JP2004307941A - Method for dephosphorizing molten iron using converter-type vessel - Google Patents

Method for dephosphorizing molten iron using converter-type vessel Download PDF

Info

Publication number
JP2004307941A
JP2004307941A JP2003103562A JP2003103562A JP2004307941A JP 2004307941 A JP2004307941 A JP 2004307941A JP 2003103562 A JP2003103562 A JP 2003103562A JP 2003103562 A JP2003103562 A JP 2003103562A JP 2004307941 A JP2004307941 A JP 2004307941A
Authority
JP
Japan
Prior art keywords
slag
dephosphorization
cao
converter
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003103562A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003103562A priority Critical patent/JP2004307941A/en
Publication of JP2004307941A publication Critical patent/JP2004307941A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for dephosphorizing molten iron using a converter type vessel with which after performing desiliconizing treatment to the molten iron, successively, while promoting slag-making of the slag by using the converter-type vessel, the dephosphorization of the molten iron is effectively performed. <P>SOLUTION: In the case of performing the siliconizing and the dephosphorizing treatments to the molten iron tapped from a blast furnace by using the converter type vessel, when the desiliconizing treatment performing before dephosphorizing, is completed, while making the slag composition to 20-70% T.Fe and to in the range of 0.3-1.3 the ratio of CaO/SiO<SB>2</SB>, and at the dephosphorizing time, CaO is continuously charged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、転炉型の容器を用いて脱珪、脱燐処理を行なう際に、脱燐時のスラグの滓化を促進することにより、溶銑の脱燐を効率良く行なう転炉型容器を用いた溶銑の脱燐方法に関するものである。
【0002】
【従来の技術】
従来、高炉から出銑された溶銑は、溶銑鍋やトピードカーなどでの事前予備処理や製鋼工程に搬送して混合攪拌性の優れた転炉型の容器を用いて溶銑の脱珪処理、脱燐処理などの溶銑予備処理を行なうことが施されている。この溶銑予備処理には、トピードカーや鍋における吹酸と、生石灰や酸化鉄などを添加したり、インジェクション(吹き込み)により溶銑中の珪素、燐、硫黄などを除去し、排滓してから転炉装入後に吹酸脱炭精錬するか、あるいは転炉などの精錬炉に装入してから生石灰等のフラックスの添加と、吹酸による脱珪、脱燐を行なった後に、脱炭精錬することが行われている。
【0003】
しかし、従来のLD型溶銑の予備処理では、初期に一括添加するため、初期の塩基度が高くなり添加したフラックスの滓化が不十分であり、形成されたスラグの脱燐効率が悪くなり、到達燐濃度が高くなって、脱炭精錬炉での脱燐の負荷の増加や生石灰などの副原料の使用量が増大する。特開昭55−41933号公報(特許文献1)に記載されるように、転炉などの脱炭精錬時に発生した酸化鉄、脱炭スラグを冷却、破砕したものを溶銑中のSi濃度に応じて、溶銑トン当たり25〜100Kgを添加して脱珪処理し、さらに、スラグ中に含まれる酸化鉄で溶銑中の燐を酸化して脱燐することが提案されている。また、特開2001−131624号公報(特許文献2)に記載されるように、転炉の脱炭滓(脱炭スラグ)を排出する際に、酸素を吹き付けるか、あるいは溶融状態で酸化鉄を添加することにより、脱炭滓の酸素ポテンシャルを高くし、かつ融点を低下させてから冷却、破砕して3mm以下の粒子を吹き込むことが提案されている。
【0004】
【引用文献】
(1)特許文献1(特開昭55−41933号公報)
(2)特許文献2(特開2001−131624号公報)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された方法では、精錬時に転炉容器内に形成されるスラグ量が増加し、わずかなフォーミングでもスロッピングが発生して操業の支障となる。さらに、特許文献2に記載された方法では、脱炭滓の塩基度が高いため融点を十分に低下することができず、脱燐反応を高めることができず、処理時間の延長、到達燐濃度が高くなり、転炉などでの脱燐負荷が増加するなどの問題がある。さらに、初期に一括して添加するため、初期のスラグ塩基度が高くなり、滓化に支障を生じたり、脱燐効率が長くなる。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、本発明は、脱珪処理終了時点のスラグ中のT・Fe、塩基度を所定範囲の低塩基度の脱珪スラグにし、かつ脱珪処理後に連続的に生石灰を添加することにより、脱燐処理段階での脱燐を促進させることができる。さらに、脱珪処理後のスラグ組成を前記した条件に制御し、低塩基度の脱珪スラグに、生石灰などを連続して添加することにより、添加した生石灰の溶解が促進され、滓化したスラグに、さらに連続的に生石灰を添加することになるので、生石灰などの添加フラックスを迅速に溶解して、脱燐能の高いスラグを生成した後に脱燐の末期に、燐酸化物(P)と全率固溶体(P・2CaO・SiO)を組成し得るダイカルシウムシリケート(2CaO・SiO:以下、2CSと称す)固相を析出させることにより、脱燐能を格段に向上させることができる転炉型容器を用いた溶銑の脱燐方法を提供する。
【0007】
その発明の要旨とするところは、
(1)高炉より出銑された溶銑を転炉型容器を用いて脱珪および脱燐処理を行うに際し、脱燐前に行う脱珪処理終了時のスラグ組成をT・Fe:20〜70%とし、かつCaO/SiO比:0.3〜1.3の範囲とした上で、脱燐処理時には連続的にCaOを投入することを特徴とする転炉型容器を用いた溶銑の脱燐方法。
(2)前記(1)に記載された転炉型容器を用いた溶銑の脱燐方法において、脱燐処理時のスラグ組成をT・Fe:5〜15%、かつCaO/SiO比:1.7〜3.0の範囲とすることを特徴とする転炉型容器を用いた溶銑の脱燐方法。
(3)前記(1)または(2)に記載された転炉型容器を用いた溶銑の脱燐方法において、使用するCaO粒径が0.1〜5mmであることを特徴とする転炉型容器を用いた溶銑の脱燐方法である。
【0008】
以下、本発明について詳細に説明する。
図1は、本発明に係る溶銑予備処理に用いた転炉型容器の一例を示す全体概念図である。この図に示すように、上底吹き転炉1は炉体9の底部に設けられた底吹きノズル2と上方から炉体9に装入された上吹きランス5とを有し、さらに生石灰等の脱燐フラックスを貯蔵するフラックスホーパー6、および酸化鉄やミルスケール等の固体酸化剤を貯蔵する貯蔵ホッパー7と、これらフラックスホーパー6および貯蔵ホッパー7から切り出された材料を炉体9内の溶銑10の上部に形成されるスラグ8に添加するシュート11と出鋼口3を備えている。なお、符号4は炉口を示す。
【0009】
上述したように、高炉より出銑された溶銑を転炉型容器に受け、この溶銑にフラックスの添加と吹酸を行なって、予め溶銑中の脱珪処理を行うに際し、本発明者らは脱燐反応を促進させるためにはスラグの滓化が重要であることを見出し、この滓化促進を図るためには、特に初期滓化の改善が必須であり、初期滓化を改善するためには、少量スラグの低融点組成コントロールが有効であり、脱珪、脱燐処理を同時に行う転炉型溶銑予備処理方法においては、脱珪処理終了時におけるスラグ量を極力少量化し、組成コントロールを行うことが極めて重要である。このように脱珪処理時スラグの少量化と低塩基度化により、少量の流動性を有するスラグを形成させることによって、スラグ浴自体の伝熱および攪拌が促進され、極めて短時間でのスラグ滓化が可能となるものである。
【0010】
その具体的手段としては、脱珪処理終了時のスラグ組成をT・Fe(%T・Feであり、スラグ中の酸化鉄中の鉄分を表わす):20〜70%とし、かつCaO/SiO比を0.3〜1.3の組成範囲に制御する。すなわち、事前添加するCaO量を溶銑〔Si〕に応じて調整添加することにより、脱珪期のスラグ量を少量化し、スラグ浴攪拌およびスラグへの伝熱を促進させる。併せて、T・Fe濃度を適正範囲化することで、その後の脱燐処理に必要なスラグの酸素ポテンシャルを確保するものである。
【0011】
脱珪処理終了時のスラグ組成をT・Fe:20〜70%とした理由は、T・Fe:20未満では、脱珪処理後に引き続いて行う脱燐処理時の酸素ポテンシャル不足に起因して、脱燐効率の悪化を招く。また、T・Fe:70を超えると、滓化自体は促進されるものの、脱炭反応も随伴して促進され、スロッピング等の操業性悪化が問題となる。従って、その範囲を20〜70%とした。さらに、CaO/SiO比が0.3未満の場合は、スラグ滓化は促進されるものの、スロッピング等の操業性悪化の問題や転炉耐火物溶損増大の問題が発生する。また、CaO/SiO比が1.3を超えると場合は、脱珪期そのものの滓化が悪くなるため、脱燐期の滓化改善が達成されず、結果として脱燐効果の悪化を招くことになる。従って、その範囲を0.3〜1.3とした。
【0012】
また、脱燐末期においては、マトリックススラグへのCaOの早期溶解(滓化促進)および末期送酸速度低下などの操業制御によってスラグ組成を、T・Fe:5〜15%、CaO/SiO比を1.7〜3.0の領域に制御することが重要である。脱燐末期にはダイカルシウムシリケート(2CaO・SiO;2CS)固相を析出させることにより、2CS固相へのPの取り込みによりスラグの脱燐能力が飛躍的に向上し得ることを知見した。このPを多量に取り込んだ2CS固相を析出させるには、CaO−SiO−FeO系3元状態図上において低融点域から2CS析出領域への組成コントロールが有効である。
【0013】
図2は、CaO−SiO−FeO系3元状態図の模式図を示す。この図に示すように、CaO投入処理中のスラグ組成の推移を示すもので、CaO連投化により、処理の前半は低融点領域を推移させ、最終的に2CS析出領域に到達させることでP分配比Lp{(%P)/〔%P〕}を高くすることが可能となることを表している。なお、P分配比Lpでの(%P)は溶銑中の燐含有量、〔%P〕はスラグ中の燐含有量を示す。
【0014】
脱燐処理末期のスラグ組成のT・Feが5%未満では、スラグの固化が顕著となり、排滓性の悪化などによる次チャージの汚染が問題となる。また、15%を超えると2CS析出量の減少による脱燐効率の悪化が問題となる。さらに、CaO/SiO比を1.7未満の場合は、2CS析出域への制御が不十分となり、2CS量の減少による脱燐効率の悪化が問題となる。また、3.0を超える場合は、CaO原単位の増加による精錬コスト増、およびスラグ量自体の増大に伴うスラグ処理コスト増加などによる経済性悪化が問題となることから、その範囲を1.7〜3.0とした。
【0015】
溶銑の脱燐方法において、使用するCaO粒径としては、0.1〜5mmの粒径が好ましい。粒径が0.1mm未満では、飛散による歩留低下によって、所定のスラグ組成をコントロールすることが困難である。また、5mmを超える粒径の場合はマトリックススラグへのCaO溶解遅れ減少の発生により、脱燐期のスラグ滓化悪化による脱燐効率が悪化することから、その範囲を0.1〜5mmとした。
【0016】
【発明の実施の形態】
図3は、CaOの連続投入と一括投入の場合の処理時間と燐の経時変化との関係を示す図である。この図に示すように、本発明に係る脱珪処理終了後でのCaOの連続添加投入の場合は、脱珪処理前にCaOを一括添加投入した場合に比較して到達燐の低位化が図れていることが分かる。また、本発明に係る脱珪処理終了後でのCaOの連続添加投入の場合は、CaOを一括添加投入した場合に比較して処理終了時での燐分配比Lp{(%P)/〔%P〕}は処理時間に伴い到達燐の高位化が図れていることが分る。
【0017】
【実施例】
以下、本発明について実施例によって具体的に説明する。
図1に示す上底吹き転炉を用いて、高炉から出銑されたC:4.5%、Si:0.35%、P:0.10%の溶銑を上底吹き転炉に注入し、生石灰とその他ダストなどの酸化剤を添加し、炉底に設けた底吹羽口から攪拌用ガスの吹き込みを行うことにより溶銑攪拌を行い脱珪を行う。その後脱燐フラックスとして、混練ダスト等の酸化鉄(FeO)、CaOを使用して、上底吹きランスより吹酸を行なって脱燐処理を行った。そのときのスラグの脱Si終了時のT・Fe%、および塩基度(CaO/SiO)、CaO投入方法、脱P時のT・Fe%、および塩基度(CaO/SiO)、CaO粒径、最終終了時のP含有量、スロッピング発生状況ならびに排滓性について調査した結果を表1に示す。
【0018】
【表1】

Figure 2004307941
【0019】
表1に示すように、No.1〜12は本発明例であり、No.13〜24は比較例である。比較例No.13は脱Si終了時のスラグのT・Fe%が低いために、最終終了時のP含有量は目標値より高い値を示している。比較例No.14は脱Si終了時のスラグのT・Fe%が高いために、スロッピングの発生が見られた。比較例No.15はスラグの脱Si終了時の塩基度(CaO/SiO)が低いために、スロッピングの発生が見られた。比較例No.16はスラグの脱Si終了時の塩最終終了時が高いために、最終終了時のP含有量は目標値より高い値を示している。比較例No.17はCaO投入方法が初期一括投入のために、最終終了時のP含有量が高い。比較例No.18は脱P時のT・Fe%が低いために、排滓性が悪い。
【0020】
比較例No.19は脱P時のT・Fe%が高いために、スロッピングの発生が見られた。比較例No.20は脱P時の塩基度(CaO/SiO)が低いために、スロッピングの発生が見られた。比較例No.21は脱P時の塩基度(CaO/SiO)が高いために、排滓性が悪い。比較例No.22はCaO粒径が小さいために、最終終了時のP含有量が高い。比較例No.23はCaO粒径が大きいために、No.22と同様に最終終了時のP含有量が高い。比較例No.24は従来法であり、スラグの脱Si終了時の塩基度(CaO/SiO)が高く、CaO投入方法が初期一括投入であり、かつCaO粒径が大きいために、最終終了時のP含有量が高い。これに対し、本発明例であるNo.1〜12はいずれの特性も優れていることが判る。
【0021】
【発明の効果】
以上述べたように、本発明による脱珪処理終了時点のスラグ中のT・Fe、塩基度を所定範囲の低塩基度の脱珪スラグにし、かつ脱珪処理終了時に形成されるスラグ量を極少化することにより、連続的に添加した生石灰などの脱燐用のフラックスの溶融(滓化)を促進し、脱燐反応を高めることができる。さらに、脱燐処理過程のスラグ組成を前記した条件に制御し、脱燐の末期に、ダイカルシウムシリケート(2CaO・SiO)固相に燐酸化物(P)を取り込むことにより、脱燐能を格段に向上させることができる。また、低塩基度の脱珪スラグに、生石灰などを連続して添加することにより、添加した生石灰の溶解が促進され、滓化したスラグに、さらに連続的に生石灰を添加することになるので、生石灰などの添加フラックスを迅速に溶解して、脱燐能の高いスラグを生成することができる極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る溶銑予備処理に用いた転炉型容器の一例を示す全体概念図、
【図2】CaO−SiO−FeO系3元状態図の模式図、
【図3】CaOの連続投入と一括投入の場合の処理時間と燐の経時変化との関係を示す図である。
【符号の説明】
1 上底吹き転炉
2 底吹きノズル
3 出鋼口
4 炉口
5 上吹きランス
6 フラックスホーパー
7 貯蔵ホッパー
8 スラグ
9 炉体
10 溶銑
11 シュート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a converter-type container that efficiently dephosphorizes hot metal by promoting slagification of slag at the time of dephosphorization when performing desiliconization and dephosphorization using a converter-type container. The present invention relates to a method for dephosphorizing hot metal used.
[0002]
[Prior art]
Conventionally, hot metal that has been tapped from a blast furnace is subjected to pre-treatment in a hot metal ladle or a topped car, or transported to a steelmaking process, where it is desiliconized and dephosphorized using a converter-type vessel with excellent mixing and stirring properties. Hot metal pretreatment such as treatment is performed. In this hot metal pretreatment, the acid acid in topped cars and pots, and quick lime and iron oxide are added, and silicon (phosphorus, sulfur, etc.) in the hot metal is removed by injection (injection), and the waste is discharged. Blown acid decarburization refining after charging, or after adding to a refining furnace such as a converter and then adding flux such as quicklime and desiliconizing and dephosphorizing with blowing acid, then decarburizing refining Has been done.
[0003]
However, in the conventional LD hot metal pretreatment, the initial basicity is increased and the added flux is insufficiently slag because of the batch addition at the initial stage, and the dephosphorization efficiency of the formed slag deteriorates, As the ultimate phosphorus concentration increases, the load of dephosphorization in the decarburization smelting furnace increases, and the amount of auxiliary materials used such as quicklime increases. As described in JP-A-55-41933 (Patent Literature 1), iron oxide and decarburized slag generated during decarburization refining in a converter and the like are cooled and crushed according to the Si concentration in the hot metal. In addition, it has been proposed to add 25 to 100 kg per ton of hot metal for desiliconization, and to oxidize phosphorus in hot metal with iron oxide contained in slag to remove phosphorus. Further, as described in Japanese Patent Application Laid-Open No. 2001-131624 (Patent Document 2), when decarburized slag (decarburized slag) of a converter is discharged, oxygen is blown or iron oxide is melted in a molten state. It has been proposed to increase the oxygen potential of the decarburized slag and lower the melting point by adding it, and then cool and crush to blow particles of 3 mm or less.
[0004]
[References]
(1) Patent Document 1 (JP-A-55-41933)
(2) Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-131624)
[0005]
[Problems to be solved by the invention]
However, in the method described in Patent Literature 1, the amount of slag formed in the converter vessel at the time of refining increases, and even a small amount of forming causes slopping, which hinders operation. Further, in the method described in Patent Document 2, the melting point cannot be sufficiently reduced due to the high basicity of the decarburized slag, the dephosphorization reaction cannot be increased, the treatment time is prolonged, and the ultimate phosphorus concentration is increased. And there is a problem that the dephosphorization load in a converter etc. increases. Furthermore, since they are added all at once in the initial stage, the basicity of the slag at the initial stage is increased, which may hinder slag formation and increase the dephosphorization efficiency.
[0006]
[Means for Solving the Problems]
As a result of the inventors' intensive development to solve the above-described problems, the present invention has found that T.Fe and basicity in the slag at the end of the desiliconization treatment have a low basicity within a predetermined range. The dephosphorization in the dephosphorization step can be promoted by converting the silicon slag into the slag and continuously adding quicklime after the desiliconization treatment. Furthermore, by controlling the slag composition after the desiliconization treatment to the above-described conditions, and by continuously adding quicklime to the low-basic desiliconized slag, the dissolution of the added quicklime is promoted, and the slag that has become slag In addition, since quick lime is further continuously added, the added flux such as quick lime is rapidly dissolved to produce a slag having a high dephosphorizing ability, and then, at the final stage of dephosphorization, a phosphoric acid (P 2 O 5) is added. ) And a solid phase of dicalcium silicate (2CaO / SiO 2 : hereinafter referred to as 2CS) which can form a solid solution (P 2 O 5 .2CaO.SiO 2 ), thereby greatly improving the dephosphorization ability. Provided is a method for dephosphorizing hot metal using a converter-type vessel that can be made to perform a dephosphorization.
[0007]
The gist of the invention is that
(1) When the hot metal discharged from the blast furnace is subjected to desiliconization and dephosphorization using a converter-type vessel, the slag composition at the end of the desiliconization performed before dephosphorization is T.Fe: 20 to 70%. And a CaO / SiO 2 ratio of 0.3 to 1.3, and continuously introducing CaO during the dephosphorization treatment. Dephosphorization of hot metal using a converter type vessel. Method.
(2) In the method for dephosphorizing hot metal using the converter type container described in the above (1), the slag composition at the time of the dephosphorization treatment is T.Fe: 5 to 15%, and the CaO / SiO 2 ratio: 1 A method for dephosphorizing hot metal using a converter-type container, wherein the range is from 0.7 to 3.0.
(3) In the method for dephosphorizing hot metal using the converter type container described in (1) or (2) above, the converter type wherein the CaO particle size used is 0.1 to 5 mm. This is a method for dephosphorizing hot metal using a container.
[0008]
Hereinafter, the present invention will be described in detail.
FIG. 1 is an overall conceptual diagram showing an example of a converter type vessel used for hot metal pretreatment according to the present invention. As shown in this figure, the top-bottom-blowing converter 1 has a bottom-blowing nozzle 2 provided at the bottom of the furnace body 9 and a top-blowing lance 5 inserted into the furnace body 9 from above. And a storage hopper 7 for storing a solid oxidant such as iron oxide and mill scale, and a material cut out of the flux hopper 6 and the storage hopper 7 is placed in a furnace body 9. A chute 11 and a tapping port 3 to be added to a slag 8 formed above the hot metal 10 are provided. Reference numeral 4 indicates a furnace port.
[0009]
As described above, the present inventors receive molten iron from a blast furnace in a converter type vessel, add flux to the molten iron and perform blowing acid, and perform a desiliconization treatment in the molten iron in advance. In order to promote the phosphorus reaction, it was found that slag slagging is important, and in order to promote this slagging, it is particularly necessary to improve the initial slagging, and to improve the initial slagging, It is effective to control the low melting point composition of a small amount of slag, and in the converter type hot metal pretreatment method in which desiliconization and dephosphorization are performed simultaneously, the amount of slag at the end of the desiliconization treatment should be minimized to control the composition. Is extremely important. As described above, by reducing the amount of slag and reducing the basicity of the slag during the desiliconization treatment, the slag having a small amount of fluidity is formed, thereby promoting the heat transfer and stirring of the slag bath itself. It becomes possible.
[0010]
As a specific means, the slag composition at the end of the desiliconization treatment is set to T.Fe (% T.Fe, which represents iron in iron oxide in slag): 20 to 70%, and CaO / SiO 2 The ratio is controlled in the composition range of 0.3 to 1.3. That is, the amount of CaO to be added in advance is adjusted and added according to the hot metal [Si], so that the amount of slag in the desiliconization period is reduced, and slag bath stirring and heat transfer to the slag are promoted. At the same time, by adjusting the T.Fe concentration to an appropriate range, the oxygen potential of the slag necessary for the subsequent dephosphorization treatment is secured.
[0011]
The reason for setting the slag composition at the end of the desiliconization treatment to be T.Fe: 20 to 70% is that if the slag composition is less than T.Fe: 20, the oxygen potential is insufficient during the dephosphorization treatment performed after the desiliconization treatment. This leads to a decrease in dephosphorization efficiency. When T.Fe exceeds 70, slagging itself is promoted, but decarburization reaction is also promoted and operability deterioration such as slopping becomes a problem. Therefore, the range is set to 20 to 70%. Further, when the CaO / SiO 2 ratio is less than 0.3, slag formation is promoted, but problems such as deterioration of operability such as slopping and increase in erosion loss of converter refractories occur. On the other hand, if the CaO / SiO 2 ratio exceeds 1.3, the formation of slag during the desiliconization period itself is deteriorated, so that the improvement of slag formation during the dephosphorization period is not achieved, and as a result, the dephosphorization effect is deteriorated. Will be. Therefore, the range was set to 0.3 to 1.3.
[0012]
In the final stage of dephosphorization, the slag composition is controlled by controlling the operation such as early dissolution of CaO in the matrix slag (promoting slagging) and lowering of the acid supply rate in the final stage, so that T.Fe: 5 to 15%, CaO / SiO 2 ratio It is important to control in the range of 1.7 to 3.0. By depositing a dicalcium silicate (2CaO.SiO 2 ; 2CS) solid phase at the end of dephosphorization, the dephosphorization ability of slag can be significantly improved by incorporating P 2 O 5 into the 2CS solid phase. I learned. To deposit the P 2 O 5 the large amount of captured 2CS solid phase, the composition control of the CaO-SiO 2 -FeO-based ternary phase diagram of a low-melting zone to the 2CS precipitation region is valid.
[0013]
FIG. 2 shows a schematic diagram of a CaO—SiO 2 —FeO ternary phase diagram. As shown in this figure, the transition of the slag composition during the CaO injection treatment is shown. By the continuous injection of CaO, the low melting point region is shifted in the first half of the treatment and finally reaches the 2CS precipitation region, whereby the P distribution is achieved. This indicates that the ratio Lp {(% P) / [% P]} can be increased. In the P distribution ratio Lp, (% P) indicates the phosphorus content in the hot metal, and [% P] indicates the phosphorus content in the slag.
[0014]
If T.Fe of the slag composition at the end of the dephosphorization treatment is less than 5%, solidification of the slag becomes remarkable, and contamination of the next charge due to deterioration of the waste property becomes a problem. On the other hand, if it exceeds 15%, there is a problem that the phosphorus removal efficiency is deteriorated due to a decrease in the 2CS precipitation amount. Further, when the CaO / SiO 2 ratio is less than 1.7, the control of the 2CS precipitation region becomes insufficient, and the decrease in the 2CS amount causes a problem of the dephosphorization efficiency. If it exceeds 3.0, the refining cost increases due to an increase in the basic unit of CaO, and the economic efficiency deteriorates due to an increase in the slag processing cost due to an increase in the amount of slag itself. To 3.0.
[0015]
In the method for dephosphorizing hot metal, the particle size of CaO used is preferably from 0.1 to 5 mm. If the particle size is less than 0.1 mm, it is difficult to control a predetermined slag composition due to a decrease in yield due to scattering. When the particle size exceeds 5 mm, the CaO dissolution delay in the matrix slag decreases, and the dephosphorization efficiency deteriorates due to the deterioration of slag slag in the dephosphorization period. Therefore, the range is set to 0.1 to 5 mm. .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is a diagram showing the relationship between the processing time and the change over time of phosphorus in the case of continuous charging and batch charging of CaO. As shown in this figure, in the case of the continuous addition of CaO after the end of the desiliconization treatment according to the present invention, it is possible to achieve a lower level of the reached phosphorus than in the case of adding CaO all at once before the desiliconization treatment. You can see that. In addition, in the case of continuous addition of CaO after completion of the desiliconization treatment according to the present invention, the phosphorus distribution ratio Lp {(% P) / [% P]} shows that the level of the reached phosphorus can be increased with the processing time.
[0017]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
Using the top and bottom blown converter shown in FIG. 1, molten iron of C: 4.5%, Si: 0.35%, and P: 0.10% was poured from the blast furnace into the top and bottom blown converter. Then, an oxidizing agent such as quicklime and other dust is added, and a hot gas is stirred by blowing a stirring gas from a bottom blowing tuyere provided at the furnace bottom to perform desiliconization. Thereafter, iron oxide (FeO) such as kneaded dust or CaO was used as a dephosphorization flux, and dephosphorization treatment was performed by blowing acid from an upper and lower blowing lance. T · Fe% and basicity (CaO / SiO 2 ) at the end of slag removal of Si at that time, CaO charging method, T · Fe% and basicity (CaO / SiO 2 ) at removal of P, CaO particles Table 1 shows the results obtained by examining the diameter, the P content at the end of the final step, the state of occurrence of slopping, and the waste property.
[0018]
[Table 1]
Figure 2004307941
[0019]
As shown in Table 1, Nos. 1 to 12 are examples of the present invention. 13 to 24 are comparative examples. Comparative Example No. Sample No. 13 shows that the P content at the final end is higher than the target value because the slag T / Fe% at the end of the removal of Si is low. Comparative Example No. In No. 14, since the slag at the end of the removal of Si had a high T.Fe%, generation of slag was observed. Comparative Example No. In No. 15, since the basicity (CaO / SiO 2 ) at the end of slag removal from Si was low, occurrence of slopping was observed. Comparative Example No. No. 16 shows that the P content at the final end is higher than the target value because the final end of the salt at the end of the slag removal from Si is high. Comparative Example No. No. 17 has a high P content at the final end because the CaO charging method is the initial batch charging. Comparative Example No. Sample No. 18 has poor waste properties because the T.Fe% at the time of removal of P is low.
[0020]
Comparative Example No. In No. 19, the occurrence of slopping was observed due to a high T.Fe% at the time of removing P. Comparative Example No. In No. 20, since the basicity (CaO / SiO 2 ) at the time of removing P was low, occurrence of slopping was observed. Comparative Example No. 21 has a high basicity (CaO / SiO 2 ) at the time of removal of P, so that the waste property is poor. Comparative Example No. No. 22 has a high P content at the end of the final stage because the CaO particle size is small. Comparative Example No. No. 23 has a large CaO particle size. As in the case of No. 22, the P content at the final end is high. Comparative Example No. No. 24 is a conventional method, which has a high basicity (CaO / SiO 2 ) at the end of de-Si removal of slag, the initial batch injection of the CaO injection method, and a large CaO particle size. The amount is high. On the other hand, No. 1 of the present invention example. It can be seen that 1 to 12 are all excellent.
[0021]
【The invention's effect】
As described above, T / Fe and slag in the slag at the end of the desiliconization treatment according to the present invention are reduced to a low-basicity desiliconization slag within a predetermined range, and the amount of slag formed at the end of the desiliconization treatment is extremely small. Thus, the melting (slagification) of the dephosphorizing flux such as quicklime added continuously can be promoted, and the dephosphorization reaction can be enhanced. Further, by controlling the slag composition in the dephosphorization process to the above-described conditions, and incorporating phosphorus oxide (P 2 O 5 ) into the dicalcium silicate (2CaO · SiO 2 ) solid phase at the end of the dephosphorization, the dephosphorization is performed. Performance can be significantly improved. In addition, the dissolution of the added quicklime is promoted by continuously adding quicklime to the low basicity desiliconized slag, and the quicklime is further continuously added to the slag slag. This is an extremely excellent effect of rapidly dissolving the added flux such as quicklime and producing slag having a high dephosphorization ability.
[Brief description of the drawings]
FIG. 1 is an overall conceptual diagram showing an example of a converter type vessel used for hot metal pretreatment according to the present invention,
FIG. 2 is a schematic diagram of a ternary phase diagram of a CaO—SiO 2 —FeO system;
FIG. 3 is a diagram showing the relationship between the processing time and the change over time of phosphorus in the case of continuous charging and batch charging of CaO.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top-bottom blow converter 2 Bottom-blowing nozzle 3 Tapping port 4 Furnace port 5 Top-blowing lance 6 Flux hopper 7 Storage hopper 8 Slag 9 Furnace body 10 Hot metal 11 Chute

Claims (3)

高炉より出銑された溶銑を転炉型容器を用いて脱珪および脱燐処理を行うに際し、脱燐前に行う脱珪処理終了時のスラグ組成をT・Fe:20〜70%とし、かつCaO/SiO比:0.3〜1.3の範囲とした上で、脱燐処理時には連続的にCaOを投入することを特徴とする転炉型容器を用いた溶銑の脱燐方法。When performing desiliconization and dephosphorization treatment of molten iron from a blast furnace using a converter type vessel, the slag composition at the end of the desiliconization treatment performed before dephosphorization is set to T.Fe: 20 to 70%, and CaO / SiO 2 ratio: in terms of the range of 0.3 to 1.3, hot metal dephosphorization method using a converter type vessel, characterized by continuously introducing CaO during dephosphorization. 請求項1に記載された転炉型容器を用いた溶銑の脱燐方法において、脱燐処理時のスラグ組成をT・Fe:5〜15%、かつCaO/SiO比:1.7〜3.0の範囲とすることを特徴とする転炉型容器を用いた溶銑の脱燐方法。In dephosphorization method molten iron with the converter-type container according to claim 1, the slag composition during dephosphorization T · Fe: 5 to 15%, and CaO / SiO 2 ratio: 1.7 to 3 2.0. A method for dephosphorizing hot metal using a converter-type vessel, wherein the temperature is in the range of 2.0. 請求項1または2に記載された転炉型容器を用いた溶銑の脱燐方法において、使用するCaO粒径が0.1〜5mmであることを特徴とする転炉型容器を用いた溶銑の脱燐方法。The method for dephosphorizing hot metal using a converter-type container according to claim 1 or 2, wherein the CaO particle size used is 0.1 to 5 mm. Dephosphorization method.
JP2003103562A 2003-04-08 2003-04-08 Method for dephosphorizing molten iron using converter-type vessel Withdrawn JP2004307941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103562A JP2004307941A (en) 2003-04-08 2003-04-08 Method for dephosphorizing molten iron using converter-type vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103562A JP2004307941A (en) 2003-04-08 2003-04-08 Method for dephosphorizing molten iron using converter-type vessel

Publications (1)

Publication Number Publication Date
JP2004307941A true JP2004307941A (en) 2004-11-04

Family

ID=33466619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103562A Withdrawn JP2004307941A (en) 2003-04-08 2003-04-08 Method for dephosphorizing molten iron using converter-type vessel

Country Status (1)

Country Link
JP (1) JP2004307941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150574A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for desiliconizing-dephosphorizing molten iron
KR101380805B1 (en) * 2012-08-10 2014-04-04 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
KR101552142B1 (en) 2013-12-04 2015-09-10 주식회사 포스코 Agent for dephosphorization and treatment method of molten metal using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150574A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for desiliconizing-dephosphorizing molten iron
KR101380805B1 (en) * 2012-08-10 2014-04-04 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
KR101552142B1 (en) 2013-12-04 2015-09-10 주식회사 포스코 Agent for dephosphorization and treatment method of molten metal using the same

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
CN113249544A (en) Process for quenching and tempering steel slag into refining slag and deoxidizing and desulfurizing molten steel
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP2008063645A (en) Steelmaking method
JP2004307942A (en) Method for producing extra-low titanium molten steel
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JP2001192720A (en) Converter steel making process
JP4695312B2 (en) Hot metal pretreatment method
JPH10237526A (en) Dephosphorization of hot metal
JP4461495B2 (en) Dephosphorization method of hot metal
JP3924059B2 (en) Steelmaking method using multiple converters
JPH01147011A (en) Steelmaking method
JP3644307B2 (en) Hot phosphorus dephosphorization method
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP4882171B2 (en) Hot phosphorus dephosphorization method
JP4414544B2 (en) Refining method for converter type hot metal dephosphorization furnace
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JP2004307944A (en) Pre-treatment operational method for molten iron in converter-type vessel
JP2587286B2 (en) Steelmaking method
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPH0557327B2 (en)
JPH0377246B2 (en)
JP2004307943A (en) Dephosphorizing treatment method for molten iron utilizing desiliconization slag and decarburization slag

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704