JP6828678B2 - Converter refining method - Google Patents
Converter refining method Download PDFInfo
- Publication number
- JP6828678B2 JP6828678B2 JP2017254489A JP2017254489A JP6828678B2 JP 6828678 B2 JP6828678 B2 JP 6828678B2 JP 2017254489 A JP2017254489 A JP 2017254489A JP 2017254489 A JP2017254489 A JP 2017254489A JP 6828678 B2 JP6828678 B2 JP 6828678B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- slag
- hot metal
- converter
- cao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007670 refining Methods 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 34
- 238000011282 treatment Methods 0.000 claims description 102
- 239000002893 slag Substances 0.000 claims description 86
- 239000002184 metal Substances 0.000 claims description 72
- 229910052751 metal Inorganic materials 0.000 claims description 72
- 239000000843 powder Substances 0.000 claims description 63
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 41
- 238000007664 blowing Methods 0.000 claims description 41
- 229910001882 dioxygen Inorganic materials 0.000 claims description 41
- 238000005261 decarburization Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 27
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 21
- 239000008187 granular material Substances 0.000 claims description 20
- 238000005507 spraying Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000002699 waste material Substances 0.000 claims description 3
- 239000000289 melt material Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 48
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 38
- 239000003345 natural gas Substances 0.000 description 24
- 229910052742 iron Inorganic materials 0.000 description 19
- 239000007789 gas Substances 0.000 description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000002737 fuel gas Substances 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000008018 melting Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 208000028659 discharge Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000009628 steelmaking Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000030609 dephosphorylation Effects 0.000 description 3
- 238000006209 dephosphorylation reaction Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、転炉内に添加する媒溶材の溶融、滓化を促進することにより、脱珪処理後の中間排滓処理時におけるスラグの排出能を高めるのに有効な転炉精錬方法に関する。 The present invention relates to a converter refining method effective for enhancing the slag discharge capacity during the intermediate slag discharge treatment after the desiliconization treatment by promoting the melting and slag formation of the medium-melting material added to the converter.
近年、製鋼精錬の分野では、高炉から出銑される溶銑中の珪素や燐を転炉での脱炭処理に先立って除去する、いわゆる溶銑予備処理が普及しており、石灰などの媒溶材と製鋼スラグ発生量の低減に寄与することが知られている。しかし、この溶銑予備処理の技術は、たとえば高炉鍋やトピードカーなどの溶銑移送容器で行う場合、溶銑の移し替えに伴う熱損失を伴うため、鉄スクラップなどの冷鉄源の使用割合を抑制しなければならず、このことがCO2などの温室効果ガスの排出量削減の阻害要因となっている。 In recent years, in the field of steelmaking refining, so-called hot metal pretreatment, which removes silicon and phosphorus in hot metal from a blast furnace prior to decarburization in a converter, has become widespread, and it has become popular with mediators such as lime. It is known to contribute to the reduction of the amount of steelmaking slag generated. However, when this hot metal pretreatment technology is performed in a hot metal transfer container such as a blast furnace pot or a topedo car, heat loss is associated with the transfer of hot metal, so the proportion of cold iron sources such as iron scrap must be suppressed. This is an obstacle to reducing greenhouse gas emissions such as CO 2 .
従来、前述した課題に対し、これを有利に解決する、いわゆる溶銑予備処理によるメリットと主原料選択範囲の増加を両立できる技術が開発されている。例えば、特許文献1に開示されているような、一つの転炉を用いて溶銑予備処理と脱炭処理の両方を行う方法がある。この方法は、屑鉄や溶銑を転炉に装入する工程、媒溶材(フラックス)の添加と酸素の吹き込みによる脱燐工程、脱燐スラグを傾転排出する工程、フラックス添加と酸素吹き込みにより脱炭、脱燐処理する工程、脱炭、脱燐スラグを残したまま出鋼する工程、脱炭、脱燐スラグに対して炭材を添加してスラグ中の酸化鉄を還元する工程といった6つの工程を繰り返し行うものであり、生産性を阻害することなしに前述の溶銑予備処理のメリットを享受できるとしている。 Conventionally, a technique has been developed that can advantageously solve the above-mentioned problems, that is, both the merit of so-called hot metal pretreatment and the increase in the selection range of the main raw material. For example, as disclosed in Patent Document 1, there is a method of performing both hot metal pretreatment and decarburization treatment using one converter. This method includes a process of charging scrap iron and hot metal into a converter, a dephosphorization process by adding a filler material (flux) and blowing oxygen, a process of tilting and discharging dephosphorized slag, and decarburizing by adding flux and blowing oxygen. , Dephosphorization, decarburization, steel removal with dephosphorization slag remaining, decarburization, addition of carbonaceous material to dephosphorization slag to reduce iron oxide in slag. It is said that the above-mentioned merits of the hot metal pretreatment can be enjoyed without impairing the productivity.
また、特許文献2には、2つの転炉を用いて脱珪処理、脱燐処理および脱炭処理を行う方法が開示されている。この方法は、まず第一の転炉において、精錬用酸素と石灰系媒溶材を含む粉体を上吹きランスから吹き付けて脱珪処理を行い、次に脱珪処理スラグの一部を中間排滓し、脱珪処理後の溶銑に対し精錬用酸素と石灰系媒溶材を含む粉体を吹き付けて脱燐処理を行ない、その後、第二の転炉において、脱燐処理後の溶銑を脱炭処理する方法である。この方法では、脱珪および脱燐処理のいずれか一方もしくは両方の処理において、精錬用酸素、石灰系媒溶材を含む粉体、燃料ガスおよび支燃性ガスを吹き付けることのできるバーナー機能付きランスを用いることで、少量の媒溶材で溶銑の脱珪と脱燐処理ができるという特徴がある。
Further,
上掲の各従来技術のうち、特許文献1に記載の方法については、前述した内容に加えて媒溶材(フラックス)添加と酸素吹き込みによって脱燐処理する工程において、スラグの塩基度を1.0〜2.0、温度を1350℃以下とすることで、塩基度の低下による脱燐能の低下を抑制している。しかし、この技術の場合、塩基度が1.0を超える領域ではスラグの融点が急激に上昇するため、フラックスの溶解を促進するためにはスラグ中のFeO濃度の上昇を抑えると共に、1350℃以上の温度にて処理することが必要になるという問題がある。 Among the above-mentioned prior arts, the method described in Patent Document 1 has a slag basicity of 1.0 in the step of dephosphorizing by adding a medializing material (flux) and blowing oxygen in addition to the above-mentioned contents. By setting the temperature to ~ 2.0 and the temperature to 1350 ° C. or lower, the decrease in dephosphorization ability due to the decrease in basicity is suppressed. However, in the case of this technique, since the melting point of the slag rises sharply in the region where the basicity exceeds 1.0, in order to promote the dissolution of the flux, the rise in the FeO concentration in the slag is suppressed and the temperature is 1350 ° C. or higher. There is a problem that it is necessary to process at the temperature of.
また、特許文献2については、バーナー機能つきの上吹きランスを用いることで、2000℃を超える高温火炎を利用できることから高融点フラックスでも容易に溶解できる利点を有する。しかし、この方法では、二つの転炉を用いることに起因した溶銑の移し替えが発生する。そのため、熱損失が増加し、鉄スクラップの配合範囲が制約されるので鉄スクラップの適正配合範囲を超える場合には新たな熱源が必要となり、熱源コストが増加するという問題を生じさせるおそれがある。
Further,
さらに、前記非特許文献1では、転炉の中間排滓工程についての水モデルおよび数値解析シミュレーションを行なった例が記載されているが、ここではスラグの粘度が大きくスラグとメタルの密度差が小さい程、メタルが流出し易く排滓性が低下することを指摘している。したがって、転炉の中間排滓工程において、脱珪あるいは脱燐スラグの排出量を高め、石灰などの媒溶材と製鋼スラグ発生量の低減によるメリットを享受するためには、スラグ粘度の低下が必要になる。 Further, the non-patent document 1 describes an example in which a water model and a numerical analysis simulation for the intermediate discharge process of the converter are performed, but here, the viscosity of the slag is large and the density difference between the slag and the metal is small. It is pointed out that the metal easily flows out and the slag removal property decreases. Therefore, it is necessary to reduce the slag viscosity in order to increase the amount of desiliconized or dephosphorized slag discharged in the intermediate slag removal process of the converter and to enjoy the benefits of reducing the amount of lime and other mediators and steelmaking slag generated. become.
本発明は、従来技術が抱えている前述の課題に鑑みて開発したものであり、その目的とするところは、同一の転炉にて、上吹きランスから工業用酸素ガスとCaOを含む粉粒体(媒溶材)を転炉内の溶銑に吹き付けて脱珪、脱燐し、さらに脱炭処理することにより溶銑から溶鋼を製造するための転炉精錬に当たり、詳しくは、転炉内における媒溶材の滓化と溶融の促進を図ることにより、脱珪処理後の中間排滓処理時のスラグ排出量を高めて鉄歩留の向上とCaO粉粒体等の媒溶材原単位を低減させることのできる精錬方法を提案することにある。 The present invention has been developed in view of the above-mentioned problems of the prior art, and an object of the present invention is to use a top-blown slag to produce powders containing industrial oxygen gas and CaO in the same converter. In the converter refining for producing molten steel from hot metal by spraying the body (medium-melting material) onto the hot metal in the converter to desiliconize and dephosphorize, and further decarburize, the medium-melting material in the converter. By promoting the slag formation and melting, the amount of slag discharged during the intermediate slag treatment after the desiliconization treatment is increased, the iron yield is improved, and the basic unit of the medial material such as CaO powder and granules is reduced. It is to propose a refining method that can be done.
本発明は、前記課題を解決して上掲の目的を実現するための方法であり、その要旨とするところは、同一の転炉によって溶銑の脱珪処理ならびにその後の中間排滓処理に引き続き、同じ転炉を用いて脱燐処理および脱炭処理を行なって溶鋼を製造する転炉精錬方法において、まず、転炉内にスクラップと溶銑とを装入してから、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を溶銑浴面に吹き付けて行なう前記脱珪処理に当たり、工業用酸素ガスとCaOを含む粉粒体からなる媒溶材とを、バーナー機能を備える上吹きランスを用いて該媒溶材を加熱して熱媒体とし、溶銑あるいは溶鋼の浴面に吹き付けることにより、脱珪処理終了時点での該脱珪処理スラグの温度を1600℃以上としてからこれを中間排滓処理することを特徴とする転炉精錬方法にある。 The present invention is a method for solving the above-mentioned problems and realizing the above-mentioned object, and the gist thereof is to follow the desiliconization treatment of hot metal and the subsequent intermediate slag treatment by the same converter . In the converter refining method for producing molten steel by performing dephosphorization and decarburization treatment using the same converter , first, scrap and hot metal are charged into the converter, and then industrial oxygen is supplied from the top blown lance. In the desiliconization treatment performed by spraying a medium-soluble material composed of powders and granules containing gas and CaO onto a hot metal bath surface, an industrial oxygen gas and a medium-soluble material composed of powders and granules containing CaO are top-blown having a burner function. and the heat medium by heating the medium welding material with a lance, by spraying the bath surface of the molten iron or molten steel, which intermediate discharge temperature of the desiliconization treatment slag at desiliconization process end from the 1600 ° C. or higher It is a converter refining method characterized by slag treatment.
また、本発明は、より詳しくは、同一の転炉によって溶銑の脱珪処理ならびにその後の中間排滓処理に引き続き、同じ転炉を用いて脱燐処理および脱炭処理を行なって溶鋼を製造するに際し、まず、転炉内にスクラップと溶銑とを装入して、上吹きランスから工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を該溶銑浴面に吹き付けて溶銑の脱珪処理を行ない、次に、脱珪処理後のスラグの一部を炉外へ排出する一方、炉内を脱珪処理済み溶銑と脱珪処理後スラグの残留分とからなるものにする中間排滓処理を行ない、次に、脱珪処理済み溶銑に対して上吹きランスから精錬用酸素ガスとともにCaOを含む粉粒体からなる媒溶材を吹き付けて溶銑の脱燐、脱炭処理を行ない、次いで、炉内に残留する脱燐、脱炭処理後の溶鋼を溶鋼鍋に出鋼する一方、炉内に残留する脱燐、脱炭処理後スラグの一部もしくは全部を炉外へ排出して溶鋼を製造する転炉精錬方法において、
前記脱珪、脱燐および脱炭の各処理に当たり、工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を、バーナー機能を備える上吹きランスを用いて前記CaOを含む粉粒体からなる前記媒溶材を加熱して熱媒体とし、溶銑あるいは溶鋼の浴面に吹き付けることにより、前記脱珪、脱燐および脱炭の各処理スラグを加熱すると共に、前記脱珪処理についてはこの処理終了時点での該脱珪処理スラグの温度を1600℃以上としてからこれを中間排滓処理に供することを特徴とする転炉精錬方法にある。
Further, more specifically, the present invention manufactures molten steel by performing dephosphorization treatment and decarburization treatment using the same converter, following the desiliconization treatment of hot metal and the subsequent intermediate slag treatment in the same converter. First, scrap and hot metal are charged into the converter, and a medium-melting material composed of powders and granules containing industrial oxygen gas and CaO is sprayed from the top-blown lance onto the hot metal bath surface to desiliconize the hot metal. Next, a part of the slag after the desiliconization treatment is discharged to the outside of the furnace, while the inside of the furnace is composed of the desiliconized hot metal and the residual amount of the slag after the desiliconization treatment. Then, the desiliconized hot metal is dephosphorized and decarburized by spraying a medium-melting material consisting of powders and granules containing CaO together with oxygen gas for refining from the top-blown slag, and then the furnace. While dephosphorization and decarburization treatment of molten steel remaining inside is discharged to a molten steel pot, part or all of the slag remaining in the furnace after dephosphorization and decarburization treatment is discharged to the outside of the furnace to manufacture molten steel. In the converter refining method
In each of the desiliconization, dephosphorization, and decarburization treatments, a medial solution composed of powders and granules containing industrial oxygen gas and CaO is composed of powders and granules containing the CaO using a top blowing slag having a burner function. By heating the medial material to form a heat medium and spraying it onto the hot metal or molten steel bath surface, the desiliconization, dephosphorization and decarburization treatment slags are heated , and the desiliconization treatment is performed at the end of this treatment. A converter refining method is characterized in that the temperature of the desiliconized slag is set to 1600 ° C. or higher and then subjected to an intermediate waste treatment .
前記のように構成される本発明によれば、一つの転炉を用いて脱珪、脱燐および脱炭の処理を行なう精錬において、加熱効率の高い方法の採用、即ちCaOを含む粉粒体にて構成される媒溶材を上吹きランスのバーナーによって熱媒体の状態で被処理溶銑中に供給することにより、熱損失が少なくエネルギー消費量の低減を図ることができると共に、脱珪処理後の中間排滓処理の効率を向上させることができる。そして、そのことによって炉内に残留するスラグ量の低減を図ることができる。 According to the present invention configured as described above, in refining in which desiliconization, dephosphorization and decarburization are performed using one converter, a method with high heating efficiency is adopted, that is, powder or granular material containing CaO. By supplying the medium-melting material composed of the above to the hot metal to be treated in the state of a heat medium by a burner of a top-blown lance, heat loss can be reduced and energy consumption can be reduced, and after desiliconization treatment, it is possible to reduce energy consumption. The efficiency of the intermediate waste treatment can be improved. As a result, the amount of slag remaining in the furnace can be reduced.
本発明は、単一の転炉を用いて脱珪処理、脱燐処理および脱炭処理を行なう精錬方法、とくに精錬中に使用するCaOを含む粉粒体である媒溶材を、熱媒体の状態にして溶銑等の表面に供給する点に特徴を有する方法である。この精錬方法の実施に当たって使用する転炉の構成としては、図1に示すようなものが好適に用いられる。即ち、その転炉は、図に示すように、酸素ガスの上吹きが可能で、溶銑の撹拌のためのガスを底吹きすることが可能な、いわゆる一つの上底吹き転炉を用いること、しかもこの上底吹き転炉は、上吹きランスを通じて酸素ガスや媒溶材の他に、天然ガスや都市ガス、プロパンガスなどの炭化水素系の燃料ガスあるいは気化した液体燃料を燃焼させるバーナーつきの上吹きランスを有する炉であって、その上吹きランス直下にバーナーの燃焼による燃焼火炎を形成させることができる炉である。従って、このような転炉の場合、該上吹きランス、とくにバーナーの作用による燃焼火炎中にCaOを含む粉粒体等からなる媒溶材を通過させた場合、該媒溶材は熱媒体の状態となって溶鉄中に吹き付けられることになり、高いエネルギー効率が得られる。 In the present invention, a refining method for performing desiliconization treatment, dephosphorization treatment and decarburization treatment using a single converter, particularly a medium-melting material which is a powder or granular material containing CaO used during refining, is in a state of a heat medium. This method is characterized in that it is supplied to the surface of hot metal or the like. As the configuration of the converter used in carrying out this refining method, the one shown in FIG. 1 is preferably used. That is, as shown in the figure, the converter uses a so-called one top-bottom blown converter capable of top-blowing oxygen gas and bottom-blowing gas for stirring hot metal. Moreover, this top-bottom blown converter is a top-blown with a burner that burns hydrocarbon-based fuel gas such as natural gas, city gas, propane gas, or vaporized liquid fuel in addition to oxygen gas and medial material through the top-blown lance. It is a furnace having a lance, and a combustion flame can be formed by burning a burner directly under the blown lance. Therefore, in the case of such a converter, when a medium-melting material made of powder or granular material containing CaO is passed through the top-blown lance, particularly the combustion flame due to the action of the burner, the medium-melting material is in the state of a heat medium. It will be sprayed into the molten iron, and high energy efficiency can be obtained.
以下、上記のような設備構成を有する同一の上底吹き転炉を用いて行なう本発明に係る転炉精錬方法について説明する。 Hereinafter, the converter refining method according to the present invention, which is carried out using the same top-bottom blown converter having the above equipment configuration, will be described.
転炉の精錬は、まず、前記上底吹き転炉内に、鉄スクラップと溶銑とを装入したのち、酸素ガスと媒溶材とを上吹きして脱珪処理を施すことから始まる。 Refining of the converter begins with charging iron scrap and hot metal into the upper bottom blowing converter, and then top blowing oxygen gas and a filler to perform desiliconization treatment.
前記脱珪処理は、転炉に付帯して配設される前記上吹きランスを使用した吹錬の開始と同時に、溶銑中の[Si]が、上吹き酸素あるいは底吹き酸素の一部によって酸化され、このとき生成するスラグ中に(SiO2)の形で移行する(脱珪処理)ことで進行する。なお、この脱珪処理において転炉内に吹き込まれたが消費されなかった余分の酸素は、溶銑中[C]の酸化による脱炭と溶銑中鉄分の酸化とに使われ、スラグ中に(FeO)の形となって移行する。これらの酸化反応は全て発熱反応であり、その反応熱によって鉄スクラップの溶解が進行すると同時に、溶銑温度も上昇する。 In the desiliconization treatment, [Si] in the hot metal is oxidized by a part of the top-blown oxygen or the bottom-blown oxygen at the same time as the start of the blowing using the top-blown lance provided incidental to the converter. Then, it proceeds in the form of (SiO 2 ) in the slag generated at this time (desiliconization treatment). The excess oxygen that was blown into the converter but was not consumed in this desiliconization treatment is used for decarburization by oxidation of [C] in the hot metal and for oxidation of iron in the hot metal, and is used in the slag (FeO). ) And transition. All of these oxidation reactions are exothermic reactions, and the heat of the reaction promotes the melting of iron scrap and at the same time raises the hot metal temperature.
本発明においては、前記脱珪処理の進行と共に、バーナー機能を備える上吹きランスの燃焼火炎によって加熱され溶銑浴面に吹き付けられるCaOを含む粉粒体(媒溶材)は、熱媒体となっているため速やかにスラグ中に(CaO)の形で移行する。なお、このような反応下で炉内に生成する脱珪スラグの塩基度(CaO/SiO2)は、(CaO)の溶解速度と(SiO2)の生成速度によっても変化する。また、脱珪スラグの融点、粘度などの性状は、該塩基度と(FeO)などのスラグ中の他の酸化物の構成割合によって大きく変化する。なお、これらの脱珪スラグの塩基度やスラグ中(FeO)の割合は、脱珪処理後の中間排滓におけるスラグの流動性を確保する上で重要な操業管理項目となる。例えば、塩基度が高すぎても、あるいは逆に低すぎても融点や粘度が上昇することになるため、脱珪処理温度の範囲内でスラグ塩基度を調整することが好ましい。 In the present invention, as the desiliconization treatment progresses, the powder or granular material (medium-melting material) containing CaO heated by the combustion flame of the top-blown lance having a burner function and sprayed on the hot metal bath surface serves as a heat medium. Therefore, it quickly shifts into the slag in the form of (CaO). The basicity (CaO / SiO 2 ) of the desiliconized slag generated in the furnace under such a reaction also changes depending on the dissolution rate of (CaO) and the formation rate of (SiO 2 ). In addition, properties such as the melting point and viscosity of desiliconized slag vary greatly depending on the basicity and the composition ratio of other oxides in the slag such as (FeO). The basicity of these desiliconized slags and the ratio in the slag (FeO) are important operation control items for ensuring the fluidity of the slag in the intermediate slag after the desiliconization treatment. For example, if the basicity is too high or too low, the melting point and viscosity will increase. Therefore, it is preferable to adjust the slag basicity within the range of the desiliconization treatment temperature.
そこで発明者らは、転炉内の溶銑浴面に工業用酸素ガス等を上吹きして溶銑の脱珪処理を行う際のスラグ温度に及ぼす上吹きランスからの燃料ガス吹き付けによる加熱の有無、CaOを含む粉粒体すなわちCaO粉吹き付けの有無の影響について調べた。具体的には、工業用酸素ガス、CaO粉(媒溶材)およびバーナー燃焼火炎を溶鉄浴面に吹き付けることができる上吹きランスを備え、炉底部の底吹き羽口からは攪拌用ガスの吹き込みが可能な300トン容量規模の転炉を用いた試験操業を行ない、この操業時の溶融スラグ温度と溶銑温度を測定した。なお、溶融スラグと溶銑の温度はセンサーランス(サブランス)先端に測温用プローブを装着して、熱電対による熱起電力変化から推定した。 Therefore, the inventors have determined whether or not the hot metal bath surface in the converter is heated by blowing fuel gas from the top-blown lance, which affects the slag temperature when top-blown industrial oxygen gas or the like to desiliconize the hot metal. The effect of the presence or absence of CaO-containing powder or granular material, that is, CaO powder spraying was investigated. Specifically, it is equipped with a top-blowing lance that can blow industrial oxygen gas, CaO powder (medium-melting material) and burner combustion flame onto the molten iron bath surface, and a stirring gas is blown from the bottom-blowing tuyere at the bottom of the furnace. A test operation was carried out using a converter with a capacity of 300 tons, and the molten slag temperature and hot metal temperature during this operation were measured. The temperature of the molten slag and the hot metal was estimated from the change in thermoelectromotive force due to the thermocouple by attaching a temperature measuring probe to the tip of the sensor lance (sublance).
図1は、この試験に用いた転炉設備、すなわちバーナー機能つき上吹きランスを具える転炉設備の概略図を示すものである。なお、図1において、符号1は転炉設備の全体図であり、2は転炉(本体)、3は上吹きランス、4は底吹き羽口、5は溶銑、6は上吹きランスから噴射される酸素ガス噴流、7は天然ガスを燃料とするバーナーの燃焼火炎中を通過するCaO粉噴流、8は上吹きランスへ酸素ガスを供給するための酸素ガス供給管、9は上吹きランスへCaO粉を供給するための粉体搬送管、10は上吹きランスへ天然ガス等を供給するための燃料ガス供給管、11は上吹きランスを冷却する冷却水を供給するための冷却水供給管、12は上吹きランスを冷却した冷却水を排出するための冷却水排出管である。 FIG. 1 shows a schematic view of the converter equipment used in this test, that is, the converter equipment equipped with a top-blown lance with a burner function. In FIG. 1, reference numeral 1 is an overall view of the converter equipment, 2 is the converter (main body), 3 is the top blown lance, 4 is the bottom blown tuyere, 5 is the hot metal, and 6 is the top blown lance. Oxygen gas jet, 7 is a CaO powder jet that passes through the combustion flame of a burner that uses natural gas as fuel, 8 is an oxygen gas supply pipe for supplying oxygen gas to the top blow lance, and 9 is to the top blow lance. A powder transport pipe for supplying CaO powder, 10 is a fuel gas supply pipe for supplying natural gas or the like to the top blow lance, and 11 is a cooling water supply pipe for supplying cooling water for cooling the top blow lance. , 12 are cooling water discharge pipes for discharging the cooling water that has cooled the top blown lance.
前記転炉を用いた試験では、上吹きランス3は、その先端に設置される精錬用ノズルの個数が5孔で、噴射角度が15°のラバール型のものである。なお、この上吹きランス3は、中心部に単孔ストレート型の粉体吹き込み用ノズルを有し、その周囲には環状の燃料ガス供給用ノズルを配置したバーナー機能を備えるものである。そして、操業に当たっては、上吹き酸素ガス流量を850Nm3/min、ランス高さを3.0m、底吹きガス流量を50Nm3/min一定を基本条件とし、CaO粉を吹き込む場合には吹き込み速度を600kg/min、天然ガスを吹き込む場合には40Nm3/minとして、脱珪処理終了時点におけるスラグ塩基度が1.9となるように、炉上部よりCaO粉あるいは塊状CaOを添加した。表1に、上吹きランス3に配置したバーナー機能を備える5孔ラバールノズル型噴射ノズルの仕様を示した。なお、噴射ノズルの噴射角度(傾角)とは、噴射ノズルの酸素ガス噴射方向と上吹きランスの軸心方向との相対角度である。
In the test using the converter, the top
この試験において、前記脱珪処理は、溶銑中の[Si]濃度が0.3mass%の時点から開始し、溶銑中の[Si]濃度が0.01mass%になる時点まで継続した。また、バーナーの有無および粉体吹き付けの有無による溶融スラグ温度の違いを調査するために、
(イ)天然ガスの供給は行なわず、精錬用酸素ガスとCaO粉だけを吹き付けた場合、
(ロ)CaO粉の吹き付けは行なわず、精錬用酸素ガスと天然ガスだけを吹き付けた場合、
(ハ)精錬用酸素ガス、天然ガスおよびCaO粉の全てを吹き付けた場合、
の3水準について比較調査した。
In this test, the desiliconization treatment started from the time when the [Si] concentration in the hot metal was 0.3 mass% and continued until the time when the [Si] concentration in the hot metal reached 0.01 mass%. In addition, in order to investigate the difference in molten slag temperature depending on the presence or absence of a burner and the presence or absence of powder spraying,
(B) When natural gas is not supplied and only oxygen gas for refining and CaO powder are sprayed.
(B) When CaO powder is not sprayed and only oxygen gas for refining and natural gas are sprayed.
(C) When all of oxygen gas for refining, natural gas and CaO powder are sprayed
A comparative survey was conducted on the three levels.
図2は、各水準における脱珪終了時点での溶融スラグの温度と溶銑の温度差を示す。図2中の「(イ)の投射」は、天然ガスの噴射は行なわずに精錬用酸素ガスとCaO粉を噴射した場合であり、図2中の「(ロ)バーナー」はCaO粉の噴射は行なわずに、精錬用酸素ガスと天然ガスを噴射した場合であり、図2中の「(ハ)バーナー+投射」は精錬用酸素ガス、天然ガスおよびCaO粉の全てを噴射した場合である。 FIG. 2 shows the temperature difference between the temperature of the molten slag and the temperature of the hot metal at the end of desiliconization at each level. “Projection of (a)” in FIG. 2 is a case where oxygen gas for refining and CaO powder are injected without injecting natural gas, and “(b) burner” in FIG. 2 is injection of CaO powder. Is a case where oxygen gas for refining and natural gas are injected without performing, and "(c) burner + projection" in FIG. 2 is a case where all of oxygen gas for refining, natural gas and CaO powder are injected. ..
図2から明らかなように、溶融スラグの温度は、どの水準も溶銑温度よりも高くなるという結果が得られた。なかでも、上記(ロ)と(ハ)の水準は、(イ)の水準(精錬用酸素ガスとCaO粉だけを吹き付けた場合)よりも溶融スラグの温度が高く、特に(ハ)の水準(バーナー投射)では溶融スラグ昇温の効果が顕著に表れた。なお、この場合において、脱珪吹錬終了時点の溶銑温度はどの水準においても1,300℃〜1,340℃の範囲にあったことから、(ハ)の水準における溶融スラグ温度は約1,600℃以上にもなることがわかった。 As is clear from FIG. 2, the results show that the temperature of the molten slag is higher than the hot metal temperature at any level. Above all, the levels of (b) and (c) above are higher than the level of (a) (when only oxygen gas for refining and CaO powder are sprayed), and the temperature of the molten slag is higher than the level of (c). Burner projection) showed a remarkable effect of raising the temperature of the molten slag. In this case, the hot metal temperature at the end of desiliconization blowing was in the range of 1,300 ° C to 1,340 ° C at any level, so the molten slag temperature at the level (c) was about 1, It was found that the temperature reached 600 ° C or higher.
次に、上述した脱珪処理に引き続き中間排滓処理を行なった。その結果を図3に示す。図3中の中間排滓率は下記(1)式で定義した値である。 Next, an intermediate slag treatment was performed following the desiliconization treatment described above. The result is shown in FIG. The intermediate slag rate in FIG. 3 is a value defined by the following equation (1).
図3から明らかなように、中間排滓率(%)は脱珪処理終了時点における溶融スラグ温度が高い(ロ)、(ハ)の水準で向上することがわかった。 As is clear from FIG. 3, it was found that the intermediate slag rate (%) was improved at the level of high molten slag temperature (b) and (c) at the end of the desiliconization treatment.
その後、脱珪処理ならびにその後の中間排滓処理に引き続き、同じ転炉を用いて脱燐処理および脱炭処理を行なった。これらの処理に際して使用した上吹きランスは、前述の脱珪処理で使用したものと同じバーナー機能つきのものであり、上吹き酸素ガス流量は1,200Nm3/min、ランス高さ2.5m、底吹きガス流量を50Nm3/min、CaO粉の吹き込み速度を600kg/min、天然ガス量を40Nm3/minとして、脱燐および脱炭の終了時点における溶鋼温度が1,650℃、溶鋼中[C]濃度が0.05mass%、溶鋼中[P]濃度が0.010mass%、スラグ塩基度が3.5となるように、CaO粉の吹き込み量、鉄鉱石の添加量を調整した。なお、天然ガスはCaO粉の吹き込みが終了した時点で停止した。 Then, following the desiliconization treatment and the subsequent intermediate slag treatment, dephosphorization treatment and decarburization treatment were performed using the same converter. The top-blown lance used in these treatments has the same burner function as that used in the above-mentioned desiliconization treatment, and the top-blown oxygen gas flow rate is 1,200 Nm 3 / min, the lance height is 2.5 m, and the bottom is bottom. The flow rate of blown gas is 50 Nm 3 / min, the blowing speed of CaO powder is 600 kg / min, the amount of natural gas is 40 Nm 3 / min, the molten steel temperature at the end of dephosphorization and decarburization is 1,650 ° C. ] The amount of CaO powder blown and the amount of iron ore added were adjusted so that the concentration was 0.05 mass%, the [P] concentration in molten steel was 0.010 mass%, and the slag basicity was 3.5. The natural gas was stopped when the blowing of CaO powder was completed.
図4は、脱珪処理、脱燐処理および脱炭処理時に使用したCaO原単位の合計を脱珪処理時における上吹き条件、すなわち、天然ガスの供給は行なわず、精錬用酸素ガスとCaO粉を吹き付けた場合(イ)、CaO粉の吹き付けは行なわず、精錬用酸素ガスと天然ガスを吹き付けた場合(ロ)、精錬用酸素ガス、天然ガスおよびCaO粉全てを吹き付けた場合(ハ)の3水準を比較したものである。 FIG. 4 shows the total amount of CaO basic units used in the desiliconization treatment, the dephosphorylation treatment, and the decarburization treatment under the top blowing conditions at the time of the desiliconization treatment, that is, natural gas is not supplied, and oxygen gas for refining and CaO powder are used. When (a), CaO powder is not sprayed, and oxygen gas for refining and natural gas are sprayed (b), when oxygen gas for refining, natural gas and all CaO powder are sprayed (c). This is a comparison of the three levels.
その結果、脱珪処理、脱燐処理および脱炭処理で使用した総CaO原単位は、脱珪処理後の中間排滓率に応じて低下していた。即ち、脱珪処理時に上吹きランスから精錬用酸素ガス、天然ガスおよびCaO粉全てを吹き付けた場合(ハ)が最も低くなることがわかった。 As a result, the total CaO basic unit used in the desiliconization treatment, the dephosphorylation treatment and the decarburization treatment decreased according to the intermediate slag rate after the desiliconization treatment. That is, it was found that the value was lowest when all the oxygen gas for refining, natural gas and CaO powder were sprayed from the top-blown lance during the desiliconization treatment (c).
そこで、本発明に係る転炉精錬方法においては、転炉内の溶銑に上吹きランス3から精錬用酸素ガスおよびCaO粉を含む粉粒体などからなる媒溶材に加えて、天然ガス等の燃料ガスを同時に噴射して脱珪処理を行うことにより、該媒溶材を熱媒体の状態として溶銑に吹き付けることが有効であることが判る。なお、このような精錬を行なうことによって、脱珪処理中の溶融スラグの温度を高めることができるようになるので、媒溶材の組成が比較的高融点のものであっても確実に溶解することができ、その結果、脱珪スラグの粘度の低下と溶解範囲の拡大をもたらし、中間排滓時の排滓効率を向上させることができるようになる。
Therefore, in the converter refining method according to the present invention, a fuel such as natural gas is added to the hot metal in the converter from the top-blown
この実施例は、容量が300トンの図1に示すような上底吹き転炉(酸素ガス上吹き、攪拌用ガス底吹き)を用いて転炉精錬を行なった例である。この例では、上吹きランス3の先端に設置される精錬用ノズルは5孔で、噴射角度が15°のラバール型のものであり、中心部には単孔ストレート型の粉体吹き込み用ノズルとその周囲に円環状の燃料ガス供給用ノズルを配置し、バーナー機能を有するものを用いた。精錬用ノズルは上吹きランスの軸心に対して同一円周上に等間隔で配置したものであり、スロート径(dt)は76.2mm、噴射ノズルの出口径(de)は80.0mmである。
This example is an example in which converter refining was performed using an upper bottom blowing converter (oxygen gas top blowing, stirring gas bottom blowing) as shown in FIG. 1 having a capacity of 300 tons. In this example, the refining nozzle installed at the tip of the
実施に当たり、鉄スクラップを上底吹き転炉内に装入した後、予め脱硫処理を施した1310〜1360℃の溶銑を該上底吹き転炉内に装入した。次いで、底吹き羽口4からは、攪拌用ガスとして窒素ガスを溶銑中に吹き込みながら、前記上吹きランス3から工業用酸素ガス、CaO粉およびバーナーを介して天然ガスの燃焼火炎を溶銑浴面に向けて吹き付けることにより脱珪処理を行ない、その後、生成した脱珪スラグを炉外へ排出(中間排滓)した。そして、脱珪スラグの一部と脱珪処理後の溶銑を炉内に残留させた状態で、底吹き羽口4から撹拌用ガスとしてアルゴンガスを溶銑中に吹き込みながら、前記上吹きランス3からは引き続き工業用酸素ガス、天然ガスおよびCaO粉を溶銑浴面に向けて吹き付けて脱燐および脱炭処理を行なった。このとき使用した溶銑の化学成分を表2に、また脱珪処理、脱燐および脱炭処理中の上吹き−底吹きの条件を表3に示した。
In the implementation, iron scrap was charged into the upper bottom blown converter, and then hot metal at 131 to 1360 ° C., which had been subjected to a desulfurization treatment in advance, was charged into the upper bottom blown converter. Next, from the bottom blowing tuyere 4, while blowing nitrogen gas into the hot metal as a stirring gas, the combustion flame of natural gas is blown from the
このような条件下で、脱珪処理終了時の溶銑中[Si]濃度が0.01mass%、脱燐および脱炭処理終了の溶鋼温度が1650℃、溶鋼中[C]濃度が0.04mass%となるように、各々の処理時間と鉄鉱石の添加量を調整した。 Under such conditions, the [Si] concentration in the hot metal at the end of the desiliconization treatment is 0.01 mass%, the molten steel temperature at the end of the dephosphorization and decarburization treatment is 1650 ° C., and the [C] concentration in the molten steel is 0.04 mass%. The treatment time and the amount of iron ore added were adjusted so as to be.
また、脱珪処理中、脱燐および脱炭処理中に添加するCaOの一部は炉上ホッパー(図示せず)から投入し、残部を上吹きランス3から吹き込んで、炉内に生成するスラグの塩基度(mass%CaO/mass%SiO2)が脱珪処理時には1.9、脱燐および脱炭処理時には3.5となるように、その合計の添加量を調整した。
In addition, a part of CaO added during the desiliconization treatment, dephosphorization and decarburization treatment is charged from the furnace hopper (not shown), and the rest is blown from the
そして、炉内スラグの加熱効果を最大限にして本発明の効果を得るために、上吹きランス3からの燃料用天然ガスとCaO粉の吹き込みを完全に同期させると共に、CaO粉の吹き込みが終了した時点で天然ガスの吹き込みも停止するようにし、炉上のホッパーからの塊状CaOの添加に併せて脱珪処理時のみ上吹きランス3からの天然ガスとCaO粉の吹き込み(本発明例1)を行なうが、脱珪、脱燐および脱炭の各処理段階の全てにおいて上吹きランス3から天然ガスとCaO粉の吹き込みを行なった(本発明例2)。
Then, in order to maximize the heating effect of the slag in the furnace and obtain the effect of the present invention, the blowing of the natural gas for fuel and the CaO powder from the
また、比較のために、転炉設備と操業方法は上述した本発明例に従うが、上吹きランス3からは天然ガスの吹き込みを行わず、バーナー火炎を形成させずに炉上ホッパーから塊状CaOの添加に併せてCaO粉のみを脱珪処理中あるいは脱燐、脱炭処理中に吹き込んだ例(比較例)も実施した。
以下、上述した本発明例及び比較例における操業条件と操業結果を下記表4に示す。
For comparison, the converter equipment and operating method follow the above-mentioned example of the present invention, but natural gas is not blown from the top-blown
Below, Table 4 below shows the operating conditions and operating results in the above-mentioned examples of the present invention and the comparative examples.
表4から明らかなように、発明例と比較例とは製鋼時間(鉄スクラップ装入から出鋼、排滓終了までに要した時間)は、ほぼ同等であったが、比較例では本発明例と比較してCaO原単位が増加し、鉄歩留が低下した。
このように、本発明方法を適用した精錬を行なうことで、鉄歩留を向上させると同時にCaO原単位を低減させる転炉の操業が可能となることが確認できた。
As is clear from Table 4, the steelmaking time (time required from iron scrap charging to steel removal and completion of scavenging) was almost the same between the invention example and the comparative example, but in the comparative example, the present invention example The CaO basic unit increased and the iron yield decreased.
In this way, it was confirmed that by performing refining to which the method of the present invention is applied, it is possible to operate a converter that improves the iron yield and at the same time reduces the CaO basic unit.
1 転炉設備
2 転炉(本体)
3 上吹きランス
4 底吹き羽口
5 溶銑
6 酸素ガス噴流
7 CaO粉噴流
8 酸素ガス供給管
9 粉体搬送管
10 燃料ガス供給管
11 冷却水供給管
12 冷却水排出管
1
3 Top blown lance 4 Bottom
Claims (2)
前記脱珪、脱燐および脱炭の各処理に当たり、工業用酸素ガスとCaOを含む粉粒体からなる媒溶材を、バーナー機能を備える上吹きランスを用いて前記CaOを含む粉粒体からなる前記媒溶材を加熱して熱媒体とし、溶銑あるいは溶鋼の浴面に吹き付けることにより、前記脱珪、脱燐および脱炭の各処理スラグを加熱すると共に、前記脱珪処理についてはこの処理終了時点での該脱珪処理スラグの温度を1600℃以上としてからこれを中間排滓処理に供することを特徴とする転炉精錬方法。 When producing molten steel by desiliconizing hot metal in the same converter and then performing dephosphorization and decarburization in the same converter following the subsequent intermediate slag treatment , first, scrap is placed in the converter. The hot metal is charged, and a medium melt material composed of powders and granules containing industrial oxygen gas and CaO is sprayed from the top-blown slag onto the hot metal bath surface to desiliconize the hot metal, and then after the desiliconization treatment. While a part of the slag is discharged to the outside of the furnace, an intermediate slag treatment is performed to make the inside of the furnace composed of the desiliconized hot metal and the residual amount of the slag after the desiliconization treatment, and then the desiliconization treatment is completed. The hot metal is dephosphorized and decarburized by spraying a medium-melting material consisting of powders and granules containing CaO together with oxygen gas for refining from the top-blown slag, and then dephosphorization and decarburization remaining in the furnace. In a converter refining method for producing molten steel by discharging the later molten steel to a molten steel pot and discharging part or all of the slag remaining in the furnace to the outside of the furnace after dephosphorization and decarburization.
In each of the desiliconization, dephosphorization, and decarburization treatments, a medial solution composed of powders and granules containing industrial oxygen gas and CaO is composed of powders and granules containing the CaO using a top blowing slag having a burner function. By heating the medial material to form a heat medium and spraying it onto the hot metal or molten steel bath surface, the desiliconization, dephosphorization and decarburization treatment slags are heated , and the desiliconization treatment is performed at the end of this treatment. A converter refining method, characterized in that the temperature of the desiliconized slag is set to 1600 ° C. or higher and then subjected to an intermediate waste treatment .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017254489A JP6828678B2 (en) | 2017-12-28 | 2017-12-28 | Converter refining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017254489A JP6828678B2 (en) | 2017-12-28 | 2017-12-28 | Converter refining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019119906A JP2019119906A (en) | 2019-07-22 |
JP6828678B2 true JP6828678B2 (en) | 2021-02-10 |
Family
ID=67307686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017254489A Active JP6828678B2 (en) | 2017-12-28 | 2017-12-28 | Converter refining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6828678B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112577322B (en) * | 2020-12-11 | 2022-12-06 | 交城义望铁合金有限责任公司 | A reinforced agitating unit for water-cooling bell |
WO2022163156A1 (en) | 2021-02-01 | 2022-08-04 | Jfeスチール株式会社 | Refining method of molten iron and manufacturing method of molten steel using same |
KR20230136164A (en) | 2021-02-01 | 2023-09-26 | 제이에프이 스틸 가부시키가이샤 | Method of refining molten iron and manufacturing method of molten steel using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2582692B2 (en) * | 1991-11-16 | 1997-02-19 | 新日本製鐵株式会社 | Converter steelmaking method |
JP5834980B2 (en) * | 2012-02-09 | 2015-12-24 | Jfeスチール株式会社 | Manufacturing method of molten steel |
WO2014112432A1 (en) * | 2013-01-18 | 2014-07-24 | Jfeスチール株式会社 | Converter steelmaking process |
-
2017
- 2017-12-28 JP JP2017254489A patent/JP6828678B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019119906A (en) | 2019-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036172B2 (en) | Method of refining hot metal in converter | |
JP6828678B2 (en) | Converter refining method | |
JP6597332B2 (en) | Phosphate fertilizer manufacturing method and phosphate fertilizer manufacturing apparatus | |
JP7004015B2 (en) | Converter refining method | |
JP2012031452A (en) | Method of dephosphorizing hot metal | |
JP4938464B2 (en) | Low carbon steel manufacturing method | |
JP2005336586A (en) | Dephosphorizing treatment method for molten iron | |
JP5928094B2 (en) | Method for refining molten iron | |
JP7099657B1 (en) | Refining method of molten iron and manufacturing method of molten steel using it | |
JP2013209738A (en) | Method of manufacturing molten steel | |
JP5962156B2 (en) | Method for refining molten iron | |
JP5365678B2 (en) | Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance | |
JP6051561B2 (en) | Manufacturing method of molten steel | |
JP2005139529A (en) | Method for dephosphorization-refining molten pig iron | |
JP3333339B2 (en) | Converter steelmaking method for recycling decarburized slag | |
TW201945549A (en) | Dephosphorization method of hot metal | |
JP5949627B2 (en) | Method of refining hot metal in converter | |
JP5870868B2 (en) | Method of refining hot metal in converter | |
JP3665600B2 (en) | Hot metal dephosphorization method | |
JP3668172B2 (en) | Hot metal refining method | |
JP6115019B2 (en) | Manufacturing method of molten steel | |
JPH0860221A (en) | Converter steelmaking method | |
JP6327298B2 (en) | Hot metal refining method | |
JP6825550B2 (en) | How to operate the upper bottom blown converter | |
JP2022143183A (en) | Molten iron dephosphorization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6828678 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |