰の
使用量少なく、しかも品質の良好な低燐鋼を安定
製造し得るようにした点、 に特徴を有するものである。 ここで、脱燐炉に投入する蛍石の量を「スラグ
中のCaF2割合が14〜20%となる量」と限定した
理由は、脱燐スラグ中のCaF2割合が14%未満で
は十分な滓化が確保できないことから鉄分ロスを
顕著に抑制できず、一方、スラグ中のCaF2割合
を20%以上としてもそれ以上の鉄分ロス改善効果
が得られないばかりか、蛍石消費量増大によるコ
ストアツプ並びに耐火物の溶損が著しくなること
にある。 第1図は脱燐スラグ中のCaF2割合と鉄分ロス
(粒鉄を含む)との関係を示したグラフであるが、
該第1図からもスラグ中のCaF2割合が14%を下
回ると鉄分ロスの急増を招くことが分かる。 なお、CaF2成分供給のための蛍石としての具
体的な量は他のスラグ成分量との絡みで不定では
あるが、2〜13Kg/T(溶銑トン当たりの量)、好
ましくは6Kg/Tを越える量から10Kg/Tまでの
量とするのが良好である。第2図として示したも
のは「鉄分ロス少なく所望の脱燐を行うためのス
ラグ中CaF2割合を確保するのに必要な蛍石投入
量」を「溶銑中のSi含有量」との関係で表わした
グラフであるが、実際操業に当たつては、この第
2図に示される帯(式“20[%Si]+2”で示され
る線と“20[%Si]+5”で示される線とで挟まれ
る帯)の中に入るような値で蛍石を投入すれば、
簡易に本発明で規定する条件が満たされることと
なつて良好な結果を得ることができる。 脱燐炉で使用される精錬剤(脱燐フラツクス)
は脱炭炉で発生した転炉滓を主成分とし、これに
蛍石を配合したものであるが、その他に酸化鉄を
基本の副成分として配合するのが良い。例えば、 転炉滓:40〜80重量%、 蛍石:7〜20重量%、 酸化鉄:20〜60重量% 程度の配合割合としたものが推奨される。もちろ
んこれに限定されるわけではないが、転炉滓を滓
化して低融点の脱燐スラグとしたり脱燐が進行し
易いようにスラグの酸化力を高めるためには、酸
化鉄の併用は極めて重要である。なお、前記以外
に付加的に生石灰、ドロマイトあるいは石灰石を
配合しても良いし、溶銑[Mn]向上のためにマ
ンガン鉱石や鉄マンガン鉱石を配合しても良い。
また、蛍石の他に媒溶剤として、CaCl2,Na2
O・SiO2,Na2CO3等を投入しても良い。そし
て、転炉滓以外の脱燐フラツクス原料は滓化性の
面から小さい粒径程好ましいが、一般に使われて
いる程度のものであれば何ら差し支えない。 脱燐炉で使用される精錬剤(脱燐フラツクス)
の量は、60%以上の脱燐を安定確保し得る量を目
標に溶製する鋼の[P]レベルより決定される
が、通常は59Kg/t程度で良い。 また、脱燐炉で使用される精錬剤の主成分たる
転炉滓としては、脱炭炉で発生した溶融状態のも
のが熱経済的にも脱燐フラツクスの滓化性の面か
らも好ましいが(このように溶融状態のものを用
いる場合には耐火物を内張りした鍋を介して脱燐
炉に注滓される)、取り扱いの容易さ等を考慮し
て脱炭炉で得られたものを一旦冷却凝固させ、粒
状又は塊状に破砕してから用いても良い(なお、
この時も、熱的な面からスラグの温度は高い程良
い。)ただ、この場合脱燐炉での滓化性向上のた
めに粒径は小さい程良好であるが、転炉滓は本来
滓化性に富んでいることもあつて粒径が100mmを
下回る程度でも格別な不都合を来たすことがない
し、これより大きくしても使用可能である。 なお、使用される転炉滓は、タイミングとして
は前回チヤージのものが良いが、それ以前に脱炭
炉から出たものや他の工場の脱炭炉で発生したも
のでも良いことは言うまでもない。 さて、この発明の方法においては脱燐炉での処
理温度を1400℃以下に限定しているが、このよう
に温度調整する理由は、溶銑処理温度がこれより
高くなると脱炭ばかりが進行してスラグ中の全
Fe量が低くなり、脱燐率が悪化するからである。
ただ、余りに低温になるとスラグへの粒鉄ロスが
増加するため、該処理温度は1250〜1400℃に調整
するのが良い、そして、このような処理温度の維
持は上吹きランスからの酸素ガス吹き込み或いは
炉底羽口からの酸素ガス吹き込みの併用によつて
行われる。つまり、上記脱燐炉での酸素ガス吹き
込みは、脱燐処理温度を保証するために行われる
のである。従つて、ここでの上吹き酸素ランスは
通常の転炉ランスでも良いが、脱燐用に新作した
小流量ランスであつても良い。使用酸素ガス量は
処理前の溶銑温度や珪素含有量、転炉滓の温度、
脱燐炉の温もり具合、目的とする処理溶銑温度等
によつて決定されるが、通常は2.0Nm3/min・T
以下程度で良く、好ましくは0.5〜1.0Nm3
min・Tが効果的である。前記「上下両吹き機能
を有した転炉形式の炉」としては現在使われてい
る“上下吹き複合吹錬転炉”が最も好ましいが、
特に脱燐炉については、精錬条件が脱炭炉よりも
マイルドであるため炉自体を更に小さくしても良
いので、脱燐専用に新設してもコスト的にそれほ
どの影響はない。 炉底から吹き込む攪拌ガスとしてはAr,CO2
CO,N2,O2、空気等の何れであつても良い。そ
して、脱燐炉における炉底ガス量としては0.03〜
0.20Nm3/min・Tが良好である。なぜなら、炉
底ガス量が0.03Nm3/min・T未満であると反応
に長時間を要し、一方、0.20Nm3/min・Tをこ
えてもそれ以上の攪拌効果が得られないばかり
か、羽口溶損増大のトラブルを招く傾向が生じる
からである。 以上のような条件で脱燐処理を行うと、通常、
20分以内で所望の脱燐を完了することができる。 脱炭炉での吹錬は、基本的には通常の“炉外で
脱燐された溶銑”を吹錬する場合と同じである
が、できれば精錬剤としての生石灰量(軽焼ドロ
マイトを併せて投入する場合はそれに含まれる
CaO分をも換算する):7Kg/T以上を確保する
ことが好ましい。なぜなら、この工程において仕
上脱燐を十分に進行させて[P]が0.012%以下
の低燐鋼を得るには10Kg/T以上のスラグ確保が
必要であり、これを通常操業で達成するには少な
くとも生石灰投入量:7Kg/Tの確保を要するか
らである。 第3図は脱炭炉でのCaO消費量と吹錬終点での
溶鋼中P含有割合との関係を示したグラフである
が、この第3図からも、生石灰投入量を少なくと
も7Kg/T(軽焼ドロマイトを併せて投入する場
合はそれに含まれるCaO分をも換算した値)確保
することが好ましいことは明瞭である。 なお、脱炭精錬時には、終点での溶鋼のMn含
有量向上を目的として、生石灰やドロマイトを中
心とする造滓剤の他にマンガン鉱石や鉄マンガン
鉱石を添加することもできる。 ところで、この発明に係る方法の実施する場合
には、出来れば適用される溶銑の事前脱硫処理を
行うのが良い。その第一の理由として、該方法で
は脱硫の進行が極めて鈍いことが挙げられるが、
これとは別に、事前脱硫していない溶銑を用いた
場合には転炉スラグ中のS含有量が上昇し、次の
チヤージにおける溶鋼S含有量を高めることも懸
念されるからである。なお、前記事前脱硫は通常
行われている溶銑脱硫方法のいずれによつても良
い。更に、この方法に適用される原料溶銑のSi含
有量も低い程好ましい。なぜなら、溶銑中のSi含
有量が多くなるほど前記脱燐炉でのスラグ塩基度
が低下して脱燐能が落ち、全体での生石灰等の使
用量が増加するためである。それ故、溶銑のSi含
有量は出来れば0.4%以下、好ましくは0.3%以下
に調整しておくのが良策である。なお、脱炭炉の
条件から処理後の溶銑温度を少しでも高くしたい
ような場合、溶銑のSi含有量は0.2%程度の方が
有利なこともあり、工場のローカル条件によつて
決定すべきである。 ところで、工場によつてはクレーン能力から2
杯注銑を行う場合があるが、この場合、処理を簡
単にするために脱燐炉では大半の溶銑を処理し、
追銑は脱炭炉で行うのが得策である。 次に、この発明を実施例により具体的に説明す
る。 〈実施例〉 まず、KR(溶銑処理炉)で脱硫処理した第1
表の上段に示される如き成分組成の溶銑250トン
を脱燐炉として使用する上下両吹き複合吹錬転炉
に注銑し、これに、同様形式の脱炭炉で発生した
転炉滓を冷却・凝固して100mm以下の粒径に破砕
したもの25Kg/T、同様の粒径を持つ鉄鉱石8
Kg/T、生石灰6Kg/T、並びに蛍石8Kg/Tと
を混合状態で添加して10分間の脱燐処理を行つ
た。このときのスラグ中のCaF2割合は15%であ
つた。
<Industrial Application Field> This invention relates to a method for producing high-quality steel at a low cost by performing highly efficient dephosphorization while minimizing iron loss and minimizing the amount of quicklime used throughout the entire steelmaking process. be. <Prior art and its problems> In recent years, quality requirements for various steel materials have become more sophisticated day by day, and along with this, various innovations have been attempted in steel manufacturing methods and various new methods have been introduced. Under these circumstances, there have recently been great expectations for the development of a means to stably melt low-phosphorus steel at even lower costs, and much research is being carried out toward its realization. By the way, regarding the minimization of the total cost of steel manufacturing and the stable production of low phosphorous steel, the following preliminary dephosphorization method of hot metal has been proposed, and some of it has been put into practical use. In other words, preliminary dephosphorization is carried out by injecting quicklime-based dephosphorizing agent or soda ash into the hot metal in the torpedo car, and by injecting or blasting (spraying) quicklime-based flux into the hot metal in the ladle. A method of performing preliminary dephosphorization, a method of performing preliminary dephosphorization by blast staining hot metal with quicklime-based flux in a blast furnace casthouse trough. However, although it is possible to achieve a relatively low P content level using the methods described in () and () above, dephosphorization is limited to "reactions that proceed during the floating process of the dephosphorizing agent (transitary reactor reaction)". However, the method described above has the problem that the utilization efficiency of dephosphorization flux is not necessarily good, and the longer the treatment time, the more heat is removed during treatment, which lowers the hot metal temperature. The hot metal temperature can be kept higher than the previous two methods, but since the dephosphorization treatment is performed on the hot metal immediately after being tapped from the blast furnace, the dephosphorization treatment temperature is too high and the P content level reached is the same. (mentioned above)
Both methods were unsatisfactory because they were worse than the methods (and). Furthermore, when using quicklime etc. as flux for hot metal dephosphorization, considering the amount of quicklime etc. used in the subsequent converter blowing, neither of the methods described above It was also pointed out that the required amount of slag-forming agent (the amount of quicklime, etc.) was not significantly reduced compared to the method of dephosphorizing using only a converter, omitting the process. Therefore, we have developed a method that can minimize the amount of slag-forming agent used, which greatly affects steelmaking costs, and that can efficiently produce high-quality steel without requiring any new equipment. The applicant strongly recognized the need for ``slag-metal countercurrent refining,'' in which slag and metal come into contact with each other in a countercurrent manner, and the amount of slag forming agent required throughout the entire steelmaking process is minimal. However, in reality, it is almost impossible to fully realize countercurrent refining, and the only steelmaking method that has the potential to reduce the amount of slag-forming agent with the least effort is currently A method in which the phosphorization process is divided into two stages and the slag generated in the lower stage is used as a dephosphorizing agent in the upper stage (i.e., a method in which converter slag is used as the main component of the flux for hot metal dephosphorization, for example, This is the basic idea of ``method of reusing converter slag as hot metal dephosphorization flux in outside-furnace refining,'' which the present applicant previously proposed in Japanese Patent Publication No. 55-30042. Based on the research results, he added, ``The steelmaking methods that have been proposed so far by reusing converter slag also involve out-of-furnace refining, making it extremely difficult to stably secure efficient working conditions.'' Moreover, the dephosphorization efficiency is not as high as expected, and mass production requires a special exhaust gas dust collector and dephosphorization slag removal equipment, making it a step forward as a means of mass production of high-quality steel. After paying attention to the problem in actual work, such as "It's something people hesitate to do," they proposed the following new steel manufacturing method (Patent application 1986-
No. 132517). That is, as shown in Figure 4, ``Two converter-type furnaces with both upper and lower blowing functions are used, and one of them is used as the dephosphorization furnace 1.
The other side is a decarburization furnace 2, and a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the dephosphorization furnace 1.
The temperature of the hot metal 3 in the dephosphorization furnace 1 is controlled by blowing oxygen gas upward from the lance 6 while stirring the bottom-blown gas.
This is a method in which hot metal is dephosphorized while being kept at 1400°C or lower, and then the obtained dephosphorized hot metal is decarburized in a decarburization furnace 2. According to this method, it has become possible to manufacture steel with a normal phosphorus level or low phosphorus steel with good workability and at low cost even with an extremely small amount of slag forming agent. The main advantages of the above method are specifically listed below. Because it is a "two-stage countercurrent refining" method that uses converter slag as the hot metal dephosphorization flux, the amount of quicklime used in the entire steelmaking process is significantly reduced compared to conventional methods.
It is possible to blow low phosphorus steel with an extremely small amount of quicklime. FeO in the converter slag is effectively used, improving the recovery rate of granulated iron and metal. Generally, when manganese ore or ferromanganese ore is used in a decarburization furnace, about half of these ores are Mn.
However, in the method of this invention, the slag is reused as hot metal dephosphorization flux, so the residual ore is effectively used, and the "[Mn] loss" in the hot metal is reduced. It is useful for “reducing ” or “increasing [Mn]”. Since the furnace used is a converter-type furnace, for example, even in the case of a dephosphorization furnace, only the dephosphorized pig iron can be tapped from the tapping port into the ladle, and then the slag in the furnace can be discharged into the slag ladle. Removal of slag is easier than in other dephosphorization methods. Since the furnace used is a converter-type furnace with both upper and lower blowing functions, the hot metal can be stirred strongly and the treatment can be carried out in a short time.Therefore, the amount of heat removed is small, compared to other dephosphorization treatment methods. It is extremely advantageous in terms of thermoeconomics. In particular, when melting converter slag is used, it becomes more thermoeconomically advantageous due to its sensible heat. The slag generated in the dephosphorization furnace has little free lime (free CaO is less than 1%), so it can be effectively used as a roadbed material. Since two furnaces are used, there is no concern about poor dephosphorization due to P 2 O 5 adhering to the furnace body.
In other words, since high P 2 O 5 slag adheres to the dephosphorization furnace and only low P 2 O 5 slag adheres to the decarburization furnace, dephosphorization defects do not occur in the decarburization furnace. Moreover, when molten converter slag is used, the molten converter slag is charged into the dephosphorization furnace after the hot metal is charged, so there is no fear that a sudden explosive reaction will occur. Since dephosphorization is performed while stirring the bottom-blown gas,
Unlike the conventional hot metal dephosphorization method, there is no need to finely grind the dephosphorizing agent to near powder form, making it possible to reduce costs accordingly. If there is an idle converter, it can be used immediately as a dephosphorization furnace, and there is no need to prepare special equipment. In addition, for example, in the case of a factory that operates 1/2 converter furnaces, one furnace can be used as a dephosphorization furnace, and this invention can be implemented without capital investment by operating 2/2 converters. It is. If it became necessary to build one of the bricks to extend the lifespan of the bricks, measures were taken to carry out conventional converter blowing using only one converter during this period to avoid leaving idle furnaces. Flexible refining is possible. As mentioned above, the "steel manufacturing method using two converter-type furnaces" proposed earlier by the applicant has many advantages, and is particularly effective as a means of producing low phosphorus steel. However, after further examination through many actual operations, it was found that
``Although the advantages of this method compared to conventional methods have been fully confirmed, a detailed analysis of numerous operational results shows that there are variations in iron loss from time to time, and the P level reached is somewhat It became clear that the instability of the <Means for Solving the Problems> Therefore, the present inventors have developed a method to suppress the iron content loss and the variation in the attained P level, which are observed in the above-mentioned "steel manufacturing method using two converter-type furnaces", although they are slight. As a result of conducting research to further stabilize its operability, it was found that ``variations in iron loss mainly occur during dephosphorization refining in a dephosphorization furnace, and in particular, the CaF2 ratio in the refining slag at that time is extremely important.'' They found that by adding fluorite and adjusting the proportion of CaF2 in the refined slag to a high level, iron loss can be stably kept low. This invention was made based on the above knowledge, and involves refining hot metal by using one of the two converter type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. In this process, the hot metal injected into the dephosphorization furnace contains converter slag generated in the decarburization furnace as a main component, and also contains fluorite in an amount such that the CaF2 ratio in the slag is 14 to 20%. Add the refining agent and blow oxygen gas upward while stirring the bottom blowing gas to bring the temperature of the hot metal to 1400.
Hot metal dephosphorization is carried out while keeping the temperature below ℃, and the obtained dephosphorized hot metal is poured into a decarburization furnace, and a refining agent that ensures an amount of quicklime of 7 kg or more per ton of hot metal is added to perform decarburization and final dephosphorization. As a result, it is possible to stably produce low phosphorus steel with low iron loss and quicklime usage, and with good quality. Here, the reason why we limited the amount of fluorite to be fed into the dephosphorization furnace to "the amount that makes the CaF2 ratio in the slag 14 to 20%" is that it is sufficient if the CaF2 ratio in the dephosphorization slag is less than 14%. Iron loss cannot be significantly suppressed because proper slag formation cannot be ensured, and on the other hand, even if the CaF2 ratio in the slag is 20% or more, not only will no further iron loss improvement effect be obtained, but fluorite consumption will increase. This results in increased costs and significant erosion of refractories. Figure 1 is a graph showing the relationship between the CaF2 ratio in dephosphorization slag and iron loss (including granular iron).
It can also be seen from FIG. 1 that when the CaF 2 ratio in the slag is less than 14%, iron content loss increases rapidly. Although the specific amount of fluorite for supplying the two CaF components is uncertain due to the amount of other slag components, it is 2 to 13 Kg/T (amount per ton of hot metal), preferably 6 Kg/T. It is preferable to set the amount from more than 10 kg/T to 10 kg/T. What is shown in Figure 2 is the relationship between the ``amount of fluorite input necessary to secure the CaF2 ratio in the slag to perform the desired dephosphorization with minimal iron loss'' and the ``Si content in the hot metal.'' However, in actual operation, the bands shown in FIG. If you add fluorite at a value that falls within the band between
The conditions defined by the present invention can be easily satisfied and good results can be obtained. Refining agent used in dephosphorization furnace (dephosphorization flux)
The main component is converter slag generated in a decarburization furnace, and fluorite is added to this, but iron oxide is also preferably added as a basic subcomponent. For example, it is recommended to use a blending ratio of converter slag: 40 to 80% by weight, fluorite: 7 to 20% by weight, and iron oxide: 20 to 60% by weight. Of course, it is not limited to this, but in order to turn converter slag into slag and turn it into dephosphorization slag with a low melting point, or to increase the oxidizing power of slag so that dephosphorization can proceed easily, it is extremely important to use iron oxide in combination. is important. In addition to the above, quicklime, dolomite, or limestone may be additionally blended, and manganese ore or ferromanganese ore may be blended to improve hot metal [Mn].
In addition to fluorite, CaCl 2 and Na 2 are also used as solvents.
O.SiO 2 , Na 2 CO 3 or the like may be added. The smaller the particle size of the dephosphorization flux raw material other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of a generally used size. Refining agent used in dephosphorization furnace (dephosphorization flux)
The amount of P is determined based on the [P] level of the steel to be melted, aiming at an amount that can stably ensure dephosphorization of 60% or more, but it is usually about 59 kg/t. In addition, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (If the molten material is used in this way, it is poured into the dephosphorization furnace through a pot lined with refractory material.) Considering ease of handling, etc., the material obtained in the decarburization furnace is used. It may be used after being cooled and solidified and crushed into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the temperature of the slag, the better. ) However, in this case, the smaller the particle size is, the better in order to improve the slag formation in the dephosphorization furnace, but since the converter slag is inherently highly slag formation, the particle size is less than 100mm. However, it does not cause any particular inconvenience, and it can be used even if it is larger than this. It should be noted that the timing of the converter slag to be used is preferably that from the previous charge, but it goes without saying that it may also be one that came out of the decarburization furnace before that or one that was generated in a decarburization furnace at another factory. Now, in the method of this invention, the treatment temperature in the dephosphorization furnace is limited to 1400℃ or less, but the reason for adjusting the temperature in this way is that if the hot metal treatment temperature is higher than this, only decarburization will proceed. All in the slag
This is because the amount of Fe decreases and the dephosphorization rate deteriorates.
However, if the temperature is too low, the loss of granulated iron to the slag will increase, so it is better to adjust the treatment temperature to 1250-1400℃.Maintaining such a treatment temperature requires blowing oxygen gas from a top blowing lance. Alternatively, this can be carried out in combination with oxygen gas injection from the bottom tuyere. In other words, the oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used depends on the hot metal temperature and silicon content before treatment, the temperature of the converter slag,
It is determined by the temperature of the dephosphorization furnace, the target temperature of hot metal, etc., but usually 2.0Nm 3 /min・T
The following level is sufficient, preferably 0.5 to 1.0Nm 3 /
min·T is effective. As the above-mentioned "converter type furnace with both upper and lower blowing functions", the currently used "top and bottom blowing combined blowing converter" is most preferable.
In particular, with regard to dephosphorization furnaces, since the refining conditions are milder than in decarburization furnaces, the furnace itself can be made even smaller, so even if a new furnace is built specifically for dephosphorization, there is not much of an impact on the cost. The stirring gases blown in from the bottom of the furnace include Ar, CO 2 ,
It may be any of CO, N 2 , O 2 , air, etc. The amount of bottom gas in the dephosphorization furnace is 0.03~
0.20Nm 3 /min·T is good. This is because if the bottom gas amount is less than 0.03Nm 3 /min・T, the reaction will take a long time, while if it exceeds 0.20Nm 3 /min・T, no further stirring effect will be obtained. This is because there is a tendency to cause troubles such as increased tuyere melting loss. When dephosphorization is performed under the above conditions, usually
The desired dephosphorization can be completed within 20 minutes. Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized outside the furnace. included in the investment.
CaO content is also converted): It is preferable to secure 7 kg/T or more. This is because in this process, in order to sufficiently advance the final dephosphorization and obtain low phosphorus steel with [P] of 0.012% or less, it is necessary to secure slag of 10 kg/T or more, and this cannot be achieved in normal operation. This is because it is necessary to ensure at least an input amount of quicklime: 7 kg/T. Figure 3 is a graph showing the relationship between CaO consumption in the decarburization furnace and P content in molten steel at the end of blowing. If light calcined dolomite is also added, it is clear that it is preferable to secure a value calculated by converting the CaO content contained therein. In addition, during decarburization refining, manganese ore or ferromanganese ore can be added in addition to slag-forming agents, mainly quicklime and dolomite, for the purpose of increasing the Mn content of molten steel at the end point. By the way, when carrying out the method according to the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible. The first reason is that desulfurization progresses extremely slowly in this method;
Apart from this, if hot metal that has not been desulfurized in advance is used, the S content in the converter slag will increase, and there is also a concern that the S content of the molten steel in the next charge will increase. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods. Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases. Therefore, it is a good idea to adjust the Si content of hot metal to 0.4% or less, preferably 0.3% or less. In addition, if it is desired to raise the temperature of the hot metal after treatment due to the conditions of the decarburization furnace, it may be advantageous to set the Si content of the hot metal to around 0.2%, so it should be determined based on the local conditions of the factory. It is. By the way, depending on the factory, the crane capacity may be 2.
In some cases, cup pouring is performed, but in this case, most of the hot metal is processed in the dephosphorization furnace to simplify processing.
It is advisable to perform re-irritation in a decarburizing furnace. Next, the present invention will be specifically explained using examples. <Example> First, the first
250 tons of hot metal with the composition shown in the upper row of the table was poured into a double blowing combined blowing converter used as a dephosphorization furnace, and the converter slag generated in a similar type of decarburization furnace was cooled.・25Kg/T of solidified and crushed to a particle size of 100mm or less, iron ore with a similar particle size8
Kg/T, quicklime 6Kg/T, and fluorite 8Kg/T were added in a mixed state and dephosphorization was carried out for 10 minutes. The CaF2 ratio in the slag at this time was 15%.

【表】【table】

【表】 なお、使用した脱燐炉並びに脱炭炉は、上述の
ように何れも炉底よりガス吹き込み攪拌が可能な
250トン上下両吹き複合吹錬転炉であり、第2表
に示すような操業条件が採用された。 このようにして得られた脱燐銑(成分組成は第
1表の中段に示す)を一旦鍋中に出銑してから脱
炭炉に注銑し、通常の転炉操業で用いる生石灰の
10Kg/Tと軽焼ドロマイト10Kg/Tと珪砂4Kg/
Tとを造滓剤として主吹錬を実施した。なお、こ
の際、終点温度(吹錬終了温度)が1680℃となる
ように冷却材としての鉄鉱石を適時添加した。 このとき発生した転炉滓は約40Kg/Tであり、
これを鉄鉱石及び蛍石と共に再び次のチヤージの
脱燐剤原料として脱燐炉に添加して脱燐を行うと
言う一連の操作を繰り返した。 この結果、全製鋼工程での生石灰使用両と軽焼
ドロマイト使用量との和が26Kg/Tと言う少ない
値で、第1表の下段に示す如き鋼中P量が0.010
重量%と言う溶鋼が得られた、この生石灰と軽焼
ドロマイトの使用量は通常の低燐鋼溶製のときの
約1/3である。 〈効果の総括〉 以上に説明した如く、この発明によれば、製鋼
工程の全体を通じて必要な造滓剤量を低く抑えな
がらも、品質の良好な低燐鋼を安定した低い鉄分
ロスの下で製造することが可能となり、高品質鋼
の製造コストを低減してその利用分野を一層拡大
する道を開くなど、産業上極めて有用な効果がも
たらされるのである。
[Table] The dephosphorization furnace and decarburization furnace used are both capable of stirring by blowing gas from the bottom of the furnace, as mentioned above.
It was a 250-ton upper and lower double blowing combined blowing converter, and the operating conditions shown in Table 2 were adopted. The dephosphorized pig iron thus obtained (component composition is shown in the middle row of Table 1) is tapped into a ladle and then poured into a decarburizing furnace to produce quicklime used in normal converter operation.
10Kg/T and light calcined dolomite 10Kg/T and silica sand 4Kg/
Main blowing was carried out using T as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1680°C. The converter slag generated at this time was approximately 40 kg/T.
This was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge, and a series of operations were repeated in which dephosphorization was carried out. As a result, the sum of the amount of quicklime used and the amount of light calcined dolomite used in the entire steelmaking process is a small value of 26Kg/T, and the P amount in the steel is 0.010 as shown in the lower row of Table 1.
The amount of quicklime and light calcined dolomite used to obtain molten steel of 1/3% by weight is approximately 1/3 of that used in normal low phosphorus steel melting. <Summary of Effects> As explained above, according to the present invention, it is possible to produce high-quality low-phosphorous steel with stable and low iron loss while keeping the amount of slag forming agent low throughout the steelmaking process. This makes it possible to manufacture high-quality steel, and brings about extremely useful effects industrially, such as reducing the manufacturing cost of high-quality steel and paving the way to further expand its fields of use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱燐炉におけるスラグ中のCaF2
合と鉄分ロスとの関係を示したグラフ、第2図
は、溶銑中のSi含有量と鉄分ロス少なく所望の脱
燐を行うために必要な蛍石投入量との関係を示し
たグラフ、第3図は、脱炭炉でのCaO消費量と吹
錬終点での溶鋼中P含有割合との関係を示したグ
ラフ、第4図は、2基の転炉を用いた製鋼法の概
要を示した概略説明図である。 図面において、1……脱燐炉、2……脱炭炉、
3……溶銑、4……転炉滓、4′……転炉滓を主
成分とする脱燐スラグ、5……攪拌ガス吹き込み
ノズル、6……ランス。
Figure 1 is a graph showing the relationship between the CaF2 ratio in slag and iron loss in the dephosphorization furnace, and Figure 2 is a graph showing the relationship between the Si content in hot metal and the iron loss required to perform the desired dephosphorization with less iron loss. Figure 3 is a graph showing the relationship between CaO consumption in the decarburization furnace and P content in molten steel at the end of blowing, and Figure 4 is a graph showing the relationship between the amount of fluorite input and Figure 4. It is a schematic explanatory diagram showing an outline of a steel manufacturing method using two converters. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace,
3... Hot metal, 4... Converter slag, 4'... Dephosphorization slag containing converter slag as a main component, 5... Stirring gas blowing nozzle, 6... Lance.

Claims (1)

【特許請求の範囲】[Claims] 1 上下両吹き機能を有した2基の転炉形式の炉
のうちの一方を脱燐炉、他方を脱炭炉として溶銑
の精錬を行う製鋼方法であつて、前記脱燐炉内へ
注入した溶銑に前記脱炭炉で発生した転炉滓を主
成分とすると共に、スラグ中のCaF2割合が14〜
20重量%となる量の蛍石を含む精錬剤を添加し、
底吹きガス攪拌を行いつつ酸素ガスを上吹きして
溶銑温度を1400℃以下に保ちながら溶銑脱燐を行
い、得られた脱燐溶銑を脱炭炉に注銑して脱炭並
びに仕上脱燐することを特徴とする、低燐鋼の製
造方法。
1. A steelmaking method in which hot metal is refined by using one of two converter type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, in which hot metal is injected into the dephosphorization furnace. The main component of the hot metal is converter slag generated in the decarburization furnace, and the CaF2 ratio in the slag is 14~14.
Adding a refining agent containing fluorite in an amount of 20% by weight,
Hot metal dephosphorization is performed while bottom blowing gas is stirred and oxygen gas is blown upward to maintain the hot metal temperature below 1400℃, and the obtained dephosphorized hot metal is poured into a decarburization furnace for decarburization and final dephosphorization. A method for producing low phosphorus steel, characterized by:
JP2682687A 1987-02-07 1987-02-07 Production of low phosphorus steel Granted JPS63195210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682687A JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682687A JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Publications (2)

Publication Number Publication Date
JPS63195210A JPS63195210A (en) 1988-08-12
JPH0437133B2 true JPH0437133B2 (en) 1992-06-18

Family

ID=12204075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682687A Granted JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Country Status (1)

Country Link
JP (1) JPS63195210A (en)

Also Published As

Publication number Publication date
JPS63195210A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPH0437132B2 (en)
JPH0959709A (en) Method for dephosphorizing molten iron
JP3288208B2 (en) Hot metal dephosphorization method
JPH01147011A (en) Steelmaking method
JP3458890B2 (en) Hot metal refining method
JPH0557327B2 (en)
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPS6393813A (en) Steel making method
JP4192503B2 (en) Manufacturing method of molten steel
JPS62290815A (en) Steel making method
JPH0437133B2 (en)
JPH0471965B2 (en)
JP2587286B2 (en) Steelmaking method
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPH032312A (en) Production of low-phosphorus pig iron
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPH01142009A (en) Steel making method
JPS6247417A (en) Melt refining method for scrap
JPH0433844B2 (en)
JPH03122209A (en) Two step counterflow refined steelmaking method using duplex converters
JPS59159963A (en) Production of high chromium molten metal
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH0841519A (en) Steelmaking method
JP2755027B2 (en) Steelmaking method