JP4414544B2 - Refining method for converter type hot metal dephosphorization furnace - Google Patents

Refining method for converter type hot metal dephosphorization furnace Download PDF

Info

Publication number
JP4414544B2
JP4414544B2 JP2000040573A JP2000040573A JP4414544B2 JP 4414544 B2 JP4414544 B2 JP 4414544B2 JP 2000040573 A JP2000040573 A JP 2000040573A JP 2000040573 A JP2000040573 A JP 2000040573A JP 4414544 B2 JP4414544 B2 JP 4414544B2
Authority
JP
Japan
Prior art keywords
dephosphorization
hot metal
slag
refining method
type hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040573A
Other languages
Japanese (ja)
Other versions
JP2001234223A (en
Inventor
信也 北村
直人 佐々木
庸司 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000040573A priority Critical patent/JP4414544B2/en
Publication of JP2001234223A publication Critical patent/JP2001234223A/en
Application granted granted Critical
Publication of JP4414544B2 publication Critical patent/JP4414544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶銑脱燐処理方法に関する。
【0002】
【従来の技術】
溶銑を生石灰と酸化剤を用いて脱燐する方法は広く用いられている。輸送容器であるトピードカーを反応容器として用いる場合には、上部空間の体積(フリーボード)が少ないため、高塩基度で低い(T・Fe)としてスラグフォーミングを抑制するために、あらかじめ脱珪処理をした溶銑を用いて多い生石灰原単位での脱燐を実施している(例えば、鉄と鋼,第69巻,1983年発行,1818ページ以降)。この場合には、事前に脱珪を施しているものの生石灰原単位が多いため脱燐スラグが多いという問題があり、また高塩基度のため滓化が悪くなり、蛍石や塩化カルシウムのようなハロゲン化物を多量に用いる必要があるため、スラグ量が増え、耐火物溶損が激しくなるという問題が生じる。
【0003】
従来から、ハロゲン化物を用いずに溶銑脱燐の反応効率を向上させる試みはなされている。
【0004】
例えば、特開平2−11712号公報では、酸化鉄、CaOとSiO2を混合して溶融あるいは焼結した脱燐剤が開示されている。特開昭56−93806号公報では、塩基度(CaO/SiO2)を1.8〜2.3となるように配合し2CaO・SiO2になる粉末原料を焼結した脱燐剤が開示されている。これらの場合には、溶融又は焼結に要する費用が高いため実用化には至っていない。
【0005】
特開平8−157921号公報には、転炉での溶銑脱燐において、塩基度=1.2〜2.0、Al23=2〜16%、(T・Fe)=7〜30%にする方法が開示されている。この場合は、転炉のため反応がトップスラグによってのみ起こるため、トップスラグの塩基度を低下させ、かつ、中性酸化物であるAl23を多量に添加することで脱燐能が大幅に低下するという問題がある。
【0006】
一方、脱炭滓を用いた溶銑脱燐は、特開昭63−93813号公報には、2基の転炉の一方を脱燐炉、他方を脱炭炉とし、脱炭炉で発生した転炉滓と生石灰を主成分とした精錬剤で脱燐する方法が開示されている。しかし、転炉滓(脱炭滓)は転炉吹き止め温度である1650℃では溶融状態にあるものの、溶銑脱燐の場合は1350℃程度のため容易には溶融することはできず、脱燐効率は生石灰を用いた場合よりも低下する。さらに、脱炭滓は脱燐処理が進行して温度やスラグ組成が溶解に適した条件に到達した時点で急激に溶解する。しかし、脱炭滓中には高い濃度の(T・Fe)が含まれるため、脱炭滓が溶融すると急激に脱炭反応が生じるためスロッピングが多発するという問題がある。
【0007】
一方、溶銑脱燐スラグの処理方法として、例えば特開昭57−179090号公報には、[P]を0.15〜0.5%含む高燐銑を脱燐処理することで生成スラグ中の(P25)を15%以上として燐酸肥料原料とする方法が開示されているが、溶銑[P]が低い条件でスラグ中に濃縮できる(P25)濃度については何らの知見も示されていない。
【0008】
【発明が解決しようとする課題】
本発明は、従来技術が持つ、高塩基度の低(T・Fe)処理の場合の、生石灰原単位が多く、滓化のためハロゲン化物を多量に用いる必要があるという問題や、特開平2−11712号公報や特開昭56−93806号公報で開示されたCaOとSiO2を混合して溶融/焼結した脱燐剤では、溶融又は焼結に要する費用が高いという問題、特開平8−157921号公報に開示された、転炉での溶銑脱燐におけるトップスラグ組成を制御する方法では脱燐能が大幅に低下するという問題、特開昭63−93813号公報に開示された技術では、脱燐効率は生石灰を用いた場合よりも低下し、脱炭滓が溶融すると急激に脱炭反応が生じるためスロッピングが多発するという問題を解決し、ハロゲン化物を用いることなく脱燐反応効率を上げてスラグ発生量を低下させることを可能とする溶銑脱燐方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の要旨は以下の通りである。
【0010】
(1) 上底吹き転炉で生石灰と酸素及び/又は酸化鉄による溶銑脱燐処理を実施する方法において、脱燐処理終了後に炉内に脱燐スラグの全量又は一部を残留させたまま溶銑を出湯し、次いで、該脱燐スラグを残したままで次チャージの溶銑を装入して脱燐処理を行う工程を、少なくとも1回以上実施することを特徴とする転炉型溶銑脱燐炉の精錬方法。ここで、脱燐処理とは、生石灰と上吹き酸素及び/又は酸化鉄を供給しつつ攪拌する処理を示す。
【0011】
(2) 前記(1)において、脱燐処理終了時のスラグ塩基度が1.5〜3であることを特徴とする転炉型溶銑脱燐炉の精錬方法。
【0012】
(3) 前記(1)又は(2)において、装入される溶銑中の[Si]濃度が0.3%以下であることを特徴とする転炉型溶銑脱燐炉の精錬方法。
【0013】
(4) 前記(1)〜(3)において、脱燐精錬後のスラグ量中の(P)濃度が35%以下の範囲で、該工程を繰り返し実施することを特徴とする転炉型溶銑脱燐炉の精錬方法。
【0014】
【発明の実施の形態】
本発明は、脱燐処理で生成したスラグは、さらなる脱燐能力を有するという事実に基づく。
【0015】
溶銑脱燐処理は、(T・Fe)が高く酸素活量が高いスラグ相と、炭素飽和に近く酸素活量が低い溶鉄との間で起こる非平衡系のプロセスであり、脱燐速度は(1)式で表される。
【0016】
−d[%P]/dt=(A・k/W){[%P]−aPO2.5/L} ・・・… (1)
【0017】
ここで、[%P]は溶銑中の燐濃度、tは時間(s)、Aは反応界面積(cm2)、kは総括物質移動係数(cm/s)、Wは溶銑量(t)、aPO2.5はスラグ中(PO2.5)の活量、Lは界面での平衡分配比でありで示す界面濃度により(2)式で表される。また、濃度(%)は質量パーセントを意味する(以下も同様とする)。
【0018】
L=aPO2.5 /[%P]* = K×a * 2.5 ・・・… (2)
【0019】
ここで、Kは平衡定数、a *は界面酸素活量である。
【0020】
仮に、aPO2.5がスラグ中(PO2.5)の濃度に比例し、かつ、Lが十分には大きくない場合、スラグ中(PO2.5)濃度の増加に伴い(1)式のaPO2.5/Lが大きくなるため脱燐速度は低下する。
【0021】
しかし、本発明者らの詳細な研究によれば、溶銑脱燐スラグの場合、スラグ中(PO2.5)濃度が変化しても(1)式のaPO2.5/Lはほとんど影響を受けないことを見出した。これは、以下の2つの要因によるものである。
【0022】
1) 反応が起こる溶銑とスラグの接触界面は、バルク溶銑とスラグの界面ではなく、スラグ中に上吹きや底吹きのエネルギーで懸濁した溶鉄粒子の表面が主であり、この界面の酸素活量は、ほぼスラグ側の(T・Fe)と平衡する値に近く、十分に大きい。従って、(2)式からわかるようにLが十分に大きくなるためaPO2.5/Lはスラグ中(PO2.5)濃度が変化しても、常に無視できるほどに小さい。
【0023】
2) スラグ中(PO2.5)濃度が変化しても、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和である限り、aPO2.5は一定である。従って、aPO2.5/Lはスラグ中(PO2.5)濃度が変化しても全く変化しない。
【0024】
このことが、脱燐処理後のスラグに(PO2.5)が含まれてはいるものの、再度利用しても、さらに脱燐が可能であることの原理である。
【0025】
さらに、脱燐滓に含まれる(PO2.5)は界面活性成分のため脱炭に伴うCO気泡の核発生を抑制する作用があり、脱燐中の脱炭を抑制し(T・Fe)を固く保つことができる。従って、(PO2.5)を含む脱燐滓を用いた脱燐処理では脱炭が少なく、次工程である転炉での熱裕度を大幅に増大させることができる。
【0026】
前記(1)に係る発明はこれを利用したものであり、上底吹き転炉で生石灰と酸素及び/又は酸化鉄による溶銑脱燐処理を実施する方法において、脱燐処理終了後に炉内に脱燐スラグの全量又は一部を残留させたまま溶銑を出湯し、次いで、該脱燐スラグを残したままで次チャージの溶銑を装入して脱燐処理を行う工程を、少なくとも1回以上実施するものである。
【0027】
炉内に残留させる脱燐スラグは1),2)の作用効果を充分に示すために、10kg/t以上であることが望ましい。また、当該工程は1回以上実施すれば、1),2)の作用効果を充分に示すため、上限は特に規定しない。スラグ量が増大するとスラグへの鉄分ロスや熱裕度の低下が起こるが、スラグ量の一部のみを排滓し、スラグ量を30〜150kg/tの範囲に維持すれば、何回でも実施することが可能である。
【0028】
ここで、上底吹き転炉とした理由は、反応が起こる溶銑とスラグの接触界面を、バルク溶銑とスラグの界面ではなく、スラグ中に上吹きや底吹きのエネルギーで懸濁した溶鉄粒子の表面を主体とさせるためである。上吹きによる粒鉄の発生を促進するため上吹き送酸速度としては0.5〜2.5Nm3/min/tが望ましく、底吹きによる粒鉄の発生を促進するため底吹きガス流量としては0.03〜0.2Nm3/min/tが望ましい。上吹き送酸速度が0.5Nm3/min/tよりも小さい場合には、粒鉄発生が少ないため高い酸素活量の反応界面積が少なくなるためスラグ中の(PO2.5)濃度の影響を受けやすくなり、逆に、2.5Nm3/min/tよりも大きい場合には、上吹きによる粒鉄の発生が激しすぎるためスプラッシュが多量に発生し操業に支障を与えがちになる。底吹きガス流量が0.03Nm3/min/tよりも小さい場合には、粒鉄発生が少ないため高い酸素活量の反応界面積が少なくなるためスラグ中の(PO2.5)濃度の影響を受けやすくなり、逆に、0.2Nm3/min/tよりも大きい場合には、底吹きによる粒鉄の発生が激しすぎるためスプラッシュが多量に発生し操業に支障を与えがちになる。炉内に残留させる脱燐スラグ量は特に規定はしないが、前述の理由により150kg/t以下であることが望ましい。
【0029】
前記(2)に係る発明は、脱燐処理終了時におけるスラグ塩基度(CaO/ SiO2)を規定したもので、塩基度が1.5〜3であるとしている。塩基度が1.5よりも低い場合にはCaO・SiO2飽和のスラグとなるため、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和であるという条件を満たさなくなるためaPO2.5が増大し、逆に、塩基度が3よりも高い場合には3CaO・SiO2飽和のスラグとなるため、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和であるという条件を満たさなくなるためaPO2.5が増大し、図1に示すように、いずれの場合も脱燐効率が大幅に低下する。ここで脱燐効率(K)は(3)式で定義される。
【0030】
K={ln(処理前[%P]/処理後[%P])}/生石灰原単位(kg/t) … (3)
【0031】
前記(3)に係る発明は、脱燐炉に装入される溶銑組成を規定したもので、装入される溶銑中の[Si]濃度を0.3%以下としたものである。[Si]濃度が0.3%よりも高い場合には、脱燐のための塩基度を確保するために、繰り返し生石灰を添加する必要があり経済的でない。下限は特に規定しないが、脱珪作業時の負荷を考えると0.1%以上であることが望ましい。
【0032】
前記(4)に係る発明は、繰り返し実施する場合の上限を規定したもので、脱燐精錬後のスラグ量中の(P)濃度が35%以下の範囲で、該工程を繰り返し実施するものである。脱燐精錬後のスラグ量中の(P)濃度が35%よりも高い場合には、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和であるという条件を満たさなくなるためaPO2.5が増大し、図2に示すように脱燐能力が大幅に低下する。
【0033】
【実施例】
実施例は6トン規模の上底吹き転炉を用いて実施した。上吹きランスには7mmφの4孔ランスを用い、酸素供給速度は350Nm3/hとした。底吹きは小径集合管羽口とし、窒素を22Nm3/h供給した。
【0034】
他の溶解炉で溶製した、C:4.15%、Si:0.21%、Mn:0.23%、P:0.095%、S:0.012%で温度が1330℃の、約6トンの溶銑を転炉に装入し、脱燐精錬を7分間行った。脱燐中には生石灰を9.3kg/t、鉄鉱石を16.4kg/t、上部バンカーから投入した。処理後はC:3.84%、Si:0.02%、Mn:0.08%、P:0.021%、S:0.015%で温度は1365℃であった。生成した脱燐スラグの組成は、T・Fe:9.25%、CaO:47.3%、SiO2:25.5%、PO2.5:8.65%、MnO:5.55%、Al2O3:2.32%、MgO:3.13%で、塩基度は1.85で約20kg/tの量であった。脱燐効率は0.163であった。
【0035】
上記処理後、溶銑を出湯し、引き続き、脱燐スラグを全量炉内に残したままC:4.11%、Si:0.18%、Mn:0.20%、P:0.11%、S:0.014%で温度が1320℃の、約6トンの溶銑を転炉に装入し、脱燐精錬を7分間行った。脱燐中には生石灰を5.7kg/t、鉄鉱石を14.5kg/t、上部バンカーから投入した。処理後はC:3.95%、Si:0.02%、Mn:0.095%、P:0.012%、S:0.016%で温度は1370℃であった。生成した脱燐スラグの組成は、T・Fe:13.75%、CaO:45.3%、SiO2:26.5%、PO2.5:12.1%、MnO:6.55%、Al2O3:2.84%、MgO:3.53%で、塩基度が1.71で約35kg/tの量であった。脱燐効率は0.389と極めて高かった。
【0036】
【比較例】
比較例では6トン規模の溶銑鍋を用いたインジェクション脱燐試験を実施した。インジェクションランス先端に7mmφの2孔ノズルを設け、キャリアーガスは窒素として10Nm3/h供給するとともに、生石灰と鉄鉱石を約2kg/min/tの速度で吹き込んだ。
【0037】
他の溶解炉で溶製した、C:4.25%、Si:0.10%、Mn:0.21%、P:0.11%、S:0.011%で温度が1340℃の、約6トンの溶銑を溶銑鍋に装入し、脱燐精錬を15分間行った。脱燐中には生石灰を19.5kg/t、鉄鉱石を43.4kg/tインジェクションした。処理後はC:4.14%、Si:0.02%、Mn:0.18%、P:0.023%、S:0.008%で温度は1325℃であった。生成した脱燐スラグの組成は、T・Fe:4.05%、CaO:59.3%、SiO2:14.65%、PO2.5:7.75%、MnO:4.15%、Al2O3:3.53%、MgO:2.85%で、塩基度が4.08で約34kg/tの量であった。脱燐効率は0.08であった。
【0038】
上記処理後、溶銑を出湯し、引き続き、脱燐スラグを全量鍋内に残したままC:4.15%、Si:0.12%、Mn:0.25%、P:0.11%、S:0.014%で温度が1365℃の、約6トンの溶銑を装入し、脱燐精錬を15分間行った。脱燐中には生石灰を17.7kg/t、鉄鉱石を42.5kg/tインジェクションした。処理後はC:4.05%、Si:0.02%、Mn:0.15%、P:0.042%、S:0.011%で温度は1345℃であり、十分には脱燐できなかった。脱燐効率は0.054と極めて低かった。
【0039】
【発明の効果】
本発明により、脱燐スラグを再利用することで少ない生石灰原単位で、かつ、蛍石に代表されるハロゲン化物を用いること無しに溶銑脱燐処理を実施することが可能となる。
【図面の簡単な説明】
【図1】脱燐処理における塩基度と脱燐効率との関係を示す図である。
【図2】脱燐精錬後のスラグ量中の(P)濃度と脱燐効率との関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal dephosphorization method.
[0002]
[Prior art]
A method of dephosphorizing hot metal using quick lime and an oxidizing agent is widely used. When a topped car that is a transport container is used as a reaction container, since the volume of the upper space (free board) is small, desiliconization treatment is performed in advance in order to suppress slag forming with high basicity and low (T · Fe). Dephosphorization is carried out with a large amount of quicklime unit using the molten iron (for example, iron and steel, Vol. 69, published in 1983, page 1818 and later). In this case, there is a problem that there is a lot of dephosphorization slag because there is a lot of quicklime basic unit although it has been desiliconized in advance, and hatching worsens due to high basicity, such as fluorite and calcium chloride Since it is necessary to use a large amount of halide, there is a problem that the amount of slag increases and the refractory melts severely.
[0003]
Conventionally, attempts have been made to improve the reaction efficiency of hot metal dephosphorization without using a halide.
[0004]
For example, Japanese Patent Application Laid-Open No. 2-11712 discloses a dephosphorization agent obtained by mixing and melting or sintering iron oxide, CaO and SiO 2 . Japanese Patent Application Laid-Open No. 56-93806 discloses a dephosphorizing agent obtained by sintering a powder raw material containing 2CaO · SiO 2 by blending basicity (CaO / SiO 2 ) to be 1.8 to 2.3. ing. In these cases, since the cost required for melting or sintering is high, it has not been put to practical use.
[0005]
JP-A-8-157721 discloses basicity = 1.2 to 2.0, Al 2 O 3 = 2 to 16%, (T · Fe) = 7 to 30% in hot metal dephosphorization in a converter. A method is disclosed. In this case, the reaction takes place only by the top slag because of the converter, so the basicity of the top slag is lowered and the dephosphorization ability is greatly increased by adding a large amount of neutral oxide Al 2 O 3. There is a problem that it drops.
[0006]
On the other hand, hot metal dephosphorization using a decarburizer is disclosed in Japanese Patent Laid-Open No. 63-93913, in which one of two converters is a dephosphorizer and the other is a decarburizer. A method of dephosphorizing with a refining agent mainly composed of furnace lime and quicklime is disclosed. However, although the converter slag (decarburization slag) is in a molten state at the converter blow-off temperature of 1650 ° C., in the case of hot metal dephosphorization, it cannot be easily melted because it is about 1350 ° C. The efficiency is lower than when quicklime is used. Further, the decarburized soot dissolves rapidly when the dephosphorization process proceeds and the temperature and slag composition reach conditions suitable for dissolution. However, since a high concentration of (T · Fe) is contained in the decarburized soot, there is a problem that when the decarburized soot is melted, a decarburization reaction occurs abruptly, so that slopping occurs frequently.
[0007]
On the other hand, as a method for treating hot metal dephosphorization slag, for example, Japanese Patent Application Laid-Open No. 57-179090 discloses (P) in the produced slag by dephosphorizing high phosphorus containing 0.15 to 0.5% of [P]. 2 O 5 ) is disclosed as a raw material for phosphate fertilizer with a content of 15% or more, but there is also some knowledge about the concentration of (P 2 O 5 ) that can be concentrated in slag under low hot metal [P] conditions. Not.
[0008]
[Problems to be solved by the invention]
The present invention has a problem that the conventional technology has a high basicity and low (T · Fe) treatment in which a large amount of quicklime is required and a large amount of halide is required for hatching. In the dephosphorization agent melted / sintered by mixing CaO and SiO 2 disclosed in JP-A-1111712 and JP-A-56-93806, the cost required for melting or sintering is high. In the technique disclosed in Japanese Patent Laid-Open No. 63-93913, the method of controlling the top slag composition in the hot metal dephosphorization in the converter disclosed in Japanese Patent No. The dephosphorization efficiency is lower than when quick lime is used, and the decarburization reaction occurs rapidly when the decarburized soot is melted. Raise There is provided a hot metal dephosphorization method capable of reducing the lag emissions.
[0009]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0010]
(1) In a method of performing hot metal dephosphorization treatment with quicklime and oxygen and / or iron oxide in an upper-bottom blow converter, the hot metal is left with all or part of the dephosphorization slag remaining in the furnace after the dephosphorization treatment is completed. A step of performing a dephosphorization process by charging the hot metal of the next charge while leaving the dephosphorization slag and performing the dephosphorization treatment at least once. Refining method. Here, the dephosphorization process refers to a process of stirring while supplying quicklime and top-blown oxygen and / or iron oxide.
[0011]
(2) In the method (1), the slag basicity at the end of the dephosphorization treatment is 1.5 to 3, wherein the refining method for the converter type hot metal dephosphorization furnace is characterized in that
[0012]
(3) The method for refining a converter type hot metal dephosphorization furnace according to (1) or (2), wherein the [Si] concentration in the molten iron to be charged is 0.3% or less.
[0013]
(4) In the above (1) to (3), the process is repeated in the range where the (P) concentration in the slag amount after dephosphorization is 35% or less. Phosphorus furnace refining method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is based on the fact that the slag produced by the dephosphorization process has an additional dephosphorization capability.
[0015]
Hot metal dephosphorization is a non-equilibrium process that occurs between a slag phase with a high (T · Fe) and high oxygen activity and molten iron with a low oxygen activity close to carbon saturation, and the dephosphorization rate is ( 1) It is represented by the formula.
[0016]
−d [% P] / dt = (A · k / W) {[% P] −a PO2.5 / L} (1)
[0017]
Where [% P] is the phosphorus concentration in the hot metal, t is the time (s), A is the reaction interfacial area (cm 2 ), k is the overall mass transfer coefficient (cm / s), and W is the hot metal amount (t). , A PO2.5 is the activity in the slag (PO 2.5 ), L is the equilibrium distribution ratio at the interface, and is expressed by the equation (2) according to the interface concentration indicated by * . The concentration (%) means mass percent (the same shall apply hereinafter).
[0018]
L = a PO2.5 * / [% P] * = K × a O * 2.5 (2)
[0019]
Here, K is an equilibrium constant, and aO * is an interfacial oxygen activity.
[0020]
If, a PO2.5 is proportional to the concentration in the slag (PO 2.5), and, if L is not large enough, with an increase in the slag (PO 2.5) Concentration (1) of a PO2.5 Since / L increases, the dephosphorization rate decreases.
[0021]
However, according to a detailed study by the present inventors, in the case of hot metal dephosphorized slag, even if the (PO 2.5 ) concentration in the slag changes, a PO2.5 / L in the formula (1) is hardly affected. I found out. This is due to the following two factors.
[0022]
1) The contact interface between hot metal and slag where the reaction takes place is not the interface between bulk hot metal and slag, but mainly the surface of molten iron particles suspended in the slag with the energy of top blowing or bottom blowing. The amount is close to a value almost in equilibrium with (T · Fe) on the slag side, and is sufficiently large. Therefore, as can be seen from equation (2), L is sufficiently large so that a PO2.5 / L is always small enough to be ignored even if the (PO 2.5 ) concentration in the slag changes.
[0023]
2) Even if the concentration of slag (PO 2.5 ) changes, as long as the slag is two-phase saturated of 2CaO · SiO 2 and 3CaO · P 2 O 5 , a PO2.5 is constant. Therefore, a PO2.5 / L does not change at all even if the concentration in slag (PO 2.5 ) changes.
[0024]
This is the principle that even though (PO 2.5 ) is contained in the slag after dephosphorization, dephosphorization is possible even if it is reused.
[0025]
Furthermore, (PO 2.5 ) contained in dephosphorization has a function of suppressing the nucleation of CO bubbles accompanying decarburization because it is a surface active component, and suppresses decarburization during dephosphorization and hardens (T · Fe). Can keep. Accordingly, the dephosphorization treatment using the dephosphorization soot containing (PO 2.5 ) has less decarburization and can greatly increase the heat tolerance in the converter as the next step.
[0026]
The invention according to the above (1) utilizes this, and in the method of performing hot metal dephosphorization treatment with quicklime and oxygen and / or iron oxide in an upper bottom blowing converter, the dephosphorization treatment is performed in the furnace after completion of the dephosphorization treatment. The step of removing the hot metal while leaving all or part of the phosphorous slag and then charging the molten iron with the next charge while leaving the dephosphorized slag is performed at least once. Is.
[0027]
The dephosphorization slag remaining in the furnace is desirably 10 kg / t or more in order to sufficiently exhibit the effects of 1) and 2). Moreover, if the said process is implemented once or more, in order to fully show the effect of 1) and 2), an upper limit in particular is not prescribed | regulated. If the amount of slag increases, iron loss to the slag and a decrease in heat tolerance will occur, but if only a part of the slag amount is eliminated and the slag amount is maintained within the range of 30 to 150 kg / t, it will be repeated any number of times. Is possible.
[0028]
Here, the reason for the top-bottom blowing converter is that the contact interface between the hot metal and slag where the reaction occurs is not the interface between the bulk hot metal and slag, but the molten iron particles suspended in the slag with the energy of top blowing and bottom blowing. This is because the surface is mainly used. In order to promote the generation of granular iron by top blowing, the top blowing acid rate is preferably 0.5 to 2.5 Nm 3 / min / t, and as the bottom blowing gas flow rate to promote the generation of granular iron by bottom blowing. 0.03 to 0.2 Nm 3 / min / t is desirable. When the top blowing acid rate is less than 0.5 Nm 3 / min / t, the reaction interface area with high oxygen activity decreases because of the generation of granular iron, so the effect of (PO 2.5 ) concentration in the slag is reduced. On the contrary, when it is larger than 2.5 Nm 3 / min / t, the generation of granular iron due to top blowing is too intense, and a lot of splash is generated, which tends to hinder the operation. When the bottom blowing gas flow rate is smaller than 0.03 Nm 3 / min / t, the reaction interface area with high oxygen activity decreases because of the generation of granular iron, which is affected by the (PO 2.5 ) concentration in the slag. On the other hand, if it is greater than 0.2 Nm 3 / min / t, the generation of granular iron due to bottom blowing is so intense that a large amount of splash is generated and the operation tends to be hindered. The amount of dephosphorization slag remaining in the furnace is not particularly defined, but is preferably 150 kg / t or less for the above-mentioned reasons.
[0029]
The invention according to (2) defines the slag basicity (CaO / SiO 2 ) at the end of the dephosphorization treatment, and the basicity is 1.5 to 3. Since basicity is slag CaO · SiO 2 saturation is lower than 1.5, because the slag does not satisfy the condition that a two-phase saturation of 2CaO · SiO 2 and 3CaO · P 2 O 5 a PO2 .5 increases, conversely, because the basicity is slag 3CaO · SiO 2 saturation is higher than 3, that slag is two-phase saturation of 2CaO · SiO 2 and 3CaO · P 2 O 5 Since the condition is not satisfied, aPO2.5 increases, and as shown in FIG. 1, the dephosphorization efficiency is greatly reduced in any case. Here, the dephosphorization efficiency (K) is defined by equation (3).
[0030]
K = {ln (before treatment [% P] / after treatment [% P])} / lime unit (kg / t) (3)
[0031]
The invention according to (3) defines the hot metal composition charged into the dephosphorization furnace, and the [Si] concentration in the hot metal charged is 0.3% or less. When the [Si] concentration is higher than 0.3%, it is necessary to add quick lime repeatedly in order to secure basicity for dephosphorization, which is not economical. The lower limit is not particularly specified, but it is preferably 0.1% or more in consideration of the load during desiliconization work.
[0032]
The invention according to the above (4) defines the upper limit in the case of repeated execution, and the process is repeated in the range where the (P) concentration in the slag amount after dephosphorization is 35% or less. is there. If (P) concentration in the slag amount in the after dephosphorization refining is higher than 35%, the slag does not satisfy the condition that a two-phase saturation of 2CaO · SiO 2 and 3CaO · P 2 O 5 a PO2 .5 increases, and the dephosphorization ability is greatly reduced as shown in FIG.
[0033]
【Example】
The examples were carried out using a 6-ton scale top-bottom blow converter. A 4-hole lance of 7 mmφ was used as the top blowing lance, and the oxygen supply rate was 350 Nm 3 / h. The bottom blowing was a small diameter collecting tube tuyere, and nitrogen was supplied at 22 Nm 3 / h.
[0034]
Melted in another melting furnace, C: 4.15%, Si: 0.21%, Mn: 0.23%, P: 0.095%, S: 0.012%, and the temperature was 1330 ° C. About 6 tons of hot metal was charged into the converter and dephosphorization was performed for 7 minutes. During the dephosphorization, quick lime 9.3 kg / t and iron ore 16.4 kg / t were introduced from the upper bunker. After the treatment, C: 3.84%, Si: 0.02%, Mn: 0.08%, P: 0.021%, S: 0.015%, and the temperature was 1365 ° C. The composition of the generated dephosphorization slag was as follows: T · Fe: 9.25%, CaO: 47.3%, SiO 2 : 25.5%, PO 2.5 : 8.65%, MnO: 5.55%, Al 2 O 3 : 2.32%, MgO: 3.13%, the basicity was 1.85, and the amount was about 20 kg / t. The dephosphorization efficiency was 0.163.
[0035]
After the above treatment, the hot metal is discharged, and then C: 4.11%, Si: 0.18%, Mn: 0.20%, P: 0.11%, with all the dephosphorization slag remaining in the furnace. S: About 6 tons of hot metal having a temperature of 0.014% and 1320 ° C. was charged into a converter, and dephosphorization was performed for 7 minutes. During dephosphorization, quick lime was 5.7 kg / t, iron ore was 14.5 kg / t, and the upper bunker was used. After the treatment, C: 3.95%, Si: 0.02%, Mn: 0.095%, P: 0.012%, S: 0.016%, and the temperature was 1370 ° C. The composition of the generated dephosphorization slag was as follows: T · Fe: 13.75%, CaO: 45.3%, SiO 2 : 26.5%, PO 2.5 : 12.1%, MnO: 6.55%, Al 2 O 3 was 2.84%, MgO was 3.53%, the basicity was 1.71, and the amount was about 35 kg / t. The dephosphorization efficiency was as extremely high as 0.389.
[0036]
[Comparative example]
In the comparative example, an injection dephosphorization test using a 6-ton scale hot metal ladle was performed. A 7-mmφ 2-hole nozzle was provided at the tip of the injection lance, the carrier gas was supplied as nitrogen at 10 Nm 3 / h, and quick lime and iron ore were blown at a rate of about 2 kg / min / t.
[0037]
Melted in another melting furnace, C: 4.25%, Si: 0.10%, Mn: 0.21%, P: 0.11%, S: 0.011% and the temperature was 1340 ° C. About 6 tons of hot metal was placed in a hot metal ladle and dephosphorized for 15 minutes. During dephosphorization, 19.5 kg / t of quicklime and 43.4 kg / t of iron ore were injected. After the treatment, C: 4.14%, Si: 0.02%, Mn: 0.18%, P: 0.023%, S: 0.008%, and the temperature was 1325 ° C. The composition of the generated dephosphorization slag was as follows: T · Fe: 4.05%, CaO: 59.3%, SiO 2 : 14.65%, PO 2.5 : 7.75%, MnO: 4.15%, Al 2 O 3 : 3.53%, MgO: 2.85%, basicity was 4.08, and the amount was about 34 kg / t. The dephosphorization efficiency was 0.08.
[0038]
After the above treatment, the hot metal is poured out, and then C: 4.15%, Si: 0.12%, Mn: 0.25%, P: 0.11%, leaving all the dephosphorization slag in the pan. S: About 6 tons of hot metal having a temperature of 0.014% and a temperature of 1365 ° C. was charged, and dephosphorization was performed for 15 minutes. During the dephosphorization, 17.7 kg / t of quicklime and 42.5 kg / t of iron ore were injected. After the treatment, C: 4.05%, Si: 0.02%, Mn: 0.15%, P: 0.042%, S: 0.011%, and the temperature is 1345 ° C. could not. The dephosphorization efficiency was as extremely low as 0.054.
[0039]
【The invention's effect】
According to the present invention, it is possible to carry out hot metal dephosphorization treatment by reusing dephosphorization slag without using a quick lime basic unit and using a halide represented by fluorite.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between basicity and dephosphorization efficiency in a dephosphorization process.
FIG. 2 is a graph showing the relationship between the (P) concentration in the amount of slag after dephosphorization and the dephosphorization efficiency.

Claims (4)

上底吹き転炉で生石灰と酸素及び/又は酸化鉄による溶銑脱燐処理を実施する方法において、脱燐処理終了後に炉内に脱燐スラグの全量又は一部を残留させたまま溶銑を出湯し、次いで、該脱燐スラグを残したままで次チャージの溶銑を装入して脱燐処理を行う工程を、少なくとも1回以上実施することを特徴とする転炉型溶銑脱燐炉の精錬方法。In a method of performing hot metal dephosphorization treatment with quicklime and oxygen and / or iron oxide in a top-bottom blowing converter, hot metal is poured out with all or part of the dephosphorization slag remaining in the furnace after the dephosphorization treatment. Next, a refining method for a converter type hot metal dephosphorization furnace, wherein the dephosphorization treatment is performed at least once by charging the molten iron of the next charge while leaving the dephosphorization slag. 請求項1記載の転炉型溶銑脱燐炉の精錬方法において、脱燐処理終了時のスラグ塩基度が1.5〜3であることを特徴とする転炉型溶銑脱燐炉の精錬方法。2. The refining method for a converter type hot metal dephosphorization furnace according to claim 1, wherein the slag basicity at the end of the dephosphorization process is 1.5 to 3. 請求項1又は2記載の転炉型溶銑脱燐炉の精錬方法において、装入される溶銑中の[Si]濃度が0.3%以下であることを特徴とする転炉型溶銑脱燐炉の精錬方法。The refining method for a converter type hot metal dephosphorization furnace according to claim 1 or 2, wherein the [Si] concentration in the hot metal charged is 0.3% or less. Refining method. 請求項1〜3のいずれか記載の転炉型溶銑脱燐炉の精錬方法において、脱燐精錬後のスラグ量中の(P)濃度が35%以下の範囲で、該工程を繰り返し実施することを特徴とする転炉型溶銑脱燐炉の精錬方法。In the refining method of the converter type hot metal dephosphorization furnace according to any one of claims 1 to 3, the step is repeatedly performed in a range where the (P) concentration in the slag amount after dephosphorization is 35% or less. A refining method for a converter type hot metal dephosphorization furnace characterized by the above.
JP2000040573A 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace Expired - Fee Related JP4414544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040573A JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040573A JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Publications (2)

Publication Number Publication Date
JP2001234223A JP2001234223A (en) 2001-08-28
JP4414544B2 true JP4414544B2 (en) 2010-02-10

Family

ID=18563935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040573A Expired - Fee Related JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Country Status (1)

Country Link
JP (1) JP4414544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882171B2 (en) * 2001-06-29 2012-02-22 Jfeスチール株式会社 Hot phosphorus dephosphorization method
JP5145736B2 (en) * 2007-03-13 2013-02-20 Jfeスチール株式会社 Dephosphorization method of hot metal in converter type refining furnace
CN109536670A (en) * 2018-12-21 2019-03-29 首钢京唐钢铁联合有限责任公司 Method for recycling dephosphorization residues in full-three-removal process in thermal state

Also Published As

Publication number Publication date
JP2001234223A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP4414544B2 (en) Refining method for converter type hot metal dephosphorization furnace
JP2020125541A (en) Converter refining method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP4695312B2 (en) Hot metal pretreatment method
JPH11323420A (en) Pretreating method for molten iron
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP4192503B2 (en) Manufacturing method of molten steel
JP2833736B2 (en) Hot metal pretreatment method
JP2002129221A (en) Method for refining molten iron
JPH0437135B2 (en)
JPH05156338A (en) Method for reusing low phosphorus converter slag
JPH09143529A (en) Method for dephosphorizing molten iron
JPH0557327B2 (en)
JP2002256326A (en) Method for refining molten iron
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPH0641608B2 (en) Two-stage countercurrent refining steelmaking process using compound converter
JPS636606B2 (en)
JPS62290815A (en) Steel making method
JPS59104412A (en) Desiliconization and dephosphorization of molten iron
JP2000282124A (en) Method for deforming converter slag and method for dephosphorizing molten iron using reformed slag
JP2004307944A (en) Pre-treatment operational method for molten iron in converter-type vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4414544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees