JP3924058B2 - Converter steelmaking method using dephosphorized hot metal - Google Patents

Converter steelmaking method using dephosphorized hot metal Download PDF

Info

Publication number
JP3924058B2
JP3924058B2 JP36955497A JP36955497A JP3924058B2 JP 3924058 B2 JP3924058 B2 JP 3924058B2 JP 36955497 A JP36955497 A JP 36955497A JP 36955497 A JP36955497 A JP 36955497A JP 3924058 B2 JP3924058 B2 JP 3924058B2
Authority
JP
Japan
Prior art keywords
refining
hot metal
converter
dephosphorization
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36955497A
Other languages
Japanese (ja)
Other versions
JPH11193413A (en
Inventor
秀栄 田中
喜美 小松
一郎 菊池
学 新井
悟史 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36955497A priority Critical patent/JP3924058B2/en
Publication of JPH11193413A publication Critical patent/JPH11193413A/en
Application granted granted Critical
Publication of JP3924058B2 publication Critical patent/JP3924058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、予め転炉等の精錬容器において溶銑の脱燐精錬を行い、この脱燐精錬された溶銑を他の転炉において脱炭精錬を行い、鋼を生産するに際して、脱燐精錬後の燐(以下、Pとも記載する)含有量を、脱炭精錬における溶鋼のP含有量の変化を脱燐精錬にフィードフォワードして所定のP含有量となるように精錬する方法に関する。
【0002】
【従来の技術】
伝統的転炉製鋼法においては、同一の転炉において溶銑の脱燐精錬と脱炭精錬とを行なって、製鋼作業を行っていた。しかし、近年の鋼材の品質に対する要求が高くなる一方、連続鋳造の拡大や、真空脱ガス、取鍋精錬等の溶鋼の二次精錬が普及するに伴い、転炉における出鋼温度が上昇し、転炉に於ける脱燐能力が低下してきた。この理由は、脱燐反応は高温ほど不利に進行するからである。
【0003】
そこで、転炉に装入する溶銑を予め処理して、特に燐成分をある程度除去してから転炉に装入する溶銑予備処理法が発展してきた。この方法は例えば、溶銑鍋又は一の転炉等の精錬容器において溶銑の脱燐精錬を行ない、この脱燐された溶銑を他の転炉に移動して脱炭精錬を行なう製鋼方法である。
【0004】
かかる技術として、特開平2−200715号公報、特公平2−14404号公報、特公昭61−23243号公報の提案がある。また、本願の発明者も既に従来の製鋼工場を改造し、復数の転炉のそれぞれの炉前作業床に作業床開口部を設け、一の転炉で溶銑の脱燐精錬をした溶湯を受湯鍋に受け、この受湯鍋を前記作業床開口部を通して他の一の転炉に運搬し、この転炉に装入し、ここで脱炭精錬を行なう精錬方法を開発している(特開平6−41624号公報)。
【0005】
上記製鋼方法において、一の転炉等における脱燐精錬において終点のP含有量を通常の粗鋼成分のP含有量(所謂鋼の成分規格値、通常0.02wt%以下)まで精錬し、他の転炉において実質的に脱炭精錬を行なうと、この脱炭精錬においてマンガン鉱石を装入することが可能となり、より経済的に鋼の生産が可能となった。
【0006】
【発明が解決しようとする課題】
しかし、転炉等の精錬容器において脱燐精錬し、終点のP含有量を粗鋼成分のP含有量(所謂鋼の成分規格値、通常0.02wt%以下)まで精錬し、転炉において脱炭精錬すると、溶鋼中のPが種々の原因により変動し、脱炭精錬における終点のP含有量が粗鋼成分のP含有量(所謂鋼の成分規格値)を超える場合があり、問題となる。
【0007】
上記原因としては、この溶銑を脱炭精錬する転炉における、先行する脱炭精錬における終点の溶鋼中の燐及び転炉炉内に残留したスラグからの燐のピックアップ及び取鍋における流出スラグからの復燐等がある。そこで、上記原因による復燐の量を予め考慮して、所定のP含有量となるように、脱燐精錬を制御することが必要になる。
【0008】
【課題を解決するための手段】
上記課題について種々研究した結果、下記の発明をするに至った。
第1の本発明は、下記の工程を備えたことを特徴とする脱燐溶銑を使用する転炉製鋼方法である。
(a)精錬容器において、溶銑の終点の燐含有量([P]fwt%)が下式(1) に従うように脱燐精錬し、
[P]fwt%≦[P]k wt%−Δ1−Δ2---(1)
ここで、[P]k wt%: 粗鋼で要求されているP含有量(鋼の成分規格値)
Δ1:この溶銑を脱炭精錬する転炉における先行する脱炭精錬後の炉内に残留するスラグ量による燐の増加量(wt%)、
Δ2:取鍋における溶鋼の復燐量(wt%)
(b)前記脱燐精錬された溶銑を転炉に装入し、実質的に造滓材を装入せず脱炭精錬を行う。
【0009】
更に、第2の発明は、前記[P]fwt%が、式(1)に代えて下式(2)に従うように脱燐精錬された脱燐溶銑を使用することを特徴とする脱燐溶銑を使用する転炉製鋼である。
[P]fwt%≦[P]k wt%−Δ1−Δ2−Δ3--(2)
ここで、Δ3: 当該脱燐精錬で発生したスラグが、前記転炉に混入することによる増加量(wt%)
【0010】
第3の発明は、上記取鍋における溶鋼の復燐量( Δ2)は、取鍋におけるスラグからの復燐量及び添加する合金鉄からの復燐量の合計量とすることを特徴とする脱燐溶銑を使用する転炉製鋼方法である。
【0011】
第4の発明は、前記脱燐精錬を行う精錬容器が転炉であることを特徴とする脱燐溶銑を使用する転炉製鋼方法。
【0012】
【発明の実施の形態】
以下、精錬容器である転炉における溶銑の脱燐精錬を図5において説明する。図5は溶銑340tonの転炉2における溶銑4の脱燐精錬の状況を概念的に示す。溶銑装入後、ランス12から酸素を吹錬し、所定量の焼石灰等を装入し、CaO、SiO2 、FeO等を主成分とするスラグ6を生成させ、溶銑から燐を除去する。溶銑の脱燐精錬が終了すると倒炉して出鋼口8を介して溶銑取鍋に出湯を行う。
【0013】
本発明前の溶銑の脱燐精錬の概要を図6に示す。スクラップ装入に続いて[Si]が0.3から0.5wt%の溶銑340tonを装入後、造滓材としての焼石灰(6ton/ch),ホタル石(0.6ton/ch)、場合により生ドロマイト等を装入しながら、酸素吹錬を約13分間行う。その後、溶銑とスラグの分離を行うためリンスを3分間程度行い、スラグフォーミングの鎮静化のため約4分を待ち、その後出湯する。図に示すように脱燐精錬時間は約36分である。
【0014】
本発明の前提となる脱燐精錬を説明すると以下の通りである。
340ton転炉における脱燐精錬の概要を図1に、また精錬時間配分を図3に示す。本発明では望ましくは0.3wt%以下の溶銑を使用すると安定して低燐溶銑が得られ、更にスラグフォーミングが少ないという効果もある。
【0015】
非定常的な操業(高炉休風後等)ではSiが0.3wt%を超えることがあるが、このような場合には溶銑鍋等で予め脱珪素を行うことが望ましい。なお、本発明においては必ずしもSiが0.3wt%以下であることは必須の条件ではない。
【0016】
本発明の前提となる精錬においては、望ましくは、Si0.3wt%以下の溶銑を使用するため、スラグ量は20〜40kg/tonで(後述する図4参照)、図3に示すように精錬中におけるスラグフォーミングも少ないので鎮静時間をほとんど要せず、また出鋼後の排滓時間は1分程度である。そこで、図1に示すように脱燐精錬時間は29分となり、脱炭精錬時間と同程度である。
【0017】
また、溶銑Siが低いと略同一の塩基度で、より少ないスラグ量で脱燐精錬を行っているにもかかわらず、本発明の前提となる脱燐精錬においてはPが通常粗鋼で要求されている(規格値)0.02wt%以下に精錬される。スラグ量が少ないために円滑なスラグ生成が行われたためと推定される。この為脱炭精錬においてはPを精錬する必要がない。
【0018】
また、溶銑のSiが少ないと通常の脱燐精錬においては溶銑中のPがスラグ中のFeOと反応してスラグに吸収される。そこで、脱燐精錬を促進するためにはスラグ中のFeO濃度を高くする。このため、吹錬中に鉄鉱石或いはミルスケールを装入する(図1参照)。上記は転炉における脱燐精錬の例を述べたが、本発明においては転炉における脱燐精錬に限定されず、取鍋における脱燐精錬を行ってもよい。
【0019】
次に、図2に脱炭精錬の状況を示す。この精錬においては主に脱炭精錬を目的とするため、吹錬する酸素量を多くする。溶銑のP含有量は少なくとも規格値(0.02wt%)以下となっているため、従来使用している焼石灰等の造滓材は原則として装入しない。
【0020】
従って、上記脱炭精錬においてはスラグの増加は少ないが、溶銑装入に先立ち軽焼ドロマイト等を炉体寿命延長のために装入することがあるので、スラグ量がある程度増加することがある。このような場合には必要に応じて炉内スラグを排出する。その結果、炉内に生成するスラグ量は後述する図4に示すように10〜30kg/tonと少ない。しかも、出鋼後において原則として炉内に残留させるため排出するスラグ量は従来(25〜35kg/ton)と比較し大きく減少する。
【0021】
次に、本発明の前提となる脱炭精錬においてマンガン鉱石(例えば、Mn約50wt%,Fe約10wt%以下,SiO2 約10wt%以下)を可能な範囲で装入する。高炉溶銑のMn含有量は通常0.2〜0.3wt%であり、脱燐精錬された溶銑のMn含有量は、通常0.05〜0.15wt%である。そこで、マンガン鉱石を精錬中に添加すると効率よく還元され、溶鋼のMn含有量を最大、粗鋼のMn含有量の上限値まで高めることができ、より経済的に製鋼作業が可能となる。
【0022】
更に、本発明の前提となる精錬では、脱燐溶銑を脱炭精錬炉に装入するに先立ち予め軽焼ドロマイト及び/又は生ドロマイトを添加すると、脱炭精錬中において十分スラグに溶解し、MgO濃度を高める作用がある。このようなスラグはスラグ自体がMgOを溶解度限まで含有しているため、炉体煉瓦の損耗を抑制し、炉体寿命を延長させる効果がある。
【0023】
以上が本発明の前提となる脱燐精錬と脱炭精錬の概要である。所で、脱燐精錬における終点のP含有量は、転炉における脱炭精錬において下記の原因により変化する。
(1)この溶銑を脱炭精錬する転炉における先行する脱炭精錬の残留スラグからの復燐
(2)取鍋における復燐
(3)更に、脱燐精錬において発生したスラグが脱炭精錬炉に混入することによる復燐
【0024】
以下、順にこれらの影響を考察する。
以下の考察に次の記号を使用する。
[P]fwt%: 精錬容器における脱燐精錬の終点の燐含有量
[P]k wt%: 粗鋼で要求されているP含有量(鋼の成分規格値)
Δ1: この溶銑を脱炭精錬する転炉における先行する脱炭精錬の炉内に残留したスラグによる燐の増加量
Δ2: 取鍋における復燐量
Δ3: 当該脱燐精錬で発生したスラグが、前記脱炭精錬する転炉に混入することによる復燐量
【0025】

Figure 0003924058
【0026】
脱燐平衡条件は、(P)0 /[P]0 = k( 約200)、(P)2 /[P]2 = k( 約200)、脱炭精錬における燐のマスバランスは、
入り側 =1000*X1 *[P]1 /100+ X1 *Y0 * (P)0 /100
出側 =1000*X2 *[P]2 /100+ X2 *Y2 *(P)2 /100
ここで*は乗算を意味する。現実の操業においては、X1 はX2 と実質的に同量である。そこで、
[P]2 = ( 1000*[P]1+Y0 *k*[P]0 ) /( 1000 +Y2 *k)
【0027】
ここで、Y2 = 30kg/ton ,Y0 = 15kg/ton, k= 200の場合は、
[P]2 = (0.14*[P]1 + 0.42*[P]0 )
例えば、[P]1 = 0.1wt%で、[P]0 = 0.010wt%, 0.015wt%, 0.020wt%で、kが一定であれば、それぞれ、[P]2 = 0.018wt%, 0.020wt%, 0.022wt%となる。なお、Y2 が0の場合には、[P]2 = 0.014wt%である。
【0028】
以上の計算から明らかなように、脱炭炉に残留スラグがない場合には、
[P]2 = 0.014wt%であり、残留スラグが15kg/tonである場合には[P]2 は大きな影響を受ける。この例において、例えば、[P]k wt% =0.020wt%の場合には、[P]fwt%は0.016wt%以下, 0.014wt%以下,0.012wt%以下となる。即ち、Δ1= 0.004wt%、0.006wt%、0.008wt%である。即ち、脱燐精錬においては少なくともΔ1に相当する量だけ低めに脱燐精錬する必要がある。
【0029】
Δ2: 溶鋼の取鍋における復燐量は、取鍋内に転炉から流出したスラグ組成、量、鋳造までの時間、出鋼時に添加した保温材の種類と量等の影響により変化するので、予め計算することはできないが、上記工程が一定である場合には経験的に予想することができる。経験上、Δ2は0.002wt%以下である。
【0030】
Δ3: 当該脱燐精錬で発生したスラグが、前記転炉に混入することによる復燐量であるが、予め推定することが困難である。しかし、一定の作業においては経験上0.002wt%以下である。
【0031】
【実施例】
以上の点を予め考慮して[P]fwt%を定めて脱燐精錬容器として転炉を用いて脱燐精錬を行い、他の転炉において焼石灰等の造滓材を添加せず約50チャージを脱炭精錬した。比較として、脱燐精錬の終点においてP含有量は0.03から0.04wt%とし、脱炭精錬において更に脱燐精錬も行う精錬を行い約50チャージ行った。その結果を図4に示す。
【0032】
本発明においては脱燐精錬において脱炭精錬における復燐量(0.002から0.004wt%)を考慮して規格値(通常0.020wt%以下)よりも低めに脱燐精錬し、その溶銑を脱炭精錬した。その結果、粗鋼のP含有量はいずれの場合も規格値(通常0.020wt%以下)を満足することができた。 しかし、従来の脱炭精錬においては、焼石灰を溶銑1t当たり約16kg装入しないと終点のP含有量を規格値(通常0.020wt%以下)以下とすることができなかった。
【0033】
【発明の効果】
本発明においては、転炉等の精錬容器で溶銑の燐含有量を少なくとも、脱炭精錬におけるP含有量の変化を推定し、粗鋼で要求されているP含有量(鋼の成分規格値)を考慮したP含有量以下に精錬し、この溶銑を転炉に装入し、実質的に造滓材を装入せず脱炭精錬を行うことができる。
従って、脱炭精錬を行う転炉において、マンガン鉱石を装入し、粗鋼で要求されているMn規格値の上限以内においてMn含有量を高めることが可能となり、極めて経済的な製鋼方法が実現できる。また、この製鋼方法は発生するスラグを最小に抑えることができるので、省資源の効果もある。よって本発明の産業上の効果は著しい。
【図面の簡単な説明】
【図1】本発明における脱燐精錬工程を示す図である。
【図2】本発明における脱炭精錬工程を示す図である。
【図3】本発明における溶銑の脱燐精錬時間を従来例(比較例)と共に示す図である。
【図4】本発明と従来例(比較例)における溶銑及び溶鋼の成分組成の変化を示す図である。
【図5】転炉における精錬反応の状況を示す図である。
【図6】従来の転炉における溶銑の脱燐精錬の状況を示す図である。
【符号の説明】
2 転炉型精錬容器
4 溶銑
6 スラグ
8 出鋼口
10 炉口
12 ランス[0001]
BACKGROUND OF THE INVENTION
In the present invention, the dephosphorization of hot metal is performed in a refining vessel such as a converter in advance, and the dephosphorized and refined hot metal is decarburized and refined in another converter to produce steel. The present invention relates to a method of refining phosphorus (hereinafter also referred to as P) content so that a change in P content of molten steel in decarburization refining is fed forward to dephosphorization refining so as to have a predetermined P content.
[0002]
[Prior art]
In the traditional converter steelmaking method, steelmaking work was performed by dephosphorizing and decarburizing hot metal in the same converter. However, while the demand for the quality of steel materials in recent years has increased, as the secondary refining of molten steel such as expansion of continuous casting and vacuum degassing, ladle refining has become widespread, the steel output temperature in the converter has increased, Dephosphorization capacity in converters has been reduced. This is because the dephosphorization reaction proceeds more disadvantageously at higher temperatures.
[0003]
Therefore, a hot metal pretreatment method has been developed in which the hot metal charged into the converter is pretreated, and in particular, the phosphorus component is removed to some extent and then charged into the converter. This method is, for example, a steelmaking method in which hot metal dephosphorization is performed in a refining vessel such as a hot metal ladle or one converter, and the dephosphorized hot metal is transferred to another converter to perform decarburization refining.
[0004]
As such techniques, there are proposals of Japanese Patent Application Laid-Open No. 2-200715, Japanese Patent Publication No. 2-14404, and Japanese Patent Publication No. 61-23243. In addition, the inventors of the present application have already modified a conventional steel factory, provided work floor openings on the work floors in front of each of the converters of the number of converters, and used molten metal that has been dephosphorized from the hot metal in one converter. We have developed a refining method for receiving a hot water pot, transporting the hot water pot to another converter through the opening of the work floor, charging the converter, and decarburizing and refining it there (Japanese Patent Laid-Open No. Hei. 6-41624).
[0005]
In the above steelmaking method, the P content at the end point in the dephosphorization refining in one converter or the like is refined to the P content of a normal crude steel component (so-called steel component standard value, usually 0.02 wt% or less), If decarburization and refining were substantially performed in the converter, it became possible to charge manganese ore in this decarburization and refining, and it became possible to produce steel more economically.
[0006]
[Problems to be solved by the invention]
However, after dephosphorizing in a refining vessel such as a converter, the P content at the end point is refined to the P content of the crude steel component (so-called standard component value of steel, usually 0.02 wt% or less), and decarburized in the converter. When refining, P in the molten steel fluctuates due to various causes, and the P content at the end point in the decarburization refining may exceed the P content of the crude steel component (so-called standard component value of steel), which is a problem.
[0007]
The cause is that in the converter for decarburizing and refining the hot metal, the phosphorus in the molten steel at the end of the preceding decarburizing and refining and the phosphorus pick-up from the slag remaining in the converter and the outflow slag in the ladle There are recovery and so on. Therefore, it is necessary to control the dephosphorization so as to obtain a predetermined P content in consideration of the amount of recovered phosphorous due to the above cause.
[0008]
[Means for Solving the Problems]
As a result of various studies on the above problems, the inventors have made the following inventions.
1st this invention is a converter steelmaking method using the dephosphorization hot metal characterized by including the following processes.
(A) In a refining vessel, dephosphorizing and refining so that the phosphorus content ([P] fwt%) at the end of the hot metal is in accordance with the following formula (1):
[P] fwt% ≦ [P] k wt% −Δ1−Δ2− (1)
Here, [P] k wt%: P content required for crude steel (component standard value of steel)
Δ1: Increase amount of phosphorus (wt%) due to the amount of slag remaining in the furnace after the preceding decarburization refining in the converter for decarburizing and refining this hot metal,
Δ2: amount of molten phosphorus in the ladle (wt%)
(B) The dephosphorized and refined hot metal is charged into a converter, and decarburization and refining is performed substantially without charging the ironmaking material.
[0009]
Further, the second invention uses a dephosphorized hot metal dephosphorized so that the [P] fwt% is in accordance with the following formula (2) instead of the formula (1): This is converter steelmaking.
[P] fwt% ≦ [P] k wt% −Δ1−Δ2−Δ3− (2)
Here, Δ3: an increase amount (wt%) due to the slag generated in the dephosphorization refining mixed into the converter
[0010]
According to a third aspect of the present invention, the dephosphorization amount (Δ2) of the molten steel in the ladle is a total amount of the dephosphorization amount from the slag in the ladle and the dephosphorization amount from the alloy iron to be added. It is a converter steelmaking method using phosphorous iron.
[0011]
A fourth invention is a converter steelmaking method using a dephosphorized hot metal, wherein a refining vessel for performing the dephosphorization refining is a converter.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, dephosphorization of hot metal in a converter, which is a refining vessel, will be described with reference to FIG. FIG. 5 conceptually shows the state of dephosphorization of the hot metal 4 in the converter 2 of hot metal 340 ton. After the hot metal is charged, oxygen is blown from the lance 12 and a predetermined amount of calcined lime is charged to produce slag 6 mainly composed of CaO, SiO 2 , FeO, etc., and phosphorus is removed from the hot metal. When hot metal dephosphorization is completed, the furnace is turned down and the hot metal is poured into the hot metal ladle through the steel outlet 8.
[0013]
An outline of hot metal dephosphorization before the present invention is shown in FIG. In the case of hot-burning lime (6 ton / ch) and fluorite (0.6 ton / ch) as a slag material after charging scrap metal 340 ton with [Si] 0.3 to 0.5 wt% following scrap charging Oxygen blowing is performed for about 13 minutes while charging raw dolomite and the like. Then, rinse for about 3 minutes to separate the hot metal and slag, wait about 4 minutes for slag foaming to calm down, and then drain the hot water. As shown in the figure, the dephosphorization time is about 36 minutes.
[0014]
Dephosphorization refining which is the premise of the present invention will be described as follows.
FIG. 1 shows an outline of dephosphorization refining in the 340 ton converter, and FIG. 3 shows a refining time distribution. In the present invention, when a hot metal of 0.3 wt% or less is used, a low phosphorus hot metal can be obtained stably and there is an effect that slag forming is less.
[0015]
In unsteady operations (after blast furnace blast, etc.), Si may exceed 0.3 wt%. In such a case, it is desirable to perform silicon removal beforehand with a hot metal ladle or the like. In the present invention, it is not essential that Si is 0.3 wt% or less.
[0016]
In the refining which is the premise of the present invention, it is desirable to use hot metal having a Si content of 0.3 wt% or less, so the amount of slag is 20 to 40 kg / ton (see FIG. 4 to be described later), and during refining as shown in FIG. Since there is little slag forming, no sedation time is required and the evacuation time after steel is about 1 minute. Therefore, as shown in FIG. 1, the dephosphorization refining time is 29 minutes, which is similar to the decarburization refining time.
[0017]
Further, when the molten iron Si is low, P is usually required for crude steel in the dephosphorization refining which is the premise of the present invention even though the dephosphorizing refining is carried out with a smaller amount of slag at substantially the same basicity. (Standard value) is refined to 0.02 wt% or less. It is estimated that smooth slag was generated because the amount of slag was small. Therefore, it is not necessary to refine P in decarburization refining.
[0018]
If the amount of Si in the hot metal is small, P in the hot metal reacts with FeO in the slag and is absorbed by the slag in normal dephosphorization. Therefore, in order to promote dephosphorization, the FeO concentration in the slag is increased. For this reason, iron ore or mill scale is charged during blowing (see FIG. 1). Although the above has described an example of dephosphorization refining in a converter, the present invention is not limited to dephosphorization refining in a converter, and dephosphorization refining in a ladle may be performed.
[0019]
Next, FIG. 2 shows the situation of decarburization refining. Since this refining is mainly aimed at decarburization refining, the amount of oxygen to be blown is increased. Since the P content of the hot metal is at least the standard value (0.02 wt%) or less, as a rule, the conventionally used ironmaking materials such as burned lime are not charged.
[0020]
Accordingly, although the increase in slag is small in the above decarburization refining, since lightly burned dolomite or the like may be charged to extend the furnace life prior to the hot metal charging, the amount of slag may increase to some extent. In such a case, the in-furnace slag is discharged as necessary. As a result, the amount of slag generated in the furnace is as small as 10 to 30 kg / ton as shown in FIG. Moreover, in principle, the amount of slag discharged to remain in the furnace after steelmaking is greatly reduced compared to the conventional (25 to 35 kg / ton).
[0021]
Next, manganese ore (for example, Mn of about 50 wt%, Fe of about 10 wt% or less, SiO 2 of about 10 wt% or less) is charged as much as possible in the decarburization refining that is the premise of the present invention. The Mn content of the blast furnace hot metal is usually 0.2 to 0.3 wt%, and the Mn content of the dephosphorized and refined hot metal is usually 0.05 to 0.15 wt%. Therefore, when manganese ore is added during refining, it is efficiently reduced, and the Mn content of the molten steel can be increased to the maximum and the upper limit value of the Mn content of the crude steel, thereby making the steelmaking operation more economical.
[0022]
Further, in the refining that is the premise of the present invention, when lightly burned dolomite and / or raw dolomite is added in advance before charging the dephosphorized hot metal into the decarburizing refining furnace, it is sufficiently dissolved in the slag during decarburizing refining, and MgO Has the effect of increasing the concentration. Since such slag contains MgO to the solubility limit, there is an effect of suppressing the wear of the furnace body brick and extending the life of the furnace body.
[0023]
The above is the outline of the dephosphorization refining and decarburization refining which are the premise of the present invention. However, the P content at the end point in the dephosphorization refining changes due to the following causes in the decarburization refining in the converter.
(1) Re-phosphorus from the residual slag of the preceding decarburization refining in the converter for decarburizing and refining this hot metal (2) Re-phosphorus in the ladle (3) Furthermore, the slag generated in the dephosphorization refining is removed from the decarburization refining furnace [5] Recovery by mixing in
In the following, these effects will be considered in order.
The following symbols are used in the following discussion.
[P] fwt%: Phosphorus content at the end of dephosphorization in smelting vessel [P] k wt%: P content required for crude steel (standard component values of steel)
Δ1: Increase in phosphorus due to slag remaining in the preceding decarburization refining furnace in the converter for decarburizing and refining this hot metal Δ2: Recovered phosphorus amount in the ladle Δ3: Slag generated in the dephosphorization refining Amount of recovered phosphorus by mixing in converter for decarburizing and refining 【0025】
Figure 0003924058
[0026]
The dephosphorization equilibrium conditions are (P) 0 / [P] 0 = k (about 200), (P) 2 / [P] 2 = k (about 200), and the phosphorus mass balance in decarburization refining is
Entry side = 1000 * X1 * [P] 1/100 + X1 * Y0 * (P) 0/100
Outgoing side = 1000 * X2 * [P] 2/100 + X2 * Y2 * (P) 2/100
Here, * means multiplication. In actual operation, X1 is substantially the same amount as X2. Therefore,
[P] 2 = (1000 * [P] 1 + Y0 * k * [P] 0) / (1000 + Y2 * k)
[0027]
Here, if Y2 = 30 kg / ton, Y0 = 15 kg / ton, k = 200,
[P] 2 = (0.14 * [P] 1 + 0.42 * [P] 0)
For example, if [P] 1 = 0.1 wt%, [P] 0 = 0.010 wt%, 0.015 wt%, 0.020 wt% and k is constant, then [P] 2 = 0. 018 wt%, 0.020 wt%, and 0.022 wt%. When Y2 is 0, [P] 2 = 0.014 wt%.
[0028]
As is clear from the above calculation, when there is no residual slag in the decarburization furnace,
When [P] 2 = 0.014 wt% and the residual slag is 15 kg / ton, [P] 2 is greatly affected. In this example, for example, when [P] k wt% = 0.020 wt%, [P] fwt% is 0.016 wt% or less, 0.014 wt% or less, or 0.012 wt% or less. That is, Δ1 = 0.004 wt%, 0.006 wt%, and 0.008 wt%. That is, in dephosphorization refining, it is necessary to perform dephosphorization refining lower by an amount corresponding to at least Δ1.
[0029]
Δ2: The amount of recovered phosphorus in the ladle of the molten steel varies depending on the influence of the composition and amount of slag that flows out of the converter into the ladle, the amount of time until casting, the type and amount of the heat insulating material added at the time of steelmaking, Although it cannot be calculated in advance, it can be estimated empirically when the above steps are constant. From experience, Δ2 is 0.002 wt% or less.
[0030]
Δ3: Although the slag generated by the dephosphorization is the amount of recovered phosphorus due to mixing in the converter, it is difficult to estimate in advance. However, it is 0.002 wt% or less in experience in certain work.
[0031]
【Example】
Considering the above points in advance, [P] fwt% is determined and dephosphorization refining is performed using a converter as a dephosphorization refining vessel. The charge was decarburized and refined. As a comparison, the P content was 0.03 to 0.04 wt% at the end of dephosphorization refining, and refining was also performed in decarburization refining for about 50 charges. The result is shown in FIG.
[0032]
In the present invention, dephosphorization refining is carried out at a lower level than the standard value (usually 0.020 wt% or less) in consideration of the amount of dephosphorization (0.002 to 0.004 wt%) in decarburization refining. Was decarburized and refined. As a result, the P content of the crude steel was able to satisfy the standard value (usually 0.020 wt% or less) in any case. However, in the conventional decarburization refining, if the burned lime is not charged at about 16 kg per 1 ton of molten iron, the P content at the end point cannot be reduced below the standard value (usually 0.020 wt% or less).
[0033]
【The invention's effect】
In the present invention, at least the phosphorus content of hot metal in a refining vessel such as a converter is estimated, and the change in P content in decarburization refining is estimated, and the P content required for crude steel (component standard value of steel) is calculated. Refining to below the P content considered, this hot metal can be charged into the converter, and decarburization refining can be carried out substantially without charging the ironmaking material.
Therefore, in the converter for decarburization and refining, it is possible to charge manganese ore and increase the Mn content within the upper limit of the Mn standard value required for the crude steel, thereby realizing an extremely economical steelmaking method. . Moreover, since this steelmaking method can suppress the slag to generate | occur | produce to the minimum, there also exists an effect of resource saving. Therefore, the industrial effect of the present invention is remarkable.
[Brief description of the drawings]
FIG. 1 is a diagram showing a dephosphorization process in the present invention.
FIG. 2 is a diagram showing a decarburization refining process in the present invention.
FIG. 3 is a view showing a hot metal dephosphorization refining time together with a conventional example (comparative example) in the present invention.
FIG. 4 is a diagram showing changes in the composition of hot metal and molten steel in the present invention and a conventional example (comparative example).
FIG. 5 is a diagram showing a state of a refining reaction in a converter.
FIG. 6 is a diagram showing the state of hot metal dephosphorization refining in a conventional converter.
[Explanation of symbols]
2 Converter type refining vessel 4 Hot metal 6 Slag 8 Steel outlet 10 Furnace 12 Lance

Claims (4)

下記の工程を備えたことを特徴とする脱燐溶銑を使用する転炉製鋼方法。
(a)精錬容器で、終点の燐含有量([P]fwt%)が下式(1)に従うように溶銑を脱燐精錬し、
[P]fwt%≦[P]k wt%−△1−△2−一−(1)
ここで、[P]k wt%:粗鋼で要求されているP含有量(鋼の成分規格値)
△1:この溶銑を脱炭精錬する転炉における先行する脱炭精錬後の炉内に残留したスラグ量による燐の増加量(wt%)、
△2:取鍋における溶鋼の復燐量(wt%)
(b)前記脱燐精錬された溶銑を他の転炉に装入し、造滓材を装入せず脱炭精錬を行う。
A converter steelmaking method using dephosphorized hot metal, comprising the following steps.
(A) In a refining vessel, dephosphorize the hot metal so that the phosphorus content ([P] fwt%) at the end point conforms to the following formula (1),
[P] fwt% ≦ [P] k wt% − △ 1− △ 2−1- (1)
Here, [P] k wt%: P content required for crude steel (component standard value of steel)
△ 1: Increase in phosphorus (wt%) due to the amount of slag remaining in the furnace after the preceding decarburization refining in the converter that decarburizes and refines this hot metal,
△ 2: Amount of recovered steel in the ladle (wt%)
(B) The dephosphorized and refined hot metal is charged into another converter and decarburized and refined without charging the ironmaking material.
前記[P]fwt%が、式(1)に代えて下式(2)に従うように脱燐精錬することを特徴とする請求項1記載の脱燐溶銑を使用する転炉製鋼方法。
[P]fwt%≦[P]k wt%−Δ1−Δ2−Δ3−−(2)
ここで、Δ3: 当該脱燐精錬で発生したスラグが、前記転炉に混入することによる溶鋼の燐増加量(wt%)
The converter steelmaking method using dephosphorized hot metal according to claim 1, wherein the dephosphorizing and refining is performed so that the [P] fwt% is in accordance with the following formula (2) instead of the formula (1).
[P] fwt% ≦ [P] k wt% −Δ1−Δ2−Δ3− (2)
Here, Δ3: Increase in phosphorus in molten steel (wt%) due to slag generated in the dephosphorization refining mixed into the converter
前記取鍋における溶鋼の復燐量( Δ2)は、取鍋におけるスラグからの復燐量及び添加する合金鉄からの復燐量の合計量であることを特徴とする請求項1又は2記載の脱燐溶銑を使用する転炉製鋼方法。The amount of recovered phosphorus (Δ2) of the molten steel in the ladle is a total amount of the amount of recovered phosphorus from the slag and the amount of recovered phosphorus from the added alloy iron in the ladle. Converter steelmaking method using dephosphorized hot metal. 前記脱燐精錬を行う精錬容器が転炉であることを特徴とする請求項1から3のいずれかに記載の脱燐溶銑を使用する転炉製鋼方法。The converter steelmaking method using the dephosphorization hot metal according to any one of claims 1 to 3, wherein the refining vessel for performing the dephosphorization refining is a converter.
JP36955497A 1997-12-29 1997-12-29 Converter steelmaking method using dephosphorized hot metal Expired - Fee Related JP3924058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36955497A JP3924058B2 (en) 1997-12-29 1997-12-29 Converter steelmaking method using dephosphorized hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36955497A JP3924058B2 (en) 1997-12-29 1997-12-29 Converter steelmaking method using dephosphorized hot metal

Publications (2)

Publication Number Publication Date
JPH11193413A JPH11193413A (en) 1999-07-21
JP3924058B2 true JP3924058B2 (en) 2007-06-06

Family

ID=18494725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36955497A Expired - Fee Related JP3924058B2 (en) 1997-12-29 1997-12-29 Converter steelmaking method using dephosphorized hot metal

Country Status (1)

Country Link
JP (1) JP3924058B2 (en)

Also Published As

Publication number Publication date
JPH11193413A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP3924059B2 (en) Steelmaking method using multiple converters
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP3458890B2 (en) Hot metal refining method
JP3486886B2 (en) Steelmaking method using two or more converters
JPH10237526A (en) Dephosphorization of hot metal
JP3470857B2 (en) Dephosphorization refining method of hot metal in converter type refining vessel
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP4461495B2 (en) Dephosphorization method of hot metal
JP3158912B2 (en) Stainless steel refining method
JP3486889B2 (en) Steelmaking method using two or more converters
JP2900011B2 (en) Converter refining method
JP5286892B2 (en) Dephosphorization method of hot metal
JP2000109924A (en) Method for melting extra-low sulfur steel
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JPH08311519A (en) Steelmaking method using converter
JP2958842B2 (en) Converter refining method
JP2607329B2 (en) Hot metal dephosphorization method
JP2607328B2 (en) Hot metal dephosphorization method
JPH0734113A (en) Converter refining method
WO2022154024A1 (en) Converter refining method
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JP3486887B2 (en) Steelmaking method using multiple converters
JP2018115350A (en) Refining method of hot metal
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
JPH0967608A (en) Production of stainless steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees