JPH08311519A - Steelmaking method using converter - Google Patents

Steelmaking method using converter

Info

Publication number
JPH08311519A
JPH08311519A JP13742195A JP13742195A JPH08311519A JP H08311519 A JPH08311519 A JP H08311519A JP 13742195 A JP13742195 A JP 13742195A JP 13742195 A JP13742195 A JP 13742195A JP H08311519 A JPH08311519 A JP H08311519A
Authority
JP
Japan
Prior art keywords
slag
converter
molten
hot metal
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13742195A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
雄司 小川
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13742195A priority Critical patent/JPH08311519A/en
Publication of JPH08311519A publication Critical patent/JPH08311519A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To produce a high quality molten steel from molten iron and steel scrap by charging the molten iron, steel scrap and slag-making agent into a top/bottom blowing converter to execute phosphorization, decarburizing with oxygen blowing after discharging a large part of dephosphorized slag and desulfurizing under reducing condition in the furnace. CONSTITUTION: The molten iron and the steel scrap are charged into the molten slag of preceding charge remaining in the top/bottom blowing converter and N2 gas in blown from a tuyere in the furnace bottom so that stirring energy becomes 1.0kw/t to stir the molten iron, and the steel scrap is melted. Successively, basic flux of CaO, etc., and iron scrap as coolant are charged and the basicity of the molten slag is raised to 1.5-2.3 and molten iron temp. is made to the low temp. of 1300-1480 deg.C to remove P in the molten iron to 0.1-0.02%. After discharging >=75% of the dephosphorized slag by tilting the converter, the converter is straightly stood and the molten iron is decarburizingly refined by oxygen-blowing with the top-blowing lance and further, Al ash and CaO are added to dephosphorize the molten slag, and the molten iron is desulfurize-refined under the reducing slag. The molten steel dephosphorizingly, decarburizingly and desulfurizingly refined is tapped from the converter and raw material in the following heat is charged with the molten slag left behind to repeat the steelmaking refining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶銑を使用し、転炉にお
いて効率よく脱りん・脱硫・脱炭精錬を行うための方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently performing dephosphorization / desulfurization / decarburization refining in a converter using hot metal.

【0002】[0002]

【従来の技術】近年、鋼材に対する品質要求はその利用
技術の高度化、多様化とともに厳しさを増し、高純度鋼
製造へのニーズは益々高まっている。このような高純度
鋼製造の要求に対して製鋼工程では溶銑予備処理あるい
は二次精錬設備の拡充を図ってきた。特に、りんについ
ては温度レベルの低い溶銑段階での脱りんが効率的であ
ることから、溶銑予備処理工程にて先行脱りんすること
が一般的に行われるようになった。溶銑予備処理工程で
先行脱りんする方法としては、(1)トーピードカー内
の溶銑に脱りん用フラックスをインジェクションして予
備脱りんを行う方法(例えば特開昭58−16007号
公報や特開昭62−109908号公報)、(2)取鍋
内の溶銑に脱りん用フラックスをインジェクションもし
くは吹き付けを行い、予備脱りんを行う方法、あるいは
(3)2基の転炉を用いて、一方で脱りんを行い、他方
で脱炭を行う方法(例えば、特開昭63−195209
号公報)が知られている。
2. Description of the Related Art In recent years, the quality requirements for steel materials have become more severe as the utilization technology has become more sophisticated and diversified, and the need for producing high-purity steel is increasing more and more. In response to such demands for producing high-purity steel, hot metal pretreatment or secondary refining equipment has been expanded in the steelmaking process. Particularly, since phosphorus is efficiently dephosphorized in the hot metal stage having a low temperature level, it has become common to perform prior dephosphorization in the hot metal pretreatment step. As a method of performing prior dephosphorization in the hot metal pretreatment step, (1) a method of injecting a flux for dephosphorization into the hot metal in a torpedo car to perform predephosphorization (for example, JP-A-58-16007 and JP-A-62-62). -109908), (2) a method of performing pre-phosphorization by injecting or spraying a flux for dephosphorization on the hot metal in the ladle, or (3) using two converters while dephosphorizing And decarburization on the other hand (for example, JP-A-63-195209).
No. publication) is known.

【0003】しかしながら、前記の方法によると低りん
化の工程能力だけ見ると比較的低い到達りん含有レベル
を達成することはできるが、処理時間が長く処理時の抜
熱が大きいこと、転炉に供給するまでに時間を要するこ
と、2基の転炉を利用しても処理後の溶銑払い出し、別
転炉への再装入による温度低下が避けられない等、熱裕
度の観点からは決して満足できるプロセスではない。さ
らに、最近の全量溶銑脱りん処理化は転炉工程における
熱裕度をさらに低下させ、使用原料の自由度がなくな
り、今後の転炉における積極的スクラップリサイクルの
観点からも問題が大きい。
However, according to the above-mentioned method, a relatively low ultimate phosphorus content level can be achieved in view of only the low phosphorus process capacity, but the processing time is long and the heat removal during the processing is large. It takes time to supply, and even if two converters are used, the hot metal is discharged after the treatment, and the temperature drop due to recharging into another converter is inevitable. Not a satisfying process. Furthermore, the recent use of total hot metal dephosphorization treatment further lowers the thermal tolerance in the converter process, reduces the degree of freedom in the raw materials used, and poses a serious problem from the viewpoint of active scrap recycling in future converters.

【0004】これに対して、溶銑予備処理法が開発され
る以前には、(LD委員会10周年記念論文集日本BO
TグループLD委員会(S44)p.235)にあるよ
うに、1基の転炉にて脱りん予備処理と脱炭精錬を実施
するダブルスラグ法なる精錬法があった。これは、転炉
内の1ブロー目においてソフトブロー精錬で脱りん精錬
を指向し、脱りん後炉口より溶銑が流出しない範囲にて
脱りんスラグを排出し、排出後連続して脱炭精錬を実施
する方法である。
On the other hand, before the hot metal pretreatment method was developed, (LD Committee 10th Anniversary Commemorative Papers Japan BO
T Group LD Committee (S44) p. 235), there is a refining method called a double slag method in which dephosphorization pretreatment and decarburization refining are carried out in one converter. This is aimed at dephosphorization refining by soft blow refining in the first blow in the converter, and after dephosphorization, dephosphorization slag is discharged to the extent that hot metal does not flow out from the furnace port, and after degassing it is continuously decarburized and refined. Is a method of implementing.

【0005】上記ダブルスラグ法は、熱裕度は高いもの
の、当時の転炉は底吹き攪拌のない上吹き転炉であり、
脱りん反応は短時間で平衡に到達し難く、過剰の生石灰
投入でそれを補っていた。従って、フラックス原単位が
増大する上、スラグ中CaO/SiO2 が約3と高く低
温ではスラグの流動性が悪いため、脱りん反応に不利な
1400℃以上の高温で1ブロー目を吹き止めて排滓を
実施していた。そのため、フラックス原単位を低減する
すべもなく、転炉傾斜部耐火物の溶損が増大する欠点も
あった。このような高温で1ブロー目を吹き止めても、
高CaO/SiO2 であることと底吹き攪拌がないこと
のためスラグの滓化状況も不安定で、約50%の排滓率
しか達成できなかった。このように、当該技術はコスト
的にも耐火物材質的にも負荷が高く、実操業に耐えうる
技術ではなかった。
Although the double slag method has a high heat tolerance, the converter at that time was a top-blown converter without bottom-blown stirring.
The dephosphorization reaction was difficult to reach equilibrium in a short time, and it was supplemented with an excess of quick lime. Therefore, in addition to the increase in the basic unit of flux, the CaO / SiO 2 content in the slag is as high as about 3, and the fluidity of the slag is poor at low temperatures, so the first blow is stopped at a high temperature of 1400 ° C or higher, which is disadvantageous for the dephosphorization reaction. Waste was being removed. Therefore, there is no way to reduce the basic unit of flux, and there is also a drawback that melting loss of refractory in the converter inclined part increases. Even if the first blow is stopped at such a high temperature,
Due to the high CaO / SiO 2 and lack of bottom-blown stirring, the slag slag state was also unstable, and only a slag ratio of about 50% could be achieved. As described above, the technique has a heavy load in terms of cost and refractory material, and is not a technique capable of enduring actual operation.

【0006】上記問題点に鑑み、本発明者らは先に下記
のような製鋼法を提案した。「底吹き機能を有する転炉
に溶銑を装入し、攪拌エネルギーが0.5kW/t以上
となるように底吹きガス流量を制御しつつ、且つ処理後
のスラグ中のCaO/SiO2 が0.7以上2.5以
下、処理後溶銑温度が1200℃以上1450℃以下と
なるように投入フラックス量および投入冷剤量を制御し
て溶銑を脱りんし、一旦精錬を中断し炉を傾動して炉内
スラグの60%以上を排出し、その後炉を正立して脱炭
精錬を行う転炉精錬方法。」(特願平6−11027)
In view of the above problems, the present inventors have previously proposed the following steelmaking method. "The molten iron is charged into a converter having a bottom blowing function, the bottom blowing gas flow rate is controlled so that the stirring energy is 0.5 kW / t or more, and the CaO / SiO 2 content in the slag after treatment is 0%. 0.7 or more and 2.5 or less, the amount of flux and the amount of cooling agent were controlled so that the hot metal temperature after treatment was 1200 ° C. or more and 1450 ° C. or less to dephosphorize the hot metal, suspend refining and tilt the furnace. Of 60% or more of the slag in the furnace, and then erecting the furnace for decarburization refining. ”(Japanese Patent Application No. 6-11027)

【0007】当該方法により、従来脱珪、脱りんのため
に分割精錬が指向されてきた予備処理工程を転炉工程に
集約することを可能とし、大幅な熱裕度の向上および大
幅なコストの削減を実現できるようになった。具体的に
は、 (1)従来の転炉外溶銑脱りん工程を転炉に集約でき、
固定費の大幅削減が可能となる。 (2)フラックス原単位の削減により、変動費も削減で
きる。 (3)工程集約により生ずる熱裕度の向上により、ス
クラップ溶解能の向上、鉄鉱石還元量の増大による溶
鋼歩留まりの向上、生石灰を石灰石に置換することに
よるフラックスコスト低減等、必要に応じた操業メリッ
トを享受することができる。 (4)転炉精錬から排出する総スラグ量は、使用するフ
ラックス原単位が下がるため、従来の2/3以下に低減
できる。 という顕著な効果を得ることが可能になった。
By this method, it becomes possible to integrate the pretreatment process, which has conventionally been directed to divisional refining for desiliconization and dephosphorization, into a converter process, which greatly improves the heat allowance and significantly reduces the cost. Reduction can be realized. Specifically, (1) the conventional hot metal dephosphorization process outside the converter can be integrated into the converter,
It will be possible to significantly reduce fixed costs. (2) Variable costs can also be reduced by reducing the basic unit of flux. (3) Operation according to need, such as improvement of scrap melting capacity, improvement of molten steel yield due to increase of iron ore reduction amount, reduction of flux cost by replacing quicklime with limestone, due to improvement of thermal tolerance caused by process consolidation You can enjoy the benefits. (4) The total amount of slag discharged from converter refining can be reduced to 2/3 or less of the conventional amount because the basic unit of flux used is reduced. It has become possible to obtain a remarkable effect.

【0008】しかしながら、当該方法では、同一転炉内
で十分な脱硫ができないため、脱硫工程のみは事前にト
ーピードカー等で所定のSレベルまで処理しておくか、
出鋼後に受湯鍋等で処理を行わなくてはならないという
問題があった。
However, in this method, sufficient desulfurization cannot be carried out in the same converter. Therefore, only the desulfurization step should be carried out in advance to a predetermined S level with a torpedo car or the like.
There was a problem that after tapping, it was necessary to carry out treatment with a hot pot or the like.

【0009】また、当該方法において、脱炭滓を炉内に
残したまま出鋼し、次チャージの溶銑を装入することに
より脱炭滓をリサイクルした場合、石灰原単位の大幅な
削減が可能となることが明らかになっている。しかしな
がら、出鋼した後直ちに次チャージ溶銑を装入すると、
脱炭滓中の酸化鉄源(FeO,MnO等)と溶銑中のC
が激しく反応してCOガスを発生し、炉内からスラグや
溶銑が激しく飛び出し、鉄歩留まりを低下させるばかり
でなく操業中断を余儀なくされることがある。
In addition, in the method, when the decarburizing slag is tapped with the demolition slag left in the furnace and the hot metal of the next charge is charged to recycle the decarburizing slag, the lime basic unit can be significantly reduced. It has become clear that However, if the next charge hot metal is charged immediately after tapping,
Iron oxide source (FeO, MnO, etc.) in decarburized slag and C in hot metal
Reacts violently to generate CO gas, and slag or hot metal violently jumps out from the inside of the furnace, which not only lowers the iron yield but also forces the operation to be interrupted.

【0010】そのため、当該方法では、これを回避する
ため、「脱炭精錬時に生成した脱炭滓を炉内に残し、下
記(1)式を満足するスラグ中T.Fe濃度、MnO濃
度、スラグ温度のもとで、次チャージの溶銑を装入し、
操返し脱りん処理および脱炭処理を行う転炉精錬方法。 3.088×108 ×[(%T.Fe)+(%MnO)]2 ×exp(−91400/(TS +TM +546)≦0.1 ・・・(1) TS :脱炭滓の温度(℃) TM :装入溶銑温度(℃)」(特願平6−11027) を提案している。CaCO3 のような冷却剤あるいはコ
ークス、無煙炭などのような脱酸剤との混合物の添加に
より、5〜10分の時間内に(1)式の条件を作り出
し、スラグをリサイクルすることでフラックス原単位を
大幅に削減することが可能となったが、出鋼後直ちに次
チャージ溶銑を装入したい場合は、(1)式の条件を満
たすことができず、これ以上に転炉での操業時間を短縮
する手だてはなかった。
Therefore, in the method, in order to avoid this, "the decarburizing slag produced during decarburizing and refining is left in the furnace, and the T.Fe concentration, the MnO concentration, and the slag in the slag satisfying the following formula (1) are satisfied. At the temperature, charge the hot metal of the next charge,
A converter smelting method for performing repeated dephosphorization and decarburization. 3.088 × 10 8 × [(% T.Fe) + (% MnO)] 2 × exp (-91400 / (T S + T M +546) ≦ 0.1 ··· (1) T S: Datsusumikasu Temperature (℃) T M : charging hot metal temperature (℃) "(Japanese Patent Application No. 6-11027) with a cooling agent such as CaCO 3 or a deoxidizing agent such as coke or anthracite. By adding the mixture, the condition of formula (1) was created within the time of 5 to 10 minutes, and it became possible to significantly reduce the flux basic unit by recycling the slag. If hot metal is desired to be charged, the condition of the formula (1) cannot be satisfied, and there is no way to further shorten the operation time in the converter.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上述の問題
を解決するものであり、同一転炉内で脱硫処理も効率よ
く行うと同時に、脱炭滓を残したまま出鋼した直後に次
チャージ溶銑を装入することも可能にすることを目的と
する。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, in which desulfurization treatment is efficiently performed in the same converter, and at the same time, immediately after tapping with the decarburizing slag left, The purpose is to allow charging hot metal to be charged.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、上底吹き転炉を用いて溶銑を精錬して溶鋼を製造
するさいに、第1工程として、溶銑および屑鉄を上底吹
き転炉に装入し、第2工程として、攪拌エネルギーが
1.0kW/t以上となるように底吹きガス流量を制御
しつつ、処理後のCaO/SiO2 が1.5以上2.3
以下、処理後溶鋼温度が1300℃以上1450℃以下
となるように投入フラックス量および投入冷剤量を制御
して[P]0.01〜0.02%まで脱りん処理を施
し、第3工程として、一旦精錬を中断し炉を傾動して炉
内スラグの75%以上を排出し、第4工程として、炉を
正立してフラックス添加と吹酸により所定の[C]濃度
まで脱炭した後、Al灰粉またはAl灰と石灰の混合粉
を溶鋼中に吹き込んでスラグの脱酸と生成溶鋼の脱酸お
よび脱硫を行い、第5工程としてスラグを残したまま出
鋼した後、直ちに次チャージ溶銑を装入して、上記第1
〜第5工程までを繰り返し実施することを特徴とする転
炉製鋼法である。
The gist of the present invention is to smelt hot metal using a top-blown converter to produce molten steel, and the first step is to blow hot-metal and scrap iron to the bottom. After charging into the converter, in the second step, while controlling the flow rate of the bottom-blown gas so that the stirring energy becomes 1.0 kW / t or more, the CaO / SiO 2 after treatment is 1.5 or more and 2.3 or more.
Hereinafter, the amount of flux and the amount of cooling agent charged are controlled so that the molten steel temperature after the treatment is 1300 ° C. or more and 1450 ° C. or less, and dephosphorization treatment is performed to [P] 0.01 to 0.02%, and the third step As a result, the refining was suspended, the furnace was tilted to discharge 75% or more of the slag in the furnace, and as a fourth step, the furnace was erected and decarburized to a predetermined [C] concentration by adding flux and blowing acid. After that, Al ash powder or a mixed powder of Al ash and lime is blown into the molten steel to deoxidize the slag and deoxidize and desulfurize the generated molten steel, and immediately after tapping with the slag left as the fifth step, Charge the hot metal, the first
~ It is a converter steelmaking method characterized by repeating to 5th process.

【0013】[0013]

【作用】以下本発明を詳述する。本発明は、まずガスお
よび粉体の底吹きまたは横吹き機能が付いた転炉内に溶
銑を装入した後、フラックスを上方もしくは底吹きイン
ジェクションにより添加し、上吹きランスから酸素ガス
を吹き付け、底からガス攪拌を行いつつ、所定の[P]
濃度まで脱りん精錬を行う。その後、転炉を傾動し、脱
りん精錬に使用したスラグを炉口より排出し、再び炉を
正立し、炉体保護用の少量のフラックスを添加して酸素
の上吹きにより脱炭精錬を行う。
The present invention will be described in detail below. The present invention, first, after charging the hot metal into a converter having a bottom blow or side blow function of gas and powder, add the flux by upward or bottom injection, blow oxygen gas from the top blowing lance, While stirring the gas from the bottom, the specified [P]
Perform dephosphorization refining to the concentration. After that, tilt the converter, discharge the slag used for dephosphorization and refining from the furnace mouth, raise the furnace again, add a small amount of flux for protecting the furnace body, and decarburize and refine by top blowing oxygen. To do.

【0014】所定の[C]濃度まで脱炭した後、底吹き
または横吹き羽口から産業廃棄物であるAl灰粉または
Al灰粉と生石灰の混合粉を溶鋼中に吹き込み、Al灰
中のAlにより脱炭滓および溶鋼の脱酸を行うと同時
に、酸素ポテンシャルを下げた状態でトップスラグや吹
き込んだ生石灰により所定の[S]濃度まで溶鋼の脱硫
を行う。このさい、脱りん精錬後の排滓が十分でない
と、スラグの酸素ポテンシャルの低下のためスラグ中か
らの復りんが生じ、生成溶鋼中の[P]濃度が所定の
[P]濃度よりも高くなってしまう。
After decarburizing to a predetermined [C] concentration, industrial waste Al ash powder or a mixed powder of Al ash powder and quick lime is blown into molten steel from bottom blowing or side blowing tuyere, and At the same time as decarburizing slag and deoxidation of molten steel with Al, the molten steel is desulfurized to a predetermined [S] concentration by top slag or blown lime while oxygen potential is lowered. At this time, if the slag after dephosphorization and refining is not sufficient, re-phosphorization from the slag occurs due to the decrease in the oxygen potential of the slag, and the [P] concentration in the produced molten steel becomes higher than the predetermined [P] concentration. turn into.

【0015】溶鋼およびスラグの脱酸、溶鋼の脱硫処理
が完了した後、脱炭滓は炉内に残したまま出鋼する。炉
内に残った脱炭滓はすでに十分脱酸されているため、直
ちに次チャージ溶銑を装入しても溶銑中Cとの激しい反
応は生じず、速やかなスラグリサイクルが可能となる。
以降は、上記転炉精錬を繰り返し行う。
After the deoxidation of the molten steel and the slag and the desulfurization treatment of the molten steel are completed, the decarburized slag is tapped while being left in the furnace. Since the decarburizing slag remaining in the furnace has already been sufficiently deoxidized, even if the next charge hot metal is immediately charged, a vigorous reaction with the hot metal C does not occur and prompt slag recycling becomes possible.
After that, the converter refining is repeated.

【0016】本発明者らは、種々の転炉実験を行い、ま
ずスラグ、メタルの脱酸およびメタルの脱硫に必要なA
l灰もしくはAl灰とCaOの混合粉の量を調べた。出
鋼直後のスラグ温度は約1600℃であり、装入溶銑温
度は約1350℃であるため、出鋼直後に溶銑を装入し
ても操業に支障をきたさないT.Fe濃度とMnO濃度
を(1)式から計算すると、[(%T.Fe)+(%M
nO)]≦8%で十分なことが判る。図1に、転炉実験
から求めたAl灰量もしくは50%Al灰−50%Ca
O混合粉量と[(%T.Fe)+(%MnO)]の関係
を示す。スラグ中のT.Fe濃度とMnO濃度の和を8
%以下にするためには、Al灰で溶鋼1トン当たり12
kg、Al灰とCaOの混合粉で24kgを吹き込めば
よいことが判った。
The present inventors conducted various converter experiments, and first of all, required A for deoxidation of slag and metal and desulfurization of metal.
The amount of mixed powder of 1 ash or Al ash and CaO was examined. Since the slag temperature immediately after tapping is about 1600 ° C and the temperature of the hot metal charged is about 1350 ° C, even if the hot metal is charged immediately after tapping, it does not hinder the operation. When the Fe concentration and the MnO concentration are calculated from the equation (1), [(% T.Fe) + (% M
nO)] ≦ 8% is sufficient. Fig. 1 shows the amount of Al ash or 50% Al ash-50% Ca obtained from the converter experiment.
The relationship between the amount of O mixed powder and [(% T.Fe) + (% MnO)] is shown. T. in the slag The sum of Fe concentration and MnO concentration is 8
% To 12% or less with 1 ton of molten steel with Al ash
It was found that it is sufficient to blow 24 kg with a mixed powder of Al ash and CaO.

【0017】また、図2には転炉実験から求めたAl灰
量もしくは50%Al灰−50%CaO混合粉量と初期
[S]濃度0.02%の時の処理後[S]濃度との関係
を示す。目標の処理後[S]濃度を0.01%とする
と、Al灰で溶鋼1トン当たり10kg、Al灰とCa
Oの混合粉で7kgを吹き込めばよいことが判った。ま
た、目標の処理後[S]濃度が0.008%以下の低硫
鋼を溶製する場合にはAl灰単独の吹込みでは不可能で
あり、溶鋼1トン当たり12kgのAl灰−CaO混合
粉を必要とする。従って、出鋼直後に溶銑を装入しても
操業に支障を来たさないようなレベルまでの溶鋼とスラ
グの脱酸処理と溶鋼の脱硫処理の両方を同時に行うため
には、処理後[S]0.01%程度の通常脱硫処理の場
合、約12kg/tのAl灰単独の吹き込みが、低硫鋼
溶製の場合には、約24kg/tのAl灰−CaO混合
粉の吹き込みが望ましい。ここで、Al灰とCaOの混
合割合は50%−50%に限定するものではなく、脱酸
必要量に比較して脱硫必要量が多い場合はCaOの混合
割合を増加し、脱硫必要量に比較して脱酸必要量が多い
場合はAl灰の混合割合を増加させれば、より少ないフ
ラックス量で脱酸と脱硫の処理を行うことができる。
Further, FIG. 2 shows the amount of Al ash or the amount of 50% Al ash-50% CaO mixed powder obtained from the converter experiment and the [S] concentration after the treatment when the initial [S] concentration was 0.02%. Shows the relationship. Assuming that the target [S] concentration after treatment is 0.01%, Al ash is 10 kg per ton of molten steel, Al ash and Ca
It was found that it was sufficient to blow 7 kg of O mixed powder. Further, in the case of manufacturing low-sulfur steel having a [S] concentration of 0.008% or less after the target treatment, it is impossible to inject Al ash alone, and 12 kg of Al ash-CaO mixture per ton of molten steel. Need flour. Therefore, in order to perform both the deoxidizing treatment of molten steel and slag and the desulfurization treatment of molten steel to the level at which the operation is not impaired even if the molten iron is charged immediately after tapping, the post-treatment [ S] In the case of normal desulfurization treatment of about 0.01%, about 12 kg / t of Al ash alone was blown, and in the case of low-sulfur steel melting, about 24 kg / t of Al ash-CaO mixed powder was blown. desirable. Here, the mixing ratio of Al ash and CaO is not limited to 50% -50%, and when the desulfurization required amount is larger than the deoxidation required amount, the CaO mixing ratio is increased to the desulfurization required amount. In contrast, when the required amount of deoxidation is large, the treatment of deoxidation and desulfurization can be performed with a smaller amount of flux by increasing the mixing ratio of Al ash.

【0018】次に、脱炭精錬時に復りんが生じても生成
溶鋼の[P]濃度を所定の[P]濃度以下に抑えるため
の、脱りん精錬後の必要[P]濃度と必要排滓率を調査
した。8t転炉実験を基に求めた、上述の脱酸および脱
硫処理を行った後の溶鋼の[P]濃度と脱りん精錬後の
[P]濃度、排滓率との関係を図3に示す。脱酸、脱硫
処理後の[P]濃度が汎用鋼種の場合の目標である0.
02%以下になるための必要排滓率は、脱りん精錬後の
[P]濃度が0.01%、0.015%、0.02%、
0.025%の場合にそれぞれ、75%、80%、85
%、90%であった。ここで、いずれの場合にも排滓率
は限りなく100%に近い方が望ましい。本発明の方法
では脱りん精錬後の[P]濃度を0.01%未満にする
ことは不可能であり、また、脱りん精錬後の[P]濃度
が0.025%超の場合は排滓率を限りなく100%に
近くしても、脱酸、脱硫後の[P]濃度を0.02%以
下にすることはできなかった。
Next, in order to keep the [P] concentration of the produced molten steel below a predetermined [P] concentration even if re-phosphorus is generated during decarburization refining, the necessary [P] concentration and required wastes after dephosphorization refining. I investigated the rate. Fig. 3 shows the relationship between the [P] concentration of the molten steel after the above-mentioned deoxidation and desulfurization treatment, the [P] concentration after the dephosphorization refining, and the slag ratio, which were obtained based on the 8t converter experiment. . The [P] concentration after deoxidation and desulfurization treatment is the target in the case of general-purpose steel grades.
The required slag removal rate to reach 02% or less is that the [P] concentration after dephosphorization and refining is 0.01%, 0.015%, 0.02%,
75%, 80%, 85 for 0.025%
% And 90%. Here, in any case, it is desirable that the rate of slag is infinitely close to 100%. According to the method of the present invention, it is impossible to reduce the [P] concentration after dephosphorization refining to less than 0.01%, and when the [P] concentration after dephosphorization refining is more than 0.025%, it is eliminated. Even if the slag ratio was infinitely close to 100%, the [P] concentration after deoxidation and desulfurization could not be reduced to 0.02% or less.

【0019】さらに本発明者らは、上記の必要[P]濃
度、必要排滓率を達成するために必要な脱りん精錬時の
操業条件を明らかにすべく、8t転炉実験を継続した。
脱りん処理を効率よく行うためには、できるだけ見かけ
平衡に近いところまで脱りんを進行させることが重要で
ある。本発明者らは、特願平6−11027において、
底吹きガスによる攪拌エネルギーを1.0kW/t以上
に確保することにより、脱りん反応がほぼ見かけ平衡ま
で進行することを示した。ここで、底吹き攪拌動力は底
吹きガス流量が増大するほど増加するが、ガス流量が大
きすぎると溶銑を吹き抜け、スピッティングが大幅に増
大するため、溶銑の浴深と底吹き羽口の径に応じて溶銑
を吹き抜けない攪拌エネルギーが上限となる。
Further, the present inventors continued the 8t converter experiment in order to clarify the operating conditions at the time of dephosphorization and refining necessary to achieve the required [P] concentration and the required slag removal rate.
In order to carry out the dephosphorization treatment efficiently, it is important to proceed with the dephosphorization as close to the apparent equilibrium as possible. In the Japanese Patent Application No. 6-11027, the present inventors
It was shown that the dephosphorization reaction proceeds to an apparent equilibrium by ensuring the stirring energy by the bottom blowing gas to 1.0 kW / t or more. Here, the bottom blowing agitation power increases as the bottom blowing gas flow rate increases, but if the gas flow rate is too high, the hot metal blows through and the spitting increases significantly, so the bath depth of the hot metal and the diameter of the bottom blowing tuyere Therefore, the upper limit is the stirring energy that does not blow through the hot metal.

【0020】攪拌エネルギーを1.0kW/t以上に確
保したときの、処理後の[P]濃度が0.01%、0.
015%、0.02%、0.025%になるように脱り
ん精錬を実施したときの処理後温度と必要スラグ中Ca
O/SiO2 の関係を図4に示す。それぞれの温度に対
し、実線で示された値以上のCaO/SiO2 を確保す
れば所定の[P]濃度以下まで脱りんできることを示し
ている。
When the stirring energy is secured at 1.0 kW / t or more, the [P] concentration after the treatment is 0.01%, 0.
Post-treatment temperature and Ca in the required slag when dephosphorization and refining were carried out so as to reach 015%, 0.02%, and 0.025%
The O / SiO 2 relationship is shown in FIG. It is shown that, for each temperature, if CaO / SiO 2 having a value equal to or higher than the value indicated by the solid line is secured, it can be dephosphorized to a predetermined [P] concentration or lower.

【0021】また、処理後温度、スラグ中CaO/Si
2 と脱りん精錬後の排滓率との関係を図5に示す。図
4と図5から、脱炭精錬後に生成溶鋼中の[P]濃度が
目標である0.02%以下にするのに必要な脱りん精錬
後の[P]濃度および排滓率を達成するためには、図4
の太線で示した範囲、すなわち処理後の温度が1300
℃以上1450℃以下、スラグ中CaO/SiO2
1.5以上2.3以下であることが条件であることが判
った。また、脱りん精錬後の[P]濃度が0.02%を
超えるといかなる操業条件の場合でも必要排滓率である
90%に到達し得ないことも明らかになった。
The temperature after treatment, CaO / Si in the slag
The relationship between O 2 and the rate of slag after dephosphorization refining is shown in FIG. From FIG. 4 and FIG. 5, the [P] concentration and the slag removal rate after dephosphorization and refining necessary to achieve the target [P] concentration in the molten steel after decarburization and refining to 0.02% or less are achieved. In order to
The range indicated by the thick line, that is, the temperature after the treatment is 1300
It was found that the conditions are that the temperature is not lower than 1450 ° C and not higher than 1450 ° C, and the CaO / SiO 2 content in the slag is not lower than 1.5 and not higher than 2.3. It was also clarified that if the [P] concentration after dephosphorization and refining exceeds 0.02%, the required slag removal rate of 90% cannot be reached under any operating conditions.

【0022】以上の事実から、脱りん精錬時の操業条件
を、底吹き攪拌エネルギー1.0kW/t以上、処理後
温度1300℃以上1450℃以下、スラグ中CaO/
SiO2 1.5以上2.3以下として[P]0.01〜
0.02%まで脱りん処理を施し、脱りん精錬後の
[P]濃度に応じて生成スラグの75%以上を排出すれ
ば、脱炭処理後に脱酸および脱硫処理を行っても所定の
[P]濃度以上に復りんすることなく、所定の脱硫がで
き、かつ、出鋼直後の溶銑装入による操業支障を回避で
きることが明らかとなった。
From the above facts, the operating conditions during dephosphorization refining are as follows: bottom blowing agitation energy of 1.0 kW / t or more, post-treatment temperature of 1300 ° C. or more and 1450 ° C. or less, slag CaO /
SiO 2 1.5 to 2.3 and [P] 0.01 to
If dephosphorization treatment is performed up to 0.02% and 75% or more of the produced slag is discharged according to the [P] concentration after dephosphorization refining, even if deoxidation and desulfurization treatment are performed after decarburization treatment, the specified [ It has been clarified that predetermined desulfurization can be performed without re-phosphorization above the P] concentration, and that the operation hindrance due to hot metal charging immediately after tapping can be avoided.

【0023】[0023]

【実施例】【Example】

(実施例1)底吹き機能を有する8t試験転炉に、4.
5%のC,0.1%のP,0.02%のS,0.3%の
Siを含む約6tの溶銑を転炉に装入し、攪拌エネルギ
ーが2.1kW/tとなるように底吹きN2 ガスを20
0Nm3 /hに制御しつつ、処理後の温度が1380
℃、処理後のスラグ中CaO/SiO2 が1.8になる
ように、投入フラックス量、投入スクラップ量を調整し
て、約8分間脱りん処理を行った。上吹き送酸速度は1
000Nm3 /hとした。
(Example 1) In an 8t test converter having a bottom blowing function,
About 6 tons of hot metal containing 5% C, 0.1% P, 0.02% S and 0.3% Si was charged into the converter so that the stirring energy was 2.1 kW / t. Bottom-blown N 2 gas to 20
The temperature after treatment was 1380 while controlling to 0 Nm 3 / h.
The dephosphorization treatment was carried out for about 8 minutes by adjusting the amount of introduced flux and the amount of introduced scrap so that CaO / SiO 2 in the slag after the treatment was 1.8 ° C. Top blowing acid velocity is 1
It was set to 000 Nm 3 / h.

【0024】その後炉を傾動して、約3分で中間排滓を
実施した。排滓率は81%であった。中間排滓完了後、
炉を正立させて直ちに上吹き送酸速度1500Nm3
hのもと約9分間の脱炭処理を行った。所定の[C]濃
度まで脱炭したところで上吹き送酸を停止し、底からA
l灰を72kg吹き込んで出鋼した。出鋼後、直ちに次
チャージの溶銑を装入した。
Thereafter, the furnace was tilted, and the intermediate slag was discharged in about 3 minutes. The rate of waste was 81%. After the intermediate waste is completed,
Immediately after the furnace is erected, the upper blowing acid velocity is 1500 Nm 3 /
Decarburization treatment was performed for about 9 minutes under h. After decarburization to a predetermined [C] concentration, top blowing acid was stopped and A
72 kg of 1 ash was blown into the steel for tapping. Immediately after tapping, the next hot metal was charged.

【0025】また、比較として、同じ転炉、同一条件の
溶銑を用いて、特願平6−11027で示した操業条件
で、脱りん・脱炭精錬を行い、出鋼後直ちに次チャージ
溶銑を装入する試験も実施した。
As a comparison, dephosphorization and decarburization refining were performed under the operating conditions shown in Japanese Patent Application No. 6-11027 using the same converter and hot metal under the same conditions, and immediately after tapping, the next charge hot metal was used. A charging test was also conducted.

【0026】表1に本発明例、表2に比較例におけるメ
タル中P,Sとスラグ中T.Fe,MnOの濃度推移を
示す。比較例の場合、生成溶鋼中の[P]濃度は所定の
0.02%以下にできたが、脱硫はほとんどできなかっ
たのに対し、本発明例では[P]も[S]も所定のレベ
ルまで到達できた。また、比較例ではT.FeとMnO
の濃度の和が8%超であったため溶銑装入時に激しい反
応により溶鋼とスラグが炉外にほとんど溢れてしまい、
その後の操業に大きな支障を及ぼしたが、本発明例では
溶銑を装入しても溶鋼やスラグの流出は全く認められな
かった。
Table 1 shows examples of the present invention, and Table 2 shows comparative examples of P and S in the metal and T in slag. The transition of the concentration of Fe and MnO is shown. In the case of the comparative example, the [P] concentration in the produced molten steel could be set to the predetermined 0.02% or less, but desulfurization could hardly be performed, whereas in the present invention example, both [P] and [S] were set to the predetermined values. I was able to reach the level. Further, in the comparative example, T. Fe and MnO
Since the sum of the above concentrations was over 8%, the molten steel and slag almost overflowed from the furnace due to the violent reaction during the hot metal charging.
Although it greatly hindered the subsequent operation, no outflow of molten steel or slag was observed in the example of the present invention even when hot metal was charged.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例2)実施例1と同一条件で脱りん
精錬、中間排滓、脱炭精錬を行った後、50%Al灰−
50%CaOの混合粉を底から145kg吹き込んだ。
その後、出鋼し、直ちに次チャージ溶銑を装入した。表
3に、そのときのメタル中P,Sおよびスラグ中T.F
e,MnOの濃度推移を示す。所定の濃度まで脱りんで
きたと同時に、[S]0.007%の低硫鋼が溶製でき
た。また、T.FeとMnOの濃度の和は8%以下であ
ったため、溶銑を装入したさいにも溶鋼やスラグの流出
は全く認められなかった。
(Example 2) After dephosphorization refining, intermediate slag and decarburization refining under the same conditions as in Example 1, 50% Al ash-
145 kg of a mixed powder of 50% CaO was blown from the bottom.
After that, the steel was tapped and the next charge hot metal was immediately charged. Table 3 shows P, S in metal and T. in slag at that time. F
3 shows changes in the concentration of e and MnO. At the same time that it was possible to dephosphorize to a prescribed concentration, low-sulfur steel of [S] 0.007% could be melted. Also, T.I. Since the sum of the concentrations of Fe and MnO was 8% or less, no outflow of molten steel or slag was observed even when the hot metal was charged.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明により、同一転炉内で所定の濃度
まで脱りん処理、脱炭処理に加えて脱硫処理も効率よく
行うと同時に、脱炭滓を残したまま出鋼した直後に次チ
ャージ溶銑を装入することが可能となった。
According to the present invention, the desulfurization treatment and the decarburization treatment can be efficiently performed in addition to the dephosphorization treatment and the decarburization treatment to the predetermined concentration in the same converter. It is now possible to charge hot metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al灰、Al灰−CaO混合粉の吹込み量と脱
硫、脱酸処理後のスラグ中のT.Fe濃度とMnO濃度
の和との関係を示すグラフ
FIG. 1 shows the amount of Al ash, the amount of Al ash-CaO mixed powder blown, and the T.V. in slag after desulfurization and deoxidation treatment. Graph showing the relationship between the Fe concentration and the sum of MnO concentrations

【図2】Al灰、Al灰−CaO混合粉の吹込み量と脱
硫、脱酸処理後の溶鋼中[S]濃度との関係を示すグラ
FIG. 2 is a graph showing the relationship between the injection amount of Al ash and Al ash-CaO mixed powder and the [S] concentration in molten steel after desulfurization and deoxidation treatment.

【図3】脱りん精錬後の中間排滓率と脱硫、脱酸処理後
の溶鋼中[P]濃度との関係を示すグラフ
FIG. 3 is a graph showing the relationship between the intermediate slag ratio after dephosphorization refining and the [P] concentration in molten steel after desulfurization and deoxidation treatment.

【図4】脱りん精錬後の温度と各目標[P]濃度におけ
る処理後のスラグ中CaO/SiO2 の最低必要量との
関係を示すグラフ
FIG. 4 is a graph showing the relationship between the temperature after dephosphorization refining and the minimum required amount of CaO / SiO 2 in the slag after treatment at each target [P] concentration.

【図5】脱りん精錬後の温度、スラグ塩基度と排滓率の
関係を示すグラフ
FIG. 5 is a graph showing the relationship between temperature, slag basicity and slag ratio after dephosphorization refining.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き転炉を用いて溶銑を精錬して溶
鋼を製造するさいに、第1工程として、溶銑および屑鉄
を上底吹き転炉に装入し、第2工程として、攪拌エネル
ギーが1.0kW/t以上となるように底吹きガス流量
を制御しつつ、処理後のCaO/SiO2 が1.5以上
2.3以下、処理後溶鋼温度が1300℃以上1450
℃以下となるように投入フラックス量および投入冷剤量
を制御して[P]0.01〜0.02%まで脱りん処理
を施し、第3工程として、一旦精錬を中断し炉を傾動し
て炉内スラグの75%以上を排出し、第4工程として、
炉を正立してフラックス添加と吹酸により所定の[C]
濃度まで脱炭した後、Al灰粉またはAl灰と石灰の混
合粉を溶鋼中に吹き込んでスラグの脱酸と生成溶鋼の脱
酸および脱硫を行い、第5工程としてスラグを残したま
ま出鋼した後、直ちに次チャージ溶銑を装入して、上記
第1〜第5工程までを繰り返し実施することを特徴とす
る転炉製鋼法。
1. When refining hot metal by using an upper-bottom blowing converter to produce molten steel, as a first step, the hot metal and scrap iron are charged into the upper-bottom blowing converter, and as a second step, stirring is performed. While controlling the bottom blown gas flow rate so that the energy becomes 1.0 kW / t or more, the CaO / SiO 2 after the treatment is 1.5 or more and 2.3 or less, and the molten steel temperature after the treatment is 1300 ° C. or more and 1450 or less.
The amount of flux and the amount of cooling agent charged are controlled so that the temperature becomes less than or equal to ℃, and dephosphorization treatment is performed to [P] 0.01 to 0.02%. As the third step, refining is temporarily suspended and the furnace is tilted. 75% or more of the furnace slag is discharged, and as the fourth step,
Set the furnace upright and add the flux and sprinkling acid to the prescribed [C].
After decarburizing to a certain concentration, Al ash powder or a mixed powder of Al ash and lime is blown into the molten steel to deoxidize the slag and deoxidize and desulfurize the produced molten steel, and then tap the steel while leaving the slag as the fifth step. Immediately thereafter, the next charge hot metal is charged, and the above-described first to fifth steps are repeatedly carried out.
JP13742195A 1995-05-12 1995-05-12 Steelmaking method using converter Withdrawn JPH08311519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13742195A JPH08311519A (en) 1995-05-12 1995-05-12 Steelmaking method using converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13742195A JPH08311519A (en) 1995-05-12 1995-05-12 Steelmaking method using converter

Publications (1)

Publication Number Publication Date
JPH08311519A true JPH08311519A (en) 1996-11-26

Family

ID=15198245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13742195A Withdrawn JPH08311519A (en) 1995-05-12 1995-05-12 Steelmaking method using converter

Country Status (1)

Country Link
JP (1) JPH08311519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322506A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method for dephosphorizing molten iron in converter
JP2005206898A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Converter operating method
JP2008063645A (en) * 2006-09-11 2008-03-21 Jfe Steel Kk Steelmaking method
KR100971242B1 (en) * 2003-07-08 2010-07-20 주식회사 포스코 Molten steel of hydrogen lowering method converter at succeed
CN112795720A (en) * 2020-12-12 2021-05-14 河钢股份有限公司 Method for producing industrial pure iron by duplex converter method
CN115449592A (en) * 2022-09-16 2022-12-09 武汉钢铁有限公司 Efficient heating and temperature rising method for molten steel and iron scrap LF furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322506A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Method for dephosphorizing molten iron in converter
KR100971242B1 (en) * 2003-07-08 2010-07-20 주식회사 포스코 Molten steel of hydrogen lowering method converter at succeed
JP2005206898A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Converter operating method
JP4497942B2 (en) * 2004-01-23 2010-07-07 株式会社神戸製鋼所 Converter operation method
JP2008063645A (en) * 2006-09-11 2008-03-21 Jfe Steel Kk Steelmaking method
CN112795720A (en) * 2020-12-12 2021-05-14 河钢股份有限公司 Method for producing industrial pure iron by duplex converter method
CN115449592A (en) * 2022-09-16 2022-12-09 武汉钢铁有限公司 Efficient heating and temperature rising method for molten steel and iron scrap LF furnace
CN115449592B (en) * 2022-09-16 2023-08-18 武汉钢铁有限公司 High-efficiency heating and temperature rising method for molten scrap steel and molten iron LF furnace

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
KR0159180B1 (en) Steel manufacturing method using converter
JP6693536B2 (en) Converter steelmaking method
JP6665884B2 (en) Converter steelmaking method
JPH08311519A (en) Steelmaking method using converter
JP2958848B2 (en) Hot metal dephosphorization method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2002012908A (en) Method for smelting nitrogen-containing steel
JP3458890B2 (en) Hot metal refining method
JP2958842B2 (en) Converter refining method
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2900011B2 (en) Converter refining method
JP4461495B2 (en) Dephosphorization method of hot metal
JPS6358203B2 (en)
JP3486886B2 (en) Steelmaking method using two or more converters
JPH11323420A (en) Pretreating method for molten iron
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2607329B2 (en) Hot metal dephosphorization method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JPH0734113A (en) Converter refining method
JP2587286B2 (en) Steelmaking method
JPH0860221A (en) Converter steelmaking method
JPH0557327B2 (en)
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806