JP2958842B2 - Converter refining method - Google Patents

Converter refining method

Info

Publication number
JP2958842B2
JP2958842B2 JP16256493A JP16256493A JP2958842B2 JP 2958842 B2 JP2958842 B2 JP 2958842B2 JP 16256493 A JP16256493 A JP 16256493A JP 16256493 A JP16256493 A JP 16256493A JP 2958842 B2 JP2958842 B2 JP 2958842B2
Authority
JP
Japan
Prior art keywords
slag
dephosphorization
hot metal
blowing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16256493A
Other languages
Japanese (ja)
Other versions
JPH0718319A (en
Inventor
雅之 荒井
文夫 小泉
法行 升光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16256493A priority Critical patent/JP2958842B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to ES94919835T priority patent/ES2143547T3/en
Priority to CA002166097A priority patent/CA2166097C/en
Priority to KR1019950705930A priority patent/KR0159180B1/en
Priority to AU70831/94A priority patent/AU680268B2/en
Priority to EP94919835A priority patent/EP0714989B1/en
Priority to PCT/JP1994/001070 priority patent/WO1995001458A1/en
Priority to CN94192953A priority patent/CN1041843C/en
Priority to BR9406985-9A priority patent/BR9406985A/en
Priority to DE69423630T priority patent/DE69423630T2/en
Publication of JPH0718319A publication Critical patent/JPH0718319A/en
Application granted granted Critical
Publication of JP2958842B2 publication Critical patent/JP2958842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉄鋼製造における転炉精
錬法に関するものであり、詳しくは、同一転炉により、
脱珪、脱燐精錬を行った後、中間排滓し、引き続いて脱
炭精錬を行う転炉精錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter smelting method in steel production,
The present invention relates to a converter refining method in which desiliconization and dephosphorization refining are performed, intermediate waste is discharged, and subsequently decarburization refining is performed.

【0002】[0002]

【従来の技術】近年、鋼材に対する品質要求はその利用
技術の高度化、多様化とともに厳しさを増し、高純度鋼
製造へのニーズは益々高まっている。このような高純度
鋼製造の要求に対して製鋼工程では溶銑予備処理あるい
は二次精錬設備の拡充をはかってきた。特にPについて
は温度レベルの低い溶銑段階での脱Pが効率的であるこ
とから、溶銑予備処理工程にて先行脱Pすることが一般
的に行われるようになった。この場合、精錬容器はトー
ピードカー方式、取鍋方式、あるいは脱炭を行う炉とは
別の転炉方式等があり、いずれもCaO、酸化鉄等のフ
ラックスを上方添加あるいはインジェクション方式にて
投入し、窒素バブリング攪拌あるいは酸素の上吹を併用
して実施されている。例えば、特開昭58−16007
号公報に示される「溶銑の脱燐・脱硫方法」では酸素上
吹きを行いつつCaO系フラックスをキャリヤガスと共
に溶銑中へ吹き込んで処理後スラグ塩基度が2.0以
上、酸化鉄含有量が15%以下となる様に溶銑脱燐を行
い、その後上吹酸素を停止してスラグの強制除滓を行う
ことなく脱硫材を吹き込んで脱硫処理することを特徴と
する溶銑脱燐・脱硫方法が開示されている。さらに特開
昭62−109908号公報に示される「溶銑の脱珪脱
燐脱硫方法」ではCaOを主成分とする脱燐フラックス
を溶銑予備処理の初期から溶銑表面に添加するとともに
酸化鉄系フラックス粉末をキャリヤガスにて溶銑中へ吹
込みつつ溶銑表面に酸素または固体状酸素源の添加を行
い、脱珪期経過後にアルカリ系フラックスに変更して脱
燐と脱硫を並行して行う溶銑の脱珪、脱燐、脱硫方法が
開示されている。その他、特開昭63−195209号
公報に示される「製鋼方法」では上底吹転炉を2基利用
し、一方を脱燐炉、他方を脱炭炉とし脱炭炉で発生した
転炉滓を脱燐炉にリサイクルし、溶銑脱燐処理後得られ
た脱燐溶銑を脱炭炉に注銑する製鋼方法が開示されてい
る。
2. Description of the Related Art In recent years, the quality requirements for steel materials have become increasingly severe with the sophistication and diversification of their utilization techniques, and the need for high-purity steel production has been increasing. In response to such demands for the production of high-purity steel, the steelmaking process has attempted to expand the hot metal pretreatment or secondary refining equipment. In particular, since P is efficiently removed from the molten iron at a low temperature level in the molten iron stage, it is common practice to remove P earlier in the molten iron pretreatment step. In this case, the refining vessel has a torpedo car system, a ladle system, or a converter system other than a furnace for decarburization, and in any case, fluxes such as CaO and iron oxide are added upward or injected by an injection system. Nitrogen bubbling agitation or oxygen top blowing is used in combination. For example, JP-A-58-16007
In the “phosphorus dephosphorization / desulfurization method of hot metal” disclosed in Japanese Unexamined Patent Publication (Kokai) No. H07-75, a CaO-based flux is blown into hot metal together with a carrier gas while blowing over oxygen, and after treatment, the slag basicity is 2.0 or more and the iron oxide content is 15 or more. % Hot metal dephosphorization and desulfurization method, characterized in that hot metal dephosphorization is performed so as to be not more than 10%, and thereafter, the upper blowing oxygen is stopped and a desulfurizing material is blown in to perform desulfurization treatment without performing forced slag removal of slag. Have been. Further, in the "Desiliconization Dephosphorization Desulfurization Method of Hot Metal" disclosed in JP-A-62-109908, a dephosphorization flux containing CaO as a main component is added to the surface of the hot metal from an early stage of the hot metal pretreatment, and an iron oxide-based flux powder is added. Of oxygen or a solid oxygen source to the surface of hot metal while blowing gas into the hot metal with a carrier gas, and after the desiliconization period, changing to alkaline flux and performing dephosphorization and desulfurization in parallel , Dephosphorization and desulfurization methods are disclosed. In addition, the "steel making method" disclosed in JP-A-63-195209 uses two upper-bottom blow converters, one of which is a dephosphorizing furnace, the other of which is a decarburizing furnace, and converter debris generated in the decarburizing furnace. There is disclosed a steelmaking method in which is recycled to a dephosphorization furnace, and the dephosphorized hot metal obtained after the hot metal dephosphorization treatment is poured into a decarburization furnace.

【0003】[0003]

【発明が解決しようとする課題】以上のように、一次精
錬プロセスは脱珪、脱燐工程を溶銑段階で行い、転炉に
おける脱炭工程の効率化、生産性向上をはかるため分割
精錬を指向し、より多くの研究が行われ、鉄鋼各社で実
機化されてきた。しかしながら、前記の方法によると低
P化の工程能力だけ見ると比較的低い到達P含有レベル
を達成することはできるが、処理時間が長く処理時の抜
熱が大きいこと、転炉に供給するまでに時間を要するこ
と、2基の転炉を利用しても処理後の溶銑払出し、別転
炉への再装入による温度低下が避けられない等、熱裕度
の観点からは決して満足できるプロセスではない。さら
に最近の全量溶銑脱燐処理化は転炉工程における熱裕度
をさらに低下させ、使用原料の自由度がなくなり、今後
の転炉における積極的スクラップリサイクルの観点から
も問題が大きい。
As described above, in the primary refining process, the desiliconization and dephosphorization steps are performed at the hot metal stage, and the split refining is aimed at improving the efficiency of the decarburization step and improving the productivity in the converter. However, more research has been conducted and steel companies have commercialized them. However, according to the above-described method, a relatively low ultimate P content level can be achieved only by looking at the process capability of lowering P, but the processing time is long and the heat removal during processing is large, A process that is completely satisfactory from the viewpoint of heat margin, such as the fact that it takes time to use, and even if two converters are used, it is inevitable that the molten iron is discharged after treatment and the temperature drops due to recharging into another converter. is not. Furthermore, the recent hot metal dephosphorization treatment further reduces the heat tolerance in the converter process, losing the degree of freedom of the raw materials used, and has a serious problem from the viewpoint of active scrap recycling in the converter in the future.

【0004】[0004]

【課題を解決するための手段】本発明は以上の事情を背
景としてなされたもので、従来脱珪、脱燐のために分割
精錬が指向されてきたプロセスから、予備処理工程を転
炉工程に集約することを可能とし、大幅な熱裕度の向上
をもたらす効果的な精錬方法を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been changed from a process in which split refining for desiliconization and dephosphorization has been conventionally directed to a pretreatment process to a converter process. It is an object of the present invention to provide an effective smelting method that enables concentration and greatly improves the heat allowance.

【0005】すなわち本発明は、底吹機能を有する転炉
における溶銑の精錬方法において、底吹ガスによる下記
(1)式で定義される攪拌エネルギーが0.5KW/T
以上となるように底吹ガス流量を制御しつつ処理後スラ
グの塩基度(%CaO/%SiO2 )が2.0未満且つ
酸化鉄含有率が5%以上となるように溶銑の脱珪脱燐精
錬を行った後、一旦吹錬を中断し炉傾動により炉内スラ
グを排出し該排滓終了後、引き続いて脱炭吹錬を行うこ
とを特徴とする転炉製錬方法を要旨とするものである。
That is, according to the present invention, in a method for refining molten iron in a converter having a bottom blowing function, the stirring energy defined by the following equation (1) by the bottom blowing gas is 0.5 KW / T.
Desiliconization of hot metal so that the basicity (% CaO /% SiO 2 ) of the treated slag is less than 2.0 and the iron oxide content is 5% or more while controlling the flow rate of the bottom blown gas as described above. A gist of the converter smelting method characterized by temporarily stopping blowing, discharging the slag in the furnace by tilting the furnace after performing the phosphorus refining, and performing decarburization blowing after the end of the discharge. Things.

【0006】[0006]

【数2】 (Equation 2)

【0007】(参考文献;日本学術振興会 製鋼第19
委員会第3分科会 製鋼反応協議会提出資料「複合転炉
の攪拌強度と冶金反応」 昭和55年)。
(Reference: Japan Society for the Promotion of Science, Steelmaking 19th)
Material submitted by the Steelmaking Reaction Council of the 3rd Working Group of the Committee, "Stirring Strength and Metallurgical Reaction of Combined Converters" (Showa 55).

【0008】[0008]

【作用】溶銑脱珪、脱燐工程を転炉工程に集約し、現状
の分割精錬並の低燐鋼製造工程能力の維持のためには脱
燐精錬滓の迅速且つ徹底した除滓が必須条件となる。即
ち溶銑処理工程中にスラグを除去することは、排滓時
の溶融金属の流出による歩留低下、排滓時間の消費に
よる生産性の低下、スラグの高除滓率の確保が極めて
困難であり、P2 5 濃度の高い脱燐スラグが残留する
と復燐現象が起こる、等の問題点がある。
[Function] Integrate the hot metal desiliconization and dephosphorization processes into the converter process, and in order to maintain the current low-phosphorous steel production process capacity comparable to the current split refining, quick and thorough dephosphorization slag removal is an essential condition. Becomes That is, it is extremely difficult to remove slag during the hot metal treatment process because of a decrease in yield due to outflow of molten metal at the time of waste, a decrease in productivity due to consumption of waste time, and a high slag removal rate of slag. When the dephosphorized slag having a high P 2 O 5 concentration remains, there is a problem that a phosphorus reversion phenomenon occurs.

【0009】本発明者らは転炉を利用した溶銑脱珪、脱
燐処理後スラグの除去効率を向上させ、溶銑予備処理工
程を転炉工程に集約し大幅な熱裕度の改善をはかるべく
研究開発に当たった。まず、本発明者らは、実機規模の
底吹機能を有する300TON転炉を用い、約290T
ONの溶銑を装入後脱燐用の生石灰及び鉄鉱石を添加し
底吹攪拌を行いながら上吹酸素を供給して脱珪、脱燐処
理を行い、脱燐処理後一旦吹錬を中断し炉傾動による中
間排滓を実施した後連続的に脱炭吹錬を実施する試験を
行った。この時処理前溶銑中Siは平均0.40%、P
は平均0.100%であり、脱燐処理後温度は効率良く
脱燐反応を進めるため従来知見に基づき1350℃を目
標に設定した。この結果、底吹ガス攪拌力及び脱燐処理
後スラグの組成が脱燐率及び排滓効率に大きく影響する
ことに注目し、両者を同時に満足する最適組成が存在す
ることを知見した。
The present inventors have aimed to improve the efficiency of removing slag after hot metal desiliconization and dephosphorization using a converter and to consolidate the hot metal pretreatment process into the converter process to greatly improve the heat tolerance. R & D. First, the present inventors used a 300 TON converter having a bottom blow function on an actual scale, and
After charging the hot metal of ON, add quicklime and iron ore for dephosphorization, supply top-blown oxygen while performing bottom-blowing agitation, perform desiliconization and dephosphorization, and after dephosphorization, temporarily stop blowing. After performing the intermediate waste by tilting the furnace, a test of continuously performing decarburization blowing was performed. At this time, Si in the hot metal before treatment was 0.40% on average, and P
Is an average of 0.100%, and the temperature after the dephosphorization treatment was set to 1350 ° C. based on the conventional knowledge in order to efficiently promote the dephosphorization reaction. As a result, it was noticed that the bottom gas blowing power and the composition of the slag after the dephosphorization greatly affected the dephosphorization rate and the waste efficiency, and it was found that there was an optimum composition that satisfied both of them.

【0010】すなわち、図1に示すごとく排滓率は底吹
ガス攪拌力に影響を受け、同一スラグ組成においても底
吹攪拌エネルギーが0.5KW/T以上で急激に排滓効
率が改善されることがわかる。これは底吹ガスによりス
ラグのフォーミングレベルが高くなり中間排滓時におい
てより初期の段階よりスラグの排出が盛んに行われるこ
とによる。
That is, as shown in FIG. 1, the waste rate is affected by the bottom blowing gas agitation force, and even with the same slag composition, when the bottom blowing agitation energy is 0.5 KW / T or more, the waste efficiency is rapidly improved. You can see that. This is because the slag forming level is increased by the bottom blowing gas, and the slag is more actively discharged from an earlier stage at the time of intermediate waste.

【0011】また図2に示すごとく同一底吹攪拌条件下
において、脱燐率は処理後スラグ塩基度に大きく依存
し、塩基度が高くなるに従い脱燐率は向上するが、塩基
度2.0以上ではその向上が見られなくなり、また、塩
基度2.0以上では排滓率の低下が見られる。これはス
ラグの滓化率と関係があると推定され、塩基度の上昇は
滓化を阻害しスラグの流動性を低下させ排滓性に大きな
影響を与えることによる。さらに、生産性確保の観点か
らも脱燐処理時間は極力短時間で行う必要があり、溶銑
予備処理レベルの温度域では高塩基度操業は滓化時間の
観点からも適当でなく今回の試験結果からも処理後の分
析塩基度で2.0未満となるような組成が最適と判断さ
れる。
Further, as shown in FIG. 2, under the same bottom stirring condition, the dephosphorization rate largely depends on the slag basicity after the treatment, and the higher the basicity, the higher the dephosphorization rate. Above, no improvement is seen, and at a basicity of 2.0 or more, a decrease in the waste rate is seen. This is presumed to be related to the slag formation rate of the slag, and an increase in basicity inhibits slag formation, lowers the fluidity of the slag, and greatly affects the slag discharge property. Furthermore, from the viewpoint of ensuring productivity, the dephosphorization time must be as short as possible.In the temperature range of the hot metal pretreatment level, high basicity operation is not appropriate from the viewpoint of slagging time, and the results of this test Therefore, it is determined that a composition having an analyzed basicity of less than 2.0 after treatment is optimal.

【0012】ところで脱珪反応は酸素源を供給すること
によって進行し、処理前Siレベルに応じて供給酸素量
を制御することにより容易に脱珪、脱燐を連続的に行う
ことが可能である。排滓は炉傾動により炉口から行い、
排滓時間は5〜7分間、溶銑の流出が始まるまでとし
た。
The desiliconization reaction proceeds by supplying an oxygen source, and the desiliconization and dephosphorization can be easily and continuously performed by controlling the amount of supplied oxygen according to the Si level before the treatment. . Drainage is performed from the furnace port by tilting the furnace,
The slag time was 5 to 7 minutes until the hot metal began to flow out.

【0013】ここで排滓率は排滓量と炉内生成スラグ量
の比率で定義し、排滓量は実秤量値、炉内生成スラグ量
は炉内に投入した生石灰量をベースに処理後スラグ分析
値と滓化率を考慮して以下に示す(2)式で計算した値
を使用した。
Here, the waste rate is defined as the ratio of the amount of waste to the amount of slag generated in the furnace. The amount of waste is the actual weighed value, and the amount of slag generated in the furnace is determined based on the amount of quicklime introduced into the furnace. The value calculated by the following equation (2) was used in consideration of the slag analysis value and the slag conversion rate.

【0014】[0014]

【数3】 (Equation 3)

【0015】次にスラグ中の酸化鉄濃度は、鉄分歩留の
観点からは低い程好ましいことは自明であるが、脱燐反
応の促進あるいはスラグの流動性を確保して排滓率を向
上させる上で必要最小限含有量を確保する必要がある。
さらに、スラグ中の酸化鉄分濃度は図3に示すように底
吹ガス攪拌力に依存しており、攪拌エネルギー0.5K
W/T以上ではスラグ中酸化鉄分濃度は5〜15%程度
となる。
Next, it is obvious that the iron oxide concentration in the slag is preferably as low as possible from the viewpoint of the yield of iron, but the dephosphorization reaction is promoted or the fluidity of the slag is secured to improve the waste rate. It is necessary to secure the necessary minimum content.
Further, as shown in FIG. 3, the iron oxide concentration in the slag depends on the stirring force of the bottom gas, and the stirring energy is 0.5K.
Above W / T, the iron oxide concentration in the slag is about 5 to 15%.

【0016】今回目標とした脱燐率及び排滓率はそれぞ
れ80%、85%であり、これは処理前の燐レベル及び
中間排滓後連続的に行われる脱炭吹錬時の復P抑制の条
件から設定され、これらは条件によって変動するもので
ある。脱燐処理後温度についても同様である。以下に本
発明の実施例を示す。
The dephosphorization rate and the waste rate targeted this time are 80% and 85%, respectively, which are the phosphorus level before the treatment and the suppression of the recovery of P during the decarburization blowing performed continuously after the intermediate waste. Are set according to the following conditions, which vary depending on the conditions. The same applies to the temperature after the dephosphorization treatment. Hereinafter, examples of the present invention will be described.

【0017】[0017]

【実施例】炉底に底吹羽口を有する300TONの上底
吹転炉に290〜300TONの溶銑を装入し、底吹羽
口よりCO2 、上吹ランスより酸素を吹込み本発明を適
用した実施例を表1、表2(表1のつづき)に示す。ま
た図4に本発明のプロセスフローを示す。従来法1〜3
は脱燐処理後のスラグ塩基度が2.0以上か、または攪
拌力を小さくして精錬した例であり、実施例4〜7は本
発明に従い実施したものである。塩基度調整については
処理前溶銑Si濃度より生成するSiO2 量及びその他
炉内残留スラグ中SiO2 量等から、それに応じた生石
灰量を投入することで容易に行うことができる。
EXAMPLE A hot iron of 290 to 300 TON was charged into a 300 TON top-bottom blowing converter having a bottom blowing tuyere at the bottom of the furnace, and CO 2 was blown from the bottom blowing tuyere and oxygen was blown from the top blowing lance. The applied examples are shown in Tables 1 and 2 (continuation of Table 1). FIG. 4 shows a process flow of the present invention. Conventional methods 1-3
Is an example in which the slag basicity after dephosphorization treatment is 2.0 or more, or the slag is refined by reducing the stirring power, and Examples 4 to 7 are carried out according to the present invention. Of SiO 2 amount, and other furnace residual slag SiO 2 amount, etc. to produce than pretreated hot metal Si concentration for basicity adjustment it can be easily performed by turning on the quick lime content accordingly.

【0018】この実施例における結果からわかるよう
に、本発明を適用することにより従来法に比較して脱燐
処理後の中間排滓率を大幅に向上することが可能とな
り、排滓後連続的に行われる脱炭工程における復Pを抑
制でき、1炉での脱珪、脱燐及び脱炭精錬を十分可能と
するものである。
As can be seen from the results in this example, the application of the present invention makes it possible to greatly increase the intermediate waste rate after the dephosphorization treatment as compared with the conventional method, In the decarburization step performed in the above, the re-P is suppressed, and desiliconization, dephosphorization and decarburization refining in one furnace can be sufficiently performed.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】前記実施例からも明らかなごとく、本発
明は、上底吹転炉を利用した脱珪、脱燐精錬法におい
て、脱燐処理後、スラグの排滓効率を向上させることに
よって脱炭精錬を連続的に行うことを可能とし、大幅な
工程省略、熱裕度の改善、及び鉄分歩留り向上という効
果を奏するものである。
As is clear from the above embodiments, the present invention is directed to a desiliconization and dephosphorization refining method using an upper-bottom blower by improving the efficiency of slag discharge after dephosphorization. The decarburization refining can be performed continuously, and the effects of greatly reducing the number of steps, improving the heat allowance, and improving the iron content yield can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】底吹攪拌エネルギーと排滓率の関係を表す図で
ある。
FIG. 1 is a diagram showing the relationship between bottom blow stirring energy and waste rate.

【図2】スラグ塩基度と脱P率、排滓率の関係を表す図
である。
FIG. 2 is a diagram illustrating a relationship among slag basicity, a P removal rate, and a waste rate.

【図3】底吹攪拌エネルギーとスラグ中酸化鉄含有率の
関係を表す図である。
FIG. 3 is a diagram illustrating a relationship between bottom blowing stirring energy and iron oxide content in slag.

【図4】本発明のプロセスフローを表す図である。FIG. 4 is a diagram showing a process flow of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−140627(JP,A) 特開 平1−147011(JP,A) 特開 平4−99213(JP,A) 特開 平1−283311(JP,A) ISIJ Internationa l,Vol.31,No.11,pp.1322 −1328(1991) (58)調査した分野(Int.Cl.6,DB名) C21C 5/28 C21C 1/02 110 C21C 1/04 101 C21C 5/34 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-140627 (JP, A) JP-A-1-47011 (JP, A) JP-A-4-99213 (JP, A) JP-A-1- 283311 (JP, A) ISIJ International, Vol. 31, No. 11, pp. 1322-1328 (1991) (58) Fields investigated (Int. Cl. 6 , DB name) C21C 5/28 C21C 1/02 110 C21C 1/04 101 C21C 5/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 底吹機能を有する転炉における溶銑の精
錬方法において、底吹ガスによる下記(1)式で定義さ
れる攪拌エネルギーが0.5KW/T以上となるように
底吹ガス流量を制御しつつ処理後スラグの塩基度(%C
aO/%SiO2 )が2.0未満且つ酸化鉄含有率が5
%以上となるように溶銑の脱珪、脱燐精錬を行った後、
一旦吹錬を中断し炉傾動により炉内スラグを排出し該排
滓終了後引き続いて脱炭吹錬を行うことを特徴とする転
炉精錬方法。 【数1】
1. A method for refining hot metal in a converter having a bottom-blowing function, wherein the flow rate of the bottom-blown gas is adjusted so that the stirring energy defined by the following equation (1) is 0.5 KW / T or more. Controlled slag basicity (% C
aO /% SiO 2 ) is less than 2.0 and the iron oxide content is 5
% After desiliconization and dephosphorization of hot metal,
A converter refining method characterized by temporarily stopping blowing and discharging slag in the furnace by tilting the furnace, and subsequently performing decarburization blowing after finishing the waste. (Equation 1)
JP16256493A 1993-06-30 1993-06-30 Converter refining method Expired - Lifetime JP2958842B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP16256493A JP2958842B2 (en) 1993-06-30 1993-06-30 Converter refining method
BR9406985-9A BR9406985A (en) 1993-06-30 1994-06-30 Process to produce steel in converter
KR1019950705930A KR0159180B1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
AU70831/94A AU680268B2 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
EP94919835A EP0714989B1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter dephosphorisation
PCT/JP1994/001070 WO1995001458A1 (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter
ES94919835T ES2143547T3 (en) 1993-06-30 1994-06-30 STEEL MANUFACTURING METHOD USING DEPHOSPHORIZATION IN CONVERTER.
CA002166097A CA2166097C (en) 1993-06-30 1994-06-30 Process for producing steel by converter
DE69423630T DE69423630T2 (en) 1993-06-30 1994-06-30 STEEL MANUFACTURING IN CONVERTER WITH DEPHOSPHORUS LEVEL
CN94192953A CN1041843C (en) 1993-06-30 1994-06-30 Steel manufacturing method using converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16256493A JP2958842B2 (en) 1993-06-30 1993-06-30 Converter refining method

Publications (2)

Publication Number Publication Date
JPH0718319A JPH0718319A (en) 1995-01-20
JP2958842B2 true JP2958842B2 (en) 1999-10-06

Family

ID=15756991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16256493A Expired - Lifetime JP2958842B2 (en) 1993-06-30 1993-06-30 Converter refining method

Country Status (1)

Country Link
JP (1) JP2958842B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063966B2 (en) * 2006-09-06 2012-10-31 新日本製鐵株式会社 Manufacturing method of molten steel
JP5671801B2 (en) * 2010-01-13 2015-02-18 新日鐵住金株式会社 Converter refining method
JP7107099B2 (en) * 2018-08-29 2022-07-27 日本製鉄株式会社 Hot metal refining method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISIJ International,Vol.31,No.11,pp.1322−1328(1991)

Also Published As

Publication number Publication date
JPH0718319A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
WO1995001458A1 (en) Steel manufacturing method using converter
CA1230740A (en) Process of makingsteel in converter using a great amount of iron-bearing cold material
JP2018178260A (en) Converter steelmaking process
JP6665884B2 (en) Converter steelmaking method
JP2958842B2 (en) Converter refining method
JP2900011B2 (en) Converter refining method
JP3458890B2 (en) Hot metal refining method
JPH08311519A (en) Steelmaking method using converter
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP3486886B2 (en) Steelmaking method using two or more converters
JPH0734113A (en) Converter refining method
JP3924059B2 (en) Steelmaking method using multiple converters
JPH11323420A (en) Pretreating method for molten iron
JP4461495B2 (en) Dephosphorization method of hot metal
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH0557327B2 (en)
JPH083612A (en) Method for refining clean steel
JP2587286B2 (en) Steelmaking method
JP3486887B2 (en) Steelmaking method using multiple converters
JP4356275B2 (en) Hot metal refining method
JPH10306305A (en) Steelmaking method using two or more sets of converters
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JP2004156146A (en) Method for refining molten iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

EXPY Cancellation because of completion of term