JPS63195210A - Production of low phosphorus steel - Google Patents

Production of low phosphorus steel

Info

Publication number
JPS63195210A
JPS63195210A JP2682687A JP2682687A JPS63195210A JP S63195210 A JPS63195210 A JP S63195210A JP 2682687 A JP2682687 A JP 2682687A JP 2682687 A JP2682687 A JP 2682687A JP S63195210 A JPS63195210 A JP S63195210A
Authority
JP
Japan
Prior art keywords
slag
furnace
dephosphorization
blowing
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2682687A
Other languages
Japanese (ja)
Other versions
JPH0437133B2 (en
Inventor
Nobuhide Aoki
青木 伸秀
Yoshio Watanabe
吉夫 渡辺
Katsuhiko Arai
克彦 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2682687A priority Critical patent/JPS63195210A/en
Publication of JPS63195210A publication Critical patent/JPS63195210A/en
Publication of JPH0437133B2 publication Critical patent/JPH0437133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To reduce loss of Fe into slag and also to economically produce low phosphorus steel having good quality under little consumption of lime, by using the slag in a decarbonizing furnace together with fluor-spar having the specific ratio in a dephosphorizing furnace at the time of executing dephosphorized and decarbonized refining in molten iron by two sets of the top and bottom blowing converters. CONSTITUTION:In the converter 1 having an oxygen top blowing lance 6 and a bottom blowing nozzles 5, the molten iron 3, which is beforehand desulfurized, fine granule of the slag 4 from the decarbonizing furnace 2, which is formed as the same type converter in the next process, and lime and fluorspar are added to form the molten slag 4'. CaF2 content in the molten slag 4' is made to 14-20wt.% and by oxygen blowing from the bottom blowing nozzles 5, the molten iron 3 and the molten slag 4' are stirred and also by oxygen blowing from the top blowing lance 6, the molten iron 3 is refined to dephosphorize at <=1,400 deg.C. The low phosphorized molten iron 3 obtd. is charged in the decarbonizing furnace 2 and ore, lime, etc., are added to form the molten slag 4 and by oxygen blowing from the bottom blowing nozzles 5 and the top blowing lance 6, C in the molten iron 3 is oxidized to decarbonize and refined into molten steel and the generated slag is reused to the dephosphorizing furnace 1.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、鉄分ロス少なく、かつ全製鋼工程を通じて
の生石灰使用量を極力抑えつつ高能率脱燐を行い、品質
の良好な鋼をコスト安く溶製する方法に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> This invention performs high-efficiency dephosphorization while minimizing iron loss and minimizing the amount of quicklime used throughout the entire steelmaking process, producing high-quality steel at a low cost. This relates to a method of melting.

〈従来技術とその問題点〉 近年、各種鋼材に対する品質要求は日増しに高度化して
おり、これにともなって製鋼法にも各種の工夫が試みら
れ、様々な新しい手法が導入されてきた。
<Prior art and its problems> In recent years, quality requirements for various steel materials have become more sophisticated day by day, and in line with this, various innovations have been attempted in steel manufacturing methods and various new methods have been introduced.

このような中にあって、最近、低燐鋼をより一層低いコ
ストで安定溶製する手段の開発に大きな期待が寄せられ
るようになり、その実現に向けて多くの研究が積み重ね
られている。
Under these circumstances, there has recently been great hope for the development of a means to stably melt low-phosphorus steel at even lower costs, and much research is being carried out toward its realization.

ところで、製鋼トータルコストのミニマム化や低燐鋼の
安定溶製に関しては、従来、次のような溶銑の予備脱燐
法が提案され、一部実用化もなされている。即ち、 i)  トーピードカー内の溶銑に生石灰系の脱燐剤又
はソーダ灰をインジェクションすることで予備脱燐を行
う方法、 ii )取鍋内の溶銑に生石灰系のフラックスをインジ
ェクションしたリブラスティング(吹き付け)すること
で予備脱燐を行う方法、 iii )高炉鋳床樋中で溶銑に生石灰系のフラックス
をブラスティングして予備脱燐を行う方法。
By the way, regarding the minimization of the total cost of steel manufacturing and the stable production of low phosphorous steel, the following preliminary dephosphorization method of hot metal has been proposed, and some of it has been put into practical use. Namely, i) a method of performing preliminary dephosphorization by injecting a quicklime-based dephosphorizing agent or soda ash into the hot metal in a torpedo car, and ii) reblasting (spraying), which involves injecting quicklime-based flux into the hot metal in a ladle. iii) A method of performing preliminary dephosphorization by blasting hot metal with quicklime-based flux in a blast furnace casthouse trough.

しかしながら、前記i)及びii)の方法によると比較
的低い到達P含有量レベルを達成することはできるが、
脱燐を“脱燐剤の浮上過程で進行する反応(トランジト
リ−・リアクター・リアクション)″に頼るため脱燐フ
ラックスの利用効率が必ずしも良くなく、また処理時間
が長くかかる分だけ処理時の抜熱が太き(なって溶銑温
度が低下すると言う問題があり、一方、前記iii )
の方法では処理後の溶銑温度を先の2つの方法より高く
保つことができるが、脱燐処理が高炉から出銑された直
後の溶銑に施される関係上、脱燐処理温度が高過ぎて到
達P含有量レベルそのものが前記i)及びii )の方
法よりも悪くなるとの不都合があって何れも決して満足
できるものではなかった。
However, although relatively low P content levels can be achieved using methods i) and ii) above,
Because dephosphorization relies on the "reaction that progresses during the floating process of the dephosphorizing agent (transition reactor reaction)," the efficiency of using the dephosphorizing flux is not always good, and the longer the treatment time, the more heat is removed during the treatment. is thick (there is a problem that the hot metal temperature decreases;
With method 2, the temperature of the hot metal after treatment can be kept higher than with the previous two methods, but because the dephosphorization treatment is performed on the hot metal immediately after being tapped from the blast furnace, the temperature of the dephosphorization treatment is too high. There is a disadvantage that the achieved P content level itself is worse than in methods i) and ii), and neither method is satisfactory.

その上、溶銑脱燐フラックスとして生石灰等を用いる場
合には、その後の転炉吹錬で使用される生石灰等の量を
も合わせて考えると、前記いずれの方法によっても“該
予備脱燐工程を省いて転炉のみでの脱燐を行う方法”に
比べて必要造滓剤量(生石灰等の量)はそれほど大きく
低減されないことも指摘されていたのである。
Furthermore, when using quicklime etc. as hot metal dephosphorization flux, considering the amount of quicklime etc. used in the subsequent converter blowing, it is difficult to use any of the above methods. It was also pointed out that the required amount of slag forming agent (amount of quicklime, etc.) was not significantly reduced compared to the method of dephosphorizing using a converter alone.

そこで、“製鋼コストに大きく影響する造滓剤使用量を
極力抑えることが可能で、しかも格別に新規な設備を必
要とすることなく品質の良好な鋼を高能率生産し得る方
法を開発すること”の必要性を強く認識した本出願人は
、 「全製鋼工程を通じての造滓剤の必要量はスラグとメタ
ルとを向流的に接触させる “スラグ−メタル向流精錬
”によるときが最も少なくて良いが、実際上は該向流精
錬の完全な実現は殆ど不可能であり、現状において最も
労少なく造滓剤の使用量を抑え得る可能性を秘めた製鋼
手段として挙げ得るものは、脱燐工程を2段階に分割し
てその下工程で発生するスラグを上工程の脱燐剤として
使用する方法(即ち、溶銑脱燐用フラックスの主成分と
して転炉滓を用いる方法であって、例えば本出願人が先
に特公昭55−30042号として提案したところの“
転炉滓を炉外精錬での溶銑脱燐フラックスとして再利用
する方法”に代表されるもの)である」 との基礎的研究結果を踏まえ、しかも 「これまでに提案された転炉滓再利用による製鋼法は、
炉外精錬を併用することもあって効率の良い作業条件を
安定して確保するのが非常に困難である上、脱燐効率も
期待されるほどには高くなく、また量産のためには格別
の排ガス集塵機や脱燐スラグの排滓設備を必要とするな
ど、商品ii鋼の量産手段としては今−歩躊躇されるも
のでしかない」 と言う実作業上の問題点にも着目した上で、次に示す如
き新規な製鋼方法を提案した(特願昭61−13251
7号)。
Therefore, we have developed a method that can minimize the amount of slag-forming agent used, which greatly affects steelmaking costs, and that can efficiently produce high-quality steel without requiring any new equipment. The applicant strongly recognized the need for ``slag-metal countercurrent refining,'' in which slag and metal come into contact with each other in a countercurrent manner, and the amount of slag forming agent required throughout the entire steelmaking process is minimal. However, in reality, it is almost impossible to fully realize countercurrent refining, and the only steelmaking method that has the potential to reduce the amount of slag-forming agent with the least effort is currently A method in which the phosphorization process is divided into two stages and the slag generated in the lower process is used as a dephosphorizing agent in the upper process (i.e., a method in which converter slag is used as the main component of flux for hot metal dephosphorization, for example, The applicant had previously proposed “
Based on the basic research results of ``a method of reusing converter slag as hot metal dephosphorization flux in ex-furnace refining'', we also developed a method of ``reusing converter slag that has been proposed so far. The steel manufacturing method is
It is very difficult to stably secure efficient working conditions as out-of-furnace refining is also used, and the dephosphorization efficiency is not as high as expected, and it is especially difficult for mass production. We also focused on the problems in actual work, such as the need for exhaust gas dust collectors and dephosphorization slag removal equipment, which makes it difficult to take steps toward mass production of Product II steel.'' , proposed the following new steel manufacturing method (Patent Application No. 13251/1986)
No. 7).

即ち、第4図に示したように、 「上下両吹き機能を有した2基の転炉形式の炉を使用す
ると共に、そのうちの一方を脱燐炉1、他方を脱炭炉2
とし、脱燐炉I内へ注入した溶銑3に脱炭炉2で発生し
た転炉滓4を主成分とする精錬剤の添加を行い、攪拌ガ
ス吹き込みノズル5による底吹きガス攪拌を実施しつつ
ランス6より酸素ガスを上吹きして脱燐炉1の溶銑3の
温度を1400℃以下に保ちながら溶銑脱燐を行った後
、得られた脱燐溶銑を脱炭炉2にて脱炭する方法Jであ
る。そして、この方法によると、極めて少ない量の造滓
剤でもって通常燐レベルの鋼或いは低燐鋼を作業性良く
低コストで製造することが可能となった。
In other words, as shown in Figure 4, ``Two converter-type furnaces with both upper and lower blowing functions are used, and one of them is used as dephosphorization furnace 1 and the other as decarburization furnace 2.
Then, a refining agent mainly composed of converter slag 4 generated in the decarburization furnace 2 is added to the hot metal 3 injected into the dephosphorization furnace I, and while bottom blowing gas is stirred by the stirring gas injection nozzle 5. After dephosphorizing the hot metal while keeping the temperature of the hot metal 3 in the dephosphorization furnace 1 below 1400°C by blowing oxygen gas upward from the lance 6, the obtained dephosphorized hot metal is decarburized in the decarburization furnace 2. This is method J. According to this method, it has become possible to manufacture steel with a normal phosphorus level or low phosphorus steel with good workability and at low cost using an extremely small amount of slag-forming agent.

なお、上記方法による利点の主なものを具体的に列挙す
ると次の通りである。
The main advantages of the above method are specifically listed below.

■ 転炉滓を溶銑脱燐フラックスとして用いる“2段向
流精錬”であるため、全製鋼工程での生石灰使用量が従
来法に比べて大幅に減少し、低燐鋼を極めて少ない生石
灰量で吹錬することを可能とする。
■ Because it is a "two-stage countercurrent refining" that uses converter slag as hot metal dephosphorization flux, the amount of quicklime used in the entire steelmaking process is significantly reduced compared to the conventional method, making it possible to produce low-phosphorus steel with an extremely small amount of quicklime. Allows for blowing.

■ 転炉滓中のFeOの有効利用がなされ、粒鉄や地金
の回収率が向上する。
■ FeO in the converter slag will be effectively used, improving the recovery rate of granulated iron and metal.

■ 一般に、脱炭炉でマンガン鉱石や鉄マンガン鉱石を
使用した場合にはこれらの約半分はMnにまで還元され
ずに酸化物としてスラグ中に残るが、この発明の方法に
おいては、該スラグを溶銑脱燐フラックスとして再使用
するので上記残留鉱石の有効利用がなされ、溶銑におけ
る“ [Mn]ロスの軽減或いは“[Mn]上昇”に役
立つ。
■Generally, when manganese ore or ferromanganese ore is used in a decarburization furnace, about half of these ores are not reduced to Mn and remain in the slag as oxides, but in the method of this invention, the slag is Since it is reused as hot metal dephosphorization flux, the residual ore is effectively utilized, and it is useful for "reducing [Mn] loss or increasing [Mn]" in hot metal.

■ 使用する炉が転炉形式の炉であるので、例えば脱燐
炉の場合でも、出鋼口から脱燐銑のみを鍋中へ出銑して
から炉内のスラグを溶滓鍋に排出でき、他の脱燐法にお
けるよりも除滓が簡単である。
■ Since the furnace used is a converter-type furnace, for example, even in the case of a dephosphorization furnace, only the dephosphorized pig iron can be tapped from the tapping port into the ladle, and then the slag in the furnace can be discharged into the slag ladle. , removal of slag is easier than in other dephosphorization methods.

■ 使用する炉が上下両吹き機能を有した転炉形式の炉
であるので溶銑の強攪拌が出来て短時間処理が可能とな
り、従って抜熱量が少なく、他の脱燐処理法に比して熱
経済上極めて有利である。
■ Since the furnace used is a converter-type furnace with both upper and lower blowing functions, the hot metal can be stirred strongly and the treatment can be carried out in a short time.Therefore, the amount of heat removed is small, compared to other dephosphorization treatment methods. It is extremely advantageous in terms of thermoeconomics.

特に溶融転炉滓を用いる場合にはその顕熱分だけ更に熱
経済的に有利となる。
In particular, when melting converter slag is used, it becomes more thermoeconomically advantageous due to its sensible heat.

■ 脱燐炉で発生するスラグは、遊離石灰が少ない(フ
リーのCaOが1%以下である)ため路盤材としての有
効利用も可能である。
■ The slag generated in the dephosphorization furnace has little free lime (free CaO is less than 1%), so it can be effectively used as a roadbed material.

■ 使用する炉が2つであるので、炉体に付着するPr
o、に起因した脱燐不良の懸念は全くない。
■ Since two furnaces are used, Pr adhering to the furnace body
There is no concern about poor dephosphorization due to o.

つまり、脱燐炉では高P20.のスラグが、そして脱炭
炉では低P20.スラグしか付着しないので脱炭炉での
脱燐不良が起こらない。
In other words, the dephosphorization furnace has a high P20. slag, and low P20 in the decarburization furnace. Since only slag is attached, no dephosphorization failure occurs in the decarburization furnace.

しかも、溶融転炉滓を使用する場合には、脱燐炉では溶
銑を装入した後に溶融転炉滓が入れられるので、急激な
爆発的反応が起きる心配がない。
Moreover, when molten converter slag is used, the molten converter slag is charged into the dephosphorization furnace after the hot metal is charged, so there is no fear that a sudden explosive reaction will occur.

■ 底吹きガス攪拌を行いつつ脱燐を行うので、従来の
溶銑脱燐法の場合のように脱燐剤を粉状近くにまで細か
く粉砕しておく必要がなく、その分のコスト低減が可能
となる。
■ Since dephosphorization is performed while stirring the bottom-blown gas, there is no need to finely grind the dephosphorizing agent to near powder form as in the case of conventional hot metal dephosphorization methods, which can reduce costs accordingly. becomes.

■ 遊休転炉がある場合には、これを直ちに脱燐炉とし
て使うことが出来、格別な設備を準備する必要がない。
■ If there is an idle converter, it can be used immediately as a dephosphorization furnace, and there is no need to prepare special equipment.

また、例えば転炉1/2基操業を行っている工場の場合
には、一方の炉を脱燐炉とし、転炉272基操業のよう
な形で設備投資なくこの発明の実施が可能である。そし
て、レンガ寿命のために何れか一方を築炉する必要が生
じた場合にはこの間だけ転炉1基のみで従来の転炉吹錬
を行って遊体炉を出さない方策も講じられ、非常に柔軟
性に富んだ精錬が可能である。
Furthermore, for example, in the case of a factory that operates 1/2 converter furnaces, one furnace can be used as a dephosphorization furnace, and the present invention can be implemented without capital investment by operating 272 converter furnaces. . If it becomes necessary to construct one of the bricks to extend the lifespan of the bricks, measures are taken to carry out conventional converter blowing using only one converter during this period and to prevent the use of idle furnaces. Refining is possible with great flexibility.

上述したように、本出願人が先に提案した“転炉形式の
2基の炉を使用する製鋼方法”には極めて多くの利点が
あり、特に低燐鋼の製造手段として優れた効果を得られ
るものであったが、その後の多くの実際操業を通じた更
なる検討の中から、[該方法には従来法に比べての利点
が十分に確認されはするものの、数多(の操業実績を仔
細に分析すると、時々に応じて鉄分ロスにバラツキが見
られる上、到達Pレベルにも多少の不安定性が認められ
る」ごとが明らかとなったのである。
As mentioned above, the "steel manufacturing method using two converter-type furnaces" proposed earlier by the applicant has many advantages, and is particularly effective as a means of producing low phosphorus steel. However, after further examination through many actual operations, it was found that although the advantages of this method over conventional methods have been fully confirmed, there are still a number of A detailed analysis revealed that there were variations in iron loss from time to time, and that there was also some instability in the P level reached.

く問題点を解決する手段〉 そこで本発明者等は、僅かではあるが前記“転炉形式の
2基の炉を使用する製鋼方法”に認められる鉄分ロスや
到達Pレベルのバラツキをも抑制し、その操業性をより
一層安定させるべく研究を行った結果、 [鉄分ロスのバラツキは脱燐炉での脱燐精錬時に主とし
て生じるものであり、特にその時の精錬スラグ中のCa
F2割合が極めて重要な役割を果たしていて、蛍石を投
入することにより該精錬スラグ中のCaF、割合を高目
に調整すると鉄分ロスを安定して低く抑えることが出来
る」 との知見を得るに至ったのである。
Means for Solving the Problems> Therefore, the present inventors have developed a method to suppress the iron content loss and the variation in the attained P level, which is observed in the above-mentioned "steel manufacturing method using two converter-type furnaces", although it is slight. As a result of conducting research to further stabilize its operability, it was found that [variations in iron loss mainly occur during dephosphorization refining in a dephosphorization furnace, and in particular Ca in the refining slag at that time.
The F2 ratio plays an extremely important role, and by adjusting the CaF ratio in the refined slag to a high level by adding fluorite, iron loss can be stably kept low. It has come to this.

この発明は、上記知見に基づいてなされたものであり、 上下両吹き機能を有した2基の転炉形式の炉のうちの一
方を脱燐炉、他方を脱炭炉として溶銑の精錬を行うに当
って、前記脱燐炉内へ注入した溶銑に前記脱炭炉で発生
した転炉滓を主成分とすると共に、スラグ中のCaFt
割合が14〜20%となる量の蛍石を含む精錬剤を添加
し、底吹きガス撹拌を行いつつ酸素ガスを上吹きして溶
銑温度を1400℃以下に保ちながら溶銑脱燐を行い、
得られた脱燐溶銑を脱炭炉に注銑し溶銑トン当たり7k
g以上の生石灰量を確保した精錬剤を投入して脱炭並び
に仕上脱燐することにより、鉄分ロスや生石灰の使用量
少なく、しかも品質の良好な低燐鋼を安定製造し得るよ
うにした点、 に特徴を有するものである。
This invention was made based on the above knowledge, and involves refining hot metal by using one of the two converter type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. In this process, the hot metal injected into the dephosphorization furnace contains converter slag generated in the decarburization furnace as a main component, and also contains CaFt in the slag.
Adding a refining agent containing fluorite in an amount of 14 to 20%, performing bottom-blown gas stirring and top-blowing oxygen gas to dephosphorize the hot metal while keeping the hot metal temperature below 1400 ° C.
The obtained dephosphorized hot metal is poured into a decarburization furnace to produce 7k per ton of hot metal.
By decarburizing and final dephosphorization by adding a refining agent that has an amount of quicklime of more than 1.5 g, it is possible to stably produce low-phosphorus steel with low iron loss and quicklime usage, and with good quality. It has the following characteristics.

ここで、脱燐炉に投入する蛍石の量を「スラグ中の(:
aF、割合が14〜20%となる量」と限定した理由は
、脱燐スラグ中のCaFt割合が14%未満では十分な
滓化が確保できないことから鉄分ロスを顕著に抑制でき
ず、一方、スラグ中のCaF。
Here, the amount of fluorite to be introduced into the dephosphorization furnace is determined by the amount of fluorite in the slag (:
The reason why the amount of CaFt in the dephosphorization slag is less than 14% is because sufficient slag formation cannot be ensured, so iron loss cannot be significantly suppressed. CaF in slag.

割合を20%以上としてもそれ以上の鉄分ロス改善効果
が得られないばかりか、蛍石消費量増大によるコストア
ップ並びに耐火物の溶損が著しくなることにある。
Even if the ratio is set to 20% or more, not only no further iron loss improvement effect can be obtained, but also an increase in cost due to increased fluorite consumption and significant erosion of the refractory.

第1図は脱燐スラグ中のCaF、割合と鉄分ロス(粒鉄
を含む)との関係を示したグラフであるが、該第1図か
らもスラグ中のCaFg割合が14%を下回ると鉄分ロ
スの急増を招くことが分かる。
Figure 1 is a graph showing the relationship between the CaF ratio in dephosphorization slag and iron content loss (including granular iron). It can be seen that this will lead to a rapid increase in losses.

なお、CaFz成分供給のための蛍石としての具体的な
量は他のスラグ成分量との絡みで不定ではあるが、2〜
13 kg/T(?8銑トン当たりの量)、好ましくは
6 kg/Tを越える量から10kg/Tまでの量とす
るのが良好である。第2図として示したものは「鉄分ロ
ス少なく所望の脱燐を行うためのスラグ中CaFz割合
を確保するのに必要な蛍石投入量」を「溶銑中のSi含
有量」との関係で表わしたグラフであるが、実際操業に
当たっては、この第2図に示される帯(弐″20[%S
il+2”で示される線と“20 [%St]+S″で
示される線とで挟まれる帯)の中に入るような値で蛍石
を投入すれば、簡易に本発明で規定する条件が満たされ
ることとなって良好な結果を得ることができる。
The specific amount of fluorite for supplying the CaFz component is uncertain due to the amount of other slag components, but it is
A quantity of more than 13 kg/T (amount per 8 tons of pig iron), preferably more than 6 kg/T and up to 10 kg/T is suitable. What is shown in Figure 2 shows the relationship between the amount of fluorite required to maintain the CaFz ratio in the slag to achieve the desired dephosphorization with minimal iron loss and the Si content in the hot metal. However, in actual operation, the band (2"20[%S
If fluorite is added at a value that falls within the band between the line shown by ``il+2'' and the line shown by ``20[%St]+S'', the conditions specified in the present invention can be easily satisfied. good results can be obtained.

脱燐炉で使用される精錬剤(脱燐フラックス)は脱炭炉
で発生した転炉滓を主成分とし、これに蛍石を配合した
ものであるが、その他に酸化鉄を基本の副成分として配
合するのが良い。例えば、転炉滓:40〜80重量%、
・ 蛍石 ; 7〜20重量%、 酸化鉄=20〜60重量% 程度の配合割合としたものが推奨される。もちろんこれ
に限定されるわけではないが、転炉滓を滓化して低融点
の脱燐スラグとしたり脱燐が進行し易いようにスラグの
酸化力を高めるためには、酸化鉄の併用は極めて重要で
ある。なお、前記以外に付加的に生石灰、ドロマイト或
いは石灰石を配合しても良いし、溶銑[Mn]向上のた
めにマンガン鉱石や鉄マンガン鉱石を配合しても良い、
また、蛍石の他に媒溶剤として、Ca(J z +Na
tO・5totsNazCOx等を投入しても良い。そ
して、転炉滓以外の脱燐フラックス原料は滓化性の面か
ら小さい粒径程好ましいが、一般に使われている程度の
ものであれば何ら差し支えない。
The refining agent (dephosphorization flux) used in the dephosphorization furnace is mainly composed of converter slag generated in the decarburization furnace, mixed with fluorite, but also contains iron oxide as a basic subcomponent. It is best to mix it as For example, converter slag: 40 to 80% by weight,
- Fluorite: 7 to 20% by weight, iron oxide = 20 to 60% by weight are recommended. Of course, it is not limited to this, but in order to turn converter slag into slag and turn it into dephosphorization slag with a low melting point, or to increase the oxidizing power of slag so that dephosphorization can proceed easily, it is extremely important to use iron oxide in combination. is important. In addition, quicklime, dolomite, or limestone may be added in addition to the above, and manganese ore or ferromanganese ore may be added to improve the hot metal [Mn].
In addition to fluorite, Ca (J z +Na
tO・5totsNazCOx or the like may be added. The smaller the particle size of the dephosphorization flux raw material other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of a generally used size.

脱燐炉で使用される精錬剤(llA燐フラフラックス量
は、60%以上の脱燐を安定確保し得る量を目標に溶製
する綱の[P] レベルより決定されるが、通常は50
kg/を程度で良い。
The amount of refining agent (lla) used in the dephosphorization furnace is determined based on the [P] level of the steel to be melted with the aim of stably ensuring dephosphorization of 60% or more, but it is usually 50% or more.
kg/ is fine.

また、脱燐炉で使用される精錬剤の主成分たる転炉滓と
しては、脱炭炉で発生した溶融状態のものが熱経済的に
も脱燐フラックスの滓化性の面からも好ましいが(この
ように溶融状態のものを用いる場合には耐火物を内張す
した鍋を介して脱燐炉に江津される)、取り扱いの容易
さ等を考慮して脱炭炉で得られたものを一旦冷却凝固さ
せ、粒状又は塊状に破砕してから用いても良い(なお、
この時も、熱的な面からスラグの温度は高い程良い)。
Furthermore, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (When using a molten substance like this, it is sent to a dephosphorization furnace through a pot lined with a refractory), and one obtained in a decarburization furnace in consideration of ease of handling. It may be used after cooling and solidifying it and crushing it into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the slag temperature, the better.)

ただ、この場合脱燐炉での滓化性向上のために粒径は小
さい程良好であるが、転炉滓は本来滓化性に富んでいる
こともあって粒径が100Nを下回る程度でも格別な不
都合を来たすことがないし、これより大きくても使用可
能である。
However, in this case, the smaller the particle size is, the better in order to improve the ability to form slag in the dephosphorization furnace, but converter slag is inherently highly slag-formable, so even if the particle size is less than 100N, It does not cause any particular inconvenience, and it can be used even if it is larger than this.

なお、使用される転炉滓は、タイミングとしては前回チ
ャージのものが良いが、それ以前に脱炭炉から出たもの
や他の工場の脱炭炉で発生したものでも良いことは言う
までもない。
It should be noted that the timing of the converter slag to be used is preferably that of the previous charge, but it goes without saying that it may also be that which came out of the decarburizing furnace before that or that which was generated in the decarburizing furnace of another factory.

さて、この発明の方法においては脱燐炉での処理温度を
1400℃以下に限定しているが、このように温度調整
する理由は、溶銑処理温度がこれより高くなると脱炭ば
かりが進行してスラグ中の全Fe量が低くなり、脱燐率
が悪化するからである。
Now, in the method of this invention, the treatment temperature in the dephosphorization furnace is limited to 1400°C or less, but the reason for adjusting the temperature in this way is that if the hot metal treatment temperature is higher than this, only decarburization will proceed. This is because the total amount of Fe in the slag becomes low and the dephosphorization rate deteriorates.

ただ、余りに低温になるとスラグへの粒鉄ロスが増加す
るため、該処理温度は1250〜1400℃に調整する
のが良い。そして、このような処理温度の維持は上吹き
ランスからの酸素ガス吹き込み或いは炉底羽口からの酸
素ガス吹き込みの併用によって行われる。つまり、上記
脱燐炉での酸素ガス吹き込みは、脱燐処理温度を保証す
るために行われるのである。従って、ここでの上吹き酸
素ランスは通常の転炉ランスでも良いが、脱燐用に新作
した小流量ランスであっても良い。使用酸素ガス量は処
理前の溶銑温度や珪素含有量、転炉滓の温度、脱燐炉の
温もり具合、目的とする処理溶銑温度等によって決定さ
れるが、通常は2.ONm37min4以下程度で良く
、好ましくは0.5〜1.ONm2/m1n−Tが効果
的である。前記「上下両吹き機能を有した転炉形式の炉
」としては現在使われている“上下吹き複合吹錬転炉”
が最も好ましいが、特に脱燐炉については、精錬条件が
脱炭炉よりもマイルドであるため炉自体を更に小さくし
ても良いので、脱燐専用に新設してもコスト的にそれほ
どの影響はない。
However, if the temperature is too low, the loss of granular iron to the slag will increase, so the treatment temperature is preferably adjusted to 1250 to 1400°C. The treatment temperature is maintained by blowing oxygen gas from the top blowing lance or by blowing oxygen gas from the bottom tuyere. In other words, the oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used is determined by the temperature and silicon content of the hot metal before treatment, the temperature of the converter slag, the warmth of the dephosphorization furnace, the target temperature of the hot metal to be treated, etc., but usually 2. ONm37min4 or less is sufficient, preferably 0.5 to 1. ONm2/m1n-T is effective. The above-mentioned "converter type furnace with both top and bottom blowing functions" is the "top and bottom blowing combined blowing converter" currently in use.
However, especially for dephosphorization furnaces, the refining conditions are milder than for decarburization furnaces, so the furnace itself can be made even smaller, so even if a new one is built specifically for dephosphorization, there will not be much of an impact on the cost. do not have.

炉底から吹き込む攪拌ガスとしてはAr、 COt *
Co、N、、Oア、空気等の何れであっても良い。
The stirring gas blown from the bottom of the furnace is Ar, COt *
It may be any of Co, N, O, air, etc.

そして、脱燐炉における炉底ガス量としては0.03〜
0.2ONm310+1n−Tが良好である。なぜなら
、炉底ガス量が0.03Nm″/5in−T未満である
と反応に長時間を要し、一方、0.2ON+w”/ll
1in −Tをこえてもそれ以上の攪拌効果が得られな
いばかりか、羽口溶損増大のトラブルを招く傾向が生じ
るからである。
The amount of bottom gas in the dephosphorization furnace is 0.03~
0.2ONm310+1n-T is good. This is because if the bottom gas amount is less than 0.03Nm''/5in-T, the reaction will take a long time;
This is because even if it exceeds 1 in -T, not only will no further stirring effect be obtained, but there will also be a tendency to cause troubles such as increased tuyere melting loss.

以上のような条件で脱燐処理を行うと、通常、20分以
内で所望の脱燐を完了することができる。
When the dephosphorization treatment is performed under the above conditions, the desired dephosphorization can usually be completed within 20 minutes.

脱炭炉での吹錬は、基本的には通常の“炉外で脱燐され
た溶銑”を吹錬する場合と同じであるが、できれば精錬
剤としての生石灰量(軽焼ドロマイトを併せて投入する
場合はそれに含まれるCaO分をも換算する) : 7
kg/T以上を確保することが好ましい。なぜなら、こ
の工程において仕上脱燐を十分に進行させて[P]が0
.012%以下の低燐鋼を得るには10kg/T以上の
スラグ確保が必要であり、これを通常操業で達成するに
は少なくとも生石灰投入量ニアkg/Tの確保を要する
からである。
Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized outside the furnace. If it is added, the CaO content contained in it is also converted): 7
It is preferable to secure at least kg/T. This is because the final dephosphorization progresses sufficiently in this process and [P] reaches 0.
.. This is because to obtain low phosphorus steel of 0.12% or less, it is necessary to secure slag of 10 kg/T or more, and to achieve this in normal operation, it is necessary to secure at least a quicklime input amount of near kg/T.

第3図は脱炭炉でのCaO消費量と吹錬終点での溶鋼中
P含有割合との関係を示したグラフであるが、この第3
図からも、生石灰投入量を少なくとも7kg/T(軽焼
ドロマイトを併せて投入する場合はそれに含まれるCa
O分をも換算した値)確保することが好ましいことは明
瞭である。
Figure 3 is a graph showing the relationship between CaO consumption in the decarburization furnace and the P content in molten steel at the end of blowing.
The figure also shows that the amount of quicklime input should be at least 7 kg/T (if light calcined dolomite is also added, the Ca contained in it should be
It is clear that it is preferable to secure a value that also converts O content.

なお、脱炭精錬時には、終点での溶鋼のMn含有量向上
を目的として、生石灰やドロマイトを中心とする造滓剤
の他にマンガン鉱石や鉄マンガン鉱石を添加することも
できる。
In addition, during decarburization refining, manganese ore or ferromanganese ore can be added in addition to slag-forming agents mainly composed of quicklime and dolomite for the purpose of increasing the Mn content of molten steel at the end point.

ところで、この発明に係る方法を実施する場合には、出
来れば適用される溶銑の事前脱硫処理を行うのが良い。
By the way, when carrying out the method according to the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible.

その第一の理由として、該方法では脱硫の進行が極めて
鈍いことが挙げられるが、これとは別に、事前脱硫して
いない溶銑を用いた場合には転炉スラグ中のS含有量が
上昇し、次のチャージにおける溶鋼S含有量を高めるこ
とも懸念されるからである。なお、前記事前脱硫は通常
行われている溶銑脱硫方法のいずれによっても良い。更
に、この方法に適用される原料溶銑のSi含有量も低い
程好ましい。なぜなら、溶銑中のSi含有量が多くなる
ほど前記脱燐炉でのスラグ塩基度が低下して脱燐能が落
ち、全体での生石灰等の使用量が増加するためである。
The first reason is that the progress of desulfurization is extremely slow in this method, but apart from this, when hot metal that has not been desulfurized in advance is used, the S content in the converter slag increases. This is because there is also a concern that the molten steel S content in the next charge may be increased. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods. Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases.

それ故、溶銑のSi含有量は出来れば0.4%以下、好
ましくは0.3%以下に調整しておくのが良策である。
Therefore, it is a good idea to adjust the Si content of hot metal to 0.4% or less, preferably 0.3% or less.

なお、脱炭炉の条件から処理後の溶銑温度を少しでも高
くしたいような場合、溶銑のSi含有量は0.2%程度
の方が有利なこともあり、工場のローカル条件によって
決定すべきである。
In addition, if it is desired to raise the hot metal temperature after treatment due to the conditions of the decarburization furnace, it may be advantageous to set the Si content of the hot metal to about 0.2%, so it should be determined according to the local conditions of the factory. It is.

ところで、工場によってはクレーン能力から2杯注銑を
行う場合があるが、この場合、処理を簡単にするために
脱燐炉では大半の溶銑を処理し、追銑は脱炭炉で行うの
が得策である。
By the way, depending on the factory, two cups of iron may be poured due to the crane capacity, but in this case, in order to simplify the process, it is recommended to process most of the hot metal in the dephosphorization furnace and perform additional iron in the decarburization furnace. It's a good idea.

次に、この発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

〈実施例〉 まず、KR(溶銑処理炉)で脱硫処理した第1表の上段
に示される如き成分組成の溶銑250トンを脱燐炉とし
て使用する上下両吹き複合吹錬転炉に注銑し、これに、
同様形式の脱炭炉で発生した転炉滓を冷却・凝固して1
00m111以下の粒径に破砕したもの25kg/T、
同様の粒径を持つ鉄鉱石8kg/T、生石灰6 kg/
T、並びに螢石8 kg/Tとを混合状態で添加して1
0分間の脱燐処理を行った。このときのスラグ中のCa
Fz割合は15%であった。
<Example> First, 250 tons of hot metal having the composition shown in the upper row of Table 1, which had been desulfurized in a KR (hot metal processing furnace), was poured into an upper and lower double blowing combined blowing converter used as a dephosphorization furnace. ,to this,
The converter slag generated in a similar type of decarburization furnace is cooled and solidified.
25kg/T crushed to a particle size of 00m111 or less,
Iron ore with similar particle size 8kg/T, quicklime 6kg/T
1 by adding T and 8 kg/T of fluorite in a mixed state.
Dephosphorization treatment was performed for 0 minutes. Ca in the slag at this time
The Fz percentage was 15%.

なお、使用した脱燐炉並びに脱炭炉は、上述のように何
れも炉底よりガス吹き込み攪拌が可能な250トン上下
両吹き複合吹錬転炉であり、第2表に示すような操業条
件が採用された。
As mentioned above, the dephosphorization furnace and decarburization furnace used were both 250-ton top and bottom double blowing combined blowing converters capable of blowing gas from the bottom and stirring, and the operating conditions were as shown in Table 2. was adopted.

このようにして得られた脱燐銑(成分組成は第1表の中
段に示す)を一旦鍋中に出銑してから脱炭炉に注銑し、
通常の転炉操業で用いる生石灰910kg/Tと軽焼ド
ロマイト10kg/Tと珪砂4 kg/Tとを造滓剤と
して主吹錬を実施した。なお、この際、終点温度(吹鐘
終了温度)が1680℃となるように冷却材としての鉄
鉱石を適時添加した。
The dephosphorized pig iron thus obtained (the composition is shown in the middle row of Table 1) is first tapped into a pot and then poured into a decarburization furnace.
Main blowing was carried out using 910 kg/T of quicklime, 10 kg/T of lightly calcined dolomite, and 4 kg/T of silica sand as slag forming agents, which are used in normal converter operation. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (bell end temperature) was 1680°C.

このとき発生した転炉滓は約40kg/Tであり、これ
を鉄鉱石及び螢石と共に再び次のチャージの脱燐剤原料
として脱燐炉に添加して脱燐を行うと言う一連の操作を
繰り返した。
The converter slag generated at this time was approximately 40 kg/T, and a series of operations were performed in which this, along with iron ore and fluorite, was added to the dephosphorization furnace again as a dephosphorizing agent raw material for the next charge to perform dephosphorization. repeated.

この結果、全製鋼工程での生石灰使用量と軽焼ドロマイ
ト使用量との和が26kg/Tと言う少ない値で、第1
表の下段に示す如き鋼中P量が0.010重量%と言う
溶鋼が得られた。この生石灰と軽焼ドロマイトの使用量
は通常の低燐鋼溶製のときの約1/3である。
As a result, the sum of the amount of quicklime used and the amount of light burnt dolomite used in the entire steelmaking process was a small value of 26 kg/T, and the first
Molten steel with a P content of 0.010% by weight as shown in the lower part of the table was obtained. The amount of quicklime and light calcined dolomite used is about 1/3 of that used in ordinary low phosphorus steel melting.

〈効果の総括〉 以上に説明した如く、この発明によれば、製鋼工程の全
体を通じて必要な造滓剤量を低く抑えながらも、品質の
良好な低燐鋼を安定した低い鉄分ロスの下で製造するこ
とが可能となり、高品質鋼の製造コストを低減してその
利用分野を一層拡大する道を開くなど、産業上極めて有
用な効果がもたらされるのである。
<Summary of Effects> As explained above, according to the present invention, it is possible to produce high-quality low-phosphorous steel with stable and low iron loss while keeping the amount of slag forming agent low throughout the steelmaking process. This makes it possible to manufacture high-quality steel, and brings about extremely useful effects industrially, such as reducing the manufacturing cost of high-quality steel and paving the way to further expand its fields of use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱燐炉におけるスラグ中のCa F、割合と
鉄分ロスとの関係を示したグラフ、第2図は、溶銑中の
SL含有量と鉄分ロス少なく所望の脱燐を行うために必
要な蛍石投入量との関係を示したグラフ、 第3図は、脱炭炉でのCaO消費量と吹錬終点での溶鋼
中P含有割合との関係を示したグラフ、第4図は、2基
の転炉を用いた製鋼法の概要を示した概略説明図である
。 図面において、 l・・・脱燐炉、   2・・・脱炭炉、3・・・溶銑
、    4・・・転炉滓、4′・・・転炉滓を主成分
とする脱燐スラグ、5・・・攪拌ガス吹き込みノズル、 6・・・ランス。
Figure 1 is a graph showing the relationship between the CaF ratio in slag and iron loss in a dephosphorization furnace, and Figure 2 is a graph showing the relationship between the SL content in hot metal and iron loss in order to perform the desired dephosphorization with less iron loss. Figure 3 is a graph showing the relationship between the required amount of fluorite input, Figure 3 is a graph showing the relationship between CaO consumption in the decarburization furnace and P content in molten steel at the end of blowing, and Figure 4 is , is a schematic explanatory diagram showing an outline of a steel manufacturing method using two converters. In the drawings, 1... dephosphorization furnace, 2... decarburization furnace, 3... hot metal, 4... converter slag, 4'... dephosphorization slag whose main component is converter slag, 5... Stirring gas blowing nozzle, 6... Lance.

Claims (1)

【特許請求の範囲】[Claims] 上下両吹き機能を有した2基の転炉形式の炉のうちの一
方を脱燐炉、他方を脱炭炉として溶銑の精錬を行う製鋼
方法であって、前記脱燐炉内へ注入した溶銑に前記脱炭
炉で発生した転炉滓を主成分とすると共に、スラグ中の
CaF_2割合が14〜20重量%となる量の蛍石を含
む精錬剤を添加し、底吹きガス攪拌を行いつつ酸素ガス
を上吹きして溶銑温度を1400℃以下に保ちながら溶
銑脱燐を行い、得られた脱燐溶銑を脱炭炉に注銑して脱
炭並びに仕上脱燐することを特徴とする、低燐鋼の製造
方法。
A steelmaking method in which hot metal is refined by using one of two converter type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, the hot metal being injected into the dephosphorization furnace. A refining agent containing converter slag generated in the decarburization furnace as the main component and fluorite in an amount such that the CaF_2 ratio in the slag is 14 to 20% by weight is added to the slag, and while stirring the bottom blowing gas. Hot metal dephosphorization is performed while maintaining the hot metal temperature at 1400 ° C. or less by blowing oxygen gas over, and the obtained dephosphorized hot metal is poured into a decarburization furnace for decarburization and final dephosphorization. Method of manufacturing low phosphorus steel.
JP2682687A 1987-02-07 1987-02-07 Production of low phosphorus steel Granted JPS63195210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682687A JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682687A JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Publications (2)

Publication Number Publication Date
JPS63195210A true JPS63195210A (en) 1988-08-12
JPH0437133B2 JPH0437133B2 (en) 1992-06-18

Family

ID=12204075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682687A Granted JPS63195210A (en) 1987-02-07 1987-02-07 Production of low phosphorus steel

Country Status (1)

Country Link
JP (1) JPS63195210A (en)

Also Published As

Publication number Publication date
JPH0437133B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPH0437132B2 (en)
JPH0959709A (en) Method for dephosphorizing molten iron
JP3288208B2 (en) Hot metal dephosphorization method
JPS63195211A (en) Production of low phosphorus and low carbon steel with little mn loss
JP3458890B2 (en) Hot metal refining method
JPH01147011A (en) Steelmaking method
JPS6393813A (en) Steel making method
JPS62290815A (en) Steel making method
JPS63195210A (en) Production of low phosphorus steel
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPH01142009A (en) Steel making method
JP2587286B2 (en) Steelmaking method
JPH01147012A (en) Steelmaking method
JPH032312A (en) Production of low-phosphorus pig iron
JP2004010935A (en) Method for manufacturing molten steel
JPS6247417A (en) Melt refining method for scrap
JPH03122209A (en) Two step counterflow refined steelmaking method using duplex converters
JP2755027B2 (en) Steelmaking method
JPH01215917A (en) Method for melting stainless steel
JPS6126752A (en) Manufacture of low-phosphorus and high-manganese iron alloy by melt reduction
JPS59159963A (en) Production of high chromium molten metal
JPH0431003B2 (en)
JP2004107735A (en) Method for efficiently dephosphorizing molten iron