JP5365678B2 - Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance - Google Patents

Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance Download PDF

Info

Publication number
JP5365678B2
JP5365678B2 JP2011227627A JP2011227627A JP5365678B2 JP 5365678 B2 JP5365678 B2 JP 5365678B2 JP 2011227627 A JP2011227627 A JP 2011227627A JP 2011227627 A JP2011227627 A JP 2011227627A JP 5365678 B2 JP5365678 B2 JP 5365678B2
Authority
JP
Japan
Prior art keywords
blowing
powder
nozzle
oxygen gas
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011227627A
Other languages
Japanese (ja)
Other versions
JP2013087316A5 (en
JP2013087316A (en
Inventor
悟郎 奥山
幸雄 高橋
直樹 菊池
祐一 内田
新吾 佐藤
恵太 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011227627A priority Critical patent/JP5365678B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2012/006610 priority patent/WO2013057927A1/en
Priority to CN201280051169.9A priority patent/CN103890199B/en
Priority to IN581MUN2014 priority patent/IN2014MN00581A/en
Priority to KR1020147012938A priority patent/KR101623285B1/en
Priority to US14/351,910 priority patent/US9580764B2/en
Priority to EP12841632.8A priority patent/EP2752497B1/en
Priority to BR112014009106-4A priority patent/BR112014009106B1/en
Priority to TW101138277A priority patent/TWI535853B/en
Publication of JP2013087316A publication Critical patent/JP2013087316A/en
Publication of JP2013087316A5 publication Critical patent/JP2013087316A5/ja
Application granted granted Critical
Publication of JP5365678B2 publication Critical patent/JP5365678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder injection lance capable of reducing a compound ratio of molten iron, and a method for refining molten iron using the injection lance. <P>SOLUTION: The powder injection lance is provided with: a refining oxygen gas injection nozzle 5b1 which has multiple ejection openings that are arranged at intervals along a circular trajectory and inject an oxygen gas into an iron bath housed in an iron bath type refining furnace; and a burner nozzle 5b2 which has an axial center coaxial with the central axis of the circular trajectory, and which has an ejection opening which forms a flame on the inside of the refining oxygen gas injection nozzle and which injects into the iron bath a powder to which heat has been transferred by the flame. By regulating an indicator F showing the positional relation between the ejection opening of the refining oxygen gas injection nozzle 5b1 and the ejection opening of the burner nozzle 5b2, the interference of the flame by the refining oxygen gas and the burner becomes small, a flame temperature is kept high, and the powder is efficiently heated. By this means, the efficiency of heat transfer to the iron bath is improved. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、バーナー機能を付与した粉体吹込みランスと、その粉体吹込みランスを用いた溶鉄の精錬方法および溶融還元方法に関する。   The present invention relates to a powder blowing lance imparted with a burner function, a molten iron refining method and a smelting reduction method using the powder blowing lance.

近年、溶鋼の製造プロセスにおいては、環境保護の観点から、COの排出量を少なくするためにスクラップの使用量を増やし溶銑配合率を低下させる操業が採用されている。 In recent years, in the manufacturing process of molten steel, from the viewpoint of environmental protection, an operation has been adopted in which the amount of scrap used is increased and the hot metal mixing ratio is lowered in order to reduce the amount of CO 2 emission.

溶銑配合率を低下させるべく、スクラップを大量に溶解するためには、熱的余裕が必要になる。   In order to lower the hot metal mixture ratio, in order to melt a large amount of scrap, a thermal margin is required.

このための対策として、例えば特許文献1には、溶銑の脱りん処理中に、該溶銑に対して昇熱用の炭素源(熱源)を添加し、熱源不足を補う方法が開示されている。   As a countermeasure for this, for example, Patent Literature 1 discloses a method of adding a carbon source (heat source) for heating to the hot metal during the dephosphorization process of the hot metal to compensate for the shortage of the heat source.

また、特許文献2には、転炉内で発生する一酸化炭素(CO)とランスにより吹き込んだ酸素とを溶湯の浴面上で燃焼(いわゆる二次燃焼)させて、その燃焼熱を溶鉄に着熱させる方法が開示されている。   In Patent Document 2, carbon monoxide (CO) generated in a converter and oxygen blown by a lance are burned on a bath surface of a molten metal (so-called secondary combustion), and the combustion heat is converted into molten iron. A method of applying heat is disclosed.

一方、溶銑の脱りん処理においては、その際に発生するスラグからのフッ素の溶出が問題になっており、蛍石等のフッ素化源を使用することなしに効率的に脱りん処理を施すことが望まれている。   On the other hand, in the dephosphorization treatment of hot metal, the elution of fluorine from the slag generated at that time is a problem, and the dephosphorization treatment should be performed efficiently without using a fluorination source such as fluorite. Is desired.

そのための手段として、特許文献3には、上底吹き転炉において、上吹きランスからCaOとAlの混合粉を溶銑に吹き付けると共に、炉底から攪拌用ガスを吹き込んで溶銑を攪拌しながら脱りん処理を行う方法が開示されている。 As a means for that purpose, Patent Document 3 describes that in a top bottom blowing converter, mixed powder of CaO and Al 2 O 3 is sprayed from the top blowing lance to the hot metal, and stirring gas is blown from the furnace bottom to stir the hot metal. A method of performing a dephosphorization process is disclosed.

さらに、特許文献4〜6には、冶金反応の効率向上を目的として、スラグの滓化を促進させるために、上吹きランスにバーナー機能を付与し、該バーナーの中心孔から脱りん剤を噴出させて加熱、添加する方法がそれぞれ開示さている。   Further, in Patent Documents 4 to 6, for the purpose of improving the efficiency of the metallurgical reaction, in order to promote hatching of slag, a burner function is given to the upper blowing lance, and a dephosphorizing agent is ejected from the central hole of the burner. And heating and adding methods are disclosed.

特開平9―20913号公報JP-A-9-20913 特開昭60―67610号公報JP 60-67610 A 特開2000―345226号公報JP 2000-345226 A 特開平11―080825号公報JP-A-11-080825 特開2005―336586号公報JP 2005-336586 A 特開2007―92158号公報JP 2007-92158 A

ところで、上記特許文献1〜6には、以下に述べるような問題があった。
すなわち、特許文献1に開示された方法では、スクラップを大量に溶解するための熱源を確保することは可能であるが、昇熱用の炭素源(炭材等)を別途投入するため、溶製コストの上昇が避けられない。
Incidentally, the above Patent Documents 1 to 6 have the following problems.
That is, in the method disclosed in Patent Document 1, it is possible to secure a heat source for melting a large amount of scrap, but since a carbon source for heating (carbon material, etc.) is separately added, An increase in cost is inevitable.

また、炭材に含まれる硫黄が混入するため、吹き止めされた鋼のS濃度が高くなるうえ、二酸化炭素(CO)の発生量が増大してしまう。 Moreover, since sulfur contained in the carbon material is mixed, the S concentration of the blown steel increases, and the amount of carbon dioxide (CO 2 ) generated increases.

上記特許文献2に開示の方法では、転炉内で発生するCOとランスにより吹き込んだ酸素が溶銑の浴面上で燃焼するため、炉体耐火物の損耗が激しい。   In the method disclosed in Patent Document 2, CO generated in the converter and oxygen blown by the lance are combusted on the bath surface of the hot metal, so that the furnace refractory is very worn.

引用文献3に開示の方法では、添加するAlによりCaOの融点が低下し、CaOの滓化を促進させることができるものの、スラグ中のAl濃度が高まるため、炉体耐火物の損耗を招き、却って、コスト高になることが懸念されるとともに、脱りん速度が低下してしまう。 In the method disclosed in Cited Document 3, although the melting point of CaO is lowered by Al 2 O 3 to be added and the hatching of CaO can be promoted, the Al 2 O 3 concentration in the slag is increased. This leads to wear and tear of the product, and there is a concern that the cost will increase, and the dephosphorization rate will decrease.

さらに、引用文献4、5、6に開示の方法では、4重管あるいは5重管構造からなる上吹きランスが使用され、脱りん剤等を酸素ガスで搬送しているため、純鉄等を含む反応性の粉体を吹き込むことができない。また、吹込み量、プロパンの流量が低く、溶銑配合率を低減するのに十分な効果が期待できない。   Furthermore, in the methods disclosed in the cited documents 4, 5 and 6, an upper blowing lance having a quadruple pipe or a five-pipe structure is used and a dephosphorizing agent or the like is conveyed by oxygen gas. Reactive powder containing cannot be blown. In addition, the blowing amount and the flow rate of propane are low, and a sufficient effect cannot be expected to reduce the hot metal mixing ratio.

そこで、本発明の目的は、上述したような不具合なしにバーナーの燃焼熱を溶鉄に効率的に付与(着熱)し、溶銑配合率を有利に低減し得る粉体吹込みランス、その吹込みランスを用いた溶鉄の精錬方法および金属溶湯の溶融還元方法を提案するところにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a powder blowing lance that can efficiently impart (heat) the combustion heat of the burner to the molten iron without the above-described problems, and to advantageously reduce the hot metal blending ratio, and the blowing thereof. The present inventors propose a method for refining molten iron using a lance and a method for melting and reducing molten metal.

本発明は、円形軌道に沿い間隔をおいて配列され、鉄浴型精練炉に収容された鉄浴中へ酸素ガスを吹込む複数の噴出開口を有する精錬用酸素ガス吹込みノズルと、前記円形軌道の中心軸と同軸になる軸芯を有し、該精錬用酸素ガス吹込みノズルの内側にて火炎を形成するとともに、該火炎によって着熱された粉体を前記鉄浴中へ吹き込む噴出開口を有するバーナーノズルとを備えた粉体吹込みランスにおいて、前記精練用酸素ガス吹込みノズルと前記バーナーノズルとの位置関係を示す指標Fが、下記の条件を満足することを特徴とするバーナー機能を付与した粉体吹込みランスである。

F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0

R:精練用酸素ガス吹込みノズルのピッチサークルの半径(mm)
r:バーナーノズルの開口半径(mm)
d:精練用酸素ノズルの直径(mm)
θ:精練用酸素がス吹込みノズルの軸芯と、円形軌跡の中心軸とのなす角度(傾角)(°)
L:ランス高さ(mm)
The present invention provides a refining oxygen gas injection nozzle having a plurality of injection openings for arranging oxygen gas into an iron bath accommodated in an iron bath type smelting furnace, arranged at intervals along a circular track, and the circular shape A jet opening having an axis that is coaxial with the central axis of the orbit, forming a flame inside the oxygen gas blowing nozzle for refining, and blowing the powder that has been heated by the flame into the iron bath In a powder blowing lance provided with a burner nozzle having a burner function, the index F indicating the positional relationship between the oxygen gas blowing nozzle for scouring and the burner nozzle satisfies the following conditions: Is a powder blowing lance to which
F = 1.7 (R−r−d / 2) / L + tan (θ−12 °) −0.0524> 0

R: Radius (mm) of pitch circle of oxygen gas blowing nozzle for scouring
r: Opening radius of the burner nozzle (mm)
d: Diameter of scouring oxygen nozzle (mm)
θ: Angle (inclination) (°) between the axis of scouring oxygen and the center axis of the circular trajectory
L: Lance height (mm)

上記の構成からなるバーナー機能を付与した粉体吹込みランスにおいては、該粉体吹込みランスを、脱りん吹錬または脱炭吹錬に使用する精錬用上吹ランスとして適用することが課題解決のための具体的手段として好ましい。   In the powder blowing lance having the burner function configured as described above, it is possible to solve the problem by applying the powder blowing lance as an upper blowing lance for refining used for dephosphorization blowing or decarburization blowing. Preferred as a specific means for

また、本発明は、上記の構成になる粉体吹込みランスを用いて鉄浴型精練炉に収容された溶鉄の精錬を行う方法において、前記バーナーノズルの燃料として、プロパンガス、Cガス等の気体燃料、重油等の液体燃料およびプラスチック等の固体燃料のうちの1種または2種以上を用いることを特徴とするバーナー機能を付与した粉体吹込みランスを用いた溶鉄の精錬方法である。   Further, the present invention provides a method for refining molten iron accommodated in an iron bath type smelting furnace using the powder blowing lance having the above-described configuration, wherein propane gas, C gas or the like is used as fuel for the burner nozzle. A method for refining molten iron using a powder blowing lance provided with a burner function, wherein one or more of gaseous fuel, liquid fuel such as heavy oil, and solid fuel such as plastic are used.

さらに、本発明は、前記鉄浴型精錬炉内に金属酸化物、酸化物系鉱石の粉体または粒体を装入、溶融還元して金属溶湯を得る溶融還元方法において、上記の構成からなる粉体吹込みランスのバーナーノズルを通して、酸化鉄、媒溶材および炭素含有物質のうちのいずれか1種または2種以上の粉粒状の副原料を吹き込むことを特徴とする溶融還元方法である。   Furthermore, the present invention is a smelting reduction method for obtaining a molten metal by charging a metal oxide or oxide-based ore powder or granule into the iron bath type smelting furnace and obtaining a molten metal by the above-mentioned configuration. A smelting reduction method characterized by blowing one or more powdery auxiliary materials out of iron oxide, a solvent and a carbon-containing substance through a burner nozzle of a powder blowing lance.

本発明にかかるバーナー機能を付与した粉体吹込みランスによれば、精練用酸素ガス吹込みノズルと前記バーナーノズルとの位置関係を示す指標Fを、F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0としたため、吹込みにかかる精錬用酸素ガスとバーナーによって形成される火炎の干渉が小さくなり、バーナー火炎の温度が高位に保たれるため、粉体が効率的に加熱され、その結果として溶鉄における着熱効率の向上を図ることができる。   According to the powder blowing lance imparted with the burner function according to the present invention, the index F indicating the positional relationship between the scouring oxygen gas blowing nozzle and the burner nozzle is expressed as F = 1.7 (R−r−d). /2)/L+tan(θ-12°)−0.0524>0, so that the interference between the refining oxygen gas and the flame formed by the burner is reduced, and the temperature of the burner flame is kept high. Therefore, the powder is efficiently heated, and as a result, the heat receiving efficiency in the molten iron can be improved.

また、上記の構成からなるバーナー機能を付与した粉体吹込みランスによれば、溶鉄への着熱効率が改善されるため、脱りん吹錬または脱炭吹錬に使用する精錬用上吹ランスとして用いることにより、スクラップを大量に使用でき、溶銑配合率の大幅な低減が可能となる。また、着熱効率の改善により炭材の使用量を削減することが可能であり、COの排出量の削減を図ることができる。 Moreover, according to the powder blowing lance provided with the burner function having the above-described structure, since the heat receiving efficiency to the molten iron is improved, as an upper blowing lance for refining used for dephosphorization blowing or decarburization blowing By using it, scrap can be used in large quantities, and the hot metal blending ratio can be greatly reduced. In addition, the amount of carbon material used can be reduced by improving the heat receiving efficiency, and the amount of CO 2 emission can be reduced.

また、本発明にかかる粉体吹込みランスによれば、バーナーノズルの燃料として、プロパンガス、Cガス等の気体燃料、重油等の液体燃料およびプラスチック等の固体燃料のうちの1種または2種以上を用いることにより鉄浴型精練炉に収容された溶鉄の精錬を行うことができる。   Further, according to the powder blowing lance according to the present invention, one or two kinds of fuels for the burner nozzle, such as gas fuel such as propane gas and C gas, liquid fuel such as heavy oil, and solid fuel such as plastic, etc. By using the above, the molten iron accommodated in the iron bath type smelting furnace can be refined.

さらに、上記の構成からなる本発明の粉体吹込みランスによれば、該粉体吹込みランスのバーナーノズルを通して、酸化鉄、媒溶材および炭素含有物質のうちのいずれか1種または2種以上の粉粒状の副原料を吹き込むことにより、金属溶湯の溶融還元を行うこともできる。   Furthermore, according to the powder blowing lance of the present invention having the above-described configuration, one or more of iron oxide, a solvent and a carbon-containing substance are passed through the burner nozzle of the powder blowing lance. The molten metal can be melt-reduced by blowing the powdery auxiliary material.

本発明に従う粉体吹込みランスを転炉型精錬設備に設置した状態を示した図である。It is the figure which showed the state which installed the powder blowing lance according to this invention in the converter type refining equipment. (a)(b)は、本発明に従う粉体吹込みランスの具体的構造を模式的に示した図である。(a) (b) is the figure which showed typically the specific structure of the powder blowing lance according to this invention. 粉体温度とF値の関係を示した図である。It is the figure which showed the relationship between powder temperature and F value.

以下、本発明を図面を用いてより具体的に説明する。
図1は、本発明に従う粉体吹込みランスを転炉型精錬設備に設置した状態を示した図であり、図2(a)(b)は、本発明に従う粉体吹込みランスの先端部分の断面を拡大して示した図である。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a view showing a state where a powder blowing lance according to the present invention is installed in a converter type refining facility, and FIGS. 2 (a) and 2 (b) are front end portions of the powder blowing lance according to the present invention. It is the figure which expanded and showed the cross section of.

図における符号1は、炉体である。炉体1は、該炉体1の骨格をなす鉄皮1aと、この鉄皮1aの内側に施工された耐火物層1bから構成されている。   Reference numeral 1 in the figure denotes a furnace body. The furnace body 1 is composed of an iron skin 1a that forms a skeleton of the furnace body 1, and a refractory layer 1b that is constructed inside the iron skin 1a.

また、符号2は、炉体1の底部に設けられ、精錬に際してArガスの如き不活性ガスを吹き込んで鉄浴を攪拌するための底吹き羽口、3は、炉体1内に収容された溶鉄、4は、溶鉄上に浮遊するスラグ、5は、先端を下に向けて起立姿勢でもって配置された粉体吹込みランス(上吹きランス)である。   Reference numeral 2 is provided at the bottom of the furnace body 1, and a bottom blowing tuyere 3 for stirring an iron bath by blowing an inert gas such as Ar gas during refining is housed in the furnace body 1. Molten iron, 4 is a slag that floats on the molten iron, and 5 is a powder blowing lance (upper blowing lance) that is arranged in a standing posture with its tip directed downward.

粉体吹込みランス5の上端には、精錬用酸素ガスを供給する送給管6、燃焼用酸素ガスを供給する送給管7、燃料ガスを供給する送給管8、粉体を供給する送給管9がそれぞれ連結されている。   At the upper end of the powder blowing lance 5, a feed pipe 6 for supplying refining oxygen gas, a feed pipe 7 for supplying combustion oxygen gas, a feed pipe 8 for supplying fuel gas, and powder are supplied. The feed pipes 9 are connected to each other.

さらに、符号10は、上吹きランス5より吹き込まれる粉体、11は、燃料の燃焼によって形成された火炎、12は、粉体10とともに吹き込まれる精錬用酸素ガスである。   Further, reference numeral 10 denotes a powder blown from the upper blowing lance 5, 11 denotes a flame formed by combustion of fuel, and 12 denotes a refining oxygen gas blown together with the powder 10.

粉体吹込みランス5は、その具体的構造を図2(a)(b)に示したように、ランス本体5aと、このランス本体5aの先端部に一体連結するノズル部5bとから構成されている。   As shown in FIGS. 2 (a) and 2 (b), the powder blowing lance 5 includes a lance main body 5a and a nozzle portion 5b integrally connected to the tip of the lance main body 5a. ing.

ランス本体5aは、冷却水循環路mを有する外管5aと、該外管5aの内側に精錬用酸素ガスの吹き込み経路を形成するように同心配置された内管5aからなる。 Lance body 5a includes an outer tube 5a 1 having a cooling water circulation path m, consisting of the inner tube 5a 2 which is concentrically arranged to form a blowing path refining oxygen gas to the inside of the outer tube 5a 1.

また、ノズル部5bには、炉体1に収容された鉄浴中へ酸素ガスを吹き込む精錬用酸素ガス吹込みノズル5bと、バーナーノズル5bが設けられており、粉体10は、内管5aの最内側に形成される通路を通して不活性ガス等の搬送ガスとともに吹き込まれる。 Further, the nozzle portion 5b, and the refining oxygen gas blowing nozzle 5b 1 for blowing oxygen gas into the iron bath contained in the furnace body 1, is provided with the burner nozzle 5b 2, the powder 10, the inner It is blown with carrier gas such as an inert gas through passages formed in the innermost tube 5a 2.

ランス本体5aの内管5aの内側には、燃焼用酸化性ガスを供給する経路と燃料を供給する経路を形成するための管体5a、5aを適宜同心に配置しておくことができる。この場合、最内側に位置する管体5aが粉体の送給経路を形成する。 Inside the inner pipe 5a 2 of the lance body 5a, the pipe bodies 5a 3 and 5a 4 for forming a path for supplying the oxidizing gas for combustion and a path for supplying the fuel may be appropriately concentrically arranged. it can. In this case, pipe 5a 4 located innermost forms a feeding path of the powder.

上記の精錬用酸素ガス吹込みノズル5bは、円形軌道K(図2(b)参照)に沿い間隔をおいて配列され、精錬用酸素ガスの吹込み経路につながる複数の噴出開口eを備えている。 The refining oxygen gas injection nozzle 5b 1 includes a plurality of injection openings e that are arranged at intervals along the circular track K (see FIG. 2B) and connect to the refining oxygen gas injection path. ing.

また、バーナーノズル5bは、円形軌道Kの中心軸Kと同軸になる軸芯Jを有し、精錬用酸素ガス吹込みノズル5bの噴出開口eの径方向の内側で火炎11を形成するとともに、該火炎11によって着熱された粉体10を鉄浴中へ吹き込む噴出開口fを備えている。 Further, the burner nozzle 5b 2 has the axis J to become the center axis K 1 and coaxial circular path K, form a flame 11 inside the radial direction of the ejection openings e of the refining oxygen gas blowing nozzle 5b 1 In addition, an ejection opening f is provided for blowing the powder 10 that has been heated by the flame 11 into the iron bath.

上記円形軌道Kは、仮想線で表示されるものであって、噴出開口eの軸芯が円形軌道K上にある場合に、該円形軌道Kを、噴出開口eのピッチサークルと呼ぶこととする。   The circular trajectory K is displayed as a virtual line, and when the axis of the ejection opening e is on the circular trajectory K, the circular trajectory K is referred to as a pitch circle of the ejection opening e. .

ここに、精練用酸素ガス吹込みノズル5bの噴出開口eにおけるピッチサークルの半径をR(mm)、バーナーノズル5bの噴出開口fの半径をr(mm)、精練用酸素ノズル5bの噴出開口eの直径をd(mm)、精練用酸素ガス吹込みノズル5bの噴出開口eの軸芯dと、円形軌跡の中心軸Kとのなす角度(傾角)をθ(°)、ランス高さ(鉄浴浴面からランスのノズル先端に至るまでの高さ)をLとした場合に、精錬用酸素ガス吹込みノズル5aとバーナーノズル5bとは、その位置関係を示し指標をFとすると、F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0の条件を満たすようになっている。 Here, the radius of the pitch circle in the ejection opening e of the scouring oxygen gas blowing nozzle 5b 1 is R (mm), the radius of the ejection opening f of the burner nozzle 5b 2 is r (mm), and the scouring oxygen nozzle 5b 1 has a radius of r (mm). the diameter of the ejection opening e d (mm), and the axis d 1 of the ejection openings e of scouring oxygen gas blowing nozzle 5b 1, the angle (tilt angle) between the center axis K 1 of the circular trajectory theta (°) When the lance height (the height from the iron bath surface to the tip of the lance nozzle) is L, the oxygen gas blowing nozzle 5a for refining and the burner nozzle 5b indicate the positional relationship and indicate an index. Assuming F, the condition of F = 1.7 (R−d−2) / L + tan (θ−12 °) −0.0524> 0 is satisfied.

以下、上記の構成からなる粉体吹込みランスにつき、精錬用酸素ガス吹込みノズル5bと、バーナーノズル5bの位置関係を、F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0とするに至った経緯について説明する。 Hereinafter, regarding the powder blowing lance having the above-described configuration, the positional relationship between the refining oxygen gas blowing nozzle 5b 1 and the burner nozzle 5b 2 is expressed as F = 1.7 (R−r−d / 2) / L + tan. The process leading to (θ-12 °) −0.0524> 0 will be described.

まず、発明者らは、ランスを通して金属酸化物や酸化物系の粉体を吹込みに当たり、溶鉄と接触する前に予め吹込みにかかる粉体を加熱することが溶銑配合率を低下させるのに効果的ではないかと考え、粉体の加熱、添加方法についての検討を進めた。   First, the inventors, when blowing metal oxide or oxide-based powder through a lance, heating the powder that is blown in advance before contacting the molten iron reduces the hot metal content. We thought that it would be effective, and proceeded with investigations on powder heating and addition methods.


そして、粉体の加熱状況を調査するため、内径1m、高さ3mの縦型管状炉を用いて、この縦型管状炉の上部に、中心部から粉体を供給することができるバーナー機能の付与された表1に示す如き条件からなる種々異なる上吹きランスを用いて粉体(サイズ:≦75mmになる石灰を使用)の吹込み実験を行い、吹込みにかかる粉体の温度を、放射温度計を用いて測定した。

Figure 0005365678

In order to investigate the heating condition of the powder, a vertical tubular furnace having an inner diameter of 1 m and a height of 3 m is used, and a burner function capable of supplying powder from the center to the upper part of the vertical tubular furnace. Using the various top blowing lances having the conditions shown in Table 1 above, a powder blowing experiment (using lime with a size of ≦ 75 mm) was conducted, and the temperature of the powder applied to the spray was radiated. Measurement was performed using a thermometer.
Figure 0005365678

その結果を図3に示す。図3に示す結果から、粉体吹込みランスにつき、精錬用酸素ガス吹込みノズル5bと、バーナーノズル5bの位置関係を、F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0とすることにより、粉体の温度が著しく上昇することの知見を得るに至ったものである。 The result is shown in FIG. From the results shown in FIG. 3, for each powder blowing lance, a refining oxygen gas blowing nozzle 5b 1, the positional relationship of the burner nozzle 5b 2, F = 1.7 (R -r-d / 2) / L + tan By making (θ−12 °) −0.0524> 0, it has been found that the temperature of the powder is remarkably increased.

上記の条件は、バーナーガスの噴流と精錬用酸素ガスの噴流の広がりの軌跡から算出したものであり、過剰に精錬用酸素ガスがバーナー火炎と接触(干渉)するとバーナー火炎の温度が低下するという考え方に基づくものであり、これにより、精錬用酸素ガスとバーナー火炎との干渉が小さくなり、バーナー火炎の温度が高位に保たれる結果、粉体が効率的に加熱される。   The above conditions are calculated from the trajectory of the jet of the burner gas and the refining oxygen gas, and the temperature of the burner flame decreases when the oxygen gas for refining contacts (interferences) with the burner flame excessively. This is based on the idea, and as a result, the interference between the refining oxygen gas and the burner flame is reduced, and the temperature of the burner flame is kept high, so that the powder is efficiently heated.

本発明によれば、上吹きの精錬用酸素ガスを吹込みながら、脱りん精錬(吹錬)あるいは脱炭精錬を実施するに当たり、副原料である粉体をバーナーの火炎により効率的に加熱しつつ溶鉄に供給することが可能となり、従来と比較して大量のスクラップを溶解することが可能となる。   According to the present invention, when performing dephosphorization refining (blowing) or decarburization refining while blowing up blown oxygen gas for refining, the powder as an auxiliary material is efficiently heated by the flame of the burner. However, it becomes possible to supply molten iron, and a large amount of scrap can be melted compared to the conventional case.

そして、その結果として、脱りん、脱炭精錬にかかる溶製コストの削減が可能となり、省資源、省エネルギーが達成される。また、転炉操業の安定化を図ることができるので、工業上有益な効果がもたらされる。   As a result, it is possible to reduce the melting cost for dephosphorization and decarburization refining, and resource saving and energy saving are achieved. Further, since the converter operation can be stabilized, an industrially beneficial effect is brought about.

なお、F値は、精錬用酸素ガスの二次燃焼による耐火物の溶損防止の観点から上限値としては、0.20とするのがよい。   The F value is preferably 0.20 as the upper limit from the viewpoint of preventing refractory melting due to secondary combustion of the refining oxygen gas.

また、ランス高さLは、転炉操業においては、1000〜5000mm程度に設定される。   The lance height L is set to about 1000 to 5000 mm in the converter operation.

本発明に従う粉体吹込みランスを用いて処理する溶鉄としては、高炉等の溶銑製造設備で製造された溶鉄(脱りん工程で用いられる溶鉄)、脱りん工程を経た脱りん溶鉄が好ましい。   As the molten iron to be processed using the powder blowing lance according to the present invention, molten iron produced in hot metal production equipment such as a blast furnace (molten iron used in the dephosphorization process) or dephosphorized molten iron that has undergone the dephosphorization process is preferable.

溶鉄の精錬においては、バーナーノズルの燃料として、プロパンガス、Cガス等の気体燃料、重油等の液体燃料およびプラスチック等の固体燃料のうちの1種または2種以上を用いることができる。   In the refinement of molten iron, one or more of gaseous fuel such as propane gas and C gas, liquid fuel such as heavy oil, and solid fuel such as plastic can be used as fuel for the burner nozzle.

また、鉄浴型精錬炉内に金属酸化物、酸化物系鉱石の粉体または粒体を装入し、溶融還元して金属溶湯を得るに当たっては、酸化物を還元するための炭材および還元熱を補償するための炭材を別途添加する必要がある。   In addition, when a metal oxide or oxide-based ore powder or granule is placed in an iron bath type smelting furnace and melted and reduced to obtain a molten metal, a carbonaceous material and a reducing agent are used to reduce the oxide. It is necessary to add a carbon material for compensating heat.

上吹きランスとして、上掲図2に示したような構造になるランスを用い、容量が2.5tになる上掲図1に示した如き上底吹き転炉にて表2に示す成分組成になる溶銑を、鉄スクラップとともに装入し、表3の条件のもとで脱りん吹錬を行った。   As the top blowing lance, the lance having the structure shown in FIG. 2 is used, and the composition shown in Table 2 is obtained in the top bottom blowing converter as shown in FIG. The resulting hot metal was charged together with iron scrap and dephosphorized under the conditions shown in Table 3.

そして、その後、出銑、排滓し、さらに同様の上底吹き転炉に脱りん処理した溶銑を鉄スクラップとともに装入して表3の条件のもとに脱炭吹錬を行い、上吹きランスのF値の溶銑配合率に与える影響についての調査を行った。その結果を表4に示す。   After that, the slag was discharged and discharged, and the dephosphorized hot metal, which was dephosphorized in the same top-bottom blowing converter, was charged together with iron scrap, decarburized and blown under the conditions shown in Table 3, The effect of the F value of the lance on the hot metal content was investigated. The results are shown in Table 4.

なお、脱りん吹錬では、炉内に鉄スクラップを装入したのち、温度が1350℃になる溶鉄を装入し、上吹きランスから吸錬酸素ガスを供給し、同時に生石灰粉、燃焼酸素ガス、プロパンガスを溶鉄面に向けて吹きつけながら底吹き羽口からアルゴンガスを攪拌ガスとして溶鉄中に吹き込んだ。   In dephosphorization blowing, after iron scrap is charged into the furnace, molten iron with a temperature of 1350 ° C. is charged, and smelting oxygen gas is supplied from the top blowing lance. While blowing propane gas toward the molten iron surface, argon gas was blown into the molten iron from the bottom blowing tuyere as a stirring gas.

また、この吸錬では、鉄スクラップの装入量は、脱りん処理終了温度が1400℃となるように調整し、生石灰は、炉内スラグの塩基度(mass%CaO/mass%SiO)が2.5となるように添加量を調整した。 Also, in this smelting, the amount of iron scrap charged is adjusted so that the dephosphorization end temperature is 1400 ° C., and quick lime has a basicity of slag in the furnace (mass% CaO / mass% SiO 2 ). The amount added was adjusted to 2.5.

脱炭吹錬では、炉内に鉄スクラップを装入したのち、温度が1350℃になる溶鉄(脱りんした溶鉄)を装入し、上吹きランスから吸錬酸素ガスを供給し、同時に生石灰粉、燃焼酸素ガス、プロパンガスを溶鉄面に向けて吹きつけながら底吹き羽口からアルゴンガスを攪拌ガスとして溶鉄中に吹き込んだ。   In decarburization blowing, after iron scrap is charged into the furnace, molten iron (dephosphorized molten iron) with a temperature of 1350 ° C is charged, smelting oxygen gas is supplied from the top blowing lance, and at the same time quick lime While blowing combustion oxygen gas and propane gas toward the molten iron surface, argon gas was blown into the molten iron from the bottom blowing tuyere as a stirring gas.

鉄スクラップの装入量は、脱炭処理終了温度が1680℃、炭素濃度が0.05mass%となるように調整した。生石灰は、炉内スラグの塩基度(mass%CaO/mass%SiO)が3.5となるように添加量を調整した。

Figure 0005365678
Figure 0005365678
Figure 0005365678
The amount of iron scrap charged was adjusted so that the decarburization end temperature was 1680 ° C. and the carbon concentration was 0.05 mass%. The addition amount of quicklime was adjusted so that the basicity (mass% CaO / mass% SiO 2 ) of the slag in the furnace would be 3.5.
Figure 0005365678
Figure 0005365678
Figure 0005365678

表4より明らかなように、本発明に従うバーナー機能を備えた吹込みランスを用いて、脱りん、脱炭吹錬を行った場合においては、鉄スクラップ配合比を高めることが可能であり、溶銑配合率を大幅に低減できることが確かめられた。   As apparent from Table 4, when dephosphorization and decarburization blowing were performed using the blowing lance having the burner function according to the present invention, the iron scrap blending ratio can be increased. It was confirmed that the mixing ratio can be greatly reduced.

また、本発明に従う吹込みランスを用いて金属溶湯の溶融還元を行うべく、2.5tの溶銑を転炉に装入し、精錬用酸素ガス量:7.5Nm/min、底吹き窒素ガス量:0.25Nm/minの条件でコークスを適宜供給しながら吸錬を開始した。 Moreover, in order to perform the smelting reduction of the molten metal using the blowing lance according to the present invention, 2.5 t of molten iron was charged into the converter, the amount of oxygen gas for refining: 7.5 Nm 3 / min, bottom blowing nitrogen gas An amount of 0.25 Nm 3 / min was used to start the smelting while appropriately supplying coke.

そして、溶銑温度が1600℃になるまで昇熱し、溶銑温度が1600℃に達した時点で、上吹きランスからクロム鉱石粉の供給を開始し、溶融還元吹錬を実施した。なお、この溶融還元吹錬においては、溶融還元吹錬の開始とともに上吹きランスからバーナーのプロパンガスと酸素ガスの供給も開始した。   And it heated up until the hot metal temperature reached 1600 degreeC, and when the hot metal temperature reached 1600 degreeC, supply of the chromium ore powder was started from the top blowing lance, and the smelting reduction blowing was implemented. In this smelting reduction blowing, the supply of propane gas and oxygen gas from the burner from the top blowing lance was started simultaneously with the start of smelting reduction blowing.

プロパンガスと酸素ガスの流量は、それぞれ0.2Nm/min、1.0Nm/minとし、 溶融還元吹錬中は、適宜溶銑温度を測定し、溶融還元に適した溶銑温度1600℃になるようにクロム鉱石粉の供給速度を変化させて吹錬を実施した。 The flow rate of propane gas and oxygen gas, respectively and 0.2Nm 3 /min,1.0Nm 3 / min, during the smelting reduction blowing, the appropriate hot metal temperature is measured, the hot metal temperature 1600 ° C. which are suitable for smelting reduction In this way, blowing was carried out while changing the supply rate of the chrome ore powder.

所定の時間(約30分間)を過ぎてから、クロム鉱石粉、プロパンガス、酸素ガスの供給を停止し、さらに、上吹きの酸素ガスの供給のみを行う吹錬を3分行った。   After a predetermined time (about 30 minutes), the supply of chromium ore powder, propane gas, and oxygen gas was stopped, and further blowing for supplying only the top-blown oxygen gas was performed for 3 minutes.

上記の溶融還元吹錬において、クロム鉱石の使用量指数とF値との関係について調査した結果を、比較例(比較例3、4、吹錬条件は適合例4、適合例5と同じ)の結果とともに表5に示す。なお、表中のクロム鉱石の使用量指数は、適合例5の指数を1.00として比較して表示したものである。

Figure 0005365678
In the above-mentioned smelting reduction blowing, the results of investigation on the relationship between the chromium ore usage index and the F value are shown in Comparative Example (Comparative Examples 3 and 4, blowing conditions are the same as in Compliance Example 4 and Compliance Example 5). It shows in Table 5 with a result. In addition, the usage-amount index of the chromium ore in a table | surface is displayed by comparing with the index of the adaptation example 5 being 1.00.
Figure 0005365678

表5より明らかなように、F値が0以下になる比較例3、比較例4では、溶融還元吹錬でのクロム鉱石の使用量指数が小さくなることが確認された。   As is clear from Table 5, it was confirmed that in Comparative Examples 3 and 4 in which the F value was 0 or less, the usage index of chromium ore in smelting reduction blowing was reduced.

本発明によれば、バーナーの燃焼熱を、粉体を通して溶鉄に効率よく伝達することができるため、溶鉄における着熱効率の改善が可能であり、転炉で脱りん精錬、脱炭精錬を行うに当たってスクラップの大量使用により溶銑配合率を大幅に低減することができる。   According to the present invention, since the combustion heat of the burner can be efficiently transmitted to the molten iron through the powder, it is possible to improve the heat receiving efficiency in the molten iron, and in performing dephosphorization refining and decarburization refining in the converter. By using a large amount of scrap, the hot metal content can be greatly reduced.

また、本発明によれば、着熱効率の改善により、炭材の使用量を削減することが可能であり、COの排出量を低減することができる。 Further, according to the present invention, it is possible to reduce the amount of carbon material used by improving the heat receiving efficiency, and to reduce the CO 2 emission amount.

1 炉体
1a 鉄皮
1b 耐火物層
2 底吹き羽口
3 溶鉄
4 スラグ
5 粉体吹込みランス
5a ランス本体
5a外管
5a 内管
5a管体
5a 管体
5b ノズル部
5b 精錬用酸素吹込みノズル
5b バーナーノズル
6 精錬用酸素ガスを供給する送給管
7 燃焼用酸素ガスを供給する送給管
8 燃料ガスを供給する送給管
9 粉体を供給する送給管
10 粉体
11 火炎
12 精錬用酸素ガス
e 噴出開口
f 噴出開口
DESCRIPTION OF SYMBOLS 1 Furnace 1a Iron skin 1b Refractory layer 2 Bottom blowing tuyere 3 Molten iron 4 Slag 5 Powder blowing lance 5a Lance main body 5a 1 Outer pipe 5a 2 Inner pipe 5a 3 pipe 5a 4 pipe 5b Nozzle part 5b 1 Refinement Oxygen blowing nozzle 5b 2 burner nozzle
6 Feeding pipe for supplying refining oxygen gas 7 Feeding pipe for supplying combustion oxygen gas 8 Feeding pipe for supplying fuel gas 9 Feeding pipe for supplying powder 10 Powder 11 Flame 12 Oxygen gas for refining e Spout opening f Spout opening

Claims (4)

円形軌道に沿い間隔をおいて配列され、鉄浴型精練炉に収容された鉄浴中へ酸素ガスを吹込む複数の噴出開口を有する精錬用酸素ガス吹込みノズルと、前記円形軌道の中心軸と同軸になる軸芯を有し、該精錬用酸素ガス吹込みノズルの内側にて火炎を形成するとともに、該火炎によって着熱された粉体を前記鉄浴中へ吹き込む噴出開口を有するバーナーノズルとを備えた粉体吹込みランスにおいて、
前記精練用酸素ガス吹込みノズルの噴出開口と前記バーナーノズルの噴出開口との位置関係を示す指標Fが、下記の条件を満足することを特徴とするバーナー機能を付与した粉体吹込みランス。

F=1.7(R−r−d/2)/L+tan(θ−12°)−0.0524>0

R:精練用酸素ガス吹込みノズルの噴出開口のピッチサークルの半径(mm)
r:バーナーノズルの噴出開口の半径(mm)
d:精練用酸素ノズルの噴出開口の直径(mm)
θ:精練用酸素ガス吹込みノズルの軸芯と、円形軌跡の中心軸とのなす角度(傾角)(°)
L:ランス高さ(mm)
A refining oxygen gas injection nozzle having a plurality of injection openings for injecting oxygen gas into an iron bath accommodated in an iron bath type smelting furnace, arranged at intervals along the circular orbit, and a central axis of the circular orbit A burner nozzle having an axial core that is coaxial with the refining oxygen gas blowing nozzle and forming a flame inside the refining oxygen gas blowing nozzle, and having a blowing opening for blowing the powder heat-heated by the flame into the iron bath In a powder blowing lance with
A powder blowing lance provided with a burner function, wherein an index F indicating a positional relationship between an ejection opening of the scouring oxygen gas blowing nozzle and an ejection opening of the burner nozzle satisfies the following condition.
F = 1.7 (R−r−d / 2) / L + tan (θ−12 °) −0.0524> 0

R: Radius (mm) of pitch circle of ejection opening of oxygen gas blowing nozzle for scouring
r: Radius of the ejection opening of the burner nozzle (mm)
d: Diameter of the ejection nozzle of the scouring oxygen nozzle (mm)
θ: Angle (inclination) (°) between the axis of the scouring oxygen gas injection nozzle and the central axis of the circular locus
L: Lance height (mm)
請求項1に記載した粉体吹込みランスが、脱りん精錬または脱炭精錬に使用する精錬用上吹きランスであることを特徴とするバーナー機能を付与した粉体吹込みランス。   A powder blowing lance provided with a burner function, wherein the powder blowing lance according to claim 1 is an upper blowing lance for refining used in dephosphorization or decarburization refining. 請求項1または2に記載した粉体吹込みランスを用いて鉄浴型製練炉に収容された溶鉄の精錬を行う方法において、
前記バーナーノズルの燃料として、プロパンガス、Cガス等の気体燃料、重油等の液体燃料およびプラスチック等の固体燃料のうちの1種または2種以上を用いることを特徴とする溶鉄の精錬方法。
In the method of refining the molten iron accommodated in the iron bath type smelting furnace using the powder blowing lance according to claim 1 or 2,
As a fuel for the burner nozzle, one or more of gaseous fuels such as propane gas and C gas, liquid fuels such as heavy oil, and solid fuels such as plastics are used.
鉄浴型精錬炉内に金属酸化物、酸化物系鉱石の粉体または粒体を装入、溶融還元して金属溶湯を得る溶融還元方法において、
請求項1に記載した粉体吹込みランスのバーナーノズルを通して、酸化鉄、媒溶材および炭素含有物質のうちのいずれか1種または2種以上の粉粒状の副原料を吹き込むことを特徴とする金属溶湯の溶融還元方法。
In a smelting reduction method of charging a metal oxide, oxide-based ore powder or granule into an iron bath type smelting furnace and obtaining a molten metal by melting and reducing,
A metal characterized by blowing one or more powdery auxiliary materials out of iron oxide, a solvent and a carbon-containing substance through a burner nozzle of a powder blowing lance according to claim 1. Melting reduction method for molten metal.
JP2011227627A 2011-10-17 2011-10-17 Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance Active JP5365678B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2011227627A JP5365678B2 (en) 2011-10-17 2011-10-17 Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance
BR112014009106-4A BR112014009106B1 (en) 2011-10-17 2012-10-16 TOP BLOWING LANCE AND METHODS FOR REFINING CAST IRON
IN581MUN2014 IN2014MN00581A (en) 2011-10-17 2012-10-16
KR1020147012938A KR101623285B1 (en) 2011-10-17 2012-10-16 Top-blowing lance and method for refining molten iron using the same
US14/351,910 US9580764B2 (en) 2011-10-17 2012-10-16 Top-blowing lance and method for refining molten iron using the same
EP12841632.8A EP2752497B1 (en) 2011-10-17 2012-10-16 Powder injection lance and method of refining molten iron using said powder injection lance
PCT/JP2012/006610 WO2013057927A1 (en) 2011-10-17 2012-10-16 Powder injection lance and method of refining molten iron using said powder injection lance
CN201280051169.9A CN103890199B (en) 2011-10-17 2012-10-16 Powder is blown into spray gun and uses this powder to be blown into the method for refining of the molten pig of spray gun
TW101138277A TWI535853B (en) 2011-10-17 2012-10-17 Powder blowing lance and method for refining molten iron using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227627A JP5365678B2 (en) 2011-10-17 2011-10-17 Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance

Publications (3)

Publication Number Publication Date
JP2013087316A JP2013087316A (en) 2013-05-13
JP2013087316A5 JP2013087316A5 (en) 2013-06-20
JP5365678B2 true JP5365678B2 (en) 2013-12-11

Family

ID=48531544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227627A Active JP5365678B2 (en) 2011-10-17 2011-10-17 Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance

Country Status (1)

Country Link
JP (1) JP5365678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191437B2 (en) * 2013-12-16 2017-09-06 新日鐵住金株式会社 Hot metal refining method
JP6466733B2 (en) * 2015-02-18 2019-02-06 株式会社神戸製鋼所 Supply method of solid oxygen source in dephosphorization of hot metal
CN115976394B (en) * 2022-12-15 2024-04-05 宁波吉威盛机械有限公司 Production process of low-carbon alloy steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012767A1 (en) * 1998-08-28 2000-03-09 Voest-Alpine Industrieanlagenbau Gmbh Method for producing a metal melt and corresponding multfunction lance
JP4019117B2 (en) * 2001-09-28 2007-12-12 大陽日酸株式会社 Powder blowing apparatus and refining method
JP4050195B2 (en) * 2002-07-08 2008-02-20 大陽日酸株式会社 Method of melting and refining furnace for refrigerating iron source and refining method
JP5707702B2 (en) * 2010-01-29 2015-04-30 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2013087316A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
WO2013057927A1 (en) Powder injection lance and method of refining molten iron using said powder injection lance
JP5707702B2 (en) Hot metal dephosphorization method
JP4735169B2 (en) Hot metal dephosphorization method
JP6036172B2 (en) Method of refining hot metal in converter
JP2013047371A (en) Method for refining molten iron
JP5031977B2 (en) Hot metal dephosphorization method
JP2012031452A (en) Method of dephosphorizing hot metal
JP5834980B2 (en) Manufacturing method of molten steel
JP5365678B2 (en) Powder blowing lance with burner function, molten iron refining method and molten metal smelting reduction method using the powder blowing lance
JP5928094B2 (en) Method for refining molten iron
JP5962156B2 (en) Method for refining molten iron
JP5962162B2 (en) Hot metal refining method
JP5585633B2 (en) Method of refining hot metal in converter
JP5949627B2 (en) Method of refining hot metal in converter
JP2013028832A (en) Molten iron refining method
JPWO2019208557A1 (en) How to remove phosphorus from hot metal
JP5870868B2 (en) Method of refining hot metal in converter
JP5928095B2 (en) Method for refining molten iron
JP5870771B2 (en) Manufacturing method of molten steel
JP6327298B2 (en) Hot metal refining method
WO2022163156A1 (en) Refining method of molten iron and manufacturing method of molten steel using same
JP2023068358A (en) Method of refining hot metal in converter
JP2022117935A (en) Molten iron refining method
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JP2013209737A (en) Method for producing molten steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130417

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250