JPH01147011A - Steelmaking method - Google Patents

Steelmaking method

Info

Publication number
JPH01147011A
JPH01147011A JP62304446A JP30444687A JPH01147011A JP H01147011 A JPH01147011 A JP H01147011A JP 62304446 A JP62304446 A JP 62304446A JP 30444687 A JP30444687 A JP 30444687A JP H01147011 A JPH01147011 A JP H01147011A
Authority
JP
Japan
Prior art keywords
dephosphorization
furnace
blowing
slag
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304446A
Other languages
Japanese (ja)
Other versions
JPH0437135B2 (en
Inventor
Katsuhiko Arai
克彦 荒井
Mitsuhiro Kawakami
川上 光博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62304446A priority Critical patent/JPH01147011A/en
Publication of JPH01147011A publication Critical patent/JPH01147011A/en
Publication of JPH0437135B2 publication Critical patent/JPH0437135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To produce high-quality molten steel at a low cost by, at the end of dephosphorization process in which the oxidizing slag of the decarburizing furnace and scrap steel are added to a dephosphorizing furnace, further iron ore is sent to the decarburizing furnace when molten iron is refined into steel in the dephosphorizing furnace and decarburizing furnace of top- and bottom-blown converter type. CONSTITUTION:The predesiliconized and desulfurized molten iron 3 is charged into the dephosphorizing furnace 1 of converter type having a top-blowing oxygen lance 6 and a bottom- blowing tuyere 5, the oxidizing molten slag 4 generated in the dephosphorizing furnace 2 of the same type at the succeeding stage is added, lightweight scrap steel having <=30mm width and <=15mm thickness is also added, the molten iron is heated to <=1400 deg.C which is an appropriate temp. for dephosphorization, oxygen is blown in from the lance 6, an inert gas is blown in from the bottom-blowing tuyere 5 at the rate of 0.07Nm<3>/min per ton of molten iron 3, and the molten iron 3 and the molten slag 4 are sufficiently agitated. Iron ore or a solid oxidizing agent such as scales is finally added to carry out sufficient dephosphorization reaction. The dephosphorized molten iron is charged into the decarburizing furnace 2, oxygen is blown in from the lance 6, and inert gas is injected from the tuyere 5, and the molten iron is decarburized into molten steel. The consumption of a slag forming agent is reduced, the consumption of inexpensive scrap steel is increased, and hence molten steel is produced at a low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、2基の上下両吹き複合吹錬炉を用い、スク
ラップ使用の自由度高く、かつ少ない造滓剤使用量下に
て、品質の良好な鋼をコスト安く高能率溶製する方法に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention uses two upper and lower double blowing composite blowing furnaces to improve quality with high flexibility in the use of scrap and with a small amount of slag-forming agent. The present invention relates to a method for producing high-quality steel at low cost and with high efficiency.

〈背景技術〉 近年、低燐鋼をより一層低いコストで安定溶製する手段
の開発を目指して様々な研究がなされるようになったが
、このような状況の中で、製鋼トータルコストのミニマ
ム化や低燐鋼の安定溶製に関し次のような溶銑の予備脱
燐法、即ち、(a)トーピード内の溶銑に生石灰系のフ
ラックス又はソーダ灰をインジェクションすることで予
備脱燐を行う方法。
<Background technology> In recent years, various studies have been conducted with the aim of developing a means to stably melt low-phosphorus steel at even lower costs. Regarding the stable melting of low phosphorus steel and low phosphorus steel, the following preliminary dephosphorization method of hot metal is used: (a) A method in which preliminary dephosphorization is performed by injecting quicklime-based flux or soda ash into hot metal in a torpedo.

(b)  取鍋内の溶銑に生石灰系のフラックスをイン
ジェクションしたりブラスティング(吹き付け)するこ
とで予備脱燐を行う方法。
(b) A method in which preliminary dephosphorization is performed by injecting or blasting quicklime-based flux into the hot metal in the ladle.

(C1高炉鋳床樋中の溶銑に生石灰系のフラックスをブ
ラスティングして予備脱燐を行う方法。
(A method in which preliminary dephosphorization is performed by blasting quicklime-based flux to the hot metal in the C1 blast furnace casthouse gutter.

が提案され、一部実用化もなされるようになった。have been proposed, and some have even been put into practical use.

しかし、前記(a)及び(b)の方法では脱燐を“脱燐
剤の浮上過程で進行する反応(トランジトリ−・リアク
ター・リアクション)”に顧るため脱燐フラックスの利
用効率が必ずしも良くなく、また処理時間が長くかかる
分だけ処理時の抜熱が大きくなって溶銑温度が低下する
と言う問題があり、−方、前記(C)の方法では脱燐処
理が高炉から出銑された直後の溶銑に施されることがら
脱燐処理温度が約1400℃と高く、従って到達P含有
量が十分に満足できるレベルになり難いとの指摘がなさ
れていた。
However, in the methods (a) and (b) above, the dephosphorization is related to the "reaction that progresses during the floating process of the dephosphorizing agent (transitary reactor reaction)", so the efficiency of using the dephosphorizing flux is not necessarily good. There is also the problem that the longer the treatment time, the greater the heat removal during the treatment and the lowering of the hot metal temperature. It has been pointed out that since the dephosphorization process is performed on hot metal, the temperature of the dephosphorization treatment is as high as about 1400°C, and therefore it is difficult to achieve a sufficiently satisfactory level of P content.

その上、溶銑脱燐フラックスとして生石灰等を用いる場
合には、その後の転炉吹錬で使用される生石灰等の量を
も合わせて考えると、前記何れの方法も、“予備脱燐工
程を省いて転炉のみでの脱燐を行う方法”に比べて必要
造滓剤量(生石灰等の量)の低減効果はそれほど顕著で
あるとは言えなかった。
Furthermore, when using quicklime etc. as a hot metal dephosphorization flux, considering the amount of quicklime etc. used in the subsequent converter blowing, both of the above methods are effective in eliminating the preliminary dephosphorization step. It could not be said that the effect of reducing the required amount of slag forming agent (amount of quicklime, etc.) was not so remarkable compared to the method of dephosphorizing using only a converter.

そこで、上記状況を踏まえた本出願人は、先に、第7図
で略示されるような「上下両吹き機能を有した2基の転
炉形式の炉を使用するとともに、そのうちの一方を脱燐
炉(1)、他方を脱炭炉(2)とし、前記脱燐炉(11
内へ注入した溶銑(3)に前記脱炭炉(2)で発生した
転炉滓(4)を主成分とする精錬剤の添加を行い、撹拌
ガス吹き込みノズル(5)による底吹きガス撹拌を実施
しつつランス(6)より酸素ガスを上吹きして脱燐炉(
1)の溶銑(3)の温度を1400℃以下に保ちながら
溶銑脱燐を行った後、得られた脱燐溶銑を脱炭炉(2)
にて脱炭並びに仕上脱燐することにより、極めて少ない
量の造滓剤でもって通常燐レベルの鋼或いは低燐鋼を作
業性良く低コストで製造し得るようにした製鋼方法」を
特願昭61−132517号として提案した。
Therefore, in light of the above situation, the applicant first decided to use two converter-type furnaces with both upper and lower blowing functions as schematically shown in FIG. one is a phosphorification furnace (1), the other is a decarburization furnace (2), and the dephosphorization furnace (11
A refining agent whose main component is the converter slag (4) generated in the decarburization furnace (2) is added to the hot metal (3) injected into the furnace, and the bottom blowing gas is stirred by the stirring gas injection nozzle (5). While dephosphorization is being carried out, oxygen gas is blown upward from the lance (6) and the dephosphorization furnace (
After dephosphorizing the hot metal (1) while keeping the temperature of the hot metal (3) below 1400°C, the obtained dephosphorized hot metal is transferred to the decarburization furnace (2).
A special patent application entitled "A steelmaking method that enables the production of steel at a normal phosphorus level or low phosphorus steel with good workability and at low cost with an extremely small amount of slag-forming agent through decarburization and final dephosphorization." It was proposed as No. 61-132517.

なお、本出願人が先に提案したところの上記発明は、「
全製鋼工程を通じての造滓剤の必要量はスラグとメタル
とを向流的に接触させる“スラグ−メタル向流精錬”に
よるときが最も少なくて良いが、実際上は該向流精錬の
完全な実現は殆ど不可能であり、現状において最も労少
なく造滓剤の使用量を抑え得る可能性を秘めた製鋼手段
として挙げ得るものは、脱燐工程を2段階に分割し、そ
の下工程で発生するスラグを上工程の脱燐剤として使用
する方法以外に見当たらない」との発明者の認識の下に
、作業安定性、脱燐効率或いは設備コスト等の面での不
利が予想された該“転炉滓再利用による製鋼法”に関し
、その問題点解消を目指した研究での次の知見事項(A
)〜(F)、即ち、(^)溶銑の脱燐処理においては脱
燐効率からみて処理温度を出来るだけ低くする方が良い
が、該温度が余りに低くなり過ぎると次工程での不都合
を引き、起こす上、処理後スラグへの粒鉄ロスが多くな
ると言う問題が生じるので、該温度は1300〜135
0℃程度が最も良好である。
The above invention previously proposed by the present applicant is “
The amount of slag forming agent required throughout the entire steelmaking process is minimized when slag and metal are brought into contact with each other in a countercurrent manner, called "slag-metal countercurrent refining." This is almost impossible to achieve, and currently the only steelmaking method that has the potential to reduce the amount of slag used with the least amount of labor is to divide the dephosphorization process into two stages, and remove the slag that occurs in the lower process. The inventor recognized that there was no other way to use the slag produced by the dephosphorization process as a dephosphorizing agent in the upstream process. The following findings (A.
) ~ (F), that is, (^) In the dephosphorization treatment of hot metal, it is better to keep the treatment temperature as low as possible from the viewpoint of dephosphorization efficiency, but if the temperature becomes too low, it will cause problems in the next process. The temperature should be set at 1300 to 135°C to prevent the problem of increasing granular iron loss to the slag after treatment.
A temperature of about 0°C is best.

しかし、実際作業では脱燐剤の添加そのものが処理温度
を低下する大きな要因となるので多少低目の上記温度を
保持するのは極めて困難であるが、脱燐処理時に少量の
酸素ガスを吹き込むことによって前記処理温度が安定か
つ容易に維持される。
However, in actual work, the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, so it is extremely difficult to maintain the above-mentioned somewhat lower temperature. The processing temperature can be maintained stably and easily.

(B)  フラックスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の調整もさ
ることながら、脱燐平衡状態を達成するための十分な撹
拌を欠くことができないが、高温の溶銑を高能率脱燐す
るに十分満足できる効率の良い撹拌を短時間に実現する
ためには、処理容器底部から吹き込まれるガスによるガ
ス撹拌が最も好ましい。
(B) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorizing efficiency, it is necessary to adjust the treatment temperature as described above, as well as to lack sufficient stirring to achieve a dephosphorizing equilibrium state. However, in order to achieve satisfactory and efficient stirring in a short time for high-efficiency dephosphorization of high-temperature hot metal, gas stirring using gas blown from the bottom of the processing vessel is most preferable.

(C)  加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフォーミングのための十分なフリーボ
ード(場面から容器上端までの距離)が必要である。
(C) In addition, in order to perform an efficient dephosphorization process, the processing vessel must have sufficient freeboard (distance from the scene to the top of the vessel) for slag forming.

(D)  スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライニングの
使用が好ましい。
(D) In order to reduce erosion of the processing vessel refractories due to slag and increase dephosphorization work efficiency, it is preferable to use a basic lining.

(E)2段階脱燐工程を含む製鋼法において脱燐作業能
率を上げるためには処理容器からの排滓能率を無視する
ことができず、排滓が容易な処理容器の使用を欠かせな
い。
(E) In order to increase the efficiency of dephosphorization in a steelmaking process that includes a two-stage dephosphorization process, the efficiency of removing slag from the processing container cannot be ignored, and it is essential to use a processing container that allows easy removal of slag. .

(F)  高品質鋼を作業性良く量産するためには十分
な排ガス処理設備(集塵機)が必要である。
(F) In order to mass-produce high-quality steel with good workability, sufficient exhaust gas treatment equipment (dust collector) is necessary.

(G)  これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から撹拌ガスを導
入できる上下両吹き機能を有した複合吹錬転炉が理想的
であり、これを使用して前述した“2段階脱燐工程を含
む製鋼法”を実施すると、全製鋼工程を通じての造滓剤
の使用量が極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できる。
(G) Considering these conditions, a converter-type furnace is ideal as a hot metal dephosphorization treatment vessel, especially a combined blowing converter that has both upper and lower blowing functions that can introduce stirring gas from the bottom of the furnace. When this is used to carry out the above-mentioned "steel manufacturing method including two-stage dephosphorization process", sufficiently efficient dephosphorization can be achieved even if the amount of slag forming agent used throughout the entire steel manufacturing process is extremely small. High-quality steel can be mass-produced with high efficiency.

を基に完成されたものである。It was completed based on.

そして、この本出願人が先に提案した方法は、使用造滓
剤量を極力抑えた低コスト操業でもって低燐鋼を安定し
て製造することができ、高品質鋼を安価に提供する上で
極めて有利な製鋼方法であった。
The method previously proposed by the applicant can stably produce low-phosphorus steel with low-cost operations that minimize the amount of slag-forming agent used, and is effective in providing high-quality steel at low cost. This was an extremely advantageous steel manufacturing method.

一方、最近の鋼需要の安定化傾向から製鋼原料としての
スクラップが大量に出回るようになり、価格的にも極め
て有利になってきたことから、製鋼原料に占めるスクラ
ップの割合を増して製鋼コストの低減を図ろうとの試み
も目立っている。
On the other hand, due to the recent stabilization of steel demand, a large amount of scrap as a raw material for steelmaking has become available, and the price has become extremely advantageous. Attempts to reduce it are also noticeable.

このようなことから、本発明者等は、上述した2基の転
炉を使用する“先に提案の方法”を実施するに際して、
脱燐炉に投入する製鋼原料の一部にスクラップを使用し
、これによって製鋼コストを更に低減することを検討し
た。
For this reason, the present inventors, when implementing the "previously proposed method" using the two converters mentioned above,
We considered using scrap as part of the steelmaking raw materials fed into the dephosphorization furnace to further reduce steelmaking costs.

ところが、先に提案した上記方法では、溶銑脱燐吹錬時
の脱燐不良を回避する狙いの下に固体酸素精錬剤たる鉄
鉱石を十分に配合していることもあり、熱バランスから
みてスクラップを装入する余裕がないとの結論を出さざ
るを得なかった。
However, in the method proposed earlier, a sufficient amount of iron ore, which is a solid oxygen refining agent, is blended with the aim of avoiding poor dephosphorization during hot metal dephosphorization and blowing, and from a thermal balance point of view it is difficult to scrap. We had no choice but to conclude that we could not afford to charge.

即ち、上下両吹き複合転炉精錬において原料の一部とし
てスクラップを使用する場合には、スクラップの溶解が
終了するまでは底吹きガス流れが拘束されるので溶銑の
撹拌が不十分となって脱燐不良が起きる。従って、通常
は吹錬を一旦中止して転炉を傾動させ、これによってス
クラップ溶解の促進を図ることが行われていたが、操業
上のロスが大きくて好ましい手段とは言えなかった。
In other words, when scrap is used as part of the raw material in upper and lower double blowing combined converter refining, the bottom blowing gas flow is restricted until the scrap melting is complete, resulting in insufficient stirring of the hot metal and desorption. Phosphorus deficiency occurs. Therefore, the usual practice is to temporarily stop blowing and tilt the converter in order to promote scrap melting, but this is not a desirable method as it causes a large operational loss.

その上、先に提案した方法では脱燐率確保のために溶銑
温度が低目(1400℃以下)に抑えられており、スク
ラップの溶解条件としては一段と不満足なものであった
Furthermore, in the previously proposed method, the hot metal temperature was kept low (below 1400°C) in order to ensure the dephosphorization rate, which was even more unsatisfactory as a scrap melting condition.

く問題点を解決するための手段〉 本発明者等は、上下両吹き機能を有した2基の転炉形式
の炉のうちの一方を脱燐炉、他方を脱炭炉として溶銑の
精錬を行うと言う“先に提案された製鋼方法”の利点を
生かしつつ、しかも上述した問題点を解消し、高いスク
ラップ使用率でもって良好な作業性の下に高品質鋼を安
定溶製すべく研究を続けたところ、 [脱燐炉で溶解するスクラップの幅と厚みを特定値以下
に規制すると共に、十分な底吹きガス撹拌を行い、しか
も鉄鉱石やスケール等の固体酸素精錬剤の一部の投入時
期を吹錬の末期として脱燐炉精錬を実施すると、溶銑温
度が比較的低温であっても、転炉の傾動を必要とするこ
となく炭素拡散によるスクラップの溶解が速やかに完了
し、高脱燐率下で所望の低燐銑が得られる」 との新たな知見が得られたのである。
Means for Solving the Problems> The present inventors have developed a system for refining hot metal by using one of two converter-type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. While taking advantage of the advantages of the "previously proposed steelmaking method," we are conducting research to solve the above-mentioned problems and stably produce high-quality steel with a high scrap usage rate and good workability. [The width and thickness of the scrap melted in the dephosphorization furnace was regulated to below a certain value, and sufficient bottom-blown gas agitation was carried out, and some of the solid oxygen refining agents such as iron ore and scale were removed.] If dephosphorization furnace refining is carried out at the end of blowing, even if the hot metal temperature is relatively low, the melting of scrap through carbon diffusion will be completed quickly without the need for tilting the converter, resulting in high New knowledge was obtained that it is possible to obtain the desired low phosphorus pig iron at a low dephosphorization rate.

、この発明は、上記知見に基づいてなされたものであり
、 「第1図に示される如く、上下両吹き機能を有した2基
の転炉形式の炉のうちの一方を脱燐炉(11、他方を脱
炭炉(2)として溶銑の精錬を行う製鋼方法において、
溶銑を前記脱燐炉(1)内へ注入した後、これに前記脱
炭炉(2)で発生した転炉滓(4)を主成分とする精錬
剤と幅が30fl以下で厚さが151m以下のスクラッ
プとを添加し、撹拌ガス吹込みノズル(5)から流It
 : 0.07N n?/m1n−を以上でガスを吹き
込んで底吹きガス撹拌を行いつつ、ランス(6)より酸
素ガスを上吹きして溶銑温度を1400°C以下に保ち
ながら吹錬を行い、この吹錬の末期に固体酸素精錬剤を
添加する溶銑脱燐工程と、得られた脱燐溶銑を脱炭炉(
2)にて精錬する工程とを含ませることにより、高い割
合でスクラップを使用し、かつ造滓剤の消費量少なく、
品質の優れた鋼を安いコストで製造し得るようにした点
」 に特徴を有するものである。
, this invention was made based on the above knowledge, and ``As shown in FIG. , in a steelmaking method in which hot metal is refined using the other side as a decarburization furnace (2),
After injecting hot metal into the dephosphorization furnace (1), it is mixed with a refining agent whose main component is converter slag (4) generated in the decarburization furnace (2) and a width of 30 fl or less and a thickness of 151 m. Add the following scraps and flow it from the stirring gas blowing nozzle (5).
: 0.07N n? /m1n- or more, while performing bottom-blown gas stirring, blowing oxygen gas upward from the lance (6) to maintain the hot metal temperature below 1400°C, and blowing is carried out at the final stage of this blowing. The hot metal dephosphorization process involves adding a solid oxygen refining agent to
By including the refining process in step 2), a high proportion of scrap is used, and the consumption of slag-forming agent is reduced.
It is characterized by the ability to manufacture high-quality steel at low cost.

ここで、脱燐炉ヤの溶銑処理温度を1400℃以下に調
整する理由は、溶銑温度がこれより高くなると脱炭ばか
りが進行してスラグ中のT、Felが低くなり、脱燐率
が悪化するからである。しかし、「余りに低温になると
スラグへの粒鉄ロスが増加する」との事実を考慮するこ
とも必要なので、上記温度は1250〜1400℃程度
に調整するのが好ましい。なお、このような処理温度の
維持は上吹きランスからの酸素ガス吹き込みや、これと
炉底羽口からの酸素ガス吹き込みの併用によって行われ
る。つまり、上記脱燐炉での酸素ガス吹き込みは、脱燐
処理温度を保証するために実施されると言っても過言で
はない。従って、ここでの上吹き酸素ランスは通常の転
炉ランスでも良いが、脱燐用に新作した小流量ランスで
あっても良い。
Here, the reason why the hot metal treatment temperature in the dephosphorization furnace is adjusted to 1400°C or less is that if the hot metal temperature is higher than this, decarburization will progress and T and Fel in the slag will decrease, resulting in a worsening of the dephosphorization rate. Because it does. However, it is also necessary to take into consideration the fact that "if the temperature is too low, the loss of granular iron to the slag increases", so it is preferable to adjust the temperature to about 1250 to 1400°C. Note that such processing temperature is maintained by blowing oxygen gas from the top blowing lance or by using this in combination with blowing oxygen gas from the bottom tuyere. In other words, it is no exaggeration to say that the oxygen gas injection in the dephosphorization furnace is carried out to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization.

そして、吹込み酸素ガス量は処理前の溶銑温度や珪素含
有量、転炉滓の温度、脱燐炉の温もり具合。
The amount of oxygen gas blown depends on the temperature of the hot metal before treatment, the silicon content, the temperature of the converter slag, and the warmth of the dephosphorization furnace.

目的とする処理溶銑温度等よって決定されるが、概ね2
.ON n?/m1n−を以下で良く、通常は0.5〜
1、ON rrr/m1n−tで十分である。
It is determined by the target hot metal temperature, etc., but approximately 2
.. ON n? /m1n- may be below, usually 0.5~
1, ON rrr/m1nt is sufficient.

そして、投入するスクラップの幅と厚みを前記の如くに
数値限定したのは、本発明におけるスクラップの溶解は
“溶銑からスクラップ中への炭素拡散による融点低下”
によって行われるため、スクラップの軸力(30nを越
えたり、厚みが151重を越えるようなものでは底吹き
ガス撹拌を高めたとしても、転炉の傾動なくして所定吹
錬時間内でのスクラップ溶解が完了しないためである。
The reason for numerically limiting the width and thickness of the scrap to be input as described above is that the melting of scrap in the present invention "lowers the melting point due to carbon diffusion from the hot metal into the scrap."
Because the axial force of the scrap (exceeding 30N or the thickness exceeds 151 kg), even if the bottom blowing gas agitation is increased, the scrap melting process will not be possible within the specified blowing time without tilting the converter. This is because the process is not completed.

更に、この際の底吹きガス流量を0.07N rr?/
min・を以上と定めたのは、その値が0.07N r
rl’/min Htを下回ると溶銑の撹拌が不十分と
なり、転炉の傾動なしにはスクラップの完全溶解がなさ
れないことが懸念される上、脱燐のために添加される固
体酸素精錬剤と溶銑との接触顧度低下から脱燐不良が生
じるからである。
Furthermore, the bottom blowing gas flow rate at this time was set to 0.07N rr? /
The reason min・ was set to be more than 0.07N r
If it is less than rl'/min Ht, there is a concern that the hot metal will not be sufficiently stirred and the scrap will not be completely melted without tilting the converter, and the solid oxygen refining agent added for dephosphorization may This is because poor dephosphorization occurs due to decreased contact with hot metal.

第2図は、底吹きガス流量と脱燐率との関係を、“スク
ラップ溶解を行った場合”と“スクラップ溶解を行わな
かった場合”とを対比して示したグラフであるが、この
第2図からも、スクラップ溶解を実施する場合には底吹
きガス流量を0.07Nm/m1n−を以上とするのが
好ましいことが分かる。
Figure 2 is a graph showing the relationship between the bottom blowing gas flow rate and the phosphor removal rate in the case of ``with scrap melting'' and ``without scrap melting.'' It can also be seen from FIG. 2 that when performing scrap melting, it is preferable to set the bottom blowing gas flow rate to 0.07 Nm/m1n- or more.

なお、固体酸素精錬剤(鉄鉱石等)の添加量が少な(で
も底吹きガス流量を0.07N m/m1n−を以上と
することによって所望の脱燐率が維持されるのは、撹拌
力強化によって精錬剤と溶銑との十分な接触が図れるか
らである。
Note that even if the amount of solid oxygen refining agent (iron ore, etc.) added is small (but the bottom blowing gas flow rate is 0.07 N m/m1n- or more, the desired dephosphorization rate can be maintained due to the stirring power). This is because strengthening allows sufficient contact between the refining agent and the hot metal.

炉底から吹き込む撹拌ガスとしてはA r r  CO
z +Co、N2.O□、空気等の何れであっても良い
As the stirring gas blown from the bottom of the furnace, A r r CO
z +Co, N2. It may be either O□, air, or the like.

また、ここで言う「固体酸素精錬剤」とは鉄鉱石やスケ
ール等の酸化鉄を含む精錬剤(脱燐剤)を指す。そして
、追加の固体酸素精錬剤の添加時期を「脱燐吹錬の末期
」と定めたのは、通常の如く脱燐吹錬の中期に固体酸素
精錬剤を投入した場合には、スクラップ溶解の影響で脱
燐効果が十分に発揮されない恐れがあるためである。こ
れに対して吹錬末期に添加すると、“上置スラグ温度の
低下”や“吹錬末期のスラグ中酸素ポテンシャルの上昇
”等の効果によりP分配を好ましい状態に維持すること
ができるので十分な脱燐が完了する。
Furthermore, the term "solid oxygen refining agent" as used herein refers to a refining agent (dephosphorizing agent) containing iron oxide such as iron ore or scale. The reason why we decided to add the additional solid oxygen refining agent at the end of the dephosphorization blowing process is because if we add the solid oxygen refining agent in the middle of the dephosphorization blowing process as usual, it would be difficult to add the solid oxygen refining agent at the end of the dephosphorization blowing process. This is because there is a possibility that the dephosphorization effect will not be fully exerted due to the influence. On the other hand, if it is added at the final stage of blowing, the P distribution can be maintained in a favorable state due to the effects of ``lowering the temperature of the overlying slag'' and ``increasing the oxygen potential in the slag at the final stage of blowing''. Dephosphorization is complete.

なお、「脱燐吹錬の末期」とは「脱燐吹錬終了の3分前
から終了後(リンシング時)1分の間」を言い、この時
期での固体酸素精錬剤の投入は数回に分けた分段添加に
よるのが良い。
The "final stage of dephosphorization blowing" refers to the period from 3 minutes before the end of dephosphorization blowing to 1 minute after the end (during rinsing), and the solid oxygen refining agent is added several times during this period. It is best to add in stages.

第3図は、脱燐炉精錬における固体酸素精錬剤(鉄鉱石
)の投入時期と脱燐率の関係を示したグラフであるが、
この第3図からも前記投入時期を吹錬末期とすることに
よって溶銑の脱燐率が顕著に向上することが分かる。
Figure 3 is a graph showing the relationship between the timing of adding solid oxygen refining agent (iron ore) and the dephosphorization rate in dephosphorization furnace refining.
It can also be seen from FIG. 3 that the dephosphorization rate of hot metal is significantly improved by setting the charging timing to the final stage of blowing.

そして、第4図は固体酸素精錬剤(鉄鉱石)の投入量に
応じた脱燐率の変化傾向を示したグラフであるが、この
グラフも固体酸素精錬剤(鉄鉱石)投入により脱燐率が
向上することを明示している。
Figure 4 is a graph showing the change trend of the dephosphorization rate according to the amount of solid oxygen refining agent (iron ore) input. It has been clearly shown that the results are improved.

ところで、前記「上下両吹き機能を有した転炉形式の炉
」としては現在使われている「上下吹き複合吹錬転炉」
が最も好ましいが、特に脱燐炉については、精錬条件が
脱炭炉よりもマイルドであるため炉自体を更に小さくし
ても良いので、脱燐専用に新設してもコスト的にそれほ
どの影害はない。
By the way, the above-mentioned "converter type furnace with both top and bottom blowing functions" is the "top and bottom blowing combined blowing converter" currently in use.
However, especially for dephosphorization furnaces, the refining conditions are milder than for decarburization furnaces, so the furnace itself can be made even smaller, so even if a new one is built specifically for dephosphorization, there will be no significant impact in terms of cost. There isn't.

脱燐炉での精錬剤は脱炭炉で発生した転炉滓を主成分と
するものであるが、この転炉滓以外に前述した酸化鉄(
固体酸素精錬剤)が基本の副成分として使用され、また
蛍石の配合も好ましい。そして、例えば、 転炉滓:40〜80重量%。
The refining agent in the dephosphorization furnace is mainly composed of converter slag generated in the decarburization furnace, but in addition to this converter slag, the above-mentioned iron oxide (
A solid oxygen refining agent) is used as a basic subcomponent, and fluorite is also preferably included. For example, converter slag: 40 to 80% by weight.

酸化鉄=20〜60重量%。Iron oxide = 20-60% by weight.

蛍石二〇〜20重量% の如き配合組成としたものが推奨される。勿論これに限
定されるわけではないが、転炉滓を滓化して低融点の脱
燐スラグとしたり、脱燐が進行し易いようにスラグの酸
化力を高めるためには酸化鉄(固体酸素精錬剤)の併用
は極めて重要である。
A blending composition of 20 to 20% by weight of fluorite is recommended. Of course, it is not limited to this, but it is possible to convert converter slag into slag to produce dephosphorization slag with a low melting point, or to increase the oxidizing power of slag so that dephosphorization can proceed easily. The concomitant use of these drugs is extremely important.

もっとも、本発明においては、前述したように固体酸素
精錬剤(鉄鉱石やスケール等の酸化鉄含有量精錬剤)の
一部は脱燐吹錬の末期に投入する。
However, in the present invention, as described above, a part of the solid oxygen refining agent (iron oxide content refining agent such as iron ore and scale) is added at the final stage of dephosphorization blowing.

なお、脱燐炉での精錬剤としては、前記したものの他、
付加的に生石灰、ドロマイト或いは石灰石を配合しても
良いし、溶銑[Mn]向上のためにマンガン鉱石や鉄マ
ンガン鉱石を配合しても良い。
In addition to the above-mentioned refining agents in the dephosphorization furnace,
Additionally, quicklime, dolomite or limestone may be blended, and manganese ore or ferromanganese ore may be blended to improve the hot metal [Mn].

媒溶剤は蛍石が一般的であるが、Na、O・310g1
CallJz、 NazCo3等をそれぞれ単独に用い
ても良いし、これと蛍石とを併用しても良い。
Fluorite is commonly used as a solvent, but Na, O.310g1
CallJz, NazCo3, etc. may be used alone, or they may be used in combination with fluorite.

脱燐炉で使用される精錬剤の量は溶製する鋼の[P] 
レベルにより決定されるが、通常は30〜60kg/を
程度で良い。
The amount of refining agent used in the dephosphorization furnace is the [P] of the steel to be melted.
Although it is determined by the level, it is usually around 30 to 60 kg/.

ところで、脱燐炉で使用される精錬剤の主成分たる転炉
滓としては、脱炭炉で発生した溶融状態のものが熱経済
的にも脱燐フラックスの滓化性の面からも好ましいが(
このように溶融状態のものを用いる場合には耐火物を内
張すした鍋を介して脱燐炉に注性される)、取り扱いの
容易さ等を考慮して脱炭炉で得られたものを一旦冷却凝
固させ、これを粒状又は塊状に破砕してから用いても良
い。
By the way, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and slag formation of the dephosphorization flux. (
When using a molten substance like this, it is poured into a dephosphorization furnace through a pot lined with a refractory), and one obtained in a decarburization furnace in consideration of ease of handling. It may be used after being once cooled and solidified, and then crushed into granules or chunks.

ただ、この場合、脱燐炉での滓化性向上のために粒径は
小さい程良好であるが、転炉滓は本来滓化性に富んでい
ることもあって粒径が100mmを下回る程度でも格別
な不都合を来たすことがないし、これより大きくても使
用可能である。
However, in this case, the smaller the particle size is, the better in order to improve the ability to form slag in the dephosphorization furnace, but since converter slag is inherently highly slag-forming, the particle size is less than 100 mm. However, it does not cause any particular inconvenience, and it can be used even if it is larger than this.

使用される転炉滓は、タイミングとしては前回チャージ
のものが良いが、それ以前に脱炭炉から出したものや、
他の向上の脱炭炉で発生したものでも良いことは言うま
でもない。
The timing of the converter slag to be used is preferably one that was charged last time, but it is better to use one that has been taken out of the decarburization furnace before that.
Needless to say, it is also possible to use the material generated in other improved decarburization furnaces.

以上のような条件で脱燐処理を行うと、通常、20分以
内で“溶銑との比率で5.0%程度までのスクラップの
溶解”と“所望の脱燐或いは脱燐と脱硫”を完了するこ
とができる。
When dephosphorization is carried out under the above conditions, "dissolution of scrap to a ratio of about 5.0% to hot metal" and "desired dephosphorization or dephosphorization and desulfurization" are usually completed within 20 minutes. can do.

脱炭炉での吹錬は、基本的には通常の“炉外で脱燐・脱
硫された溶銑”を吹錬する場合と同じであり、このとき
、終点での溶鋼のMn含有量向上を目的として生石灰や
ドロマイトを中心とする造滓剤の他にマンガン鉱石や鉄
マンガン鉱石を添加することもできる。
Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized and desulfurized outside the furnace. For this purpose, manganese ore or ferromanganese ore can also be added in addition to slag-forming agents mainly composed of quicklime and dolomite.

ところで、第5図は、次に示すところの本発明に従った
好ましい製鋼工程例を図式化したものである。
By the way, FIG. 5 diagrammatically shows a preferred example of the steel manufacturing process according to the present invention, which will be described below.

第1工程:高炉出銑後の溶銑(脱硫溶銑又は未゛脱硫溶
銑の何れであっても良い)を 脱燐炉へ注銑する。
First step: Hot metal (either desulfurized hot metal or undesulfurized hot metal may be used) after being tapped from the blast furnace is poured into a dephosphorization furnace.

第2工程:脱燐剤として用いる転炉滓を装入すると共に
、スクラップを投入する。
2nd step: Charge the converter slag to be used as a dephosphorizing agent, and also charge the scrap.

第3工程:溶銑[Si]量と転炉滓量とを考慮し、所定
塩基度となるように媒溶剤を投 入して吹錬を行う。
Third step: Taking into consideration the amount of hot metal [Si] and the amount of converter slag, a solvent is introduced to achieve a predetermined basicity and blowing is performed.

第4工程:脱燐悪化防止の目的で、吹錬の末期(リンシ
ング時を含む)に鉄鉱石を公 役して温度調整を行う。
Fourth step: To prevent dephosphorization from worsening, temperature is adjusted by using iron ore at the end of blowing (including rinsing).

第5工程:脱燐炉から出湯した脱燐銑を脱炭炉に注銑し
、精錬を行う。
Fifth step: The dephosphorized pig iron discharged from the dephosphorization furnace is poured into the decarburization furnace and refined.

〈作用〉 上述のように、本発明は、上下両吹き機能を有した2基
の転炉形式の炉のうちの一方を脱燐炉、他方を脱炭炉と
して造滓剤の消費量少なく溶銑の精錬を行う際に、複合
吹錬炉の強撹拌を利用し、脱燐炉精錬において脱燐率に
悪影響を及ぼすことなくスクラップ原料の使用を可能と
したものである。
<Function> As described above, the present invention uses two converter-type furnaces with both upper and lower blowing functions, one of which is a dephosphorization furnace and the other a decarburization furnace, to reduce the consumption of slag forming agent and produce hot metal. When refining, the strong stirring of the composite blowing furnace is used to make it possible to use scrap raw materials in the dephosphorization furnace refining without adversely affecting the dephosphorization rate.

つまり、先にも触れたが、本発明における低温でのスク
ラップの溶解機構は第6図で説明される。
In other words, as mentioned above, the low-temperature scrap melting mechanism of the present invention is explained with reference to FIG.

即ち、溶銑中にスクラップが投入されると、第5図で示
すように、溶銑中[C]の拡散によりスクラップ(スチ
ール)の溶銑との界面部における炭素濃度が上昇し、該
部分の液相線温度が周囲の溶銑温度にまで下がった時点
で溶解が起こる。そして、この現象が進行して低温での
スクラップ溶解が完了する。実験によると、複合吹錬炉
では上記スクラップ溶解の速度は0.75mm/min
程度であり、寸法が幅:3ON以内で厚み:15wm以
内のスクラップであれば脱燐吹錬時間内で完全に溶解す
ることが確認されている。
That is, when scrap is put into hot metal, the carbon concentration at the interface between the scrap (steel) and the hot metal increases due to the diffusion of [C] in the hot metal, and the liquid phase at that part increases. Melting occurs when the wire temperature drops to the ambient hot metal temperature. This phenomenon progresses and scrap melting at low temperature is completed. According to experiments, the speed of scrap melting in the composite blowing furnace is 0.75 mm/min.
It has been confirmed that scrap with dimensions of width: 3ON or less and thickness: 15wm or less will be completely melted within the dephosphorization blowing time.

ただ、脱燐炉内にスクラップを投入して溶解する場合に
は、溶銑温度の低下防止の観点から脱燐剤(精錬剤)と
して投入する鉄鉱石(固体酸素)量を減少せざるを得す
、脱燐率の低下が懸念されたが、底吹きガス流量を十分
(0,07N m/m1n−を以上)にとって溶銑を強
撹拌することでスラグ−メタル間の接触頻度を強化すれ
ばそれほどの脱燐率の低下は起こらず、その上、この脱
燐率確保策に加えて吹錬末期に鉄鉱石(固体酸素)の公
役を行うと、上置スラグの温度が下がり、かつスラグ中
の酸素ポテンシャルが上昇することから脱燐率が更に向
上し、そのため、脱燐率を悪化させることなく溶銑にス
クラップを溶解させることが可能となったのである。
However, when scrap is fed into a dephosphorization furnace for melting, the amount of iron ore (solid oxygen) fed as a dephosphorizing agent (refining agent) must be reduced in order to prevent the hot metal temperature from dropping. There was a concern that the dephosphorization rate would decrease, but if the frequency of contact between slag and metal was increased by increasing the flow rate of bottom blowing gas (more than 0.07 N m/m1n-) and vigorously stirring the hot metal, this could be reduced. The dephosphorization rate does not decrease, and in addition to this measure to ensure the dephosphorization rate, if iron ore (solid oxygen) is used in the final stage of blowing, the temperature of the overlaid slag will decrease and the slag will increase. The increased oxygen potential further improved the dephosphorization rate, making it possible to dissolve scrap into hot metal without deteriorating the dephosphorization rate.

続いて、この発明を実施例により比較例と対比しながら
更に具体的に説明する。
Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples.

〈実施例〉 まず、第1表に示した範囲の成分組成を有する高炉溶銑
を“脱燐炉として使用する250トン上下両吹き複合吹
錬転炉“に注銑すると共に、3例を除いては第2表に示
される寸法のスクラップを投入し、第3表に示す条件で
脱燐吹錬を行った。
<Example> First, blast furnace hot metal having a composition within the range shown in Table 1 was poured into a "250 ton upper and lower double blowing combined blowing converter used as a dephosphorization furnace", and with the exception of three cases, Scrap with the dimensions shown in Table 2 was input and dephosphorization blowing was performed under the conditions shown in Table 3.

この吹錬結果を第3表に併せて示す。The results of this blowing are also shown in Table 3.

第3表に示された脱燐炉での吹錬結果からも明らかなよ
うに、本発明で規定する条件通りの吹錬を行ったもので
はスクラップの溶は残りを生じなかったことは勿論、脱
燐不良も生じ無かったのに対して、スクラップの寸法が
大きかったり、底吹きガス流量の少なかった“比較例”
では、スクラップの溶は残りや脱燐不良を生じることが
分かる。
As is clear from the blowing results in the dephosphorization furnace shown in Table 3, it goes without saying that when blowing was carried out under the conditions stipulated in the present invention, the scrap was not melted, leaving no residue. While there was no dephosphorization failure, the “comparative example” had large scrap size and low bottom blowing gas flow rate.
It can be seen that melting of scrap results in residue and poor dephosphorization.

そして、本発明で規定する通りに脱燐炉での精錬が終了
した前記溶銑を“脱炭炉として使用する250トン上下
両吹き複合吹錬転炉”に注銑し脱炭吹錬を行ったところ
、十分に満足できる低燐鋼を得ることができた。
Then, the hot metal that had been refined in the dephosphorization furnace as specified in the present invention was poured into a "250 ton upper and lower double blowing combined blowing converter used as a decarburization furnace" to perform decarburization blowing. However, we were able to obtain a sufficiently satisfactory low phosphorus steel.

この結果、本発明で規定する条件通りに溶銑の処理を行
うと、全製鋼工程で消費される生石灰量が極めて少なく
、しかもスクラップ添加の故に低燐鋼を溶銑率低く安定
溶製できることが確認された。
As a result, it was confirmed that when hot metal is treated according to the conditions specified in the present invention, the amount of quicklime consumed in the entire steelmaking process is extremely small, and because of the addition of scrap, low-phosphorus steel can be stably produced at a low hot metal rate. Ta.

〈効果の総括〉 以上に説明した如く、この発明によれば、造滓剤の消費
量や高炉銑の使用割合を少なくし、しかも脱燐不良を生
じることなく、高品質の鋼を低コストで能率良く溶製す
ることが可能となるなど、産業上極めて有用な効果がも
たらされる。
<Summary of Effects> As explained above, according to the present invention, high-quality steel can be produced at low cost by reducing the amount of slag-forming agent consumed and the proportion of blast furnace pig iron used, and without causing dephosphorization defects. This brings about extremely useful effects industrially, such as making it possible to perform melting efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明プロセスの概念図である。 第2図は、底吹きガス流量と脱燐率との関係を示したグ
ラフである。 第3図は、固体酸素精錬剤(鉄鉱石)の添加時期と脱燐
率の関係を示すグラフである。 第4図は、固体酸素精錬剤(鉄鉱石)の添加量に応じた
脱燐率変化傾向を示すグラフである。 第5図は、本発明に従った処理工程例の説明図である。 第6図は、スクラップの溶解機構を模式的に説明した図
面である。 第7図は、先に提案した製鋼法に係るプロセスの概念図
である。 図面において、 1・・・脱燐炉、    2・・・脱炭炉。 3・・・溶銑、     4・・・転炉滓。 4′・・・転炉滓を主成分とする脱燐スラグ。 5・・・撹拌ガス吹込みノズル。 6・・・ランス。
FIG. 1 is a conceptual diagram of the process of the present invention. FIG. 2 is a graph showing the relationship between the bottom blowing gas flow rate and the dephosphorization rate. FIG. 3 is a graph showing the relationship between the addition timing of the solid oxygen refining agent (iron ore) and the dephosphorization rate. FIG. 4 is a graph showing a change in dephosphorization rate depending on the amount of solid oxygen refining agent (iron ore) added. FIG. 5 is an explanatory diagram of an example of a processing step according to the present invention. FIG. 6 is a diagram schematically explaining the scrap melting mechanism. FIG. 7 is a conceptual diagram of the process related to the steel manufacturing method proposed earlier. In the drawings: 1... Dephosphorization furnace, 2... Decarburization furnace. 3... Hot metal, 4... Converter slag. 4'...Dephosphorization slag whose main component is converter slag. 5... Stirring gas blowing nozzle. 6... Lance.

Claims (1)

【特許請求の範囲】[Claims] 上下両吹き機能を有した2基の転炉形式の炉のうちの一
方を脱燐炉、他方を脱炭炉として溶銑の精錬を行う製鋼
方法であって、溶銑を前記脱燐炉内へ注入した後、これ
に前記脱炭炉で発生した転炉滓を主成分とする精錬剤と
幅が30mm以下で厚さが、15mm以下の軽量スクラ
ップとを添加し、吹込みガス流量:0.07Nm^2/
min・tを以上で底吹きガス撹拌を行いつつ酸素ガス
を上吹きして溶銑温度を1400℃以下に保ちながら吹
錬を行い、この吹錬の末期に固体酸素精錬剤を添加する
溶銑脱燐工程と、得られた脱燐溶銑を脱炭炉にて精錬す
る工程とを含んで成ることを特徴とする製鋼法。
A steelmaking method in which hot metal is refined by using one of two converter type furnaces with upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, and the hot metal is injected into the dephosphorization furnace. After that, a refining agent mainly composed of converter slag generated in the decarburization furnace and lightweight scrap with a width of 30 mm or less and a thickness of 15 mm or less were added, and the blowing gas flow rate was 0.07 Nm. ^2/
Hot metal dephosphorization is performed by blowing while keeping the hot metal temperature below 1400℃ by top blowing oxygen gas while bottom blowing gas stirring is performed at min・t or more, and adding a solid oxygen refining agent at the end of this blowing. and a step of refining the obtained dephosphorized hot metal in a decarburization furnace.
JP62304446A 1987-12-03 1987-12-03 Steelmaking method Granted JPH01147011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304446A JPH01147011A (en) 1987-12-03 1987-12-03 Steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304446A JPH01147011A (en) 1987-12-03 1987-12-03 Steelmaking method

Publications (2)

Publication Number Publication Date
JPH01147011A true JPH01147011A (en) 1989-06-08
JPH0437135B2 JPH0437135B2 (en) 1992-06-18

Family

ID=17933108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304446A Granted JPH01147011A (en) 1987-12-03 1987-12-03 Steelmaking method

Country Status (1)

Country Link
JP (1) JPH01147011A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039766A (en) * 2005-08-04 2007-02-15 Kobe Steel Ltd Method for operating converter equipment
JP2007270238A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Method for applying dephosphorize-treatment to molten iron
JP2012031452A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp Method of dephosphorizing hot metal
JP2013047371A (en) * 2011-07-27 2013-03-07 Jfe Steel Corp Method for refining molten iron
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039766A (en) * 2005-08-04 2007-02-15 Kobe Steel Ltd Method for operating converter equipment
JP2007270238A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Method for applying dephosphorize-treatment to molten iron
JP2012031452A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp Method of dephosphorizing hot metal
JP2013047371A (en) * 2011-07-27 2013-03-07 Jfe Steel Corp Method for refining molten iron
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method

Also Published As

Publication number Publication date
JPH0437135B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JPH0437132B2 (en)
JPH0959709A (en) Method for dephosphorizing molten iron
JPH01147011A (en) Steelmaking method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPS63195211A (en) Production of low phosphorus and low carbon steel with little mn loss
JP3194212B2 (en) Converter steelmaking method
JP2587286B2 (en) Steelmaking method
JPS62290815A (en) Steel making method
JP3218629B2 (en) Hot metal dephosphorization method
JPS6393813A (en) Steel making method
JPS6247417A (en) Melt refining method for scrap
JP2004010935A (en) Method for manufacturing molten steel
JPH01147012A (en) Steelmaking method
JP2755027B2 (en) Steelmaking method
JP2856103B2 (en) Hot metal dephosphorization method
JPH0641608B2 (en) Two-stage countercurrent refining steelmaking process using compound converter
US3254987A (en) Method of operating an iron-refining basic converter and for refining iron into steel
JPH0841519A (en) Steelmaking method
JPH01142009A (en) Steel making method
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH032312A (en) Production of low-phosphorus pig iron
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JP2000328121A (en) Dephosphorization method of molten iron
JPH0437133B2 (en)
JPH03122209A (en) Two step counterflow refined steelmaking method using duplex converters

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 16