JP2002256326A - Method for refining molten iron - Google Patents

Method for refining molten iron

Info

Publication number
JP2002256326A
JP2002256326A JP2001059455A JP2001059455A JP2002256326A JP 2002256326 A JP2002256326 A JP 2002256326A JP 2001059455 A JP2001059455 A JP 2001059455A JP 2001059455 A JP2001059455 A JP 2001059455A JP 2002256326 A JP2002256326 A JP 2002256326A
Authority
JP
Japan
Prior art keywords
furnace
slag
hot metal
dephosphorization
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001059455A
Other languages
Japanese (ja)
Inventor
Yoji Idemoto
庸司 出本
Shinya Kitamura
信也 北村
Naoto Sasaki
直人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001059455A priority Critical patent/JP2002256326A/en
Publication of JP2002256326A publication Critical patent/JP2002256326A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method with which unit requirement of lime and the amount of discharge of slag to the outside of the system are reduced to the lower limits by reusing the slag and also, only slag having extremely small amount of non-slagging lime can be discharged to the outside of the system. SOLUTION: In a steelmaking method by using two sets of refining furnaces, in which the one side is used for a decarburizing furnace and the other side is used for molten iron dephosphorizing furnace, in the decarburizing furnace, while leaving the whole or a part of the decarburized slag produced in this decarburizing furnace, the decarburize-refining is performed to the molten iron refined in the molten iron dephosphorizing furnace. In the molten iron dephosphorizing furnace, while leaving the whole or a part of the dehosphorized slag produced in this molten iron dephosphorizing furnace, a process for refining a blast furnace molten iron or the molten iron applying a desiliconizing treatment and/or a desulfurizing treatment, is preformed at least one time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶銑の精錬におい
て、スラグの再利用を促進し系外排出量を極限まで少な
くするとともに、未滓化石灰が極めて少ないスラグのみ
を系外へ排出させることを可能とする方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for refining molten iron, which promotes the reuse of slag to minimize the amount of slag discharged to the outside of the system, and discharges only slag containing extremely little unslagged lime to the outside of the system. How to make it possible.

【0002】[0002]

【従来の技術】2つの転炉を用いた溶銑脱燐と脱炭によ
る製鋼法は広く知られている。例えば、特開昭63−9
3813号公報には、上下両吹き機能を有する二基の転
炉形式の炉のうち一方を脱燐炉、他方を脱炭炉として溶
銑の精錬を行い、脱燐炉内に注入した溶銑に対し、脱炭
炉にて発生した転炉滓と生石灰とを精錬剤の主成分とし
て添加する方法が開示されている。しかし、この方法で
は、脱炭滓を再度、脱燐炉へ添加するため冷却固化し成
型する必要がある上に、膨張粉化しやすく利材化しにく
い脱燐炉で生成するスラグの量が、かえって増加すると
いう大きな問題があった。さらに、脱炭滓は吹き止め温
度である1650℃では溶融状態にあるものの、溶銑脱
燐の場合は1350℃程度のため容易には溶融すること
はできず、脱燐効率は生石灰を用いた場合よりも低下す
る。さらに、脱炭滓は脱燐処理が進行して温度やスラグ
組成が溶解に適した条件に到達した時点で急激に溶解す
る。しかし、脱炭滓中には高い濃度の(T・Fe)が含まれ
るため、脱炭滓が溶融すると急激に脱炭反応が生じるた
めスロッピングが多発するという問題がある。
2. Description of the Related Art Steelmaking methods using hot metal dephosphorization and decarburization using two converters are widely known. For example, JP-A-63-9
Japanese Patent No. 3813 discloses that one of two converter-type furnaces having both upper and lower blowing functions is used as a dephosphorizing furnace and the other as a decarburizing furnace for refining hot metal. Discloses a method of adding converter slag and quick lime generated in a decarburization furnace as main components of a refining agent. However, in this method, it is necessary to cool and solidify the decarburized slag again to add it to the dephosphorization furnace, and to mold the slag. There was a big problem of increasing. Furthermore, although the decarburized slag is in a molten state at 1650 ° C., which is the blowing temperature, in the case of hot metal dephosphorization, it cannot be melted easily because it is about 1350 ° C. Lower than. Furthermore, the decarburized slag rapidly dissolves when the dephosphorization process proceeds and the temperature and the slag composition reach conditions suitable for dissolution. However, since the decarburized slag contains a high concentration of (T.Fe), there is a problem that when the decarburized slag is melted, a decarburizing reaction occurs rapidly, so that slopping frequently occurs.

【0003】この他、脱炭滓を用いた溶銑脱燐は、いく
つかの公知例がある。特開平01−75618号公報に
は、脱硫された溶銑を脱燐炉にて脱燐し、次いで脱炭炉
にて脱炭し溶鋼製品とする製鋼工程で、媒溶剤を添加し
て行う脱燐銑の脱炭精錬で副生される低P転炉滓を、そ
のまま脱燐炉に装入して脱燐精錬に再利用することで、
低遊離石灰・高P転炉滓として排出する方法が開示され
ている。しかし、この方法でも前記課題は解決されてい
ない。特に、脱炭滓の燐酸濃度は低いので再利用した後
の脱燐滓中の燐酸濃度は決して濃縮されず、脱炭滓を再
利用しない場合と、ほとんど変わらない。したがって、
燐酸の有する肥料としての用途を開くものでは無い。
[0003] In addition, there are several known examples of hot metal dephosphorization using decarburized slag. Japanese Patent Application Laid-Open No. 01-75618 discloses a dephosphorization process in which a desulfurized hot metal is dephosphorized in a dephosphorization furnace and then decarburized in a decarburization furnace to obtain a molten steel product by adding a medium solvent. The low-P converter slag by-produced in the decarburization and refining of pig iron is directly charged into a dephosphorization furnace and reused for dephosphorization and refining.
A method of discharging low free lime and high P converter slag is disclosed. However, this method has not solved the problem. In particular, since the concentration of phosphoric acid in the decarburized slag is low, the concentration of phosphoric acid in the dephosphorized slag after reuse is never concentrated, which is almost the same as the case where the decarburized slag is not reused. Therefore,
It does not open use as a fertilizer that phosphoric acid has.

【0004】特開平05−247511号公報には、溶
銑を精錬して溶鋼を製造する際に、第一工程として溶銑
を転炉に装入し、第二工程としてフラックス添加と酸素
上吹きとを行って脱燐精錬を施し所定のりん濃度まで低
減させ、第三工程として前記転炉を傾動して第二工程で
生成したスラグを排出し、その後同一転炉により脱炭工
程を行い、スラグを転炉に残したまま出鋼し、該スラグ
を第一工程にリサイクルする方法が開示されている。こ
の方法では、脱炭滓が溶融状態でリサイクルされるため
滓化に起因する問題は少なくなるものの、第三工程とし
ての排滓が十分にできないため脱炭炉での脱燐負荷が大
きく、スラグ発生量全体としては低下せず、また、脱燐
滓への燐酸の濃化も不十分であるという問題があった。
[0004] Japanese Patent Application Laid-Open No. 05-247511 discloses that when refining hot metal to produce molten steel, hot metal is charged into a converter as a first step, and flux addition and oxygen blowing are performed as a second step. Performing dephosphorization refining to reduce the phosphorus concentration to a predetermined level, as a third step tilting the converter to discharge the slag generated in the second step, and then perform a decarburization step using the same converter to remove the slag There is disclosed a method of tapping steel while leaving it in a converter and recycling the slag to a first step. In this method, although the decarburization slag is recycled in a molten state, the problem due to slag reduction is reduced, but the slag is not sufficiently discharged as the third step, so that the dephosphorization load in the decarburization furnace is large and the slag is removed. There has been a problem that the generated amount does not decrease as a whole, and the concentration of phosphoric acid in the dephosphorization residue is insufficient.

【0005】一方、溶銑脱燐スラグの処理方法として、
例えば特開昭57−179090号公報には、[P]を
0.15〜0.5%含む高燐銑を脱燐処理することで生
成スラグ中の燐酸を15%以上として燐酸肥料原料とす
る方法が開示されているが、溶銑[P]が低い条件でスラ
グ中に濃縮できる燐酸濃度については何らの知見もな
い。
On the other hand, as a method for treating hot metal dephosphorization slag,
For example, JP-A-57-179090 discloses a method of dephosphorizing high-phosphorus iron containing 0.15 to 0.5% of [P] to reduce the phosphoric acid in the produced slag to 15% or more and use it as a phosphate fertilizer raw material. Although disclosed, there is no knowledge about the concentration of phosphoric acid that can be concentrated in slag under the condition of low hot metal [P].

【0006】[0006]

【発明が解決しようとする課題】本発明は、特開昭63
−93813号公報、特開平01−75618号公報に
開示された技術が持つ、脱燐炉で生成するスラグの量が
かえって増加するという問題、脱燐効率が生石灰を用い
た場合よりも低下するという問題、再利用した後の脱燐
滓中の燐酸濃度は濃縮されないという問題、及び、特開
平05−247511号公報に開示された技術が持つ、
第三工程としての排滓が十分にできないため脱炭炉での
脱燐負荷が大きく、スラグ発生量全体としては低下しな
いという問題、脱燐滓への燐酸の濃化も不十分であると
いう問題、及び、特開昭57−179090号公報に開
示された技術が持つ、溶銑Pが低い条件でスラグ中に濃
縮できる燐酸濃度については何らの知見もないという問
題を解決し、スラグの再利用を促進し系外排出量を極限
まで少なくするとともに、未滓化石灰が極めて少ないス
ラグのみを系外へ排出させることを可能とする方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention relates to Japanese Patent Application Laid-Open
-93813, JP-A-01-75618, the problem that the amount of slag generated in the dephosphorization furnace is rather increased, and that the dephosphorization efficiency is lower than that in the case of using quicklime. The problem is that the concentration of phosphoric acid in the dephosphorized residue after reuse is not concentrated, and the technology disclosed in Japanese Patent Application Laid-Open No. 05-247511 has
The problem that the dephosphorization load in the decarburization furnace is large due to the inability to sufficiently discharge the slag as the third step, and that the amount of slag generated does not decrease as a whole, and that the concentration of phosphoric acid in the dephosphorization slag is also insufficient. The technology disclosed in Japanese Patent Application Laid-Open No. 57-179090 solves the problem that there is no knowledge about the concentration of phosphoric acid that can be concentrated in slag under low hot metal P conditions. It is an object of the present invention to provide a method that promotes and minimizes the amount of out-of-system discharge to the utmost, and also enables the discharge of only slag with very little unslagged lime out of the system.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は以下の各
方法にある。 (1) 2基の精錬炉を用い、片炉を溶銑脱燐炉、他炉
を脱炭炉とする精錬方法において、溶銑脱燐炉において
は、当該溶銑脱燐炉で生成した脱燐スラグを全量又は一
部を残留させたまま高炉溶銑、又は、脱珪処理及び/も
しくは脱硫処理を施した溶銑を精錬し、脱炭炉において
は、当該脱炭炉で生成した脱炭スラグを全量又は一部を
残留させたまま溶銑脱燐炉で精錬された溶銑を脱炭精錬
する工程を、どちらの炉においても、少なくとも1回以
上実施することを特徴とする溶鉄の精錬方法。 (2) (1)の方法において、脱炭炉、溶銑脱燐炉と
も、上底吹き転炉を用いることを特徴とする溶鉄の精錬
方法。 (3) (1)または(2)の方法において、溶銑脱燐
処理後のスラグの塩基度が0.7以上の間は溶銑脱燐炉
で生成した脱燐スラグを全量又は一部を残留させたま
ま、生石灰を添加せずに高炉溶銑、又は、脱珪処理及び
/もしくは脱硫処理を施した溶銑を精錬する操作を実施
し、0.7よりも低くなった時点で脱燐スラグを全量排
出することを特徴とする溶鉄の精錬方法。ここで塩基度
とはスラグ中のCaO濃度とSiO2濃度の質量パーセント比
(CaO/SiO 2)である。 (4) (1)〜(3)のいずれかの方法において、溶
銑脱燐炉に装入される溶銑中[Si]濃度を0.25質量
%以下とすることを特徴とする溶鉄の精錬方法。 (5) (1)〜(4)のいずれかの方法において、溶
銑脱燐炉での吹錬において、(1)式で決まるパラメー
タαを300〜1300とすることを特徴とする溶鉄の
精錬方法。 α=(F/W)×τ/(L/L0) ・・・・・・・… (1) ここで、Fは上吹き送酸速度(Nm3/h)、Wは溶鉄質量
(t)、τは均一混合時間(s)、Lはキャビティー深さ
(m)、L0は浴深(m)。また、底吹き攪拌による均一混合
時間(τ)は以下の各式で計算される。 τ=100×{(D2/L0)2/(εB+εT)}0.337 ・・・・ (2) εB=371×(Q/3600/W)×T×{ln(1+7×L0/10.33)+0.06×(1−298/T)} ・・・・ (3) εT=0.134/W×(F/3600)3×32/n2/d3/LG ・・・・ (4) ここで、Dは浴直径(m)、Qは攪拌ガス流量(Nm3/h)、
Tは溶銑温度(K)、nは上吹きランスノズル数、dは上
吹きランスノズル径(m)、LGは上吹きランス先端と静
止溶鉄面間距離(m)である。また、L(m)は次式で計算す
る。 L=63×(F/(d×1000)/n)2/3× exp(−0.78×LG×1000/(63×(F/(d×1000)/n)2/3)) ・・・(5) (6) (1)〜(5)のいずれかの方法において、脱
炭炉での吹錬において、脱炭スラグが20〜40kg/
tとなるように当該脱炭炉で生成した脱炭スラグの一部
を排滓することを特徴とする溶鉄の精錬方法。 (7) (1)〜(6)のいずれかの方法において、脱
炭炉での吹錬後に排滓された脱炭スラグを、溶銑脱燐炉
へリサイクルすることを特徴とする溶鉄の精錬方法。
The gist of the present invention is as follows.
In the way. (1) Two refining furnaces, one furnace for hot metal dephosphorization and the other furnace
In a refining method with a decarburization furnace, and in a hot metal dephosphorization furnace
Is to remove all or all of the dephosphorized slag generated in the hot metal dephosphorization furnace.
Blast furnace hot metal or desiliconization and / or
Or refining hot metal that has been subjected to desulfurization
Is to remove all or part of the decarburized slag generated in the decarburization furnace.
Decarburizing and refining hot metal refined in a hot metal dephosphorization furnace while remaining
Process at least once in both furnaces.
A method for refining molten iron, which is carried out above. (2) In the method of (1), the decarburizing furnace, hot metal dephosphorizing furnace and
Refining of molten iron characterized by using a top-bottom blow converter
Method. (3) In the method of (1) or (2), hot metal dephosphorization
Hot metal dephosphorization furnace while the basicity of the treated slag is 0.7 or more
While leaving all or part of the dephosphorized slag produced in
Blast furnace hot metal without adding quicklime or desiliconization and
Implement operations to refine hot metal that has undergone desulfurization
And when it is lower than 0.7, the dephosphorized slag is completely discharged.
A method for refining molten iron, which is provided. Where basicity
What is CaO concentration in slag and SiOTwoConcentration percentage of concentration
(CaO / SiO Two). (4) In any one of the methods (1) to (3),
The [Si] concentration in the hot metal charged to the iron dephosphorization furnace was 0.25 mass
% Or less, the method for refining molten iron. (5) The method according to any of (1) to (4)
In the blowing in the iron dephosphorization furnace, the parameters determined by equation (1)
The molten iron, characterized in that the
Refining method. α = (F / W) × τ / (L / L0) (1) where F is the top blowing acid feeding speed (NmThree/ h), W is the mass of molten iron
(T), τ is uniform mixing time (s), L is cavity depth
(m), L0 is bath depth (m). In addition, uniform mixing by bottom blow stirring
The time (τ) is calculated by the following equations. τ = 100 × {(DTwo/ L0)Two/ (ΕB+ ΕT)}0.337 ・ ・ ・ ・ (2) εB= 371 × (Q / 3600 / W) × T × {ln (1 + 7 × L0/10.33)+0.06×(1-298/T)} ··· (3) εT= 0.134 / W x (F / 3600)Three× 32 / nTwo/ DThree/ LG (4) where D is the bath diameter (m) and Q is the stirring gas flow rate (NmThree/ h),
T is hot metal temperature (K), n is the number of lance nozzles blown up, d is
Blowing lance nozzle diameter (m), LG is static
It is the distance between the fusible iron surfaces (m). L (m) is calculated by the following equation.
You. L = 63 × (F / (d × 1000) / n)2/3× exp (−0.78 × LG × 1000 / (63 × (F / (d × 1000) / n)2/3)) (5) (6) In any one of the methods (1) to (5),
In blowing in a charcoal furnace, decarburized slag is 20 to 40 kg /
Part of the decarburized slag generated in the decarburization furnace so that t
A method for refining molten iron, comprising: (7) In any one of the methods (1) to (6),
The decarburized slag discharged after blowing in the coal furnace is converted to a hot metal dephosphorization furnace.
A method for refining molten iron, characterized by recycling to steel.

【0008】[0008]

【発明の実施の形態】本発明は、脱燐処理で生成したス
ラグは、一度の脱燐処理の後も、なお十分な脱燐能力を
有し、再度、脱燐処理に用いることが可能であるという
事実を見出したことに基づく。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the slag produced by the dephosphorization treatment has a sufficient dephosphorization ability even after a single dephosphorization treatment, and can be used again for the dephosphorization treatment. Based on the finding that there is.

【0009】溶銑脱燐処理は、(T・Fe)が高く酸素活
量が高いスラグ相と、炭素飽和に近く酸素活量が低い溶
鉄との間で起こる非平衡系のプロセスであり、脱燐速度
は(6)式で表される。 −d[%P]/dt=(A・k/W){[%P]−aPO2.5 */LP} ・・・… (6) ここで、[%P]は溶銑中の燐濃度、tは時間(s)、Aは
反応界面積(cm2)、kは総括物質移動係数(cm/s)、Wは
溶銑量(t)、aPO2.5はスラグ中(PO2.5)の活量、LPは
界面での平衡分配比であり*で示す界面濃度により(7)
式で表される。 LP=aPO2.5 */[%P]* = K×aO * 2.5 ・・・… (7) ここで、Kは平衡定数、aO *は界面酸素活量である。
[0009] The hot metal dephosphorization treatment is a non-equilibrium process that occurs between a slag phase having a high (T.Fe) and a high oxygen activity and a molten iron having a low oxygen activity close to carbon saturation. The speed is expressed by equation (6). −d [% P] / dt = (A · k / W) {[% P] −a PO2.5 * / LP} (6) where [% P] is the phosphorus concentration in the hot metal. , T is the time (s), A is the reaction interface area (cm 2 ), k is the overall mass transfer coefficient (cm / s), W is the amount of hot metal (t), and a PO2.5 is the slag (PO 2.5 ). The activity and LP are equilibrium distribution ratios at the interface, and are determined by the interface concentration indicated by * (7)
It is expressed by an equation. LP = a PO2.5 * / [% P] * = In K × a O * 2.5 ··· ... (7) where, K is the equilibrium constant, a O * is an interfacial oxygen activity of.

【0010】仮に、aPO2.5 *がスラグ中(PO2.5)の濃度
に比例し、かつ、LPが十分には大きくない場合、スラ
グ中(PO2.5)濃度の増加に伴い(6)式のaPO2.5 */LPが
大きくなるため脱燐速度は低下する。
If a PO2.5 * is proportional to the concentration of (PO 2.5 ) in the slag and LP is not sufficiently large, with the increase of the concentration of (PO 2.5 ) in the slag, a Since the amount of PO2.5 * / LP increases, the dephosphorization rate decreases.

【0011】しかし、本発明者らの詳細な研究によれ
ば、溶銑脱燐スラグの場合、スラグ中(PO2.5)濃度が変
化しても(6)式のaPO2.5 */LPはほとんど影響を受け
ないことを見出した。これは、以下の2つの要因による
ものである。
However, according to the detailed study of the present inventors, in the case of hot metal dephosphorization slag, even if the (PO 2.5 ) concentration in the slag changes, a PO2.5 * / LP in the equation (6) is almost zero . Found that it was not affected. This is due to the following two factors.

【0012】1)反応が起こる溶銑とスラグの接触界面
での酸素活量は、スラグ中の(T・Fe)の影響を受けるた
めバルク溶銑中の炭素濃度との平衡で決まる値よりも大
きい。従って、(7)式からわかるようにLPが十分に大
きくなるためaPO2.5 */LPはスラグ中(PO2.5)濃度が変
化しても、常に無視できるほどに小さい。
1) The oxygen activity at the contact interface between the hot metal and the slag in which the reaction occurs is affected by (T.Fe) in the slag, and is larger than the value determined by the equilibrium with the carbon concentration in the bulk hot metal. Therefore, as can be seen from the equation (7), since LP is sufficiently large, a PO2.5 * / LP is always negligibly small even if the (PO 2.5 ) concentration in the slag changes.

【0013】2)スラグ中(PO2.5)濃度が変化しても、
(PO2.5)は界面活性成分のため脱炭に伴うCO気泡の核
発生を抑制する作用があり、脱燐中の脱炭を抑制し(T・
Fe)を高く保つことができる。このため、(PO2.5)濃度
の増加に伴い溶銑とスラグの接触界面での酸素活量が増
加するため、aPO2.5 */LPはスラグ中(PO2.5)濃度が変
化しても全く変化しない。ここで、(T.Fe)はスラグ中の
酸化鉄としての全鉄濃度を示す。
2) Even if the (PO 2.5 ) concentration in the slag changes,
(PO 2.5 ) is a surface active component and has the effect of suppressing the nucleation of CO bubbles due to decarburization, and suppresses decarburization during dephosphorization (T.
Fe) can be kept high. For this reason, the oxygen activity at the contact interface between the hot metal and the slag increases with an increase in the (PO 2.5 ) concentration, so that a PO2.5 * / LP does not change at all even if the (PO 2.5 ) concentration in the slag changes. do not do. Here, (T.Fe) indicates the total iron concentration as iron oxide in the slag.

【0014】このことが、脱燐処理後のスラグには(PO
2.5)は含まれているものの、再度利用しても、さらに脱
燐が可能であることの原理である。
This means that the slag after the dephosphorization treatment has (PO
Although 2.5 ) is included, it is the principle that even if it is reused, further dephosphorization is possible.

【0015】さらに、脱燐滓を用いると脱燐中の脱炭を
抑制し(T・Fe)を高く保つことができるため、(PO2.5)
を含む脱燐滓を用いた脱燐処理では脱炭が少なく、次工
程である転炉での熱裕度を大幅に増大させることができ
る。
Further, when dephosphorization slag is used, decarburization during dephosphorization can be suppressed and (T.Fe) can be kept high, so that (PO 2.5 )
In the dephosphorization treatment using dephosphorization slag containing, the decarburization is small, and the heat tolerance in the converter, which is the next step, can be greatly increased.

【0016】請求項1は、これを利用したものであり、
2基の転炉を用い、片炉を溶銑脱燐炉、他炉を脱炭炉と
する製鋼方法において、溶銑脱燐炉においては、当該溶
銑脱燐炉で生成した脱燐スラグを全量又は一部を残留さ
せたまま高炉溶銑、又は、脱珪処理及び/もしくは脱硫
処理を施した溶銑を精錬し、脱炭炉においては、当該脱
炭炉で生成した脱炭スラグを全量又は一部を残留させた
まま溶銑脱燐炉で精錬された溶銑を脱炭精錬する工程を
少なくとも1回以上実施することを特徴とする溶鉄の精
錬方法にある。
Claim 1 utilizes this,
In a steelmaking method using two converters, one of which is a hot metal dephosphorization furnace and the other is a decarburization furnace, in the hot metal dephosphorization furnace, the dephosphorization slag generated by the hot metal dephosphorization furnace is entirely or completely removed. The blast furnace hot metal or the hot metal that has been subjected to desiliconization and / or desulfurization treatment is smelted with the remaining part, and in the decarburization furnace, all or part of the decarburized slag generated in the decarburization furnace is retained. A method for refining molten iron, comprising performing at least one or more steps of decarburizing and refining hot metal refined in a hot metal dephosphorization furnace while keeping it.

【0017】溶銑脱燐炉では、前記のように、脱燐処理
で生成したスラグは、さらに再度の脱燐処理に利用可能
な脱燐能力を有するという原理に基づいて、脱燐スラグ
を溶銑脱燐工程で繰り返し使用することができる。
In the hot metal dephosphorization furnace, as described above, the slag generated by the dephosphorization treatment has a dephosphorization capability based on the principle that the slag has a dephosphorization capacity that can be used for the dephosphorization treatment again. It can be used repeatedly in the phosphorus step.

【0018】溶銑脱燐炉で生成した脱燐スラグは、全量
残留させても、一部を排滓し残部を残留させても良い。
次チャージ溶銑の[Si]濃度によっては脱燐処理中にSiO2
が多量に生成しスラグ量が大幅に増加する場合がある。
このような低塩基度のスラグは脱燐処理中に激しくスラ
グフォーミングをするため、その場合には一部を排滓し
た方が良い。次チャージ溶銑の[Si]濃度が低い場合に
は、全量残留させて良い。また、フォーミングの抑制さ
せ反応効率をあげるために石灰を投入することも可能で
ある。
The dephosphorized slag generated in the hot metal dephosphorization furnace may be left in its entirety, or may be partially discharged and the remaining portion may be left.
Depending on the [Si] concentration of the secondary charged hot metal, SiO 2
May be generated in a large amount, and the amount of slag may be greatly increased.
Since such a low basicity slag undergoes vigorous slag forming during the dephosphorization treatment, it is better to partially discharge the slag in such a case. When the [Si] concentration of the next charge hot metal is low, the entire amount may be left. Also, lime can be added to suppress the forming and increase the reaction efficiency.

【0019】生石灰を添加したスラグを、新たな生石灰
を添加せずに1回以上繰り返し使用するこ場合は、図1
に示すように、スラグ中のfreeCaO(スラグに溶解して
いないCaO)濃度が大きく低減され、スラグを利用す
る場合に問題となる膨張・粉化が起こらなくなる。
When the slag to which quicklime is added is repeatedly used one or more times without adding new quicklime, FIG.
As shown in (1), the concentration of freeCaO (CaO not dissolved in the slag) in the slag is greatly reduced, and expansion and pulverization, which are problems when using the slag, do not occur.

【0020】これは、たとえ状態図上は溶解できるスラ
グ組成であっても、塊状の生石灰は溶解速度が遅いた
め、完全には溶解できないためである。特に、溶銑脱燐
精錬のように低温で短時間の処理の場合には顕著であ
る。この効果を得るには、繰り返し数は少なくとも1回
は必要である。
This is because even if the composition of the slag can be dissolved in the phase diagram, the lump of lime cannot be completely dissolved due to the low dissolution rate. In particular, this is remarkable in the case of low-temperature and short-time treatment such as hot metal dephosphorization refining. To obtain this effect, the number of repetitions is required at least once.

【0021】ここで、繰り返し数とは、以下のように定
義する。生石灰などの副材添加前に、当該精錬の前に同
一炉で精錬したスラグは残留していない状態で(不可避
的に混入するスラグを除く)、新たな生石灰を添加して
行う精錬の繰り返し数を0回、0回の精錬後のスラグの
全量又は一部を用いて行う精錬の繰り返し数を1回とす
る。以降はこの例に従い、2回、3回…とする。
Here, the number of repetitions is defined as follows. Before adding secondary materials such as quicklime, the number of repetitions of refining performed by adding new quicklime while slag refined in the same furnace before the refining does not remain (excluding slag mixed inevitably) 0, and the number of refining repetitions performed using the entire or a part of the slag after the 0 refining is defined as 1. Hereafter, according to this example, it will be twice, three times, and so on.

【0022】脱炭炉と脱燐炉を分離することで、燐酸濃
度の高い脱燐滓が脱炭炉へ混入することを防げるため、
脱炭炉では脱燐のために造滓する必要が無くなる。従っ
て、脱炭炉では耐火物溶損が小さく、ダスト発生量が増
えないという条件でスラグ量を決めることができ、ま
た、そのスラグは燐酸を含まないため基本的には何回で
も繰り返し使用することができる。脱炭滓を繰り返し使
用することにより、新たに添加する石灰の使用量を削減
でき、さらにスラグ発生量も低減される。この効果を得
るには、繰り返し数は少なくとも1回は必要である。
By separating the decarburizing furnace from the dephosphorizing furnace, it is possible to prevent dephosphorized slag having a high phosphoric acid concentration from being mixed into the decarburizing furnace.
In the decarburization furnace, there is no need to make slag for dephosphorization. Therefore, in a decarburization furnace, the amount of slag can be determined on the condition that the refractory erosion is small and the amount of dust generated does not increase, and since the slag does not contain phosphoric acid, it is basically repeatedly used any number of times. be able to. By repeatedly using the decarburized slag, the amount of newly added lime can be reduced, and the amount of slag generated can also be reduced. To obtain this effect, the number of repetitions is required at least once.

【0023】脱炭炉でのスラグは全量残留させても一部
を排滓し残部を残留させても良い。つまり、脱炭炉にお
いては鉄鉱石やマンガン鉱石を使用することがあり、そ
の場合には脈石成分から不可避的にSiO2,Al2O3等が混入
しスラグ量が増加する。スラグ量が多くなりすぎると、
鉄分歩留まりが低下するため、必要に応じて、一部を排
滓し一定量以下としても良く、また、鉄鉱石やマンガン
鉱石を使用しない精錬を実施した場合には全量残留させ
て良い。また、混入するSiO2を補償するためにCaOを添
加することも可能である。
The slag in the decarburization furnace may be left in its entirety, or may be partially drained and the remaining portion may be left. That is, iron ore or manganese ore may be used in the decarburization furnace, and in that case, SiO 2 , Al 2 O 3 and the like are inevitably mixed from the gangue components, and the amount of slag increases. If the amount of slag becomes too large,
Since the yield of iron decreases, part of the iron ore or manganese ore may be left as it is, and if necessary, the entire amount may be retained if refining is performed without using iron ore or manganese ore. In addition, CaO can be added to compensate for the mixed SiO 2 .

【0024】請求項2は炉の種類を規定したものであ
り、脱炭炉、溶銑脱燐炉とも、上底吹き転炉を用いるも
のである。ここで、溶銑脱燐炉を上底吹き転炉とした理
由は、反応が起こる溶銑とスラグの接触界面を、バルク
溶銑とスラグの界面ではなく、スラグ中に上吹きや底吹
きのエネルギーで懸濁した溶鉄粒子の表面を主体とさせ
るためである。また、脱炭炉を上底吹き転炉とした理由
は、脱炭スラグ量が繰り返し使用することで大きく変化
した場合にも、上吹きと底吹きの条件を制御することで
安定した吹錬ができるためである。
Claim 2 specifies the type of furnace, and both the decarburization furnace and the hot metal dephosphorization furnace use an upper-bottom blow converter. Here, the reason why the hot metal dephosphorization furnace is the top-bottom blow converter is that the contact interface between the hot metal and slag where the reaction takes place is suspended not by the interface between bulk hot metal and slag but by the energy of top blowing or bottom blowing in the slag. This is because the surface of the turbid molten iron particles is mainly used. In addition, the reason why the decarburization furnace is a top-bottom blow converter is that even if the amount of decarburization slag changes significantly due to repeated use, stable blowing can be achieved by controlling the conditions of top blow and bottom blow. This is because it can be done.

【0025】請求項3は、脱燐スラグを繰り返し実施す
る場合の条件を規定したもので、溶銑脱燐処理後のスラ
グの塩基度が0.7以上の間は溶銑脱燐炉で生成した脱
燐スラグを全量又は一部を残留させたまま、生石灰を添
加せずに高炉溶銑、又は、脱珪処理及び/もしくは脱硫
処理を施した溶銑を精錬する操作を繰り返し実施し、
0.7よりも低くなった時点で脱燐スラグを全量排出す
ることにある。塩基度を0.7とした理由は、塩基度が
0.7よりも低い場合にはスラグ中燐酸の活量が増大す
るため(PO2.5)が増加して(T・Fe)が増加したとしても
(6)式におけるaPO 2.5 */LPが無視できないほどに
大きくなり、図2に示すように脱燐速度が低下するため
である。塩基度が0.7以上の場合には脱燐能は十分に
高いため、脱燐処理において新たに生石灰を添加する必
要はない。一般的には脱燐工程を繰り返す毎に溶銑中
[Si]が酸化されて生成したSiO2が蓄積されるため、生
石灰を添加しないと塩基度は繰り返す毎に低下する。従
って、前チャージ脱燐滓を残留させない最初の脱燐吹錬
においては、塩基度を1.7〜2.3とし、脱燐滓を繰り
返し使用するにつれて塩基度が低下して行く操業が望ま
しい。
Claim 3 stipulates the conditions for repeatedly performing the dephosphorization slag. The dephosphorization slag after the hot metal dephosphorization treatment has a basicity of 0.7 or more. Repeating the operation of refining the blast furnace hot metal or the desiliconized and / or desulfurized hot metal without adding quicklime, while leaving all or part of the phosphorus slag,
It is to discharge the entire amount of the dephosphorized slag when the value becomes lower than 0.7. The reason for setting the basicity to 0.7 is that if the basicity is lower than 0.7, the activity of phosphoric acid in the slag increases, so that (PO 2.5 ) increases and (T · Fe) increases. This is because a PO 2.5 * / LP in the equation (6) becomes so large that it cannot be ignored, and as shown in FIG. 2, the dephosphorization rate decreases. When the basicity is 0.7 or more, the dephosphorization ability is sufficiently high, so that it is not necessary to newly add quicklime in the dephosphorization treatment. Generally, every time the dephosphorization process is repeated,
Since [Si] is oxidized and the generated SiO 2 is accumulated, the basicity decreases with each addition unless quick lime is added. Therefore, in the first dephosphorization blowing without leaving the pre-charge dephosphorization slag, it is desirable to set the basicity to 1.7 to 2.3 and to reduce the basicity as the dephosphorization slag is repeatedly used.

【0026】請求項4は溶銑脱燐炉に装入される溶銑中
[Si]の質量パーセントを0.25%以下としたもので
ある。[Si]濃度が0.25%よりも高い場合には1
回の脱燐精錬で蓄積されるSiO2が多いため、繰り返し回
数が少なく効率的でない。この点では、溶銑中[Si]の
質量パーセントは低いほど効率的ではあるが、前工程で
溶銑中[Si]を低減させなければならず、前工程の効
率は低下する。したがって、溶銑中[Si]の質量パー
セントの下限は特に規定しない。
A fourth aspect of the present invention is that the hot metal charged into the hot metal dephosphorization furnace is
The mass percentage of [Si] is set to 0.25% or less. 1 when the [Si] concentration is higher than 0.25%
Since a large amount of SiO 2 is accumulated in one dephosphorization refining, the number of repetitions is small and inefficient. In this respect, the lower the mass percentage of [Si] in the hot metal, the more efficient, but the [Si] in the hot metal must be reduced in the previous step, and the efficiency of the previous step decreases. Therefore, the lower limit of the mass percentage of [Si] in the hot metal is not particularly defined.

【0027】請求項5は、溶銑脱燐炉での操業方法を示
したものであり、(1)式で決まるパラメータαを30
0〜1300とすることを特徴とする溶鉄の精錬方法で
ある。 α=(F/W)×τ/(L/L0) ・・・・・・・… (1) ここで、Fは上吹き送酸速度(Nm3/h)、Wは溶鉄質量
(t)、τは均一混合時間(s)、Lはキャビティー深さ
(m)、L0は浴深(m)である。
A fifth aspect of the present invention relates to a method of operating a hot metal dephosphorization furnace, wherein the parameter α determined by the equation (1) is set to 30.
This is a method for refining molten iron, characterized in that the melting point is from 0 to 1300. α = (F / W) × τ / (L / L0) (1) where F is the top blowing acid transfer rate (Nm 3 / h), and W is the molten iron mass (t). , Τ is the uniform mixing time (s), L is the cavity depth
(m), L0 is bath depth (m).

【0028】また、底吹き攪拌による均一混合時間
(τ)は以下の各式で計算される。 τ=100×{(D2/L0)2/(εB+εT)}0.337 ・・・・ (2) εB=371×(Q/3600/W)×T×{ln(1+7×L0/10.33)+0.06×(1−298/T)} ・・・・ (3) εT=0.134/W×(F/3600)3×32/n2/d3/LG ・・・・ (4) ここで、Dは浴直径(m)、Qは攪拌ガス流量(Nm3/h)、
Tは溶銑温度(K)、nは上吹きランスノズル数、dは上
吹きランスノズル径(m)、LGは上吹きランス先端と静
止溶鉄面間距離(ランスギャップ;m)である。
The uniform mixing time (τ) by bottom-blowing agitation is calculated by the following equations. τ = 100 × {(D 2 / L 0 ) 2 / (ε B + ε T )} 0.337 (2) ε B = 371 × (Q / 3600 / W) × T × {ln (1 + 7 × L 0 /10.33)+0.06×(1-298/T)} (3) ε T = 0.134 / W × (F / 3600) 3 × 32 / n 2 / d 3 / LG (4) where D is the bath diameter (m), Q is the stirring gas flow rate (Nm 3 / h),
T is the hot metal temperature (K), n is the number of upper blowing lance nozzles, d is the diameter of the upper blowing lance nozzle (m), and LG is the distance between the tip of the upper blowing lance and the stationary molten iron surface (lance gap; m).

【0029】また、L(m)は次式で計算する。 L=63×(F/(d×1000)/n)2/3× exp(−0.78×LG×1000/(63×(F/(d×1000)/n)2/3)) ・・・(5)L (m) is calculated by the following equation. L = 63 × (F / (d × 1000) / n) 2/3 × exp (−0.78 × LG × 1000 / (63 × (F / (d × 1000) / n) 2/3 )) (5)

【0030】パラメータαは送酸速度とキャビティー深
さにより上吹き酸素によるFeO生成速度を代表し、均
一混合時間で溶銑によるFeOの還元速度を代表した指
標であり、この値が大きい方がスラグ中の(T・Fe)が高
くなる。このため脱燐滓を繰り返し使用しても(6)式
におけるaPO2.5/LPが小さく保ちやすいため有利とな
る。図3に示すように、αが300よりも小さいとスラ
グ中の(T・Fe)が高く保てないため、(6)式における
PO2.5/LPが小さく維持できず脱燐滓の繰り返し使用
回数が少ない。逆に、1300よりも大きい場合には(T
・Fe)が高くなりすぎるためスロッピングによる操業障
害を起こす。
The parameter α is an index representing the rate of FeO generation by top-blown oxygen according to the acid feeding rate and the cavity depth, and is an index representing the rate of reduction of FeO by hot metal in a uniform mixing time. (T.Fe) in the inside becomes high. Therefore, even if the dephosphorized residue is repeatedly used, a PO2.5 / LP in the equation (6) is easily kept small, which is advantageous. As shown in FIG. 3, if α is smaller than 300, ( T.Fe ) in the slag cannot be kept high, so that a PO2.5 / LP in the equation (6) cannot be kept small, and the dephosphorization slag is repeated. Infrequent use. Conversely, if it is larger than 1300, (T
・ Fe) becomes too high, causing operation failure due to slopping.

【0031】パラメータαの300から1300までへ
の制御は、送酸速度、溶鉄質量、均一混合時間、ランス
高さ、キャビティ−深さ、浴深の制御により可能とな
る。
The parameter α can be controlled from 300 to 1300 by controlling the acid feed rate, molten iron mass, uniform mixing time, lance height, cavity depth, and bath depth.

【0032】請求項6は脱炭炉での条件を規定したもの
であり、脱炭炉での吹錬において、脱炭スラグが20〜
40kg/tとなるように当該脱炭炉で生成した脱炭ス
ラグの一部を排滓するとしたものである。ここで、単位
のkg/tとは、溶銑1t当たりのスラグ重量(kg)であ
る。この時の溶銑重量(t)は、次の処理で脱炭炉に装
入される予定の溶銑の重量を用いる。
Claim 6 defines conditions in the decarburizing furnace, and in blowing in the decarburizing furnace, the decarburized slag is 20 to 40%.
A part of the decarburized slag generated in the decarburization furnace is discharged to 40 kg / t. Here, the unit of kg / t is slag weight (kg) per ton of hot metal. The hot metal weight (t) at this time uses the weight of the hot metal to be charged into the decarburization furnace in the next process.

【0033】脱炭スラグが20kg/tよりも少ない場
合には、ダスト発生量が多く歩留まりが低下するととも
に、スラグ中の(T・Fe)の濃度が上がり易く耐火物溶
損が大きくなり易い。逆に40kg/tよりも多いと、
スラグ中への鉄ロスやMnロスが大きくなるため経済的
でない。
When the decarburized slag is less than 20 kg / t, the amount of dust generated is large and the yield is reduced, and the concentration of (T.Fe) in the slag is liable to increase and the refractory erosion is likely to increase. Conversely, if it is more than 40 kg / t,
It is not economical because iron loss and Mn loss in slag increase.

【0034】請求項7は脱炭炉での吹錬後に排滓された
脱炭スラグを、溶銑脱燐炉へリサイクルする方法であ
る。本発明で生成する脱炭スラグには(PO2.5)はほとん
ど含まれて無く、さらに一般には塩基度が3以上で、か
つ、(T・Fe)も高いため、低温処理である溶銑脱燐炉で
再利用しても、十分に脱燐能力がある。従って、脱炭炉
から排出されたスラグは、一旦、冷却固化した後、又
は、熱間のままで溶銑脱燐炉へリサイクルすることで、
新しい生石灰の使用量を大幅に減らすことができる。特
に、請求項3に示した操業において、脱燐スラグを全量
排滓後の最初の吹錬で脱炭スラグを用いれば、常に新し
い生石灰を使用せずに脱燐操業が可能となる。
A seventh aspect is a method of recycling decarburized slag discharged after blowing in a decarburizing furnace to a hot metal dephosphorizing furnace. The decarburized slag produced in the present invention contains little (PO 2.5 ), and generally has a basicity of 3 or more and has a high (T · Fe). It has sufficient dephosphorization ability even when reused. Therefore, the slag discharged from the decarburization furnace, once cooled and solidified, or by recycling to hot metal dephosphorization furnace while hot,
The use of fresh quicklime can be greatly reduced. In particular, in the operation described in claim 3, if the decarburized slag is used in the first blowing after removing all the dephosphorized slag, the dephosphorizing operation can be always performed without using fresh quicklime.

【0035】[0035]

【実施例】実施例は280トン規模の上底吹き転炉を用
いて実施した。溶銑脱燐炉の上吹きランスは46φの7
孔ランスを用い酸素供給速度は20000Nm3/hとし、
ランスギャップは2.4〜2.6mとした。底吹きは小径
集合管羽口としCO2を1200Nm3/h供給した。この
条件ではパラメータαは850〜900となる。
EXAMPLES Examples were carried out using a 280 ton scale top-bottom blow converter. Top blow lance of hot metal dephosphorization furnace is 7 of 46φ
The oxygen supply rate was 20,000 Nm 3 / h using a hole lance,
The lance gap was set to 2.4 to 2.6 m. Bottom blowing was the CO 2 and small collecting pipe tuyere to 1200 Nm 3 / h feed. Under this condition, the parameter α is 850 to 900.

【0036】溶銑脱燐炉に装入した予備脱硫処理を施し
た高炉溶銑の組成は、C:4.35〜4.65%、Si:
0.1〜0.2%、Mn:0.23〜0.35%、P:0.
095〜0.110%、S:0.009〜0.014%
で、温度は1325〜1365℃であった。脱燐精錬時
間は約9分間であり、脱燐中には温度調整のため鉄鉱石
を10〜16kg/t上部バンカーから投入した。処理後は
C:4.05〜3.8%、Si:0.02%以下、Mn:
0.03〜0.08%、P:0.019〜0.028%、
S:0.010〜0.015%で温度は1345〜136
5℃であった。
The composition of the pre-desulfurized blast furnace hot metal charged in the hot metal dephosphorizing furnace is as follows: C: 4.35 to 4.65%, Si:
0.1 to 0.2%, Mn: 0.23 to 0.35%, P: 0.2%
095 to 0.110%, S: 0.009 to 0.014%
And the temperature was 1325 to 1365 ° C. The dephosphorization refining time was about 9 minutes, and during the dephosphorization, iron ore was charged from the upper bunker at 10 to 16 kg / t for temperature control. After the treatment, C: 4.05 to 3.8%, Si: 0.02% or less, Mn:
0.03 to 0.08%, P: 0.019 to 0.028%,
S: 0.010 to 0.015%, temperature is 1345 to 136
5 ° C.

【0037】表1に結果を示すが、最初の溶銑脱燐処理
では、上記溶銑とスクラップを溶銑脱燐炉へ装入し、吹
錬中には上記鉄鉱石に加えて生石灰を11.2kg/t添加
した。最初の溶銑脱燐処理終了後、炉を傾動し溶銑を出
銑後、溶銑脱燐滓は全量炉内に残したまま、次チャージ
の高炉溶銑とスクラップを装入した。次チャージ以降の
吹錬中は生石灰は添加しなかった。脱燐スラグを全量残
したままで、繰り返し使用吹錬を5回実施した結果、ス
ラグ塩基度が0.7よりも低くなったため、その時点で
脱燐スラグを全量排滓した。表1からわかるように、こ
の間、生石灰を使用しなくとも良好な脱燐挙動であっ
た。生石灰は最初のチャージで用いただけのため、全脱
燐溶銑処理量1680tの溶銑(280(t)×6(c
h.))に対して3136kgの石灰(11.2(kg
/t)×280(t))のみしか用いなかったことにな
り、6chを通した原単位は(280×11.2)/
(280×6)=1.87kg/tとなった。
The results are shown in Table 1. In the first hot metal dephosphorization treatment, the hot metal and the scrap were charged into a hot metal dephosphorization furnace, and 11.2 kg / l of quicklime was added to the iron ore during blowing. t was added. After the completion of the first hot metal dephosphorization treatment, the furnace was tilted to discharge hot metal, and then the next charge of blast furnace hot metal and scrap were charged while leaving the entire hot metal dephosphorization slag in the furnace. During the blowing after the next charge, quicklime was not added. Repeated use blowing was carried out five times with the entire amount of dephosphorized slag remaining. As a result, the basicity of the slag became lower than 0.7. At that time, the entire amount of dephosphorized slag was discharged. As can be seen from Table 1, during this period, good dephosphorization behavior was obtained without using quicklime. Since quicklime was used only at the first charge, hot metal (280 (t) x 6 (c
h. )) To 3136 kg of lime (11.2 (kg
/ T) × 280 (t)), and the basic unit through 6ch is (280 × 11.2) /
(280 × 6) = 1.87 kg / t.

【0038】[0038]

【表1】 [Table 1]

【0039】また、5回の繰り返しにより6チャージを
吹錬した結果、炉外発生スラグ量は49.1kg/tに過ぎ
ず、全脱燐溶銑処理量を分母とした炉外発生スラグ量は
8.2kg/tに過ぎなかった。また、最初のチャージで投
入された生石灰は繰り返し利用される間に十分にスラグ
へ溶解することができるため、炉外発生スラグ中のfree
CaOは0.1%以下と極めて低かった。
As a result of blowing 6 charges by repeating 5 times, the amount of slag generated outside the furnace was only 49.1 kg / t, and the amount of slag generated outside the furnace was 8 with the total amount of dephosphorized hot metal treated as a denominator. It was only .2kg / t. In addition, since quicklime introduced in the first charge can be sufficiently dissolved in slag during repeated use, free lime in slag generated outside the furnace is free.
CaO was as low as 0.1% or less.

【0040】また、上記の脱燐処理後の溶銑を逐次、脱
炭炉に装入し、処理した。脱炭炉の上吹きランスは46
φの5孔ランスを用い酸素供給速度は45000Nm3/h
とした。底吹きは小径集合管羽口としCO2を1200N
m3/h供給した。
The hot metal after the above-mentioned dephosphorization treatment was successively charged into a decarburization furnace and treated. The top blowing lance of the decarburization furnace is 46
Oxygen supply rate is 45000Nm 3 / h using φ 5 hole lance
And Bottom blowing the 1200N the CO 2 and the small-diameter collecting pipe tuyere
m 3 / h.

【0041】繰り返し数0回の脱燐溶銑の脱炭精錬時に
は、脱炭炉には前の精錬のスラグは残っておらず、生石
灰を8kg/t、鉄鉱石を7kg/t上部バンカーから投入し
た。脱炭精錬後には脱炭スラグは排滓せずに全量残した
まま、次チャージ(上記繰り返し数1)の脱燐溶銑を装
入した。同様に脱炭精錬後、脱炭スラグは排滓せずに全
量残したまま上記の脱燐溶銑の脱燐処理を5回繰り返し
て行った。繰り返し数1回以降の脱燐溶銑の脱炭吹錬で
は、鉄鉱石の添加量は5〜8kg/tとし、脈石成分を補償
するために、生石灰の添加量は0〜3kg/t添加した。
During the decarburization and refining of the dephosphorized hot metal repeated 0 times, no slag from the previous refining remained in the decarburization furnace, and 8 kg / t of quicklime and 7 kg / t of iron ore were charged from the upper bunker. . After the decarburization refining, dephosphorized hot metal of the next charge (the above-mentioned repetition number 1) was charged while leaving the entire amount of the decarburized slag without discharging. Similarly, after the decarburization refining, the above-mentioned dephosphorization of the dephosphorized hot metal was repeated 5 times while leaving the entire amount of the decarburized slag without discharging. In the decarburization blowing of the dephosphorized hot metal after one repetition, the addition amount of iron ore was 5 to 8 kg / t, and the addition amount of quicklime was 0 to 3 kg / t to compensate for the gangue component. .

【0042】脱炭時間は約12分間であり、処理後は
C:0.15〜0.35%、Si:0.01%以下、M
n:0.03〜0.06%、P:0.015〜0.023
%、S:0.010〜0.015%で温度は1635〜1
665℃であった。
The decarburization time is about 12 minutes. After the treatment, C: 0.15 to 0.35%, Si: 0.01% or less, M:
n: 0.03-0.06%, P: 0.015-0.023
%, S: 0.010 to 0.015%, and the temperature is 1635 to 1
665 ° C.

【0043】脱炭スラグを全量残したままで、繰り返し
使用吹錬を5回実施した結果、スラグ量が40kg/tより
も多くなったため、半量を排滓した。この間、ダスト発
生量は20kg/t程度と少なく、吹き止めスラグ中(T・F
e)も15〜25%と低かった。さらに、6チャージを
平均した生石灰原単位は3.3kg/tとなり、6チャージ
を平均した炉外発生スラグ量は3.7kg/tに過ぎなかっ
た。また、溶銑脱燐と同様に生石灰は繰り返し利用され
る間に十分にスラグへ溶解することができるため、炉外
発生スラグ中のfreeCaOは0.1%以下と極めて低か
った。
Five times of repeated use blowing was performed with the entire amount of decarburized slag remaining. As a result, the amount of slag became larger than 40 kg / t, and half of the slag was discharged. During this time, the amount of dust generated was as small as about 20 kg / t,
e) was also as low as 15 to 25%. Furthermore, the quicklime unit consumption averaged 6 charges was 3.3 kg / t, and the amount of slag generated outside the furnace averaged 6 charges was only 3.7 kg / t. Further, as in the case of hot metal dephosphorization, quicklime can be sufficiently dissolved in slag during repeated use, so that freeCaO in slag generated outside the furnace was extremely low at 0.1% or less.

【0044】さらに5回の脱炭精錬で繰り返し使用さ
れ、半量排滓された脱炭スラグを熱間のまま脱燐炉に装
入し、繰り返し数0回の脱燐精錬の副材として使用し
た。その結果、新しい生石灰の使用無しに上記繰り返し
数0回の脱燐精錬と同等の精錬を行うことができた。
Further, the decarburized slag which was repeatedly used in the decarburization refining for 5 times and the half amount of the decarburized slag was charged into the dephosphorization furnace while being hot was used as a secondary material for the dephosphorization refining of 0 times. . As a result, refining equivalent to the above-described dephosphorization refining of 0 times could be performed without using fresh quicklime.

【0045】(比較例)比較例も実施例と同一条件の2
80トン規模の上底吹き転炉を用いて実施した。比較例
では、溶銑脱燐後のスラグは常に全量排滓したが、その
結果、生石灰は総てのチャージで用いるため、生石灰原
単位は11.2kg/tと多かった。また、スラグも毎チャ
ージ排滓されるため炉外発生スラグ量は20.4kg/tと
多かった。また、生石灰は9分間の脱燐精錬中には十分
にスラグへ溶解することができず、炉外発生スラグ中の
freeCaOは3.8%と高かった。脱炭炉においても処
理後のスラグは毎チャージ全量排滓したため、生石灰は
総てのチャージで必要となり、生石灰原単位は8.5kg/
tと多かった。また、スラグも毎チャージ排滓されるた
め炉外発生スラグ量は20.3kg/tと多かった。さら
に、生石灰は十分にスラグへ溶解することができず、炉
外発生スラグ中のfreeCaOは2.1%と高かった。
(Comparative Example) The comparative example also has the same conditions as those of the embodiment.
The test was performed using an 80-ton scale top-bottom blow converter. In the comparative example, the entire amount of slag after hot metal dephosphorization was always discharged, but as a result, since quicklime was used for all charges, the basic unit of quicklime was as large as 11.2 kg / t. In addition, since slag was discharged every charge, the amount of slag generated outside the furnace was as large as 20.4 kg / t. Also, quick lime cannot be sufficiently dissolved in slag during the dephosphorization smelting for 9 minutes.
freeCaO was as high as 3.8%. Even in the decarburizing furnace, the slag after treatment was discharged as a whole with every charge, so quick lime was required for every charge, and the unit of quick lime was 8.5 kg /
There were many with t. In addition, since slag was discharged every charge, the amount of slag generated outside the furnace was as large as 20.3 kg / t. Furthermore, quicklime could not be sufficiently dissolved in slag, and freeCaO in slag generated outside the furnace was as high as 2.1%.

【0046】[0046]

【発明の効果】本発明により、スラグを再利用すること
で生石灰原単位、系外スラグ排出量を極限まで少なくす
るとともに、未滓化生石灰が極めて少ないスラグのみを
系外へ排出させることが可能となった。
According to the present invention, it is possible to minimize the amount of quicklime and the amount of slag discharged outside the system to the utmost by recycling slag, and to discharge only the slag with very little unslagged lime out of the system. It became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】生石灰添加スラグの繰り返し使用回数とfreeCa
O濃度の関係を示す実験結果。
Fig. 1 Number of repeated use of quicklime-added slag and freeCa
Experimental results showing the relationship between O concentrations.

【図2】脱燐処理における塩基度と脱燐速度との関係を
示す実験結果。
FIG. 2 is an experimental result showing the relationship between the basicity and the dephosphorization rate in the dephosphorization treatment.

【図3】脱燐処理における繰り返し回数と脱燐速度の関
係に対するパラメータαの影響。
FIG. 3 shows the effect of parameter α on the relationship between the number of repetitions and the dephosphorization rate in the dephosphorization treatment.

フロントページの続き (72)発明者 佐々木 直人 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4K014 AA03 AB03 AB04 AC03 AC11 AC16 AC17 AD00 AD27 AE01 4K070 AA10 AB03 AB06 AB11 AC03 AC13 AC14 BA07 BA10 BB02 BB05 BC02 BC12 BD13 BD14 BD15 EA01 EA03 EA30 Continued on the front page (72) Inventor Naoto Sasaki 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 4K014 AA03 AB03 AB04 AC03 AC11 AC16 AC17 AD00 AD27 AE01 4K070 AA10 AB03 AB06 AB11 AC03 AC13 AC14 BA07 BA10 BB02 BB05 BC02 BC12 BD13 BD14 BD15 EA01 EA03 EA30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 2基の精錬炉を用い、片炉を溶銑脱燐
炉、他炉を脱炭炉とする精錬方法において、溶銑脱燐炉
においては、当該溶銑脱燐炉で生成した脱燐スラグを全
量又は一部を残留させたまま高炉溶銑、又は、脱珪処理
及び/もしくは脱硫処理を施した溶銑を精錬し、脱炭炉
においては、当該脱炭炉で生成した脱炭スラグを全量又
は一部を残留させたまま溶銑脱燐炉で精錬された溶銑を
脱炭精錬する工程を、どちらの炉においても、少なくと
も1回以上実施することを特徴とする溶鉄の精錬方法。
1. A refining method using two refining furnaces, one of which is a hot metal dephosphorization furnace and the other of which is a decarburization furnace, wherein the hot metal dephosphorization furnace comprises dephosphorization produced by the hot metal dephosphorization furnace. The blast furnace hot metal or the hot metal that has been subjected to desiliconization and / or desulfurization treatment is refined while leaving all or part of the slag, and in the decarburization furnace, the total amount of decarburized slag generated in the decarburization furnace is A method for refining molten iron, characterized in that the step of decarburizing and refining hot metal refined in a hot metal dephosphorization furnace while leaving a part thereof is performed at least once in both furnaces.
【請求項2】 請求項1の方法において、溶銑脱燐炉、
脱炭炉とも、上底吹き転炉を用いることを特徴とする溶
鉄の精錬方法。
2. The method of claim 1, wherein the hot metal dephosphorization furnace comprises:
A method for refining molten iron, characterized in that both decarburization furnaces and top-bottom blow converters are used.
【請求項3】 請求項1または2の方法において、溶銑
脱燐処理後のスラグの塩基度が0.7以上の間は溶銑脱
燐炉で生成した脱燐スラグを全量又は一部を残留させた
まま、生石灰を添加せずに高炉溶銑、又は、脱珪処理及
び/もしくは脱硫処理を施した溶銑を精錬する操作を実
施し、0.7よりも低くなった時点で脱燐スラグを全量
排出することを特徴とする溶鉄の精錬方法。
3. The method according to claim 1 or 2, wherein the dephosphorized slag produced in the hot metal dephosphorization furnace is entirely or partially left as long as the basicity of the slag after the hot metal dephosphorization treatment is 0.7 or more. The blast furnace hot metal or the hot metal that has been desiliconized and / or desulfurized is refined without adding quicklime, and when it becomes lower than 0.7, the entire amount of dephosphorized slag is discharged. A method of refining molten iron.
【請求項4】 請求項1〜3のいずれかの方法におい
て、溶銑脱燐炉に装入される溶銑中[Si]濃度を0.2
5質量%以下とすることを特徴とする溶鉄の精錬方法。
4. The method according to claim 1, wherein the [Si] concentration in the hot metal charged into the hot metal dephosphorization furnace is 0.2.
A method for refining molten iron, characterized in that the content is 5% by mass or less.
【請求項5】 請求項1〜4のいずれかの方法におい
て、溶銑脱燐炉での吹錬において、(1)式で決まるパ
ラメータαを300〜1300とすることを特徴とする
溶鉄の精錬方法。 α=(F/W)×τ/(L/L0) ・・・・・・・… (1) ここで、Fは上吹き送酸速度(Nm3/h)、Wは溶鉄質量
(t)、τは均一混合時間(s)、Lはキャビティー深さ
(m)、L0は浴深(m)。
5. A method for refining molten iron according to any one of claims 1 to 4, wherein in the blowing in the hot metal dephosphorization furnace, the parameter α determined by the equation (1) is set to 300 to 1300. . α = (F / W) × τ / (L / L0) (1) where F is the top blowing acid transfer rate (Nm 3 / h), and W is the molten iron mass (t). , Τ is the uniform mixing time (s), L is the cavity depth
(m), L0 is bath depth (m).
【請求項6】 請求項1〜5のいずれかの方法におい
て、脱炭炉での吹錬において、脱炭スラグが20〜40
kg/tとなるように当該脱炭炉で生成した脱炭スラグ
の一部を排滓することを特徴とする溶鉄の精錬方法。
6. The method according to claim 1, wherein the decarburized slag is 20 to 40 in blowing in a decarburizing furnace.
A method for refining molten iron, which comprises discharging a part of the decarburized slag generated in the decarburization furnace so as to obtain kg / t.
【請求項7】 請求項1〜6のいずれかの方法におい
て、脱炭炉での吹錬後に排滓された脱炭スラグを、溶銑
脱燐炉へリサイクルすることを特徴とする溶鉄の精錬方
法。
7. The method for refining molten iron according to claim 1, wherein the decarburized slag discharged after blowing in the decarburization furnace is recycled to a hot metal dephosphorization furnace. .
JP2001059455A 2001-03-05 2001-03-05 Method for refining molten iron Withdrawn JP2002256326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059455A JP2002256326A (en) 2001-03-05 2001-03-05 Method for refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059455A JP2002256326A (en) 2001-03-05 2001-03-05 Method for refining molten iron

Publications (1)

Publication Number Publication Date
JP2002256326A true JP2002256326A (en) 2002-09-11

Family

ID=18919014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059455A Withdrawn JP2002256326A (en) 2001-03-05 2001-03-05 Method for refining molten iron

Country Status (1)

Country Link
JP (1) JP2002256326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223095A (en) * 2007-03-13 2008-09-25 Jfe Steel Kk Method for producing high phosphorus slag
JP2015017323A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 Preliminary treatment method for molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223095A (en) * 2007-03-13 2008-09-25 Jfe Steel Kk Method for producing high phosphorus slag
JP2015017323A (en) * 2013-06-14 2015-01-29 Jfeスチール株式会社 Preliminary treatment method for molten iron

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP3885499B2 (en) Converter steelmaking method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2002256326A (en) Method for refining molten iron
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP4461495B2 (en) Dephosphorization method of hot metal
JP3924059B2 (en) Steelmaking method using multiple converters
JP4192503B2 (en) Manufacturing method of molten steel
JP4414544B2 (en) Refining method for converter type hot metal dephosphorization furnace
JPH08311519A (en) Steelmaking method using converter
JPH11323420A (en) Pretreating method for molten iron
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP7211557B2 (en) Molten iron smelting method
JPH01147011A (en) Steelmaking method
JPH11323419A (en) Refining of molten iron
JPS6247417A (en) Melt refining method for scrap
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JPH0557327B2 (en)
JP4356275B2 (en) Hot metal refining method
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JP2004156146A (en) Method for refining molten iron
JP2023049462A (en) Dephosphorization of hot metal
JPH01147012A (en) Steelmaking method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513