JP2020125541A - Converter refining method - Google Patents

Converter refining method Download PDF

Info

Publication number
JP2020125541A
JP2020125541A JP2020012552A JP2020012552A JP2020125541A JP 2020125541 A JP2020125541 A JP 2020125541A JP 2020012552 A JP2020012552 A JP 2020012552A JP 2020012552 A JP2020012552 A JP 2020012552A JP 2020125541 A JP2020125541 A JP 2020125541A
Authority
JP
Japan
Prior art keywords
slag
hot metal
desiliconization
dephosphorization
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012552A
Other languages
Japanese (ja)
Other versions
JP7004015B2 (en
Inventor
幸雄 ▲高▼橋
幸雄 ▲高▼橋
Yukio Takahashi
憲治 中瀬
Kenji Nakase
憲治 中瀬
菊池 直樹
Naoki Kikuchi
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020125541A publication Critical patent/JP2020125541A/en
Application granted granted Critical
Publication of JP7004015B2 publication Critical patent/JP7004015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide an improved dephosphorization efficiency and reduction in CaO raw unit by increasing a slag discharge amount during an intermediate slag processing after desiliconization and dephosphorization by promoting slag formation and melting of flux solvent by using a high heating efficiency method for converter refining.SOLUTION: In a converter refining method, desiliconization and dephosphorization processes are performed in a converter. By using an upper blowing lance having a burner function, a flux composed of a granular material containing CaO to be sprayed with industrial oxygen gas is heated by combustion flame of the burner, and then blown to a surface of molten iron. The slag generated after the desiliconization and dephosphorization processes is subjected to an intermediate slag processing at a temperature equal to or higher than the molten iron temperature.SELECTED DRAWING: Figure 1

Description

本発明は、転炉内に添加する媒溶材の溶融、滓化を促進することにより、中間排滓時のスラグ排出能の向上や媒溶材原単位の低減を図る上で有効な転炉精錬方法に関する。 INDUSTRIAL APPLICABILITY The present invention is a converter refining method which is effective in improving melting ability of slag at the time of intermediate slag and reducing the basic unit of the solvent-melting material by promoting melting and melting of the solvent-melting material added in the converter. Regarding

近年、製鋼精錬の分野では、高炉から出銑される溶銑中の珪素や燐を転炉での脱炭処理に先立って除去する、いわゆる溶銑予備処理が普及しており、石灰などの媒溶材と製鋼スラグ発生量の低減に寄与することが知られている。しかし、この溶銑予備処理の技術は、たとえば高炉鍋やトピードカーなどの溶銑移送容器で行う場合、溶銑の移し替えに伴う熱損失を伴うため、鉄スクラップなどの冷鉄源の使用割合を抑制しなければならず、このことがCOなどの温室効果ガスの排出量削減の阻害要因となっている。 In recent years, in the field of steelmaking refining, so-called hot metal pretreatment, which removes silicon and phosphorus in hot metal tapped from a blast furnace prior to decarburization in a converter, has become widespread. It is known to contribute to the reduction of the amount of steelmaking slag generated. However, this hot metal pretreatment technology involves heat loss associated with hot metal transfer when it is carried out, for example, in a hot metal transfer container such as a blast furnace pan or a tope car, so the proportion of cold iron sources such as iron scrap must be suppressed. This is an obstacle to reducing the emission of greenhouse gases such as CO 2 .

従来、前述した課題に対し、これを有利に解決する、いわゆる溶銑予備処理によるメリットと主原料選択範囲の増加を両立できる技術が開発されている。例えば、特許文献1に開示されているような、一つの転炉を用いて溶銑予備処理と脱炭処理の両方を行う方法がある。この方法は、屑鉄や溶銑を転炉に装入する工程、媒溶材(フラックス)の添加と酸素の吹き込みにより脱燐する工程、脱燐スラグを傾転させて排出する工程、フラックス添加と酸素吹き込みにより脱炭、脱燐処理する工程、脱炭、脱燐スラグを残したまま出鋼する工程、脱炭、脱燐スラグに対して炭材を添加してスラグ中の酸化鉄を還元する工程といった6つの工程を繰り返し行うものであり、生産性を阻害することなしに前述の溶銑予備処理のメリットを享受できるとされている。 Conventionally, a technique has been developed that can solve the above-mentioned problems advantageously, that is, both the merit of so-called hot metal pretreatment and the increase of the main raw material selection range can be achieved. For example, as disclosed in Patent Document 1, there is a method of performing both hot metal pretreatment and decarburization treatment using one converter. This method includes the steps of charging scrap iron and hot metal into a converter, adding a medium material (flux) and dephosphorizing by blowing oxygen, tilting and discharging the dephosphorized slag, adding flux and blowing oxygen. Decarburization, dephosphorization treatment, decarburization, tapping with dephosphorization slag left, decarburization, decarburization slag by adding carbonaceous material to reduce iron oxide in slag It is said that six steps are repeated, and the advantages of the hot metal pretreatment described above can be enjoyed without impairing the productivity.

また、特許文献2には、2つの転炉を用いて脱珪処理、脱燐処理および脱炭処理を行う方法が開示されている。この方法は、まず第一の転炉において、精錬用酸素と石灰系媒溶材を含む粉体を上吹きランスから吹き付けて脱珪処理を行い、次に脱珪処理スラグの一部を排滓(中間排滓)し、脱珪処理後の溶銑に対し精錬用酸素と石灰系媒溶材を含む粉体を吹き付けて脱燐処理を行い、その後、第二の転炉において、脱燐処理後の溶銑を脱炭処理する方法である。この方法では、脱珪および脱燐処理のいずれか一方もしくは両方の処理において、精錬用酸素、石灰系媒溶材を含む粉体、燃料ガスおよび酸化性ガスを吹き付けることのできるバーナー機能付きランスを用いることで、少量の媒溶材で溶銑の脱珪と脱燐処理ができるという特徴がある。 Patent Document 2 discloses a method of performing desiliconization treatment, dephosphorization treatment and decarburization treatment using two converters. In this method, first, in a first converter, a powder containing refining oxygen and a lime-based solvent is sprayed from an upper blowing lance for desiliconization, and then a part of the desiliconized slag is discharged ( Intermediate slag) and dephosphorization treatment by spraying powder containing refining oxygen and lime-based solvent on the hot metal after desiliconization treatment, and then in the second converter, hot metal after dephosphorization treatment Is a method of decarburizing. In this method, a refining oxygen, a powder containing a lime-based solvent, a lance with a burner function capable of spraying a fuel gas and an oxidizing gas are used in either or both of desiliconization and dephosphorization. As a result, there is a feature that hot metal desiliconization and dephosphorization can be performed with a small amount of a medium-soluble material.

特開平5−140627JP-A-5-140627 WO2014/112432WO2014/113242

「MURC(Multi−Refining Converter)法における中間排滓中の流体挙動に及ぼす各種因子の影響の基礎的検討」、内藤 憲一郎、他3名、鉄と鋼、新日鐵住金(株)、2014年、第100巻、第4号、p.522−529"Fundamental study on the influence of various factors on fluid behavior during intermediate slag in MURC (Multi-Refining Converter) method", Kenichiro Naito, 3 others, Iron and Steel, Nippon Steel & Sumitomo Metal Corporation, 2014 Vol. 100, No. 4, p. 522-529 「冶金プロセスにおけるスラグのフォーミング機構とその制御」、原 茂太、他1名、鉄と鋼、大阪大学、1992年、第78巻、第2号、p.200−208"Slag forming mechanism and its control in metallurgical process", Shigeta Hara, et al., Iron and Steel, Osaka University, 1992, Vol. 78, No. 2, p. 200-208

上掲の各従来技術のうち、特許文献1に記載の方法では、前述した媒溶材(フラックス)の添加と酸素吹き込みによって脱燐処理する工程において、スラグの塩基度を1.0〜2.0、温度を1,350℃以下とすることで、脱燐能を確保している。しかし、この技術の場合、塩基度が1.0を超える領域ではスラグの融点が急激に上昇するため、フラックスの溶解を促進して脱燐能の向上を図ろうとすると、1,350℃以上の温度にて処理しなければならないといった、むしろ脱燐反応にとって不利な操作が必要になるという問題がある。 Among the above-mentioned related arts, in the method described in Patent Document 1, the basicity of the slag is 1.0 to 2.0 in the step of dephosphorizing by adding the medium material (flux) and blowing oxygen described above. By setting the temperature to 1,350° C. or lower, the dephosphorization ability is secured. However, in the case of this technique, the melting point of the slag rises sharply in the range where the basicity exceeds 1.0, so if it is attempted to promote the dissolution of the flux and improve the dephosphorization ability, There is a problem in that the dephosphorization reaction is rather disadvantageous in that the treatment must be carried out at a temperature.

また、特許文献2については、バーナー機能つきの上吹きランスを用いることで、2000℃を超える高温火炎を利用できることから高融点フラックスでも容易に溶解できる利点を有する。しかし、この方法では、二つの転炉を用いることに起因した溶銑の移し替えが発生する。そのため、熱損失が増加し、鉄スクラップの配合範囲が制約されるので鉄スクラップの適正配合範囲を超える場合には新たな熱源が必要となり、熱源コストが増加するという問題を生じさせるおそれがある。 Further, as for Patent Document 2, by using the upper blowing lance with a burner function, it is possible to utilize a high temperature flame exceeding 2000° C., and therefore, there is an advantage that even a high melting point flux can be easily dissolved. However, in this method, hot metal transfer occurs due to the use of two converters. Therefore, heat loss increases and the blending range of the iron scrap is restricted. Therefore, when the blending range of the iron scrap exceeds the proper blending range, a new heat source is required, which may cause a problem that the heat source cost increases.

さらに、非特許文献1には、転炉の中間排滓工程についての水モデルおよび数値解析シミュレーションを行った例が記載されているが、この例では、スラグの粘度が大きくスラグとメタルとの密度差が小さいほど、メタルが流出し易く排滓性が低下することが指摘されている。したがって、転炉の中間排滓工程において、脱珪スラグあるいは脱燐スラグの排出量を高め、石灰などの媒溶材と製鋼スラグ発生量の低減によるメリットを享受するためには、スラグ粘度の低下が必要になる。 Further, Non-Patent Document 1 describes an example in which a water model and a numerical analysis simulation for the intermediate slag process of a converter are performed. In this example, the viscosity of slag is large and the density of slag and metal is high. It has been pointed out that the smaller the difference, the easier the metal will flow out, and the less the slag will be. Therefore, in order to increase the discharge amount of desiliconization slag or dephosphorization slag in the intermediate slag process of the converter, and to enjoy the benefits of reducing the amount of medium-melting materials such as lime and the amount of steelmaking slag generated, the decrease in slag viscosity is required. You will need it.

ただし、この非特許文献1に記載の考え方によると、1の転炉で脱珪と脱燐とを1回の処理で行う場合、脱珪時にはSiOが発生するために、石灰などの媒溶材を投入してスラグの塩基度を1.0〜2.0として脱燐能の低下を抑制することが不可欠となる。しかし、塩基度が1.0を超える領域というのはスラグの融点が急激に上昇するため逆にスラグ粘度が高くなり、排滓性が低下してしまう。即ち、転炉で脱珪と脱燐の処理を行う場合、脱燐能の向上とスラグ粘度の低下による排滓性の両方を同時に確保するのは困難になるという問題がある。 However, according to the concept described in Non-Patent Document 1, when desiliconization and dephosphorization are performed in one conversion in one converter, SiO 2 is generated at the time of desiliconization. It is indispensable to control the decrease of the dephosphorization ability by adding the slag with the basicity of 1.0 to 2.0. However, in the region where the basicity exceeds 1.0, the melting point of the slag sharply rises, so that the slag viscosity becomes high and the slag waste property deteriorates. That is, in the case of performing desiliconization and dephosphorization treatment in a converter, there is a problem that it is difficult to simultaneously secure both improved dephosphorization capacity and slag viscosity due to a decrease in slag viscosity.

しかも、発明者らの研究によると、転炉で脱珪と脱燐の処理を行った後、脱珪と脱燐の処理で生成したスラグを中間排滓するとき、上記スラグがフォーミングした状態において中間排滓を行うと、排滓性の向上につながることが分かった。 Moreover, according to the research conducted by the inventors, when the slag produced by the desiliconization and dephosphorization treatment is subjected to the intermediate slag after the desiliconization and dephosphorization treatment in the converter, the slag is formed in a state of being formed. It was found that the intermediate slags lead to improvement of slag waste.

一方、非特許文献2には、転炉を含む冶金プロセスにおけるスラグフォーミングの機構とその制御法についての解説があるが、それによると、「フォーミング現象はスラグの組成に依存し、特に表面張力に関わり、融体の粘性については明確な関係が得られない」との記載がある。従って、脱燐能確保のためにスラグ組成が制限される条件では、スラグの中間排滓性を向上させるためには、スラグのフォーミングを促進するようなスラグの表面張力についての検討が必要であることが分かる。 On the other hand, Non-Patent Document 2 describes a mechanism of slag forming in a metallurgical process including a converter and a control method thereof. According to it, "the forming phenomenon depends on the composition of the slag, and especially on the surface tension. Therefore, a clear relationship cannot be obtained regarding the viscosity of the melt.” Therefore, under conditions where the slag composition is limited to secure the dephosphorization ability, it is necessary to study the surface tension of the slag that promotes slag forming in order to improve the intermediate slag slag removal property. I understand.

そこで、本発明は、従来技術が抱えている前述の課題に鑑み開発した方法であり、その目的とするところは、中間排滓処理時のスラグ排出量を高めて中間排滓後の脱燐効率を向上させることができると共にCaO粉粒体等の媒溶材原単位を低減させることのできる有利な精錬方法を提案することにある。 Therefore, the present invention is a method developed in view of the above-mentioned problems of the prior art, and the purpose thereof is to increase the slag discharge amount during the intermediate slag treatment to improve the dephosphorization efficiency after the intermediate slag. Another object of the present invention is to propose an advantageous refining method capable of improving the production efficiency and reducing the basic unit of solvent material such as CaO powder.

本発明は、前記課題を解決して上掲の目的を実現するための方法であって、同一の転炉にて、溶銑から溶鋼を製造するに際し、中間排滓前には上吹きランスから工業用酸素ガスとCaOを含む粉粒体(媒溶材)を転炉内の溶銑に吹き付けて脱珪と脱燐の処理(以下、脱珪・脱燐処理と記す)をし、次に中間排滓後には脱炭と脱燐処理(以下、脱炭・脱燐処理と記す)するという加熱効率の高い方法の採用下で、中間排滓前の媒溶材の滓化と溶融の促進を図る方法として、前記媒溶材を加熱して供給すること、さらには脱燐能の確保のためスラグ組成が制限される中での中間排滓性を向上させるために、スラグのフォーミングが促進されるように、スラグの表面張力を変化させる手段などを採用することを特徴としている。 The present invention is a method for solving the above problems and achieving the above object, wherein in the same converter, when producing molten steel from molten pig iron, before the intermediate slag is blown from the top blowing lance to industrial Granules containing oxygen gas for use and CaO (solvent) are sprayed onto the hot metal in the converter to perform desiliconization and dephosphorization treatment (hereinafter referred to as desiliconization/dephosphorization treatment), then intermediate slag As a method to promote slagging and melting of the medium material before the intermediate slag by adopting a method with high heating efficiency, which is decarburization and dephosphorization treatment (hereinafter referred to as decarburization/dephosphorization treatment). To heat and supply the medium-melting material, and further to improve the intermediate slag removal property while the slag composition is limited to secure the dephosphorization ability, so that the forming of the slag is promoted, It is characterized by adopting a means for changing the surface tension of the slag.

また、本発明では、スラグ塩基度が1.0を超える高い粘度のスラグ、具体的には1,400℃で0.05Pa・s以上の粘度を有するスラグを用いて精錬を行なう場合においても有効な方法を提案するものであり、前記脱珪・脱燐処理後スラグの表面張力を400mN/m以下として前記中間排滓処理にすると、中間排滓処理時のスラグ排出量をさらに向上させることができる。 Further, in the present invention, it is also effective when refining using slag having a high viscosity with a slag basicity exceeding 1.0, specifically, a slag having a viscosity of 0.05 Pa·s or more at 1,400° C. If the surface tension of the slag after the desiliconization/dephosphorization treatment is set to 400 mN/m or less and the intermediate slag treatment is performed, the amount of slag discharged during the intermediate slag treatment can be further improved. it can.

即ち、本発明の第1の方法は、同一の転炉によって溶銑から溶鋼を製造する転炉精錬方法において、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとともにCaOを含む粉粒体からなる媒溶材を溶銑表面に吹き付けて脱珪・脱燐処理を行う際に、バーナー機能を備える上吹きランスを用いることにより、前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから溶銑浴面に吹き付け、生成する脱珪・脱燐処理後スラグを溶銑温度以上の温度としてから中間排滓処理に供することを特徴とする転炉精錬方法である。 That is, the first method of the present invention is, in a converter refining method for producing molten steel from molten iron by the same converter, after charging scrap and molten iron into the converter, industrial oxygen gas is supplied from a top blowing lance. When the desolvation/dephosphorization treatment is carried out by spraying a solvent material composed of powdery particles containing CaO on the surface of the hot metal, by using an upper blowing lance having a burner function, the solvent material is provided with a burner function. It is a converter refining method characterized by heating with a combustion flame and then spraying it on the surface of a hot metal bath, and then producing the desiliconized and dephosphorized slag that has been heated to a temperature above the hot metal temperature and then subjected to intermediate slag treatment.

また、本発明の第2の方法は、同一の転炉によって、1,400℃で0.05Pa・s以上の粘度を有するスラグを用いてまず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法において、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとともにCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて脱珪・脱燐処理を行う際に、バーナー機能を備える上吹きランスを用いることにより、前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから溶銑浴面に吹き付け、生成する脱珪・脱燐処理後スラグを溶銑温度以上の温度としてから中間排滓処理に供することを特徴とする転炉精錬方法である。 In the second method of the present invention, the same converter is used first to perform desiliconization and dephosphorization treatment of hot metal by using slag having a viscosity of 0.05 Pa·s or more at 1,400°C, and then to perform dephosphorization. In a converter refining method for producing molten steel by performing charcoal and dephosphorization treatment, after charging scrap and molten pig iron into the converter, a medium consisting of powdery particles containing CaO together with industrial oxygen gas from an upper blowing lance. When performing desiliconization and dephosphorization treatment by spraying the molten material on the hot metal bath surface, by using an upper blowing lance having a burner function, the medium soluble material is heated by the combustion flame of the burner, and then the hot metal bath is heated. It is a converter refining method characterized in that the slag is sprayed on the surface and the resulting slag after desiliconization and dephosphorization treatment is heated to a temperature of the hot metal temperature or higher and then subjected to intermediate slag treatment.

また、本発明の第3の方法は、同一の転炉によって、まず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法であって、
最初に、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて前記脱珪・脱燐処理を行い、次に、このとき生成した脱珪・脱燐処理後スラグの一部を炉外へ排出する一方、炉内を脱珪・脱燐処理済み溶銑と脱珪・脱燐処理後スラグ残留分とからなるものにする中間排滓処理を行い、次に、炉内の前記脱珪・脱燐処理済み溶銑に対して上吹きランスから精錬用酸素ガスとともに前記媒溶材を吹き付けて溶銑の脱炭・脱燐処理を行い、その後、炉内に残留する脱炭・脱燐処理後の溶鋼を溶鋼鍋に出鋼する一方、炉内に残留する脱炭・脱燐処理後スラグの一部もしくは全部を炉外へ排出して溶鋼を製造する際に、
前記脱珪・脱燐処理を行うに当たり、工業用酸素ガスと前記媒溶材を、バーナー機能を備える上吹きランスを用いることにより前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから、溶銑浴面に吹き付け、生成する前記脱珪・脱燐処理後スラグを溶銑温度以上の温度としたものを中間排滓処理に供することを特徴とする転炉精錬方法である。
Further, a third method of the present invention is a converter refining method for producing molten steel by first performing desiliconization/dephosphorization treatment of hot metal and then decarburizing/dephosphorization treatment in the same converter. ,
First, after scrap and hot metal are charged into the converter, a desolvation/dephosphorization treatment is performed by spraying a medium-soluble material consisting of industrial oxygen gas and powder containing CaO from the top blowing lance onto the hot metal bath surface. Then, while discharging a part of the slag generated after this desiliconization/dephosphorization treatment to the outside of the furnace, the inside of the furnace is degassed/dephosphorized hot metal and the slag remaining after the desiliconization/phosphorus treatment And the demolition and dephosphorization-treated hot metal in the furnace are sprayed with the refining oxygen gas together with the refining oxygen gas from the top blowing lance to remove the hot metal. Performs charcoal/dephosphorization treatment, and then taps the decarburized/dephosphorized molten steel remaining in the furnace into a molten steel ladle, while removing a portion of the decarburized/dephosphorized slag remaining in the furnace or When manufacturing the molten steel by discharging the whole outside the furnace,
In performing the desiliconization/phosphorus removal treatment, the industrial oxygen gas and the medium-dissolving material are heated by the combustion flame of the burner for the medium-dissolving material by using an upper blowing lance having a burner function. It is a converter refining method characterized in that the slag generated after the desiliconization/dephosphorization treatment is sprayed onto the hot metal bath surface and the slag is heated to a temperature of the hot metal temperature or higher for intermediate slag treatment.

また、本発明の第4の方法は、同一の転炉によって、1,400℃で0.05Pa・s以上の粘度を有するスラグを用いてまず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法であって、
最初に、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて前記脱珪・脱燐処理を行い、次に、このとき生成した脱珪・脱燐処理後スラグの一部を炉外へ排出する一方、炉内を脱珪・脱燐処理済み溶銑と脱珪・脱燐処理後スラグ残留分とからなるものにする中間排滓処理を行い、次に、炉内の前記脱珪・脱燐処理済み溶銑に対して上吹きランスから精錬用酸素ガスとともに前記媒溶材を吹き付けて溶銑の脱炭・脱燐処理を行い、その後、炉内に残留する脱炭・脱燐処理後の溶鋼を溶鋼鍋に出鋼する一方、炉内に残留する脱炭・脱燐処理後スラグの一部もしくは全部を炉外へ排出して溶鋼を製造する際に、
前記脱珪・脱燐処理を行うに当たり、工業用酸素ガスと前記媒溶材を、バーナー機能を備える上吹きランスを用いることにより前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから、溶銑浴面に吹き付け、生成する前記脱珪・脱燐処理後スラグを溶銑温度以上の温度としたものを中間排滓処理に供することを特徴とする転炉精錬方法である。
The fourth method of the present invention is to perform desiliconization and dephosphorization treatment of hot metal by using the same converter and slag having a viscosity of 0.05 Pa·s or more at 1,400°C, and then degassing. A converter refining method for producing molten steel by performing charcoal and dephosphorization treatment,
First, after scrap and hot metal are charged into the converter, a desolvation/dephosphorization treatment is performed by spraying a medium-soluble material consisting of industrial oxygen gas and powder containing CaO from the top blowing lance onto the hot metal bath surface. Then, while discharging a part of the slag generated after this desiliconization/dephosphorization treatment to the outside of the furnace, the inside of the furnace is degassed/dephosphorized hot metal and the slag remaining after the desiliconization/phosphorus treatment And the demolition and dephosphorization-treated hot metal in the furnace are sprayed with the refining oxygen gas together with the refining oxygen gas from the top blowing lance to remove the hot metal. Performs charcoal/dephosphorization treatment, and then taps the decarburized/dephosphorized molten steel remaining in the furnace into a molten steel ladle, while removing a portion of the decarburized/dephosphorized slag remaining in the furnace or When manufacturing the molten steel by discharging the whole outside the furnace,
In performing the desiliconization/phosphorus removal treatment, the industrial oxygen gas and the medium-dissolving material are heated by the combustion flame of the burner for the medium-dissolving material by using an upper blowing lance having a burner function. It is a converter refining method characterized in that the slag generated after the desiliconization/dephosphorization treatment is sprayed onto the hot metal bath surface and the slag is heated to a temperature of the hot metal temperature or higher for intermediate slag treatment.

なお、本発明の上記各方法については、前記脱珪・脱燐処理後スラグの表面張力を400mN/m以下として前記中間排滓処理に供することを特徴とする転炉精錬方法がより好ましい実施の形態である。 Regarding each of the above methods of the present invention, a converter refining method characterized by subjecting the slag after the desiliconization/dephosphorization treatment to a surface tension of 400 mN/m or less for the intermediate slag treatment is more preferable. It is a form.

前記のように構成される本発明に係る転炉精錬方法によれば、一つの転炉を用いてまず脱珪・脱燐処理を行ってから中間排滓処理を行い、次いで脱炭・脱燐処理を行う精錬において、加熱効率の高い方法の採用、即ちCaOを含む粉粒体にて構成される媒溶材を燃焼ガスを利用するバーナー機能を備える上吹きランスによる燃焼炎によって加熱することにより、媒溶材を燃焼炎の熱媒体の状態としてから被処理溶銑中に供給することで、媒溶材の滓化と溶融の促進を図ることができる。しかも、本発明の前記各方法により、脱珪・脱燐処理スラグの表面を高温で表面張力を低下させた状態とした場合には、スラグフォーミングが促進され、脱珪・脱燐処理後スラグの中間排滓処理効率を向上させることができるようになる。それらの結果、CaO原単位の低減を図ることができる。 According to the converter refining method of the present invention configured as described above, desiliconization/dephosphorization treatment is first performed using one converter, then intermediate slag treatment is performed, and then decarburization/dephosphorization is performed. In refining to perform treatment, by adopting a method with high heating efficiency, that is, by heating the medium material composed of powdery particles containing CaO by a combustion flame by an upper blowing lance having a burner function utilizing combustion gas, By supplying the medium-melting material into the hot metal of the combustion flame and then supplying it into the hot metal to be treated, it is possible to promote the melting and melting of the medium-melting material. Moreover, when the surface of the desiliconization/dephosphorization-treated slag is brought into a state where the surface tension is lowered at a high temperature by each of the methods of the present invention, slag foaming is promoted, and the slag after the desiliconization/dephosphorization treatment is treated. It becomes possible to improve the efficiency of intermediate waste treatment. As a result, the unit consumption of CaO can be reduced.

また、本発明の前記各方法によれば、上記のような処理の採用によって、炉内に残留するスラグ量の低減をも図ることができる。 Further, according to each of the methods of the present invention, the amount of slag remaining in the furnace can be reduced by adopting the above-described treatment.

脱珪・脱燐および脱炭・脱燐の各処理を行うために用いる、バーナー機能つき上吹きランスを装備してなる転炉設備の概略図である。FIG. 3 is a schematic view of a converter equipment equipped with an upper blowing lance with a burner function, which is used for performing desiliconization/dephosphorization and decarburization/dephosphorization. バーナー機能つき上吹きランスを用いて、溶銑浴面に対し精錬用酸素ガスとともにCaO系粉粒体を吹き付けたときの、燃料ガス使用の有無(イ、ロ)と、CaO粉吹き付けの有無(ロ、ハ)とについて、脱珪・脱燐処理中のスラグ加熱特性(溶融スラグ温度−溶銑温度)について評価した図である。Whether or not fuel gas is used (a, b) and CaO powder is sprayed (b) when the CaO-based powder and granules are sprayed together with the refining oxygen gas onto the hot metal bath surface using the top-blowing lance with burner function. , C) is a diagram in which slag heating characteristics (melted slag temperature-hot metal temperature) during desiliconization/dephosphorization treatment are evaluated. バーナー機能つき上吹きランスを用いて、溶銑浴面に対し精錬用酸素ガスとともにCaO粉を吹き付けたときの、燃料ガス使用の有無(イ、ロ)とCaO粉の有無(ロ、ハ)とについて脱珪・脱燐処理後スラグの中間排滓率について評価した図である。About the presence or absence of fuel gas (a, b) and the presence or absence of CaO powder (b, c) when CaO powder is sprayed together with refining oxygen gas onto the hot metal bath surface using a top blowing lance with burner function It is a figure which evaluated the intermediate slag ratio of the slag after desiliconization and dephosphorization processing. バーナー機能つき上吹きランスを用いて、溶銑浴面に対し精錬用酸素ガスとCaO粉を吹き付けるに際しての、燃料ガスの有無と、脱珪・脱燐処理および脱炭・脱燐処理時に用いた合計の媒溶材(CaO含有粉)原単位との関係を示す図である。When spraying refining oxygen gas and CaO powder onto the hot metal bath surface using a top lance with a burner function, the presence or absence of fuel gas and the total used during desiliconization/dephosphorization and decarburization/dephosphorization It is a figure which shows the relationship with the medium solvent (CaO containing powder) basic unit of. スラグの表面張力とスラグの鎮静時間との関係を示す図である。It is a figure which shows the relationship between the surface tension of slag and the slag calming time.

本発明は、前述したように、単一の転炉を用いて脱珪・脱燐処理する際および、その後さらに脱炭・脱燐処理を行う精錬方法、とくに脱珪・脱燐処理中に使用するCaOを含む粉粒体である媒溶材の使い方について、これを加熱して熱媒体の状態にしてから溶銑等の表面(浴面)に吹き付けるという新たな方法に着目して開発した精錬方法である。すなわち、本発明は、たとえスラグ粘度が高い状態であっても排滓性に優れる精錬方法を提案すること、および脱燐能の確保のためスラグ組成が制限される中で、スラグの中間排滓性を向上させるために、スラグのフォーミングを促進するようにスラグの表面張力を変化させる手段を採用することにしたのである。 INDUSTRIAL APPLICABILITY The present invention, as described above, is used when performing desiliconization/dephosphorization treatment using a single converter and, subsequently, a refining method in which further decarburization/dephosphorization treatment is performed, particularly during desiliconization/dephosphorization treatment. The refining method was developed by focusing on a new method of using a medium-soluble material that is CaO-containing powder and granules and heating it into a heat medium state and then spraying it onto the surface (bath surface) of hot metal or the like. is there. That is, the present invention proposes a refining method having excellent slag removal properties even in a state where the slag viscosity is high, and, while the slag composition is limited in order to secure dephosphorization ability, the intermediate slag slag is removed. In order to improve the property, it was decided to adopt a means for changing the surface tension of the slag so as to promote the forming of the slag.

前記精錬方法の実施に当たっては、図1に示すような転炉、例えば酸素ガスの上吹きと、溶銑撹拌のためのガスの底吹きが可能な、いわゆる上底吹き転炉を用いることが推奨される。しかも、この上底吹き転炉は、上吹きランスを通じて酸素ガスや媒溶材の他に、天然ガスや都市ガス、プロパンガスなどの炭化水素系の燃料ガスあるいは気化した液体燃料を燃焼させることのできるバーナーつき上吹きランスを備えたものが好適であり、その上吹きランス直下にはバーナーの燃焼による燃焼火炎を形成させることができるようにした炉である。なお、このような転炉の場合、該上吹きランス、とくにバーナーの作用による燃焼火炎中にCaOを含む粉粒体等からなる媒溶材を通過させることができるため、該媒溶材が燃焼炎の熱媒体の状態となってから溶鉄中(溶銑や溶鋼中)に吹き付けられることになり、高いエネルギー効率が得られる。 In carrying out the refining method, it is recommended to use a converter as shown in FIG. 1, for example, a so-called upper-bottom blowing converter capable of top-blowing oxygen gas and bottom-blowing gas for stirring hot metal. It Moreover, this top-bottom blowing converter can burn not only oxygen gas and the solvent but also hydrocarbon-based fuel gas such as natural gas, city gas, propane gas or vaporized liquid fuel through the top-blowing lance. A furnace equipped with a top-blowing lance with a burner is preferable, and a furnace capable of forming a combustion flame due to combustion of the burner immediately below the top-blowing lance. In addition, in the case of such a converter, since the medium-dissolving material composed of powder particles or the like containing CaO can be passed through the combustion flame due to the action of the upper blowing lance, particularly the burner, the medium-dissolving material is After being in the state of the heat medium, it is sprayed into the molten iron (in the hot metal or molten steel), and high energy efficiency is obtained.

そして、前述したように熱媒体の状態で吹き付けられた媒溶材は、脱珪・脱燐処理スラグの表面を高温にし、さらに該スラグの表面張力を低下させるよう作用するので、該スラグのフォーミングが促進され、良好な中間排滓性を示すようになる。 Then, as described above, the medium-solvent sprayed in the state of the heat medium acts on the surface of the desiliconization/dephosphorization-treated slag at a high temperature, and further acts to reduce the surface tension of the slag, so that the forming of the slag is performed. It is promoted and shows a good intermediate waste property.

一般に、転炉の精錬では、まず、前記上底吹き転炉内に、鉄スクラップと溶銑とを装入したのち、酸素ガスと媒溶材とを上吹きして脱珪・脱燐処理を施すことから始まるのが普通である。 Generally, in refining of a converter, first, iron scrap and hot metal are charged into the upper-bottom blowing converter, and then oxygen gas and a medium-melting material are top-blown to perform desiliconization and dephosphorization treatment. It usually starts with.

前記脱珪・脱燐処理というのは、転炉に付帯して配設されている前記上吹きランスを使っての吹錬の開始と同時に、まず溶銑中の[Si]が、上吹き酸素あるいは底吹き酸素の一部によって酸化され、このとき生成するスラグ中に(SiO)の形で移行する(脱珪処理)ことで進行する。そして、この脱珪処理のときに転炉内に吹き込まれたが消費されなかった余分の酸素が、溶銑中の[P]と[C]を酸化することで、脱炭と脱燐が生じることに加え、さらに溶銑中鉄分も酸化して、(P)および(FeO)を生成しスラグ中に移行する(脱燐処理)ことになる。これらの酸化反応は、全て発熱反応であり、その反応熱によって鉄スクラップの溶解に寄与すると同時に、溶銑温度も上昇する。なお本明細書において、[Si]、[P]、[C]は、溶鉄中(溶銑や溶鋼中)に含まれる成分としてのSi、P、Cを表す。また、(SiO)(P)、(FeO)は、スラグ中に含まれる成分としてのSiO、P、FeO、を表す。以降、本明細書中の(CaO)も同様である。 The desiliconization and dephosphorization treatment means that, at the same time as the start of the blowing using the upper blowing lance that is attached to the converter, the [Si] in the hot metal is the upper blowing oxygen or It is oxidized by a part of the bottom-blown oxygen and is transferred in the form of (SiO 2 ) in the slag generated at this time (desiliconization treatment) to proceed. Then, excess oxygen that was blown into the converter during the desiliconization process but was not consumed oxidizes [P] and [C] in the hot metal, resulting in decarburization and dephosphorization. In addition, the iron content in the hot metal is further oxidized to generate (P 2 O 5 ) and (FeO), which are transferred to the slag (dephosphorization treatment). All of these oxidation reactions are exothermic reactions, and the reaction heat contributes to the melting of the iron scrap and, at the same time, the hot metal temperature rises. In the present specification, [Si], [P], and [C] represent Si, P, and C as components contained in molten iron (hot metal or molten steel). Further, (SiO 2 )(P 2 O 5 ), (FeO) represent SiO 2 , P 2 O 5 , and FeO as components contained in the slag. Hereinafter, the same applies to (CaO) in the present specification.

前記脱珪・脱燐処理に引き続き行う脱炭・脱燐処理は、転炉に付帯して配設されている前記上吹きランスを使っての吹錬の開始と同時に、まず溶銑中の[C]が上吹き酸素あるいは底吹き酸素の一部によって酸化され、COガスとして排ガス中に移行する(脱炭処理)ことで進行する。そして、この脱炭処理のときに転炉内に吹き込まれたが消費されなかった余分の酸素が、溶銑中の[P]の酸化による脱燐に加えて溶銑中鉄分の酸化にも使われ、(P)および(FeO)となってスラグ中に移行する(脱燐処理)のである。 The decarburization/dephosphorization treatment, which is performed subsequent to the desiliconization/phosphorus removal treatment, is carried out at the same time as the start of the blowing using the upper blowing lance provided with the converter and the [C ] Is oxidized by part of top-blown oxygen or bottom-blown oxygen, and is transferred to the exhaust gas as CO gas (decarburization treatment) to proceed. Then, the excess oxygen that was blown into the converter during the decarburization process but was not consumed is used for the dephosphorization by the oxidation of [P] in the hot metal and for the oxidation of the iron content in the hot metal. It becomes (P 2 O 5 ) and (FeO) and moves into the slag (dephosphorization treatment).

なお、このような反応下で炉内に生成する脱珪・脱燐後スラグの塩基度(CaO/SiO)は、(CaO)の溶解速度と(SiO)の生成速度によっても変化し、また、脱珪・脱燐スラグの融点、粘度などの性状は、前記脱珪・脱燐スラグの塩基度や(FeO)などのスラグ中の他の酸化物の構成割合によっても大きく変化する。従って、これらの脱珪・脱燐スラグの塩基度やスラグ中(FeO)の割合は、脱珪・脱燐処理後の中間排滓におけるスラグの流動性を確保する上で重要な操業管理項目となる。例えば、塩基度が高すぎても、あるいは逆に低すぎても融点や粘度が上昇することになるため、前記脱珪・脱燐処理の温度範囲内でスラグの組成とその物性を中間排滓に適したものとするよう調整をすることが好ましい。 The basicity (CaO/SiO 2 ) of the slag after desiliconization and dephosphorization generated in the furnace under such a reaction also changes depending on the dissolution rate of (CaO) and the production rate of (SiO 2 ). Further, properties such as melting point and viscosity of the desiliconized/dephosphorized slag vary greatly depending on the basicity of the desiliconized/dephosphorized slag and the composition ratio of other oxides such as (FeO) in the slag. Therefore, the basicity of these desiliconization/dephosphorization slags and the ratio of (FeO) in the slag are important operational control items for ensuring the fluidity of the slag in the intermediate slag after the desiliconization/dephosphorization treatment. Become. For example, if the basicity is too high, or conversely, it is too low, the melting point and viscosity will increase, so the composition and physical properties of the slag within the temperature range of the above-mentioned desiliconization/dephosphorization treatment will be intermediately removed. It is preferable to make adjustments so as to be suitable for.

本発明方法においては、溶銑浴面に吹き付けられるCaOを含む粉粒体(媒溶材)が、前記脱珪・脱燐処理の進行と共にバーナー機能を備える上吹きランスの燃焼火炎によって加熱されて熱媒体の状態となっているため、速やかに(CaO)の形でスラグ中に移行する。また、加熱されて吹き付けられた前記媒溶剤は、スラグ表面の温度を上昇させる効果も有するので、スラグの組成変化と、スラグの温度上昇の双方の効果でスラグの物性を変化させることができる。即ち、スラグの表面張力も変化させることができる。 In the method of the present invention, the CaO-containing powder or granular material (solvent material) sprayed on the hot metal bath surface is heated by the combustion flame of the upper blowing lance having a burner function with the progress of the desiliconization and dephosphorization treatment, and the heating medium Since it is in the state of (3), it rapidly moves into the slag in the form of (CaO). Further, since the medium solvent heated and sprayed also has the effect of increasing the temperature of the slag surface, it is possible to change the physical properties of the slag by both the composition change of the slag and the temperature increase of the slag. That is, the surface tension of the slag can also be changed.

そこで発明者らは、転炉内の溶銑浴面に工業用酸素ガス等を上吹きして溶銑の脱珪・脱燐処理を行う際のスラグ温度に及ぼす、上吹きランスからの燃料ガス吹き付けによる加熱の有無、CaOを含む粉粒体すなわちCaO粉吹き付けの有無による影響について検討した。具体的には、工業用酸素ガス、CaO粉(媒溶材)およびバーナー燃焼火炎を溶鉄浴面に吹き付けることができるバーナー機能つき上吹きランスを備え、炉底部の底吹き羽口からは攪拌用ガスの吹き込みが可能な300トン容量規模の転炉を用いた試験操業を行い、この試験操業時の溶融スラグ温度と溶銑温度を測定した。なお、溶融スラグと溶銑の温度は、センサーランス(サブランス)先端に測温用プローブを装着して、熱電対による熱起電力変化から推定した。 Therefore, the inventors of the present invention, by spraying industrial oxygen gas or the like on the hot metal bath surface in the converter, influences the slag temperature when performing desiliconization and dephosphorization treatment of the hot metal, The effects of heating and non-heating, and the presence or absence of CaO-containing powder, that is, CaO powder spraying, were examined. Specifically, it is equipped with a top-blowing lance with a burner function that can blow industrial oxygen gas, CaO powder (solvent material), and burner combustion flames onto the molten iron bath surface, and a stirring gas from the bottom-blowing tuyere at the bottom of the furnace. A test operation was performed using a converter having a capacity of 300 tons capable of blowing in, and the molten slag temperature and the hot metal temperature during this test operation were measured. The temperatures of the molten slag and the hot metal were estimated from the change in thermoelectromotive force by a thermocouple with a temperature measuring probe attached to the tip of the sensor lance (sublance).

図1は、この試験操業で用いた転炉設備、即ち天然ガスの如き燃料ガスを用いるバーナー機能つき上吹きランスを備える転炉設備の概略図を示すものである。この図1において、符号1は転炉設備の全体図であり、2は転炉(本体)、3は上吹きランス、4は底吹き羽口、5は溶銑、6は上吹きランスから噴射される酸素ガス噴流、7は燃料ガス(天然ガス)を燃料とするバーナーの燃焼火炎中を通過するCaO粉噴流、8は上吹きランス3へ酸素ガスを供給するための酸素ガス供給管、9は上吹きランスへCaO粉を供給するための粉体搬送管、10は上吹きランスへ天然ガス等を供給するための燃料ガス供給管、11は上吹きランスを冷却する冷却水を供給するための冷却水供給管、12は上吹きランスを冷却した冷却水を排出するための冷却水排出管である。 FIG. 1 is a schematic view of the converter equipment used in this test operation, that is, the converter equipment having an upper blowing lance with a burner function that uses a fuel gas such as natural gas. In FIG. 1, reference numeral 1 is an overall view of converter equipment, 2 is a converter (main body), 3 is a top blowing lance, 4 is a bottom blowing tuyere, 5 is hot metal, and 6 is injected from a top blowing lance. Oxygen gas jet, 7 is a CaO powder jet passing through the combustion flame of a burner using fuel gas (natural gas) as fuel, 8 is an oxygen gas supply pipe for supplying oxygen gas to the upper blowing lance 3, and 9 is A powder conveying pipe for supplying CaO powder to the upper blowing lance, 10 is a fuel gas supplying pipe for supplying natural gas or the like to the upper blowing lance, and 11 is for supplying cooling water for cooling the upper blowing lance. A cooling water supply pipe 12 is a cooling water discharge pipe for discharging the cooling water that has cooled the upper blowing lance.

前記上吹きランス3は、その先端に設置される精錬用ノズルの個数が5孔で、噴射角度が15°のラバール型のものであり、中心部に単孔ストレート型の粉体吹き込み用ノズルを有し、その周囲には環状の燃料ガス供給用ノズルを配置したバーナー機能を備えているものである。 The upper blowing lance 3 is a Laval type having 5 refining nozzles installed at its tip and an injection angle of 15°, and has a single-hole straight type powder blowing nozzle at the center. It has a burner function in which an annular fuel gas supply nozzle is arranged around it.

表1は、前記上吹きランス3に配置したバーナー機能を備える5孔ラバールノズル型噴射ノズルの仕様を示す。なお、噴射ノズルの噴射角度とは、噴射ノズルの酸素ガスジェットの軸心の方向と、上吹きランスの軸心方向との相対角度である。 Table 1 shows the specifications of the 5-hole Laval nozzle type injection nozzle having the burner function arranged on the upper blowing lance 3. The injection angle of the injection nozzle is the relative angle between the axial direction of the oxygen gas jet of the injection nozzle and the axial direction of the upper blowing lance.

Figure 2020125541
Figure 2020125541

そして、前記試験操業に当たっては、上吹き酸素ガス流量を850Nm/min、ランス高さを3.0m、底吹きガス流量を50Nm/min一定を基本条件とし、CaO粉を吹き込む場合には吹き込み速度を600kg/min、天然ガスを吹き込む場合には40Nm/minとして、脱珪・脱燐処理の終了時点におけるスラグ塩基度が1.9、スラグの粘度が1,400℃で0.05Pa・s以上となるように、炉上部より塊状CaOを投入添加した。 In the test operation, the basic conditions are a top-blown oxygen gas flow rate of 850 Nm 3 /min, a lance height of 3.0 m, and a bottom-blown gas flow rate of 50 Nm 3 /min. The speed is 600 kg/min, and when blowing natural gas, 40 Nm 3 /min, the slag basicity at the end of the desiliconization/dephosphorization treatment is 1.9, and the viscosity of the slag is 0.05 Pa·s at 1400°C. Aggregated CaO was added from the upper part of the furnace so as to be s or more.

この試験操業において、前記脱珪・脱燐処理は、溶銑中の[Si]濃度が0.3mass%の時点から開始し、溶銑中の[Si]濃度が0.01mass%になる時点まで行った。そして、この試験操業では、バーナーの有無および粉体吹き付けの有無による溶融スラグ温度の違いを調査するために、
(イ)燃料ガス(天然ガス)の供給は行わず、精錬用酸素ガスとCaO粉だけを吹き付けた場合、
(ロ)CaO粉の吹き付けは行わず、精錬用酸素ガスと天然ガスだけを吹き付けた場合、
(ハ)精錬用酸素ガス、天然ガスおよびCaO粉の全てを吹き付けた場合、
の3水準について比較調査した。
In this test operation, the desiliconization and dephosphorization treatment was started from the time when the [Si] concentration in the hot metal was 0.3 mass% and was performed until the [Si] concentration in the hot metal became 0.01 mass%. .. Then, in this test operation, in order to investigate the difference in the molten slag temperature depending on the presence or absence of a burner and the presence or absence of powder spray,
(B) When fuel gas (natural gas) is not supplied and only refining oxygen gas and CaO powder are sprayed,
(B) When CaO powder is not sprayed and only refining oxygen gas and natural gas are sprayed,
(C) When all of the refining oxygen gas, natural gas and CaO powder are sprayed,
The three levels were compared and investigated.

図2は、前記バーナー機能つき上吹ランスを用いて、溶銑浴面に対し精錬用酸素ガスとともにCaO系粉粒体を吹き付けたときの、燃料ガス使用の有無、CaO吹き付けの有無による各水準における脱珪・脱燐処理終了時点での溶融スラグ温度と溶銑温度との差を示すものである。図2中の「(イ)の投射」は、天然ガスの噴射は行わずに精錬用酸素ガスとCaO粉を噴射した場合であり、図2中の「(ロ)バーナー」はCaO粉の噴射は行わずに、精錬用酸素ガスと天然ガスを噴射した場合であり、図2中の「(ハ)バーナー+投射」は精錬用酸素ガス、天然ガスおよびCaO粉の全てを噴射した場合である。 FIG. 2 shows whether or not the fuel gas is used and whether CaO is sprayed or not when the CaO-based powder and granules are sprayed onto the hot metal bath surface together with the refining oxygen gas by using the above-mentioned top blowing lance with burner function. It shows the difference between the molten slag temperature and the hot metal temperature at the end of the desiliconization/phosphorus removal treatment. “(A) projection” in FIG. 2 is a case where the refining oxygen gas and CaO powder are injected without injecting natural gas, and “(B) burner” in FIG. 2 is CaO powder injection. 2 is a case where the refining oxygen gas and the natural gas are injected, and “(c) Burner+projection” in FIG. 2 is a case where the refining oxygen gas, the natural gas and the CaO powder are all injected. ..

この図2から明らかなように、溶融スラグの温度は、どの水準であっても溶銑温度よりは高くなるという結果が得られた。なかでも、上記(ロ)と(ハ)の水準は、(イ)の水準(精錬用酸素ガスとCaO粉だけを吹き付けた場合)よりも溶融スラグの温度が高く、特に(ハ)の水準(バーナー+投射)では溶融スラグ昇温の効果が顕著に表れた。なお、この場合において、脱珪・脱燐処理終了時点での溶銑温度は、どの水準についても1,300℃〜1,340℃の範囲にあったことから、(ハ)の水準における溶融スラグ温度は約1,600℃以上にもなることがわかった。 As is clear from FIG. 2, the result was obtained that the temperature of the molten slag was higher than the hot metal temperature at any level. Above all, the levels of (b) and (c) above are higher than the level of (a) (when only the refining oxygen gas and CaO powder are sprayed), and the temperature of the molten slag is particularly high ( The effect of raising the temperature of the molten slag was conspicuous in the case of burner+projection. In this case, since the hot metal temperature at the end of the desiliconization/dephosphorization treatment was in the range of 1,300°C to 1,340°C at any level, the molten slag temperature at the level of (c) Was found to be about 1,600°C or higher.

次に、上述した脱珪・脱燐処理に引き続いて中間排滓処理を行った。その結果を図3に示す。なお、図3中の中間排滓率は、下記(1)式で定義された値を用いた。 Next, the above-mentioned desiliconization/phosphorus removal treatment was followed by intermediate slag treatment. The result is shown in FIG. In addition, the value defined by the following formula (1) was used as the intermediate waste ratio in FIG.

Figure 2020125541
Figure 2020125541

図3から明らかなように、中間排滓率(%)は、脱珪・脱燐処理の終了時点における溶融スラグ温度が高くなるケース、即ち精錬用酸素ガスと天然ガスを噴射したケース(ロ)と精錬用酸素ガスと天然ガスおよびCaO粉を噴射したケース(ハ)の水準のときに向上することがわかった。この時と同じスラグ組成の試料について、1,400℃における表面張力を測定したところ、約490−530mN/mであり、1,500℃では約400mN/mまで低下していた。 As is clear from FIG. 3, the intermediate slag ratio (%) is the case where the molten slag temperature becomes high at the end of the desiliconization/phosphorus removal treatment, that is, the case where the refining oxygen gas and natural gas are injected (b). It was found that the improvement was obtained at the level of the case (C) in which oxygen gas for refining, natural gas and CaO powder were injected. The surface tension of the sample having the same slag composition as that at this time was measured at 1,400° C., and it was about 490-530 mN/m, and at 1,500° C., it was reduced to about 400 mN/m.

その後、脱珪・脱燐処理ならびにその後に行った中間排滓処理に引き続き、同じ転炉を用いて脱炭・脱燐処理を行った。これらの処理に当たって使用した上吹きランス3は、前述の脱珪・脱燐処理で使用したものと同じバーナー機能つきのものであり、上吹き酸素ガス流量は1,200Nm/min、ランス高さ2.5m、底吹きガス流量を50Nm/min、CaO粉の吹き込み速度を600kg/min、天然ガス量を40Nm/minとして、脱炭・脱燐終了時点における溶鋼温度が1,650〜1,670℃、溶鋼中[C]濃度が0.03〜0.06mass%、溶鋼中[P]濃度が0.010〜0.014mass%、スラグ塩基度が3.4〜3.6となるように、CaO粉の吹き込み量、鉄鉱石の添加量を調整した。なお、天然ガスはCaO粉の吹き込みが終了した時点で停止した。 After that, following the desiliconization/phosphorus removal treatment and the subsequent intermediate slag treatment, decarburization/phosphorus removal treatment was performed using the same converter. The top-blown lance 3 used in these treatments has the same burner function as that used in the above-mentioned desiliconization/phosphorus removal treatment, the top-blown oxygen gas flow rate is 1,200 Nm 3 /min, and the lance height is 2 The molten steel temperature at the end of decarburization and dephosphorization was 1,650 to 1, with 0.5 m, a bottom blowing gas flow rate of 50 Nm 3 /min, a CaO powder blowing rate of 600 kg/min, and a natural gas amount of 40 Nm 3 /min. 670° C., [C] concentration in molten steel is 0.03 to 0.06 mass%, [P] concentration in molten steel is 0.010 to 0.014 mass%, and slag basicity is 3.4 to 3.6. The amount of CaO powder blown in and the amount of iron ore added were adjusted. The natural gas was stopped when the CaO powder was blown in.

図4は、脱珪・脱燐処理および脱炭・脱燐処理時に使用した媒溶材(CaO粉)原単位の合計を脱珪・脱燐処理時における上吹き条件、即ち、天然ガスの供給は行わず、精錬用酸素ガスとCaO粉のみを吹き付けた場合(イ)、CaO粉の吹き付けは行わず、精錬用酸素ガスと天然ガスを吹き付けた場合(ロ)、精錬用酸素ガス、天然ガスおよびCaO粉の全てを吹き付けた場合(ハ)の3水準について比較したものである。 Figure 4 shows the total of the basic unit of the solvent material (CaO powder) used during desiliconization/dephosphorization treatment and decarburization/dephosphorization treatment. When only refining oxygen gas and CaO powder are sprayed (a), when CaO powder is not sprayed and when refining oxygen gas and natural gas are sprayed (b), refining oxygen gas, natural gas and It is a comparison of three levels of (C) when all of the CaO powder is sprayed.

表4に示すとおり、脱珪・脱燐処理および脱炭・脱燐処理で使用した総媒溶材(CaO)の原単位は、脱珪・脱燐処理後の中間排滓率に応じて低下していた。特に、脱珪・脱燐処理時に上吹きランスから精錬用酸素ガス、天然ガスおよびCaO粉全てを吹き付けた場合(ハ)のときが最も低くなることがわかった。 As shown in Table 4, the basic unit of total solvent solution (CaO) used in desiliconization/dephosphorization treatment and decarburization/dephosphorization treatment decreases according to the intermediate slag ratio after desiliconization/dephosphorization treatment. Was there. In particular, it was found that when the refining oxygen gas, natural gas, and CaO powder were all sprayed from the top-blown lance during the desiliconization/phosphorus removal treatment (C), it was the lowest.

以上説明したとおり、転炉内の溶銑に対し上吹きランス3から精錬用酸素ガスおよびCaO粉を含む粉粒体などからなる媒溶材の投射に加えて、天然ガス等の燃料ガスを同時に噴射して脱珪・脱燐処理をするという本発明に係る転炉精錬方法の場合、該媒溶材が熱媒体の状態となって溶銑に吹き付けられることになる。その結果、このような精錬を行うことにより、溶銑あるいは溶鋼がより効果的に加熱されることで鉄スクラップの配合率を向上させることができる他、脱珪・脱燐処理中の溶融スラグの温度をも高めることができるようになる。従って、該媒溶材の組成が比較的高融点のものであったとしても確実に溶解することができるようになる。その結果として、脱珪・脱燐処理後スラグの粘度の低下によるスラグの排出速度の増加をもたらすのみならず、溶融スラグ温度の上昇による表面張力の低下によってスラグのフォーミングを望ましい状態に維持し易くなり、中間排滓時の排滓効率を格段に向上させることができるようになる。 As described above, in addition to the spraying of the medium-melting material composed of the fine particles of oxygen gas for refining and CaO powder and the like, from the top-blowing lance 3 to the hot metal in the converter, fuel gas such as natural gas is simultaneously injected. In the case of the converter refining method according to the present invention in which desiliconization and dephosphorization are carried out by means of this, the medium-melting material becomes a heat medium and is sprayed onto the hot metal. As a result, by carrying out such refining, the hot metal or molten steel can be more effectively heated and the mixing ratio of iron scrap can be improved, and the temperature of the molten slag during desiliconization/dephosphorization treatment can be improved. You will also be able to increase. Therefore, even if the composition of the medium-melting material has a relatively high melting point, it can be surely dissolved. As a result, not only does the slag discharge rate increase due to the decrease in the viscosity of the slag after desiliconization/phosphorus treatment, but the surface tension decreases due to the increase in the molten slag temperature, making it easier to maintain the desired state of slag forming. Therefore, it becomes possible to remarkably improve the efficiency of waste during intermediate waste.

なお、本発明において目指す、脱珪・脱燐処理後スラグの望ましい表面張力、すなわちスラグフォーミングを促進して中間排滓性を向上させるための表面張力は、低いほどよく、具体的には400mN/m以下にすることが好ましい。その理由は、このスラグの表面張力が400mN/mを超えると、図5に示すように、スラグの鎮静(フォーミングしたスラグが萎む)が早いため、中間排滓が終了する前にスラグが鎮静してしまうことによりスラグの十分な排出ができないためである。なお、スラグのさらに好ましい表面張力は200mN/m以下である。 In the present invention, the desired surface tension of the slag after desiliconization/dephosphorization treatment, that is, the surface tension for promoting slag foaming and improving the intermediate slag removal property is preferably as low as possible, specifically 400 mN/ It is preferably m or less. The reason for this is that when the surface tension of this slag exceeds 400 mN/m, the slag is calmed down (the formed slag shrinks) as shown in FIG. 5, so the slag calms before the end of the intermediate slag. This is because the slag cannot be discharged sufficiently due to this. The more preferable surface tension of the slag is 200 mN/m or less.

なお、溶融スラグの表面張力の測定法としては、静滴法や最大泡圧法などの方法が知られており、これらの方法が本発明におけるスラグ表面張力の測定方法として適用することができる。また、酸化物滴の形成とその落下過程の画像を解析することにより表面張力の値を推算する方法も知られており、この方法もまた本発明が対象とするスラグの表面張力の測定に適用することができる。 As the method for measuring the surface tension of the molten slag, methods such as the static drop method and the maximum bubble pressure method are known, and these methods can be applied as the method for measuring the slag surface tension in the present invention. Further, a method of estimating the value of the surface tension by analyzing an image of the formation of an oxide drop and its dropping process is also known, and this method is also applied to the measurement of the surface tension of the slag targeted by the present invention. can do.

なお、本発明方法におけるより好ましい実施の態様としては、
a)媒溶材投入量とSiO生成量等と溶銑温度からスラグ組成を推定するモデルを作成しておき、
b)そのモデルで推定されたスラグ組成に対して、あらかじめ測定または推算しておいたデータに基づき、スラグの表面張力をスラグ組成と温度の関数として与えて、
c)当該処理でのスラグの表面張力の値が好適範囲となるよう、バーナーの熱量を調整する、
といった方法が挙げられる。
As a more preferred embodiment of the method of the present invention,
a) A model for estimating the slag composition from the amount of the solvent input, the amount of SiO 2 produced, etc., and the hot metal temperature is prepared in advance.
b) Given the surface tension of the slag as a function of slag composition and temperature, based on the data measured or estimated in advance for the slag composition estimated by the model,
c) Adjusting the heat quantity of the burner so that the value of the surface tension of the slag in the treatment is in a suitable range,
There is a method such as.

この実施例は、容量が300トンの図1に示すような上底吹き転炉(酸素ガス上吹き、攪拌用ガス底吹き)を用いて転炉精錬を行った例である。この例で用いた上吹きランス3は、その先端に設置される精錬用ノズルが5孔で、噴射角度が15°のラバール型のものであり、中心部には単孔ストレート形の粉体吹き込み用ノズルとその周囲に円環状の燃料ガス供給用ノズルとを配置してなり、バーナー機能を有するものである。精錬用ノズルは上吹きランスの軸心に対して同一円周上に等間隔に配置したものであり、スロート径(dt)は76.2mm、噴射ノズルの出口径(de)は80.0mmである。 This example is an example in which converter refining was performed using a top-bottom blowing converter (oxygen gas top blowing, stirring gas bottom blowing) as shown in FIG. 1 having a capacity of 300 tons. The upper blowing lance 3 used in this example is a Laval type with 5 holes for refining nozzles installed at its tip and an injection angle of 15°, and a single-hole straight type powder blown into the center. It has a burner function by disposing a fuel gas supply nozzle and an annular fuel gas supply nozzle around it. The refining nozzles were arranged at equal intervals on the same circumference with respect to the axial center of the upper blowing lance, the throat diameter (d t ) was 76.2 mm, and the outlet diameter (d e ) of the injection nozzle was 80. It is 0 mm.

実施に当たっては、鉄スクラップを上底吹き転炉内に装入した後、予め脱硫処理を施した1,310〜1,360℃の溶銑を該上底吹き転炉内に装入した。次いで、底吹き羽口4からは、攪拌用ガスとして窒素ガスを溶銑中に吹き込みながら、前記上吹きランス3から工業用酸素ガス、CaO粉およびバーナーを介して天然ガスの燃焼火炎を溶銑浴面に向けて吹き付けることにより脱珪・脱燐処理を行い、その後、生成した脱珪・脱燐スラグを炉外へ排出(中間排滓)した。次に、脱珪・脱燐スラグの一部と脱珪・脱燐処理後の溶銑を炉内に残留させた状態で、底吹き羽口4から撹拌用ガスとしてアルゴンガスを溶銑中に吹き込みながら、前記上吹きランス3からは引き続き工業用酸素ガス、天然ガスおよびCaO粉を溶銑浴面に向けて吹き付けて脱炭・脱燐処理を行った。このとき使用した溶銑の化学成分を表2に、また脱珪・脱燐処理、脱炭・脱燐処理中の上吹き‐底吹きの条件を表3に示した。 In practice, iron scrap was charged into the upper-bottom blown converter, and then desulfurized hot metal at 1,310 to 1,360° C. that had been desulfurized beforehand was charged into the upper-bottom blown converter. Then, while blowing nitrogen gas into the hot metal from the bottom blowing tuyere 4 as a stirring gas, a combustion flame of natural gas is blown from the top blowing lance 3 through industrial oxygen gas, CaO powder and a burner. Desiliconization and dephosphorization treatment was performed by spraying toward the furnace, and then the generated desiliconization and dephosphorization slag was discharged to the outside of the furnace (intermediate slag). Next, while part of the desiliconization/dephosphorization slag and the hot metal after desiliconization/dephosphorization treatment are left in the furnace, while blowing argon gas into the hot metal from the bottom blowing tuyere 4 as a stirring gas. Then, industrial oxygen gas, natural gas and CaO powder were continuously sprayed from the top blowing lance 3 toward the hot metal bath surface for decarburization and dephosphorization. Table 2 shows the chemical components of the hot metal used at this time, and Table 3 shows the conditions of top blowing-bottom blowing during the desiliconization/dephosphorization treatment and the decarburization/dephosphorization treatment.

Figure 2020125541
Figure 2020125541

Figure 2020125541
Figure 2020125541

このような条件下で、脱珪・脱燐処理終了時の溶銑中[Si]濃度が0.01mass%、脱炭・脱燐処理終了の溶鋼温度が1650℃、溶鋼中[C]濃度が0.04mass%となるように、各々の処理時間と鉄鉱石の添加量を調整した。 Under these conditions, the [Si] concentration in the hot metal at the end of the desiliconization/dephosphorization treatment is 0.01 mass%, the molten steel temperature at the end of the decarburization/dephosphorization treatment is 1650°C, and the [C] concentration in the molten steel is 0%. Each treatment time and the amount of iron ore added were adjusted so as to be 0.04 mass %.

また、脱珪・脱燐処理中、脱炭・脱燐処理中に添加するCaOの一部は炉上ホッパー(図示せず)から投入することとし、残部は上吹きランス3から吹き込むこととして、炉内に生成するスラグの塩基度(mass%CaO/mass%SiO2)が脱珪・脱燐処理時には1.9、脱炭・脱燐処理時には3.5となるように、その合計の添加量を調整した。 In addition, a part of CaO added during the desiliconization/phosphorus removal treatment and the decarburization/phosphorus removal treatment is charged from a furnace hopper (not shown), and the rest is blown from the upper blowing lance 3. Add the total so that the basicity (mass% CaO/mass% SiO 2 ) of the slag generated in the furnace will be 1.9 during desiliconization/dephosphorization treatment and 3.5 during decarburization/dephosphorization treatment. The amount was adjusted.

そして、本発明の効果を確かめるために、炉内スラグの加熱効果を最大限にすべく、上吹きランス3からの燃料用天然ガスとCaO粉の吹き込みを完全に同期させると共に、CaO粉の吹き込みが終了した時点で天然ガスの吹き込みも停止するようにし、炉上のホッパーからの塊状CaOの添加に併せて脱珪・脱燐処理時のみ上吹きランス3からの天然ガスとCaO粉の吹き込みを行った例(発明例1)、脱珪・脱燐、脱炭・脱燐の各処理段階の全てにおいて上吹きランス3から天然ガスとCaO粉の吹き込みを行った例(発明例2)について、表4にまとめた。この表4において、発明例1および発明例2、ならびに比較例1〜5について、それぞれの例における脱珪・脱燐処理終了時のスラグの表面張力は発明例1、2の場合いずれも400mN/m以下であったが、比較例1〜5は、いずれも400mN/m超であることが確かめられた。また、この発明例1、2および比較例1〜5では、スラグは1,400℃で0.05Pa・S以上の粘度のものを用いることとして、脱燐能が阻害されないようにした。 In order to confirm the effect of the present invention, in order to maximize the heating effect of the in-furnace slag, the blowing of the natural gas for fuel and CaO powder from the upper blowing lance 3 is perfectly synchronized, and the CaO powder is blown in. At the end of the process, the blowing of natural gas should be stopped and the blowing of natural gas and CaO powder from the top blowing lance 3 should be performed only during desiliconization and dephosphorization treatment along with the addition of massive CaO from the hopper on the furnace. Regarding the carried out example (Invention Example 1) and the example (Invention Example 2) in which natural gas and CaO powder were blown from the top blowing lance 3 in all of the processing steps of desiliconization/dephosphorization, decarburization/dephosphorization It is summarized in Table 4. In Table 4, with respect to Inventive Examples 1 and 2, and Comparative Examples 1 to 5, the surface tension of the slag at the end of the desiliconization/dephosphorization treatment in each example is 400 mN/in both of the inventive examples 1 and 2. Although it was m or less, it was confirmed that Comparative Examples 1 to 5 were all over 400 mN/m. In addition, in Invention Examples 1 and 2 and Comparative Examples 1 to 5, the slag having a viscosity of 0.05 Pa·S or more at 1,400° C. is used so that the dephosphorization ability is not hindered.

なお、この表4に示した比較例では、上吹きランス3から天然ガスとCaO粉を同時に吹き込むことはしなかった。即ち、脱炭・脱燐処理中バーナー火炎のみを形成させた例(比較例2)、脱珪・脱燐処理中バーナー火炎を形成させずにCaO粉のみの吹込みを行ない、脱炭・脱燐処理中はバーナー火炎のみを形成させた例(比較例3)、脱珪・脱燐処理の初期はバーナー火炎のみを形成させ、脱珪・脱燐処理の後期はバーナー火炎を消火してCaO粉のみの吹込みを行い、さらに脱炭・脱燐処理中はバーナー火炎のみを形成させた例(比較例4)、および、脱珪・脱燐処理中、脱炭・脱燐処理中の両方でバーナー火炎を形成させずにCaO粉のみを吹き込んだ例(比較例5)である。ただし、転炉設備と上記以外の操業方法は上述した発明例に従った。 In addition, in the comparative example shown in Table 4, the natural gas and the CaO powder were not simultaneously blown from the upper blowing lance 3. That is, an example in which only a burner flame was formed during decarburization/dephosphorization treatment (Comparative Example 2), a CaO powder alone was blown without forming a burner flame during decarburization/dephosphorization treatment, An example in which only a burner flame was formed during the phosphorus treatment (Comparative Example 3), only the burner flame was formed in the initial stage of the desiliconization/dephosphorization treatment, and the burner flame was extinguished in the latter stage of the desiliconization/dephosphorization treatment to CaO. An example in which only the powder was blown and only a burner flame was formed during decarburization/dephosphorization treatment (Comparative Example 4), and both during desiliconization/dephosphorization treatment and decarburization/dephosphorization treatment It is an example (Comparative Example 5) in which only CaO powder was blown in without forming a burner flame. However, the converter equipment and the operating method other than the above were in accordance with the above-mentioned invention examples.

Figure 2020125541
Figure 2020125541

表4に示す結果から分るように、発明例1、2と比較例1〜5とは精錬時間(鉄スクラップ装入から出鋼、排滓終了までに要した時間)はほぼ同等であったが、比較例は発明例と比較するとCaO原単位が増加し、鉄歩留が低下していた。一方で、本発明方法を適用した精錬(発明例1、2)の場合、特にバーナー火炎による媒溶剤およびスラグ加熱効果によって表面張力が400mN/m以下の脱珪・脱燐スラグにしたものの場合、スラグ排出能の向上のみならずCaO原単位の低減ならびに鉄歩留の向上を図ることのできる転炉の操業が可能となることが確認できた。 As can be seen from the results shown in Table 4, the refining times (the time required from the charging of the iron scrap to the tapping and the end of the slag) of the invention examples 1 and 2 and the comparative examples 1 to 5 were almost the same. However, in the comparative example, the CaO unit consumption increased and the iron yield decreased as compared with the invention example. On the other hand, in the case of refining (Invention Examples 1 and 2) to which the method of the present invention is applied, particularly in the case of desiliconization/phosphorus dephosphorization slag having a surface tension of 400 mN/m or less due to a solvent medium by a burner flame and a slag heating effect, It was confirmed that not only the improvement of slag discharge capacity but also the reduction of CaO intensity and the improvement of iron yield can be achieved by the operation of the converter.

本発明に係る前述の転炉精錬方法は、転炉以外の他の製鋼精錬技術への応用が可能である。 The converter refining method according to the present invention can be applied to steel refining techniques other than the converter.

1 転炉設備
2 転炉
3 上吹きランス
4 底吹き羽口
5 溶銑
6 酸素ガス噴流
7 CaO粉噴流
8 酸素ガス供給管
9 粉体搬送管
10 燃料ガス供給管
11 冷却水供給管
12 冷却水排出管
1 Converter Equipment 2 Converter 3 Top Blowing Lance 4 Bottom Blowing Tuyere 5 Hot Metal 6 Oxygen Gas Jet 7 CaO Powder Jet 8 Oxygen Gas Supply Pipe 9 Powder Transfer Pipe 10 Fuel Gas Supply Pipe 11 Cooling Water Supply Pipe 12 Cooling Water Discharge tube

Claims (6)

同一の転炉によって溶銑から溶鋼を製造する転炉精錬方法において、
転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとともにCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて脱珪・脱燐処理を行う際に、バーナー機能を備える上吹きランスを用いることにより、前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから溶銑浴面に吹き付け、生成する脱珪・脱燐処理後スラグを溶銑温度以上の温度としてから中間排滓処理に供することを特徴とする転炉精錬方法。
In a converter refining method for producing molten steel from hot metal by the same converter,
After performing the desiliconization and dephosphorization treatment by charging scrap metal and hot metal into the converter, and spraying the medium solvent consisting of powdery particles containing CaO together with industrial oxygen gas from the top blowing lance on the hot metal bath surface. By using an upper blowing lance having a burner function, the medium-melting material is heated by the combustion flame of the burner and then sprayed onto the hot metal bath surface, and the generated slag after desiliconization/dephosphorization treatment is at a temperature higher than the hot metal temperature. The method for refining a converter is characterized in that the temperature of the slag is used for intermediate slag treatment.
同一の転炉によって、1,400℃で0.05Pa・s以上の粘度を有するスラグを用いてまず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法において、
転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとともにCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて脱珪・脱燐処理を行う際に、バーナー機能を備える上吹きランスを用いることにより、前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから溶銑浴面に吹き付け、生成する脱珪・脱燐処理後スラグを溶銑温度以上の温度としてから中間排滓処理に供することを特徴とする転炉精錬方法。
In the same converter, desiliconization and dephosphorization of hot metal is first performed using slag having a viscosity of 0.05 Pa·s or more at 1,400°C, and then decarburization and dephosphorization are performed to produce molten steel. In the converter refining method to
After performing the desiliconization and dephosphorization treatment by charging scrap metal and hot metal into the converter, and then spraying the medium solvent consisting of powdered particles containing CaO together with industrial oxygen gas from the top blowing lance onto the hot metal bath surface. By using an upper blowing lance having a burner function, the medium-melting material is heated by the combustion flame of the burner and then sprayed on the hot metal bath surface to generate slag after desiliconization/dephosphorization treatment, which is higher than the hot metal temperature. The method for refining a converter is characterized in that the temperature of the slag is used for intermediate slag treatment.
前記脱珪・脱燐処理後スラグの表面張力を400mN/m以下として前記中間排滓処理に供することを特徴とする請求項1または2に記載の転炉精錬方法。 3. The converter refining method according to claim 1, wherein the slag after the desiliconization/phosphorus removal treatment has a surface tension of 400 mN/m or less and is subjected to the intermediate slag treatment. 同一の転炉によって、まず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法であって、
最初に、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて前記脱珪・脱燐処理を行い、次に、このとき生成した脱珪・脱燐処理後スラグの一部を炉外へ排出する一方、炉内を脱珪・脱燐処理済み溶銑と脱珪・脱燐処理後スラグ残留分とからなるものにする中間排滓処理を行い、次に、炉内の前記脱珪・脱燐処理済み溶銑に対して上吹きランスから精錬用酸素ガスとともに前記媒溶材を吹き付けて溶銑の脱炭・脱燐処理を行い、その後、炉内に残留する脱炭・脱燐処理後の溶鋼を溶鋼鍋に出鋼する一方、炉内に残留する脱炭・脱燐処理後スラグの一部もしくは全部を炉外へ排出して溶鋼を製造する際に、
前記脱珪・脱燐処理を行うに当たり、工業用酸素ガスと前記媒溶材を、バーナー機能を備える上吹きランスを用いることにより前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから、溶銑浴面に吹き付け、生成する前記脱珪・脱燐処理後スラグを溶銑温度以上の温度としたものを中間排滓処理に供することを特徴とする転炉精錬方法。
A converter refining method for producing molten steel by first performing desiliconization and dephosphorization treatment of hot metal by the same converter, and then performing decarburization and dephosphorization treatment,
First, after scrap and hot metal are charged into the converter, a desolvation/dephosphorization treatment is performed by spraying a medium-soluble material consisting of industrial oxygen gas and powder containing CaO from the top blowing lance onto the hot metal bath surface. Then, while discharging a part of the slag generated after this desiliconization/dephosphorization treatment to the outside of the furnace, the inside of the furnace is degassed/dephosphorized hot metal and the slag remaining after the desiliconization/phosphorus treatment And the demolition and dephosphorization-treated hot metal in the furnace are sprayed with the refining oxygen gas together with the refining oxygen gas from the top blowing lance to remove the hot metal. Performs charcoal/dephosphorization treatment, and then taps the decarburized/dephosphorized molten steel remaining in the furnace into a molten steel ladle, while removing a portion of the decarburized/dephosphorized slag remaining in the furnace or When manufacturing the molten steel by discharging the whole outside the furnace,
In performing the desiliconization/phosphorus removal treatment, the industrial oxygen gas and the medium-dissolving material are heated by the combustion flame of the burner for the medium-dissolving material by using an upper blowing lance having a burner function. A converter smelting method, which comprises subjecting the produced slag after desiliconization/dephosphorization treatment at a temperature equal to or higher than the hot metal temperature to an intermediate slag treatment by spraying on a hot metal bath surface.
同一の転炉によって、1,400℃で0.05Pa・s以上の粘度を有するスラグを用いてまず溶銑の脱珪・脱燐処理を行い、次いで脱炭・脱燐処理を行って溶鋼を製造する転炉精錬方法であって、
最初に、転炉内にスクラップと溶銑とを装入したのち、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて前記脱珪・脱燐処理を行い、次に、このとき生成した脱珪・脱燐処理後スラグの一部を炉外へ排出する一方、炉内を脱珪・脱燐処理済み溶銑と脱珪・脱燐処理後スラグ残留分とからなるものにする中間排滓処理を行い、次に、炉内の前記脱珪・脱燐処理済み溶銑に対して上吹きランスから精錬用酸素ガスとともに前記媒溶材を吹き付けて溶銑の脱炭・脱燐処理を行い、その後、炉内に残留する脱炭・脱燐処理後の溶鋼を溶鋼鍋に出鋼する一方、炉内に残留する脱炭・脱燐処理後スラグの一部もしくは全部を炉外へ排出して溶鋼を製造する際に、
前記脱珪・脱燐処理を行うに当たり、工業用酸素ガスと前記媒溶材を、バーナー機能を備える上吹きランスを用いることにより前記媒溶材についてはこれを前記バーナーの燃焼炎により加熱してから、溶銑浴面に吹き付け、生成する前記脱珪・脱燐処理後スラグを溶銑温度以上の温度としたものを中間排滓処理に供することを特徴とする転炉精錬方法。
In the same converter, desiliconization and dephosphorization of hot metal is first performed using slag having a viscosity of 0.05 Pa·s or more at 1,400°C, and then decarburization and dephosphorization are performed to produce molten steel. A converter refining method that
First, after charging scrap and hot metal into the converter, a desolvation/dephosphorization treatment is carried out by spraying a medium-soluble material consisting of powder particles containing industrial oxygen gas and CaO from the top blowing lance onto the hot metal bath surface. Then, while discharging a part of the slag generated after this desiliconization/dephosphorization treatment to the outside of the furnace, the inside of the furnace is degassed/dephosphorized hot metal and the slag remaining after the desiliconization/phosphorus treatment And the demolition and dephosphorization-treated hot metal in the furnace are sprayed with the refining oxygen gas together with the refining oxygen gas from the top blowing lance to remove the hot metal. Performs charcoal/dephosphorization treatment, and then taps the decarburized/dephosphorized molten steel remaining in the furnace into a molten steel ladle, while removing a portion of the decarburized/dephosphorized slag remaining in the furnace or When manufacturing the molten steel by discharging the whole outside the furnace,
In performing the desiliconization/phosphorus removal treatment, the industrial oxygen gas and the medium-dissolving material are heated by the combustion flame of the burner for the medium-dissolving material by using an upper blowing lance having a burner function. A converter smelting method, which comprises spraying a hot metal bath surface and subjecting the produced slag after desiliconization/dephosphorization treatment at a temperature equal to or higher than the hot metal temperature to an intermediate slag treatment.
前記脱珪・脱燐処理後スラグの表面張力を400mN/m以下として前記中間排滓処理に供することを特徴とする請求項4または5に記載の転炉精錬方法。 The converter smelting method according to claim 4 or 5, wherein the slag after the desiliconization/phosphorus removal treatment has a surface tension of 400 mN/m or less and is subjected to the intermediate slag treatment.
JP2020012552A 2019-02-01 2020-01-29 Converter refining method Active JP7004015B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019017250 2019-02-01
JP2019017250 2019-02-01

Publications (2)

Publication Number Publication Date
JP2020125541A true JP2020125541A (en) 2020-08-20
JP7004015B2 JP7004015B2 (en) 2022-01-21

Family

ID=72083618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012552A Active JP7004015B2 (en) 2019-02-01 2020-01-29 Converter refining method

Country Status (1)

Country Link
JP (1) JP7004015B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386675A (en) * 2022-08-26 2022-11-25 承德建龙特殊钢有限公司 Blowing device and method for tapping of converter
JP2022176169A (en) * 2021-05-14 2022-11-25 Jfeスチール株式会社 Method of reforming material, method of smelting molten iron, and method of producing slag material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012039A1 (en) * 2011-07-19 2013-01-24 Jfeスチール株式会社 Method for smelting molten pig iron
JP2013189714A (en) * 2012-01-19 2013-09-26 Jfe Steel Corp Method for preliminary treatment of molten iron
JP2016188423A (en) * 2015-03-30 2016-11-04 Jfeスチール株式会社 Method for dephosphorizing and decarbonizing molten iron
JP2018083974A (en) * 2016-11-25 2018-05-31 Jfeスチール株式会社 Method for refining molten iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012039A1 (en) * 2011-07-19 2013-01-24 Jfeスチール株式会社 Method for smelting molten pig iron
JP2013189714A (en) * 2012-01-19 2013-09-26 Jfe Steel Corp Method for preliminary treatment of molten iron
JP2016188423A (en) * 2015-03-30 2016-11-04 Jfeスチール株式会社 Method for dephosphorizing and decarbonizing molten iron
JP2018083974A (en) * 2016-11-25 2018-05-31 Jfeスチール株式会社 Method for refining molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176169A (en) * 2021-05-14 2022-11-25 Jfeスチール株式会社 Method of reforming material, method of smelting molten iron, and method of producing slag material
CN115386675A (en) * 2022-08-26 2022-11-25 承德建龙特殊钢有限公司 Blowing device and method for tapping of converter
CN115386675B (en) * 2022-08-26 2023-08-15 承德建龙特殊钢有限公司 Blowing device and method for tapping steel of converter

Also Published As

Publication number Publication date
JP7004015B2 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
KR101418125B1 (en) Manufacture of ferroalloys
JP4735169B2 (en) Hot metal dephosphorization method
JP6036172B2 (en) Method of refining hot metal in converter
JP6828678B2 (en) Converter refining method
JP2012031452A (en) Method of dephosphorizing hot metal
JP7004015B2 (en) Converter refining method
JP4938464B2 (en) Low carbon steel manufacturing method
JP5867520B2 (en) Hot metal pretreatment method
JP2007051349A (en) Method for dephosphorizing molten pig iron and top-blown lance for dephosphorizing treatment
JP5928094B2 (en) Method for refining molten iron
JP5962156B2 (en) Method for refining molten iron
JP2013209738A (en) Method of manufacturing molten steel
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP2003239009A (en) Dephosphorization refining method of hot metal
JP6051561B2 (en) Manufacturing method of molten steel
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
US4891064A (en) Method of melting cold material including iron
JP3668172B2 (en) Hot metal refining method
JP5949627B2 (en) Method of refining hot metal in converter
TW201945549A (en) Dephosphorization method of hot metal
JP5870868B2 (en) Method of refining hot metal in converter
JP5870771B2 (en) Manufacturing method of molten steel
JPH0860221A (en) Converter steelmaking method
JP6115019B2 (en) Manufacturing method of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7004015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150