JPS62290815A - Steel making method - Google Patents

Steel making method

Info

Publication number
JPS62290815A
JPS62290815A JP13251786A JP13251786A JPS62290815A JP S62290815 A JPS62290815 A JP S62290815A JP 13251786 A JP13251786 A JP 13251786A JP 13251786 A JP13251786 A JP 13251786A JP S62290815 A JPS62290815 A JP S62290815A
Authority
JP
Japan
Prior art keywords
furnace
dephosphorization
hot metal
slag
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13251786A
Other languages
Japanese (ja)
Other versions
JPH0214404B2 (en
Inventor
Toru Matsuo
亨 松尾
Seiichi Masuda
誠一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13251786A priority Critical patent/JPS62290815A/en
Publication of JPS62290815A publication Critical patent/JPS62290815A/en
Publication of JPH0214404B2 publication Critical patent/JPH0214404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To produce low phosphorus steel with high workability and at low cost by using two converter type furnace having both top and bottom blowing functions and executing two step dephosphorizing operations. CONSTITUTION:In two converter type furnaces having top and bottom blowing functions, the one side furnace is used as dephosphorizing furnace 1 and the other side furnace is used as decarburizing furnace 2. Refining agent containing converter slag 4 produced in the decarburizing furnace 2 as main component is added on molten iron 3 poured into the dephosphorizing furnace 1, in which the molten iron 3 is dephosphorized as keeping its temp. to <=1,300 deg.C by top blowing of oxygen gas from lance 6 under executing bottom blow gas stirring by blowing nozzle 5. The dephosphorized molten iron obtained is sent to the decarburizing furnace 2 to execute decarburization and finished dephos phorization.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 この発明は、全製鋼工程を通じての造滓剤(生石灰等)
使用量を極力抑えつつ高能率脱燐を行い、品質の良好な
鋼をコスト安く溶製する方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention provides a method for using slag-forming agents (quicklime, etc.) throughout the entire steelmaking process.
The present invention relates to a method for producing high-quality steel at low cost by performing highly efficient dephosphorization while minimizing the amount used.

〈従来技術とその問題点〉 近年、各種鋼材に対する品質要求は日増しに高度化して
おり、これにともなって製鋼法にも各種の工夫が試みら
れ、様々な新しい手法が導入されてきた。
<Prior art and its problems> In recent years, quality requirements for various steel materials have become more sophisticated day by day, and in line with this, various innovations have been attempted in steel manufacturing methods and various new methods have been introduced.

このような中にあって、最近、低燐鋼をより一層低いコ
ストで安定溶製する手段の開発に大きな期待が寄せられ
るようになり、その実現に向けて多くの研究が積み重ね
られている。
Under these circumstances, there has recently been great hope for the development of a means to stably melt low-phosphorus steel at even lower costs, and much research is being carried out toward its realization.

ところで、製鋼トータルコストのミニマム化や低燐鋼の
安定溶製に関しては、従来、次のような溶銑の予備脱燐
法が提案され、一部実用化もなされている。即ち、 i)トーピード内の溶銑に生石灰系のフラックス又はソ
ーダ灰をインジェクションすることで予備脱燐を行う方
法、 ii )取鍋内の溶銑に生石灰系のフラックスをインジ
ェクションしたりブラスティング(吹き付け)すること
で予備脱燐を行う方法、 iii )高炉鋳床樋中の溶銑に生石灰系のフラックス
をブラスティングして予備脱燐を行う方法。
By the way, regarding the minimization of the total cost of steel manufacturing and the stable production of low phosphorous steel, the following preliminary dephosphorization method of hot metal has been proposed, and some of it has been put into practical use. Namely, i) a method of performing preliminary dephosphorization by injecting quicklime-based flux or soda ash into the hot metal in the torpedo, ii) a method of injecting or blasting (spraying) quicklime-based flux into the hot metal in the ladle. iii) A method of performing preliminary dephosphorization by blasting quicklime-based flux onto the hot metal in the blast furnace casthouse trough.

しかしながら、前記i)及びii)の方法によると比較
的低い到達P含有量レベルを達成することはできるが、
脱燐を“脱燐剤の浮上過程で進行する反応(トランジト
リ−・リアクター・リアクション)”に頼るため脱燐フ
ラックスの利用効率が必ずしも良くなく、また処理時間
が長くかかる分だけ処理時の抜熱が大きくなって溶銑温
度が低下すると言う問題があり、一方、前記iii )
の方法では処理後の溶銑温度を先の2つの方法より高(
保つことができるが、脱燐処理が高炉から出銑された直
後の溶銑に施される関係上脱燐処理温度が約1400℃
と高く、到達P含有量レベルそのものが前記i)及びi
i )の方法よりも悪くなるとの不都合があって、いず
れも決して満足できるものではなかった。
However, although relatively low P content levels can be achieved using methods i) and ii) above,
Because dephosphorization relies on the "reaction that progresses during the floating process of the dephosphorizing agent (transitary reactor reaction)," the efficiency of using the dephosphorizing flux is not always good, and the longer the treatment time, the more heat is removed during the treatment. There is a problem that the temperature of the hot metal decreases due to the increase in the temperature of the hot metal.
In method 2, the temperature of hot metal after treatment is higher than in the previous two methods (
However, since the dephosphorization treatment is performed on hot metal immediately after being tapped from the blast furnace, the dephosphorization treatment temperature is approximately 1400℃.
and the reached P content level itself is as high as i) and i
This method has the disadvantage that it is worse than method i), and neither method is satisfactory.

その上、溶銑脱燐フラックスとして生石灰等を用いる場
合には、その後の転炉吹錬で使用される生石灰等の量を
も合わせて考えると、前記いずれの方法によっても“該
予備脱燐工程を省いて転炉のみでの脱燐を行う方法”に
比べて必要造滓剤量(生石灰等の量)はそれほど大きく
低減されないことも指摘されていたのである。
Furthermore, when using quicklime etc. as hot metal dephosphorization flux, considering the amount of quicklime etc. used in the subsequent converter blowing, it is difficult to use any of the above methods. It was also pointed out that the required amount of slag forming agent (amount of quicklime, etc.) was not significantly reduced compared to the method of dephosphorizing using a converter alone.

本発明者等は、上述のような観点から、製鋼コストに大
きく影響する造滓剤使用量を極力抑えることが可能で、
しかも格別に新規な設備を必要とすることなく品質の良
好な鋼を高能率生産し得る方法を提供すべく、まず燐含
有量の低い高品質口の溶製に重要な役割を果たす生石灰
等の造滓剤の必要量について基礎的な検討を行ったが、
これらの検討結果より 「全製鋼工程を通じての造滓剤の必要量はスラグとメタ
ルとを向流的に接触させる“スラグ−メタル向流精錬”
によるときが最も少なくて良いが、実際上は該向流精錬
の完全な実現は殆ど不可能であり、現状において最も労
少なく造滓剤の使用量を抑え得る可能性を秘めた製鋼手
段として挙げ得るものは、脱燐工程を2段階に分割して
その下工程で発生するスラグを上工程の脱燐剤として使
用する方法(即ち、溶銑脱燐用フラックスの主成分とし
て転炉滓を用いる方法であって、例えば本出側人が先に
特公昭55−30042号として提案したところの“転
炉滓を炉外精錬での溶銑脱燐フラックスとして再利用す
る方法”に代表されるもの)である」 ことを強く認識するに至った。
From the above-mentioned viewpoints, the present inventors have discovered that it is possible to minimize the amount of slag-forming agent used, which greatly affects steel manufacturing costs.
Moreover, in order to provide a method that can produce high-quality steel with high efficiency without requiring particularly new equipment, we first used quicklime, etc., which plays an important role in the melting of high-quality steel with a low phosphorus content. We conducted a basic study on the required amount of slag-forming agent, but
As a result of these studies, ``slag-metal countercurrent refining'', which brings slag and metal into countercurrent contact, determines the amount of slag forming agent required throughout the entire steelmaking process.
However, in practice, it is almost impossible to fully realize countercurrent refining, and currently it is listed as the steelmaking method that is least labor-intensive and has the potential to reduce the amount of slag-forming agent used. What can be obtained is a method in which the dephosphorization process is divided into two stages and the slag generated in the lower process is used as a dephosphorizing agent in the upper process (i.e., a method in which converter slag is used as the main component of flux for hot metal dephosphorization). For example, this method is typified by the "method of reusing converter slag as hot metal dephosphorization flux in outside-furnace refining," which was previously proposed by the present author in Japanese Patent Publication No. 55-30042. I came to strongly recognize that there is.

しかしながら、これまでに?ffi Zされた転炉滓再
利用による製鋼法は、炉外精錬を併用することもあって
効率の良い作業条件を安定して確保するのが非常に困難
である上、脱燐効率も期待されるほどには高くなく、ま
た量産のためには格別の排ガス集塵機や脱燐スラグの排
滓設備を必要とするなど、高品質鋼の量産手段としては
今−歩躊躇されるものでしかなかった。
However, ever? The steelmaking method that reuses ffi-Zed converter slag is extremely difficult to stably secure efficient working conditions because it also uses outside-furnace refining. However, it was not expensive enough to be used as a means of mass production of high-quality steel, and mass production required special exhaust gas dust collectors and dephosphorization slag removal equipment. .

〈問題点を解決するための手段〉 そこで本発明者等は、転炉滓再利用による製鋼法の利点
を十分にわきまえた上で、該利点を損なわずに、また格
別に新規な処理設備の使用を伴なうこともなく、トータ
ルの造滓剤使用量が少ない前記「2段階脱燐工程を含む
製鋼方法」を能率良くしかも安定に実施し得る手段を模
索しながら種々研究を行ったところ、更に、以下に示さ
れる如き事項が再認識され、また新たに知見されたので
ある。即ち、 (ill)  溶銑の脱燐処理においては脱燐効率から
みて処理温度を出来るだけ低くする方が良いが、該温度
が余りに低くなり過ぎると次工程での不都合を引き起こ
す上、処理後スラグへの粒鉄ロスが多くなると言う問題
が生じるので、該温度は1300〜1350℃程度に最
も良好である。しかし、実際作業では脱燐剤の添加その
ものが処理温度を低下する大きな要因となるので多少低
目の上記温度を保持するのは極めて困難であるが、脱燐
処理時に少量の酸素ガスを吹き込むことによって前記処
理温度が安定かつ容易に維持されること。
<Means for Solving the Problems> Therefore, the present inventors have fully understood the advantages of the steel manufacturing method by reusing converter slag, and have developed an especially new processing equipment without impairing the advantages. We have conducted various research while searching for a means to efficiently and stably implement the above-mentioned "steel manufacturing method including a two-stage dephosphorization process" that does not require the use of slag and uses a small amount of slag in total. Furthermore, the following matters were re-recognized and newly discovered. In other words, (ill) In the dephosphorization treatment of hot metal, it is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature becomes too low, it will not only cause problems in the next process, but also cause problems in the slag after treatment. Since the problem of increased loss of granular iron occurs, the temperature is best set at about 1,300 to 1,350°C. However, in actual work, the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, so it is extremely difficult to maintain the above-mentioned somewhat lower temperature. The processing temperature can be maintained stably and easily.

山) フラックスの脱燐能を十分に発揮せしめて脱燐能
率を上げるには、上述のような処理温度の調整もさるこ
とながら、脱燐平衡状態を達成するための十分な撹拌を
欠くことができないが、高温の溶銑を高能率脱燐するに
十分満足できる効率の良い攪拌を短時間に実現するため
には、処理容器底部から吹き込まれるガスによるガス攪
拌が最も好ましいこと。
In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorization efficiency, it is necessary to adjust the treatment temperature as described above, as well as to lack sufficient stirring to achieve a dephosphorization equilibrium state. However, in order to achieve sufficient and efficient stirring in a short time to efficiently dephosphorize high-temperature hot metal, gas stirring using gas blown from the bottom of the processing vessel is most preferable.

(C)  加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフォーミングのための十分なフリーボ
ード(場面から容器上端までの距離)が必要であること
(C) In addition, in order to carry out efficient dephosphorization processing, the processing container must have sufficient freeboard (distance from the scene to the top of the container) for slag forming.

(d)  スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライニングの
使用が好ましいこと。
(d) It is preferable to use a basic lining in order to reduce erosion of the processing vessel refractories due to slag and increase dephosphorization work efficiency.

(e)2段階脱燐工程を含む製鋼法において脱燐作業能
率を上げるためには処理容器からの排滓能率を無視する
ことができず、排滓が容易な処理容器の使用を欠かせな
いこと。
(e) In order to increase the efficiency of dephosphorization in a steelmaking process that includes a two-stage dephosphorization process, the efficiency of removing slag from the processing container cannot be ignored, and it is essential to use a processing container that allows easy removal of slag. thing.

If>  高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集U機)が必要であること。
If> In order to mass-produce high-quality steel with good workability, sufficient exhaust gas treatment equipment (U collector) is necessary.

(g)  これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から攪拌ガスを導
入できる上下両吹き機能を有した複合吹錬転炉が理想的
であり、これを使用して前述した「2段階脱燐工程を含
む製鋼法」を実施すると、全製鋼工程を通じての造滓剤
の使用量が極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できること。
(g) Considering these conditions, a converter-type furnace is ideal as a hot metal dephosphorization treatment vessel, especially a combined blowing converter with a top and bottom blowing function that allows stirring gas to be introduced from the bottom of the furnace. When this is used to carry out the above-mentioned "steel manufacturing method including two-stage dephosphorization process", sufficiently efficient dephosphorization can be achieved even if the amount of slag forming agent used throughout the entire steel manufacturing process is extremely small. Being able to mass-produce high-quality steel with high efficiency.

この発明は、上記知見事項等に基づいてなされたもので
あり、 第1図に示される如く、上下両吹き機能を有した2基の
転炉形式の炉を使用するとともに、そのうちの一方を脱
燐炉1、他方を脱炭炉2とし、前記脱燐炉1内へ注入し
た溶銑3に前記脱炭炉2で発生した転炉滓4を主成分と
する精錬剤の添加を行い、攪拌ガス吹き込みノズル5に
よる底吹きガス撹拌を実施しつつランス6より酸素ガス
を上吹きして脱燐炉1の溶銑3の温度を1400℃以下
に保ちながら溶銑脱燐を行った後、得られた脱燐溶銑を
脱炭炉2にて脱炭並びに仕上脱燐することにより、極め
て少ない量の造滓剤でもって通常燐レベルの鋼或いは低
燐鋼を作業性良く低コストで製造し得るようにした点、 に特徴を有するものである。
This invention was made based on the above-mentioned knowledge, etc., and as shown in Figure 1, it uses two converter-type furnaces with both upper and lower blowing functions, and one of them is removed. A phosphorification furnace 1 and a decarburization furnace 2 are used, and a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the dephosphorization furnace 1, and a stirring gas is added. After dephosphorizing the hot metal while keeping the temperature of the hot metal 3 in the dephosphorization furnace 1 below 1400°C by blowing oxygen gas upward from the lance 6 while performing bottom-blown gas agitation with the blowing nozzle 5, the resulting dephosphorized By decarburizing phosphorous hot metal and final dephosphorizing it in the decarburizing furnace 2, it is possible to produce steel at a normal phosphorus level or low phosphorus steel with good workability and at low cost with an extremely small amount of slag forming agent. It has the following characteristics.

ここで、脱燐炉での処理温度を1400℃以下に調整す
る理由は、溶銑処理温度がこれより高くなると脱炭ばか
りが進行してスラグ中の全Feiが低くなり、脱燐率が
悪化するからである。ただ、余りに低温になるとスラグ
への粒鉄ロスが増加するため、該処理温度は1200〜
1400℃、好ましくは1250〜1370℃に調整す
るのが良い。そして、このような処理温度の維持は上吹
きランスからの酸素ガス吹き込み或いは炉底羽口からの
酸素ガス吹き込みの併用によって行われる。
Here, the reason why the treatment temperature in the dephosphorization furnace is adjusted to 1,400°C or less is that if the hot metal treatment temperature is higher than this, decarburization will proceed, the total Fei in the slag will decrease, and the dephosphorization rate will deteriorate. It is from. However, if the temperature is too low, the loss of granular iron to the slag will increase, so the treatment temperature should be 1200~
The temperature is preferably adjusted to 1400°C, preferably 1250 to 1370°C. The treatment temperature is maintained by blowing oxygen gas from the top blowing lance or by blowing oxygen gas from the bottom tuyere.

つまり、上記脱燐炉での酸素ガス吹き込みは、脱燐処理
温度を保証するために行われるのである。
In other words, the oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature.

従って、ここでの上吹き酸素ランスは通常の転炉ランス
でも良いが、脱燐用に新作した小流量ランスであっても
良い。そして、使用酸素ガス量は処理前の溶銑温度や珪
素含有量、転炉滓の温度、脱燐炉の温もり具合、目的と
する処理溶銑温度等によって決定されるが、概ね2ON
m’/を以下で良く、通常は5〜1ONm’/lが効果
的である。因に、このときの脱炭量は0.5%程度であ
る。
Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used is determined by the hot metal temperature and silicon content before treatment, the temperature of the converter slag, the warmth of the dephosphorization furnace, the target temperature of the hot metal to be treated, etc.
m'/ may be less than or equal to 5 to 1 ON m'/l is usually effective. Incidentally, the amount of decarburization at this time is about 0.5%.

前記「上下両吹き機能を有した転炉形式の炉」としては
現在使われている“上下吹き複合吹錬転炉”が最も好ま
しいが、特に脱燐炉については、精煉条件が脱炭炉より
もマイルドであるため炉自体を更に小さくしても良いの
で、脱燐専用↓こ新設してもコスト的にそれほどの影習
はない。
As for the above-mentioned "converter type furnace with both top and bottom blowing functions", the currently used "top and bottom blowing combined blowing converter" is the most preferable. Since it is mild, the furnace itself can be made even smaller, so even if it is newly installed exclusively for dephosphorization, there will not be much impact in terms of cost.

脱燐炉で使用される精錬剤(脱燐フラックス)は脱炭炉
で発生した転炉滓を主成分としたものであるが、上記転
炉滓以外に酸化鉄及び蛍石を基本の副成分として配合す
るのが良い。例えば、転炉滓:40〜80重旦%、 酸化鉄:20〜60重量%、 螢石 二 0〜20重量% 程度の配合割合としたものが推奨される。もちろんこれ
に固定されるわけではないが、転炉滓を滓化して低融点
の脱燐スラグとしたり脱燐が進行し易いようにスラグの
酸化力を高めるためには、酸化鉄の併用は極めて重要で
ある。なお、前記以外に付加的に生石灰、ドロマイト或
いは石灰石を配合しても良いし、溶銑〔!Iln〕向上
のためにマンガン鉱石や鉄マンガン鉱石を配合しても良
い。また、媒溶剤としては螢石が一般的であるが、Ca
Cl 2、Naz O・Si Oz 、Nag CO3
等をそれぞれ単独に用いても良いし、或いは螢石と併用
しても良い。
The refining agent (dephosphorization flux) used in the dephosphorization furnace is mainly composed of converter slag generated in the decarburization furnace. It is best to mix it as For example, a blending ratio of converter slag: 40-80% by weight, iron oxide: 20-60% by weight, and fluorite: 20-20% by weight is recommended. Of course, it is not fixed to this, but in order to turn converter slag into slag and turn it into dephosphorization slag with a low melting point, and to increase the oxidizing power of slag so that dephosphorization can proceed easily, it is extremely important to use iron oxide in combination. is important. In addition, quicklime, dolomite, or limestone may be added in addition to the above, or hot metal [! Iln] Manganese ore or ferromanganese ore may be added to improve the quality. In addition, fluorite is commonly used as a solvent, but Ca
Cl2, NazO・SiOz, NagCO3
These may be used alone or in combination with fluorite.

そして、転炉滓以外のこれら脱燐フラ・ノクス原料は滓
化性の面から小さい粒径程好ましいが、一般に使われて
いる程度のものであれば何ら差し支えない。
The smaller the particle size of these dephosphorized Fura Nox raw materials other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of a generally used size.

脱燐炉で使用される精錬剤(脱燐フラックス)の量は溶
製する鋼のCP)レベルにより決定されるが、通常は5
0kg/を程度で良い。
The amount of refining agent (dephosphorization flux) used in the dephosphorization furnace is determined by the CP) level of the steel to be melted, but usually 5
0kg/or so is fine.

さて、脱燐炉で使用される精錬剤の主成分たる転炉滓と
しては、脱炭炉で発生した溶融状態のものが熱経済的に
も脱燐フラックスの滓化性の面からも好ましいが(この
ように熔融状態のものを用いる場合には耐火物を内張す
した鍋を介して脱燐炉に注滓される)、取り扱いの容易
さ等を考慮して脱炭炉で得られたものを一旦冷却凝固さ
せ、粒状又は塊状に破砕してから用いても良い(なお、
この時も、熱的な面からスラグの温度は高い程良い)。
Now, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, the molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (When using a molten substance like this, it is poured into a dephosphorization furnace through a pot lined with a refractory). It may be used after cooling and solidifying the material and crushing it into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the slag temperature, the better.)

ただ1.この場合、脱燐炉での滓化性向上のために粒径
は小さい程良好であるが、転炉滓は本来滓化性に冨んで
いることもあって粒径が100鶴を下回る程度でも格別
な不都合を来たすことがないし、これより大きくても使
用可能である。
Just 1. In this case, in order to improve the slag formation in the dephosphorization furnace, the smaller the particle size, the better; however, since converter slag is naturally highly sludge-forming, even if the particle size is less than 100. It does not cause any particular inconvenience, and it can be used even if it is larger than this.

なお、使用される転炉滓は、タイミングとしては前回チ
ャージのものが良いが、それ以前に脱炭炉から出たもの
や他の工場の脱炭炉で発生したものでも良いことは言う
までもない。
It should be noted that the timing of the converter slag to be used is preferably that of the previous charge, but it goes without saying that it may also be that which came out of the decarburizing furnace before that or that which was generated in the decarburizing furnace of another factory.

炉底から吹き込む攪拌ガスとしてはAr、Co□、Co
、 Nz 、02、空気等の何れであっても良い。
Stirring gases blown in from the bottom of the furnace include Ar, Co□, and Co.
, Nz, 02, air, etc.

そして、脱燐炉の炉底ガス攪拌の程度は通常の上下両吹
き複合吹錬におけると同程度(0,03〜0.2Nm3
/l )で良いが、脱燐速度の向上を狙ってこれよりも
更に多くして良いことは勿論である。
The degree of agitation of the bottom gas in the dephosphorization furnace is the same as in normal double blowing combined blowing (0.03 to 0.2 Nm3).
/l), but it is of course possible to increase the amount even more with the aim of improving the dephosphorization rate.

以上のような条件で脱燐処理を行うと、通常、20分以
内で所望の脱燐を完了することができる。
When the dephosphorization treatment is performed under the above conditions, the desired dephosphorization can usually be completed within 20 minutes.

脱炭炉での吹錬は、基本的には通常の“炉外で脱燐され
た溶銑”を吹錬する場合と同じであり、このとき終点で
の溶鋼の10含有量向上を目的として生石灰やドロマイ
トを中心とする造滓剤の他にマンガン鉱石や鉄マンガン
鉱石を添加することもできる。ところで、この発明に係
る製鋼法を実施する場合には、出来れば適用される溶銑
の事前脱硫処理を行うのが良い。その第一の理由として
該製鋼法では脱硫の進行が極めて鈍いことが挙げられる
が、他方では、事前脱硫していない溶銑を用いた場合に
は転炉スラグ中のS含有量が上昇し、次のチャージにお
ける溶ES含有量を高めることも懸念されるからである
。なお、前記事前脱硫は通常行われている溶fjc脱硫
方法のいずれによっても良い。更に、この方法に適用さ
れる原料溶銑のSi含有量も低い程好ましい。なぜなら
、溶銑中のSi含有量が多くなるほど前記脱燐炉でのス
ラグ塩基度が低下して脱燐能が落ち、全体での生石灰等
の使用量が増加するためである。このことは、通常程度
のCP)レベル鋼(P含有量が約0.012重景%)を
溶製する際の「原料溶銑中のSi含有量」と「必要生石
灰量」との関係を示した第2図からも確認することがで
きる(因にこのときの原料溶銑中のP含有量は0.1%
)。それ故、溶銑のSi含有量は出来れば0.3%以下
、好ましくは0.2%以下に調整しておくのが良策であ
る。なお、脱炭炉の条件から処理後の溶銑温度を少しで
も高くしたいような場合、溶銑のSi含有量は0.2%
程度の方が有利なこともあり、工場のローカル条件によ
って決定すべきである。
Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized outside the furnace. In addition to slag-forming agents mainly composed of dolomite and dolomite, manganese ore and ferromanganese ore can also be added. By the way, when implementing the steel manufacturing method according to the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible. The first reason is that the progress of desulfurization is extremely slow in this steelmaking method, but on the other hand, when hot metal that has not been desulfurized in advance is used, the S content in the converter slag increases, and the This is because there is also concern about increasing the molten ES content in the charge. Note that the preliminary desulfurization may be carried out by any of the commonly used melt FJC desulfurization methods. Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases. This shows the relationship between the "Si content in the raw hot metal" and the "required amount of quicklime" when melting ordinary CP level steel (P content is about 0.012%). This can also be confirmed from Figure 2 (incidentally, the P content in the raw hot metal at this time is 0.1%).
). Therefore, it is a good idea to adjust the Si content of the hot metal to 0.3% or less, preferably 0.2% or less. In addition, if it is desired to raise the temperature of the hot metal after treatment due to the conditions of the decarburization furnace, the Si content of the hot metal should be set to 0.2%.
The degree may be more advantageous and should be determined by the local conditions of the factory.

続いて、この発明によって得られる効果の主なものを、
説明の関係上、個々に切り離して列挙する。
Next, the main effects obtained by this invention are as follows.
For the sake of explanation, they will be listed separately.

〈発明の効果〉 ■ 転炉滓を溶銑脱燐フラックスとして用いる″2段向
流精錬”であるため、全製鋼工程での生石灰使用量が従
来法に比べて大幅に減少し、低燐鋼を橿めて少ない生石
灰量で吹錬することを可能とする。なお、第3図は、本
発明の製鋼法による「転炉終点における鋼中P含有量」
と「生石灰使用量」との関係を示すグラフであるが、こ
の第3図からも、本発明によると燐含有量の低い冑品質
鋼を少ない生石灰量で以って十分に溶製できることが明
瞭である。
<Effects of the invention> ■ Because it is a "two-stage countercurrent refining" that uses converter slag as hot metal dephosphorization flux, the amount of quicklime used in the entire steelmaking process is significantly reduced compared to conventional methods, making it possible to produce low-phosphorus steel. This makes it possible to perform blowing with a smaller amount of quicklime. In addition, FIG. 3 shows the "P content in steel at the end point of the converter" according to the steelmaking method of the present invention.
This is a graph showing the relationship between the amount of quicklime used and the amount of quicklime used. It is clear from FIG. It is.

■ 転炉滓中のFeOの有効利用がなされ、粒鉄や地金
の回収率が向上する。
■ FeO in the converter slag will be effectively used, improving the recovery rate of granulated iron and metal.

■ −最に、脱炭炉でマンガン鉱石や鉄マンガン鉱石を
使用した場合にはこれらの約半分はMnにまで還元され
ずに酸化物としてスラグ中に残るが、この発明の方法に
おいては、該スラグを溶銑脱燐フラックスとして再使用
するので上記残留鉱石の有効利用がなされ、溶銑におけ
る“ (Mn)ロスの軽減”或いは“ (Mn)上昇”
に役立つ。
-Finally, when manganese ore or ferromanganese ore is used in a decarburization furnace, about half of these ores are not reduced to Mn and remain in the slag as oxides, but in the method of this invention, the Since the slag is reused as hot metal dephosphorization flux, the residual ore mentioned above can be used effectively, resulting in "(Mn) loss reduction" or "(Mn) increase" in hot metal.
useful for.

■ 使用する炉が転炉形式の炉であるので、例えば脱燐
炉の場合でも、出鋼口から脱燐銑のみを鍋中へ出銑して
から炉内のスラグを溶滓鍋に排出でき、他の脱燐法にお
けるよりも除滓が簡単である。
■ Since the furnace used is a converter-type furnace, for example, even in the case of a dephosphorization furnace, only the dephosphorized pig iron can be tapped from the tapping port into the ladle, and then the slag in the furnace can be discharged into the slag ladle. , removal of slag is easier than in other dephosphorization methods.

■ 使用する炉が上下両吹き機能を有した転炉形式の炉
であるので溶銑の強攪拌が出来て短時間処理が可能とな
るので抜熱量が少なく、他の脱燐処理法に比して熱経済
上極めて有利である。特に溶融転炉滓を用いる場合には
その顕熱分だけ更に熱経済的に有利となる。
■ Since the furnace used is a converter-type furnace with both upper and lower blowing functions, the hot metal can be strongly stirred and the treatment can be carried out in a short period of time, so the amount of heat removed is small, compared to other dephosphorization treatment methods. It is extremely advantageous in terms of thermoeconomics. In particular, when melting converter slag is used, it becomes more thermoeconomically advantageous due to its sensible heat.

■ この発明の方法で使用される脱燐炉で発生するスラ
グは、P2O,含有量が4〜10%にもなっているので
肥料としての用途が開ける上、遊離石灰が無いため路盤
材としての有効利用も可能である。
■ The slag generated in the dephosphorization furnace used in the method of this invention has a P2O content of 4 to 10%, so it can be used as fertilizer, and since there is no free lime, it can be used as a roadbed material. Effective use is also possible.

■ 使用する炉が2つであるので、炉体に付着するP、
0.に起因した脱燐不良の懸念は全(ない。
■ Since two furnaces are used, P adhering to the furnace body,
0. There is no concern about poor dephosphorization caused by this.

つまり、脱燐炉では高P z Osのスラグが、そして
脱炭炉では低P20.スラグしか付着しないので脱炭炉
での脱燐不良が起こらない。
That is, high P z Os slag is produced in the dephosphorization furnace, and low P 20 slag is produced in the decarburization furnace. Since only slag is attached, no dephosphorization failure occurs in the decarburization furnace.

しかも、溶融転炉滓を使用する場合には、脱燐炉では溶
銑を装入した後に溶融転炉滓が入れられるので、急激な
爆発的反応が起きる心配がない。
Moreover, when molten converter slag is used, the molten converter slag is charged into the dephosphorization furnace after the hot metal is charged, so there is no fear that a sudden explosive reaction will occur.

■ 底吹きガス撹拌を行いつつ脱燐を行うので、従来の
溶銑脱燐法の場合のように脱燐剤を粉状近くにまで細か
く粉砕しておく必要がな(、その分のコスト低減が可能
となる。
■ Since dephosphorization is performed while stirring the bottom-blown gas, there is no need to finely grind the dephosphorizing agent to near powder form as in the conventional hot metal dephosphorization method (this reduces costs accordingly). It becomes possible.

■ 遊休転炉がある場合には、これを直ちに脱燐炉とし
て使うことが出来、格別な設備を準備する必要がない。
■ If there is an idle converter, it can be used immediately as a dephosphorization furnace, and there is no need to prepare special equipment.

また、例えば転炉1/2基操業を行っている工場の場合
には、一方の炉を脱燐炉とし、転炉272基操業のよう
な形で設備投資なくこの発明の実施が可能である。そし
て、レンガ寿命のために何れか一方を築炉する必要が生
じた場合には、この間だけ転炉1基のみで従来の転炉吹
錬を行って遊体炉を出さない方策も講じられ、非常に柔
軟性に冨んだ精錬が可能である。
Furthermore, for example, in the case of a factory that operates 1/2 converter furnaces, one furnace can be used as a dephosphorization furnace, and the present invention can be implemented without capital investment by operating 272 converter furnaces. . If it becomes necessary to construct one of the bricks to extend the lifespan of the bricks, measures are taken to carry out conventional converter blowing using only one converter during this time and to avoid using a free furnace. Very flexible refining is possible.

ところで、工場によってはクレーン能力から2杯注銑を
行う場合があるが、この場合、処理を簡単にするために
脱燐炉では大半の溶銑を処理し、追銑は脱炭炉で行うの
が得策である。
By the way, depending on the factory, two cups of iron may be poured due to the crane capacity, but in this case, in order to simplify the process, it is recommended to process most of the hot metal in the dephosphorization furnace and perform additional iron in the decarburization furnace. It's a good idea.

次に、この発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

〈実施例〉 実施例 1 まず、トーピード内で脱硫・脱珪処理した第1表の上・
段に示される如き成分組成の溶銑160トンを脱燐炉と
して使用する上下両吹き複合吹錬転炉に注銑し、これに
、同様形式の脱炭炉で発生した転炉滓を冷却・凝固して
30龍以下の粒径に破砕したちの20kg/l、同様の
粒径を持つ鉄鉱石16kg/l、並びに盆石4kg/l
とを混合状態で添加して12分間の脱燐処理を行った。
<Example> Example 1 First, the upper part of Table 1 was treated with desulfurization and desiliconization in a torpedo.
160 tons of hot metal with the composition shown in Figure 3 was poured into a double blowing combined blowing converter used as a dephosphorization furnace. 20 kg/l of iron ore crushed to a particle size of 30 yen or less, 16 kg/l of iron ore with a similar particle size, and 4 kg/l of bonseki.
A dephosphorization treatment was carried out for 12 minutes by adding these in a mixed state.

なお、使用した脱燐炉並びに脱炭炉は、上述のように何
れも炉底よりガス吹き込み撹拌が可能な160トン上下
両吹き複合吹錬転炉であり、以下の何れの実施例におい
ても第2表に示すような操業条件が採用された。
As mentioned above, the dephosphorization furnace and decarburization furnace used were both 160-ton top and bottom double blowing combined blowing converters capable of blowing gas from the bottom of the furnace and stirring. The operating conditions shown in Table 2 were adopted.

このようにして得られた脱燐銑(成分組成は第1表の中
段に示す)を一旦鍋中に出銑してから脱炭焼に注銑し、
通常の転炉操業で用いる生石灰の10kg/lと螢石1
kg/lとを造滓剤として主吹錬を実施した。なお、こ
の際、終点温度(吹錬終了温度)が1635℃となるよ
うに冷却材としての鉄鉱石を適時添加した。
The dephosphorized pig iron obtained in this way (the composition is shown in the middle row of Table 1) is once tapped into a pot, and then poured into a decarburized furnace.
10 kg/l of quicklime and 1 fluorite used in normal converter operation
Main blowing was carried out using 1 kg/l as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1635°C.

このとき発生した転炉滓は20kg/lであり、これを
鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料と
して脱燐炉に添加して脱燐を行うと言う一連の操作を繰
り返した。
The converter slag generated at this time was 20 kg/l, and a series of operations were repeated in which it was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge to perform dephosphorization. Ta.

この結果、全製鋼工程での使用生石灰量が10kg/ 
tと言う少ない値で、第1表の下段に示すような鋼中P
量が0.013重四%と言う溶鋼が得られた。
As a result, the amount of quicklime used in the entire steelmaking process was 10kg/
With a small value of t, P in steel as shown in the lower part of Table 1
Molten steel having an amount of 0.013% by weight was obtained.

この生石灰使用量は通常の転炉−回吹錬のときの約17
4である。
The amount of quicklime used is approximately 17
It is 4.

実施例 2 トーピード内で脱硫・脱珪処理した第3表の上段に示さ
れる如き成分組成の溶銑160トンを脱燐炉として使用
する上下両吹き複合吹錬転炉に注銑し、この上に、同様
形式の脱炭炉で発生した溶融状態の転炉滓であって、一
旦甜大物を内張りした堝に出滓したちの22kg/lを
注滓した後、更に粒径30璽鳳以下の鉄鉱石17kg/
Lと螢石4 kg/lを添加して実施例1と同様、第2
表に示す条件で10分間脱燐処理した。
Example 2 160 tons of hot metal, which had been desulfurized and desiliconized in a torpedo and had a composition as shown in the upper row of Table 3, was poured into a top and bottom double blowing combined blowing converter used as a dephosphorization furnace, and then , molten converter slag generated in a similar type of decarburization furnace, and after pouring 22 kg/l of the slag into a pot lined with large grains, Iron ore 17kg/
The same process as in Example 1 was carried out by adding L and 4 kg/l of fluorite.
Dephosphorization treatment was performed for 10 minutes under the conditions shown in the table.

次いで、得られた脱燐銑(成分組成は第3表の中段に示
す)を一旦鍋中に出銑してから脱炭炉に注銑し、通常の
転炉操業で用いられる生石灰の10kg/l、盆石1k
gへ及びドロマイ)1kg/lを造滓剤として主吹錬を
実施した。なお、この際、終点温度(吹錬終了温度)が
1640℃となるように冷却材としての鉄鉱石を適時添
加した。
Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 3) is tapped into a ladle and then poured into a decarburizing furnace, and 10 kg/10 kg of quicklime used in normal converter operation is poured into a decarburizing furnace. l, Bonseki 1k
Main blowing was carried out using 1 kg/l of dolomite as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1640°C.

このとき発生した転炉滓は22kg/lであり、これを
鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料と
して脱燐炉に添加して脱燐を行うと言う一連の操作を繰
り返した。
The converter slag generated at this time was 22 kg/l, and a series of operations were repeated in which it was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge to perform dephosphorization. Ta.

この結果、全製鋼工程での使用生石灰量が10kg/ 
t、使用ドロマイト量が1kg/lと言う少ない造滓剤
量で、第3表の下段に示すような鋼中P量が0.011
重量51石と言う溶銅が得られた。また、第3表から分
かるように、溶融転炉滓を用いた結果溶銑脱燐処理後の
温度も実施例1の場合に比べて有利となっている。
As a result, the amount of quicklime used in the entire steelmaking process was 10kg/
t, when the amount of dolomite used is as small as 1 kg/l, the amount of P in the steel is 0.011 as shown in the lower part of Table 3.
Molten copper weighing 51 stones was obtained. Further, as can be seen from Table 3, as a result of using the molten converter slag, the temperature after hot metal dephosphorization treatment is also more advantageous than in Example 1.

実施例 3 高炉鋳床樋内で脱珪した後、トーピード内で脱硫したと
ころの第4表の上段に示される成分組成の溶銑160ト
ンを脱燐炉として使用する上下両吹き複合吹錬転炉に注
銑し、これに、同様形式〇脱炭炉で発生した転炉滓を冷
却・凝固して30■婁以下の粒径に破砕したちの26k
g/l、同様の粒径を持つ鉄鉱石20kg/l、並びに
蛍石5kgへとを混合状態で添加して、実施例1と同様
、第2表に示す条件で13分間脱燐処理した。
Example 3 An upper and lower double blowing combined blowing converter using 160 tons of hot metal having the composition shown in the upper row of Table 4, which was desiliconized in the blast furnace casthouse trough and then desulfurized in the torpedo, as a dephosphorization furnace. The same type of iron is poured into the converter slag produced in the decarburization furnace, which is cooled and solidified and crushed into particles with a particle size of 30 μm or less.
20 kg/l of iron ore having a similar particle size and 5 kg of fluorite were added in a mixed state and dephosphorized for 13 minutes under the conditions shown in Table 2 in the same manner as in Example 1.

次いで、得られた脱燐銑(成分組成は第4表の中段に示
す)を一旦鍋中に出銑してから脱炭炉に注銑し、通常の
転炉操業で用いられる生石灰の13kg/を及び螢石1
kg/lを造滓剤として主吹錬を実施した。なお、この
際、終点温度(吹錬終了温度)が1630℃となるよう
に冷却材としての鉄鉱石を適時添加した。
Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 4) is tapped into a ladle and then poured into a decarburizing furnace, and the amount of quicklime used in normal converter operation is 13 kg/1. and fluorite 1
Main blowing was carried out using kg/l as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1630°C.

このとき発生した転炉滓は26kg/lであり、これを
鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料と
して脱燐炉に添加して脱燐を行うと言う一連の操作を繰
り返した。
The converter slag generated at this time was 26 kg/l, and the series of operations of adding it to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge and dephosphorizing it was repeated. Ta.

この結果、全製鋼工程を通じての使用生石灰量が13k
g八で、実施例1の場合よりも3kg/lの増量が必要
となったが、従来法に比べるとやはり少ない生石灰使用
量で製鋼作業を終了出来た。
As a result, the amount of quicklime used throughout the entire steelmaking process was 13k.
g8, it was necessary to increase the amount of quicklime by 3 kg/l compared to the case of Example 1, but the steelmaking work could still be completed with a smaller amount of quicklime used than in the conventional method.

実施例 4 高炉銑をトーピード内で脱硫したところの第5表の上段
に示される成分組成の溶銑160トンを脱燐炉として使
用する上下両吹き複合吹錬転炉に注銑し、これに、同様
形式の脱炭炉で発生した転炉滓を冷却・凝固して50*
m以下の粒径に破砕したちの36kg/lと、同様の粒
径を持つ鉄鉱石30kg/ を及び螢石2kg/lとを
混合状態で添加して、実施例1と同様、第2表に示す条
件で15分間脱燐処理した。
Example 4 160 tons of hot metal having the composition shown in the upper row of Table 5, obtained by desulfurizing blast furnace pig iron in a torpedo, was poured into a top and bottom double blowing combined blowing converter used as a dephosphorization furnace, and into this, The converter slag generated in a similar type of decarburization furnace is cooled and solidified to 50*
In the same manner as in Example 1, 36 kg/l of iron ore crushed to a particle size of 0.0 m or less, 30 kg/l of iron ore having a similar particle size, and 2 kg/l of fluorite were added in a mixed state. Dephosphorization treatment was carried out for 15 minutes under the conditions shown below.

次いで、得られた脱燐銑(成分組成は第5表の中段に示
す)を一旦鍋中に出銑してから脱炭炉に注銑し、通常の
転炉操業で用いられる生石灰の18kg/ を及び螢石
2kg/lを造滓剤として主吹錬を実施した。なお、こ
の際、終点温度(吹錬終了温度)が1640℃となるよ
うに冷却材としての鉄鉱石を適時添加した。
Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 5) is tapped into a ladle and then poured into a decarburizing furnace, and 18 kg of quicklime, which is used in normal converter operation, is poured into a decarburizing furnace. Main blowing was carried out using 2 kg/l of fluorite and 2 kg/l of fluorite as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1640°C.

このとき発生した転炉滓は36kg八であり、これを鉄
鉱石及び螢石と共に再び次のチャージの脱燐剤原料とし
て脱燐炉に添加して脱燐を行うと言う一連の操作を繰り
返した。
The converter slag generated at this time weighed 36 kg, and this was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge, and a series of operations were repeated to perform dephosphorization. .

この結果得られた溶鋼の成分組成を第5表の下段に併せ
て示す。
The composition of the molten steel obtained as a result is also shown in the lower part of Table 5.

上述のように、Si含有量が0.50重量%と言う高い
値の溶銑を用いた場合には全製鋼工程を通じての使用生
石灰量も18kg/ tとなり、実施例1の場合に比し
て8kgbもの増量が必要となったが、これでも従来法
(転炉シングルスラグ吹錬のみを行う方法)に必要な生
石灰使用140kg/lよりも十分に少ない値で製鋼作
業を終了出来た。
As mentioned above, when hot metal with a high Si content of 0.50% by weight is used, the amount of quicklime used throughout the entire steelmaking process is 18 kg/t, which is 8 kgb compared to the case of Example 1. Although it was necessary to increase the amount of lime used, the steelmaking work was still completed with a value that was sufficiently lower than the 140 kg/l of quicklime required for the conventional method (a method that only performs single slag blowing in a converter).

実施例 5 トーピード内で脱硫・脱珪処理した第6表の上段に示さ
れる如き成分組成の溶銑160トンを脱燐炉として使用
する上下両吹き複合吹錬転炉に注銑し、この上に、同様
形式の脱炭炉で発生した溶融状態の転炉滓であって、一
旦耐火物を内張すした鍋に出滓したちの30kg/lを
注滓した後、更に粒径30m以下の鉄鉱石23kg/l
と螢石6 kg/lを添加して実施例1と同様、第2表
に示す条件で12分間脱燐処理した。
Example 5 160 tons of hot metal having the composition shown in the upper row of Table 6, which had been desulfurized and desiliconized in a torpedo, was poured into an upper and lower double blowing combined blowing converter used as a dephosphorization furnace, and then , 30 kg/l of molten converter slag generated in a similar type of decarburization furnace was poured into a pot lined with refractory, and then further poured into a pot with a particle size of 30 m or less. Iron ore 23kg/l
and 6 kg/l of fluorite were added and dephosphorization was carried out for 12 minutes under the conditions shown in Table 2 in the same manner as in Example 1.

次いで、得られた脱燐銑(成分組成は第6表の中段に示
す)を一旦鍋中に出銑してから脱炭炉に注銑し、通常の
転炉操業で用いられる生石灰の15kg/l、螢石2k
g/を及びドロマイト1 kg/lを造滓剤として主吹
錬を実施した。なお、この際、終点温度(吹錬終了温度
)が1650℃となるように冷却材としての鉄鉱石を適
時添加した。
Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 6) is tapped into a ladle and then poured into a decarburizing furnace, and 15 kg of quicklime, which is used in normal converter operation, is poured into a decarburizing furnace. l, fluorite 2k
Main blowing was carried out using 1 kg/l of dolomite and 1 kg/l of dolomite as a slag forming agent. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1650°C.

このとき発生した転炉滓は30kg/lであり、これを
鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料と
して脱燐炉に添加して脱燐を行うと言う一連の操作を繰
り返した。
The converter slag generated at this time was 30 kg/l, and a series of operations were repeated in which it was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge to perform dephosphorization. Ta.

この結果得られた低燐銑の成分組成を第5表の下段に併
せて示す。
The composition of the low phosphorus pig iron obtained as a result is also shown in the lower part of Table 5.

上述のように、この場合には、転炉吹錬終点時における
P含有量が0.005重量%と言う極めて高品質の低燐
鋼が、「実施例1」及び「実施例2」におけるような通
常(P)レベル鋼の溶製の場合よりも5kg/を多いだ
けの15kg/lと言う少ない生石灰使用量で以って短
時間に得られた。
As mentioned above, in this case, extremely high quality low phosphorus steel with a P content of 0.005% by weight at the end of converter blowing is used as in "Example 1" and "Example 2". It was obtained in a short time by using a small amount of quicklime, 15 kg/l, which is 5 kg/l more than in the case of melting ordinary (P) level steel.

実施例 6 トーピード内で脱硫・脱珪処理した第7表の上段に示さ
れる如き成分組成の溶銑160トンを脱燐炉として使用
する上下両吹き複合吹錬転炉に注銑し、これに、同様形
式の脱炭炉で発生した転炉滓を冷却・凝固して20ta
以下の粒径に破砕したちの20kg/l、同様の粒径を
持つ鉄鉱石16kg/l、並びに螢石4kg/lとを混
合状態で添加して12分間の脱燐処理を行った。
Example 6 160 tons of hot metal having the composition shown in the upper row of Table 7, which had been desulfurized and desiliconized in a torpedo, was poured into an upper and lower double blowing combined blowing converter used as a dephosphorization furnace, and into this, The converter slag generated in a similar type of decarburization furnace is cooled and solidified to produce 20ta.
20 kg/l of iron ore crushed to the following particle size, 16 kg/l of iron ore having the same particle size, and 4 kg/l of fluorite were added in a mixed state, and dephosphorization was performed for 12 minutes.

次いで、得られた脱燐銑(成分組成は第7表の中段に示
す)を一旦鍋中に出銑してから脱炭炉に注銑し、通常の
転炉操業で用いられる生石灰の10kg/l、蛍石1k
gへ及びドロマイト1kg/lを造滓剤として添加する
と共に、8 kg/lの鉄マンガン鉱石(全Fe含有量
=22重景%、全Mn含有量:42重量%)をも添加し
て主吹錬を実施した。なお、この際、終点温度(吹錬終
了温度)が1640℃となるように冷却材としての鉄鉱
石を適時添加した。
Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 7) is tapped into a ladle and then poured into a decarburizing furnace, and 10 kg/10 kg of quicklime used in normal converter operation is poured into a decarburizing furnace. l, fluorite 1k
In addition to adding 1 kg/l of dolomite as a slag-forming agent, 8 kg/l of ferromanganese ore (total Fe content = 22% by weight, total Mn content: 42% by weight) was added to A blowing session was carried out. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1640°C.

このとき発生した転炉滓は20kg/lであり、これを
鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料と
して脱燐炉に添加して脱燐を行うと言う一連の操作を繰
り返した。
The converter slag generated at this time was 20 kg/l, and a series of operations were repeated in which it was added to the dephosphorization furnace together with iron ore and fluorite as a dephosphorizing agent raw material for the next charge to perform dephosphorization. Ta.

この結果、全製鋼工程での使用生石灰量が10kg/ 
tと言う少ない量で第7表の下段に示すような吹錬終点
鋼中P i : 0.014重景%が達成されると共に
、吹錬終点鋼中のMniを0.40重〒%と「実施例1
」の場合に比べて高くすることが出来、その後のマンガ
ン合金鉄を節減することが出来た。
As a result, the amount of quicklime used in the entire steelmaking process was 10kg/
With a small amount of t, P i in the blowing end point steel as shown in the lower row of Table 7: 0.014% by weight can be achieved, and Mni in the blowing end point steel can be reduced to 0.40% by weight. “Example 1
'', and the subsequent use of manganese alloy iron could be saved.

なお、この場合には、転炉滓中のMt+Oが12重量%
と「実施例1」の場合のそれ(″1nO:4.5重量%
)に比べて高かったので、脱燐処理後のCMn )も0
.26重世%と、「実施例1」の場合のそれ(溶銑中の
Mn量:0.19重景%)よりも高(なっていた。
In this case, Mt+O in the converter slag is 12% by weight.
and that of “Example 1” (“1nO: 4.5% by weight
), so CMn ) after dephosphorization treatment was also 0.
.. The amount of Mn in the hot metal was 0.19%, which was higher than that in "Example 1" (Mn content in hot metal: 0.19%).

〈総括的な効果〉 以上に説明した如く、この発明によれば、製鋼工程の全
体を通じて必要な造滓剤量を低く抑えながらも、品質の
良好な鋼を高い生産性の下で製造することが可能となり
、高品質鋼の製造コストを低減してその利用分野を一層
拡大する道を開くなど、産業上極めて有用な効果がもた
らされるのである。
<Overall Effects> As explained above, according to the present invention, it is possible to manufacture high quality steel with high productivity while keeping the amount of slag forming agent low throughout the steel manufacturing process. This makes it possible to bring about extremely useful effects industrially, such as reducing the manufacturing cost of high-quality steel and paving the way to further expand its fields of use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1I21は1.この発明に係る製鋼法の概要を示した
概略校式図、 第2図は、通常のCP)含有レベル鋼を溶製する際の「
溶銑のSi含有量」と「処理に必要な生石灰量」との関
係を示すグラフ、 第3図は、転炉吹錬終点における鋼中P含有量とCaO
使用量との関係を示すグラフである。 図面において、 1・・・脱燐炉、   2・・・脱炭炉、3・・・溶銑
、    4・・・転炉滓、4′・・・転炉滓を主成分
とする脱燐スラグ、5・・・攪拌ガス吹き込みノズル、 6・・・ランス。
1st I21 is 1. A schematic diagram showing the outline of the steel manufacturing method according to the present invention, Figure 2, shows the process of melting ordinary CP) content level steel.
Figure 3 shows the relationship between the Si content of hot metal and the amount of quicklime required for treatment.
It is a graph showing the relationship with the usage amount. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace, 3... hot metal, 4... converter slag, 4'... dephosphorization slag whose main component is converter slag, 5... Stirring gas blowing nozzle, 6... Lance.

Claims (4)

【特許請求の範囲】[Claims] (1)上下両吹き機能を有した2基の転炉形式の炉のう
ちの一方を脱燐炉、他方を脱炭炉として溶銑の精錬を行
う製鋼方法であって、前記脱燐炉内へ注入した溶銑に前
記脱炭炉で発生した転炉滓を主成分とする精錬剤を添加
し、底吹きガス攪拌を行いつつ酸素ガスを上吹きして溶
銑温度を1400℃以下に保ちながら溶銑脱燐を行う工
程と、得られた脱燐溶銑を脱炭炉にて脱炭並びに仕上脱
燐する工程とを含んで成ることを特徴とする製鋼方法。
(1) A steelmaking method in which hot metal is refined by using one of two converter-type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, and in which the hot metal is refined into the dephosphorization furnace. A refining agent mainly composed of converter slag generated in the decarburization furnace is added to the injected hot metal, and the hot metal is decarburized while keeping the hot metal temperature below 1400°C by blowing oxygen gas upward while stirring the bottom blowing gas. A steelmaking method comprising the steps of performing phosphorization, and decarburizing the obtained dephosphorized hot metal in a decarburizing furnace and final dephosphorizing.
(2)脱炭炉で発生した転炉滓を溶融状態で脱燐炉内の
溶銑に添加する、特許請求の範囲第1項記載の製鋼方法
(2) The steelmaking method according to claim 1, wherein the converter slag generated in the decarburization furnace is added in a molten state to the hot metal in the dephosphorization furnace.
(3)脱炭炉で発生した転炉滓を一旦冷却凝固させた後
脱燐炉内の溶銑に添加する、特許請求の範囲第1項記載
の製鋼方法。
(3) The steelmaking method according to claim 1, wherein the converter slag generated in the decarburization furnace is once cooled and solidified and then added to the hot metal in the dephosphorization furnace.
(4)被処理溶銑がSi:0.30重量%以下まで予備
脱珪処理されたものである、特許請求の範囲第1乃至3
項のいずれかに記載の製鋼方法。
(4) Claims 1 to 3, wherein the hot metal to be treated has been subjected to preliminary desiliconization treatment to reduce Si to 0.30% by weight or less.
The steel manufacturing method described in any of paragraphs.
JP13251786A 1986-06-07 1986-06-07 Steel making method Granted JPS62290815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13251786A JPS62290815A (en) 1986-06-07 1986-06-07 Steel making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13251786A JPS62290815A (en) 1986-06-07 1986-06-07 Steel making method

Publications (2)

Publication Number Publication Date
JPS62290815A true JPS62290815A (en) 1987-12-17
JPH0214404B2 JPH0214404B2 (en) 1990-04-09

Family

ID=15083175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13251786A Granted JPS62290815A (en) 1986-06-07 1986-06-07 Steel making method

Country Status (1)

Country Link
JP (1) JPS62290815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115515A (en) * 1989-09-27 1991-05-16 Sumitomo Metal Ind Ltd Steelmaking method for reducing waste slag quantity in converter
JP2003048793A (en) * 2001-08-02 2003-02-21 Nkk Corp Method of manufacturing slow-acting potash fertilizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709069B2 (en) * 1998-03-19 2005-10-19 新日本製鐵株式会社 Hot metal pretreatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115515A (en) * 1989-09-27 1991-05-16 Sumitomo Metal Ind Ltd Steelmaking method for reducing waste slag quantity in converter
JP2003048793A (en) * 2001-08-02 2003-02-21 Nkk Corp Method of manufacturing slow-acting potash fertilizer

Also Published As

Publication number Publication date
JPH0214404B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPH0437132B2 (en)
JPH0959709A (en) Method for dephosphorizing molten iron
JP3288208B2 (en) Hot metal dephosphorization method
JPS62290815A (en) Steel making method
JPS63195211A (en) Production of low phosphorus and low carbon steel with little mn loss
JPH08157921A (en) Dephosphorization of molten iron
JP2002220615A (en) Converter steelmaking method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JPS6393813A (en) Steel making method
JPH01147011A (en) Steelmaking method
JP4192503B2 (en) Manufacturing method of molten steel
JPH01142009A (en) Steel making method
JPH032312A (en) Production of low-phosphorus pig iron
JP2587286B2 (en) Steelmaking method
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPS63195210A (en) Production of low phosphorus steel
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPS6247417A (en) Melt refining method for scrap
JPH01147012A (en) Steelmaking method
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
JPS59159963A (en) Production of high chromium molten metal
JPS6126752A (en) Manufacture of low-phosphorus and high-manganese iron alloy by melt reduction
JP2755027B2 (en) Steelmaking method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term