JP2018115350A - Refining method of hot metal - Google Patents

Refining method of hot metal Download PDF

Info

Publication number
JP2018115350A
JP2018115350A JP2017005200A JP2017005200A JP2018115350A JP 2018115350 A JP2018115350 A JP 2018115350A JP 2017005200 A JP2017005200 A JP 2017005200A JP 2017005200 A JP2017005200 A JP 2017005200A JP 2018115350 A JP2018115350 A JP 2018115350A
Authority
JP
Japan
Prior art keywords
blowing
slag
blow
mass
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017005200A
Other languages
Japanese (ja)
Other versions
JP6844267B2 (en
Inventor
太一 中江
Taichi Nakae
太一 中江
兼安 孝幸
Takayuki Kaneyasu
孝幸 兼安
紀史 浅原
Akifumi Asahara
紀史 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017005200A priority Critical patent/JP6844267B2/en
Publication of JP2018115350A publication Critical patent/JP2018115350A/en
Application granted granted Critical
Publication of JP6844267B2 publication Critical patent/JP6844267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refining method of hot metal capable of reducing the amount of quicklime newly added for Blow2 blowing after Blow1 blowing and subsequent deslagging.SOLUTION: In the refining method of hot metal according to the present invention, dephosphorized hot metal 14 is produced by Blow1 blowing in which a CaO source is added and oxygen is top-blown into molten pig iron 12 contained in a converter-type vessel 11, and Blow2 blowing is performed after formed slag 15 is discharged, in which oxygen is top-blown into the dephosphorized hot metal 14 with new addition of quicklime. An auxiliary raw material containing one or both of an ingot-making slag with CaO and quicklime is used as the CaO source, concentration of AlOis 3.5 mass% or more and 10 mass% or less, and basicity is 0.8 or more and 1.2 or less in the slag 15 after the Blow1 blowing, and deslagging of the slag 15 is performed after the Blow1 blowing so that a mass of the slag is reduced to the range between 50 mass% or more and 80 mass% or less, provided that a total mass of the slag 15 formed by the Blow1 blowing is 100 mass%.SELECTED DRAWING: Figure 1

Description

本発明は、吹錬(以下、Blow1吹錬とも記載)後にスラグを排滓して、更に吹錬(以下、Blow2吹錬とも記載)を行う溶銑の精錬方法に関する。   The present invention relates to a hot metal refining method in which slag is discharged after blowing (hereinafter also referred to as Blow 1 blowing) and further blown (hereinafter also referred to as Blow 2 blowing).

製鋼プロセスにおいては、排出される製鋼スラグのリサイクル用途の減少から、製鋼スラグ発生量の削減が課題となっている。
この製鋼スラグ発生量の削減と製鋼コストの改善を行う対策として、Blow1吹錬後にP(りん)の濃縮したスラグを一部排出(中間排滓)することで、Blow2吹錬における脱P負荷の軽減とそれによる生石灰(転炉(T.CaO))の削減を可能とする、溶銑予備処理(Blow1吹錬)の比率を向上させることが有効である。
更に、吹錬の際に使用する新たに添加する生石灰(以下、新規生石灰とも記載する)の添加量を削減する対策として、Blow1吹錬で生成させた高燐酸のスラグを高効率で排出(中間排滓)し、Blow2吹錬に持ち込まれるP濃度を軽減させ、Blow2吹錬での新規生石灰の添加量を削減することが必要である。
In the steelmaking process, the reduction in the amount of steelmaking slag generated has become a challenge due to the decrease in recycling applications of the steelmaking slag discharged.
As a measure to reduce the amount of steelmaking slag generation and improve the steelmaking cost, a part of P (phosphorus) concentrated slag is discharged after Blow1 blowing (intermediate waste), thereby reducing the de-P load in Blow2 blowing. It is effective to improve the ratio of hot metal pretreatment (Blow 1 blowing) that enables reduction and quick lime (converter (T.CaO)) reduction.
Furthermore, as a measure to reduce the amount of newly added quicklime (hereinafter also referred to as new quicklime) used during blowing, high phosphoric acid slag generated by Blow 1 blowing is discharged with high efficiency (intermediate) It is necessary to reduce the P concentration brought into Blow 2 blowing and to reduce the amount of new quicklime added in Blow 2 blowing.

例えば、特許文献1には、スラグのAl濃度と塩基度を制御し高効率で脱Pを実施することで、Blow2吹錬における脱P負荷を軽減すると共に、Mn鉱石の添加によるMnコストを削減することが開示されている。具体的には、Blow1吹錬によるスラグの塩基度を2.2超3.5以下の範囲にしている。即ち、高塩基度でBlow1吹錬を行っているため、脱P性を向上させることができる。
また、特許文献2には、スラグの((Al濃度)+(TiO濃度))と塩基度を制御することにより、高効率で脱Pと中間排滓を実施することが開示されている。具体的には、Blow1吹錬中のスラグの塩基度を1.4〜2.2の範囲にしている。
For example, in Patent Document 1, by controlling the Al 2 O 3 concentration and basicity of slag and carrying out de-P with high efficiency, the de-P load in Blow 2 blowing is reduced and Mn by adding Mn ore is reduced. It is disclosed to reduce costs. Specifically, the basicity of the slag by Blow 1 blowing is in the range of more than 2.2 and 3.5 or less. That is, since Blow 1 blowing is performed at a high basicity, the de-P property can be improved.
Patent Document 2 discloses that de-P and intermediate excretion are carried out with high efficiency by controlling ((Al 2 O 3 concentration) + (TiO 2 concentration)) and basicity of slag. ing. Specifically, the basicity of the slag during Blow 1 blowing is in the range of 1.4 to 2.2.

特開2007−262576号公報JP 2007-262576 A 特開2008−63645号公報JP 2008-63645 A

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献1の条件下では、中間排滓の割合(中間排滓率)と、Blow2吹錬へのスラグとしての持ち込みP量とに、バラツキが発生することを、本発明者らは明らかにした。従って、Blow2吹錬では、持ち込みP量が多い場合(中間排滓率が悪い場合)に合わせて、新規生石灰の添加量を決める必要があり、この添加量を十分に削減できない。
また、特許文献2は、特許文献1に比べて低塩基度ではあるものの、高塩基度の条件下でBlow1吹錬を行っているため、上記理由から、Blow2吹錬での新規生石灰の添加量を十分に削減できない。
このように、従来の技術では、Blow2吹錬での新規生石灰の添加量を十分に削減できないことから、Blow1吹錬とBlow2吹錬の双方で添加する新規生石灰の総添加量も、十分に削減できなかった。
However, the conventional technique still has the following problems to be solved.
Under the conditions of Patent Document 1, the inventors have clarified that variations occur in the ratio of intermediate waste (intermediate waste rate) and the amount of P brought in as slag to Blow 2 blowing. . Therefore, in Blow 2 blowing, it is necessary to determine the amount of new quicklime added when the amount of brought-in P is large (when the intermediate rejection rate is poor), and this amount cannot be reduced sufficiently.
Moreover, although patent document 2 is low basicity compared with patent document 1, since it blows Blow1 on the conditions of high basicity, the addition amount of the new quick lime in Blow2 blowing from the said reason Cannot be reduced sufficiently.
Thus, since the conventional technology cannot sufficiently reduce the amount of new quick lime added in Blow 2 blowing, the total amount of new quick lime added in both Blow 1 and Blow 2 blowing is also sufficiently reduced. could not.

本発明はかかる事情に鑑みてなされたもので、Blow1吹錬後にスラグを排滓してBlow2吹錬を行うに際し、新たに添加する生石灰の添加量を従来よりも削減可能な溶銑の精錬方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a hot metal smelting method that can reduce the amount of newly added quick lime when compared with the conventional method when slag is discharged after Blow 1 blowing and Blow 2 blowing is performed. The purpose is to provide.

前記目的に沿う本発明に係る溶銑の精錬方法は、転炉型容器内の溶銑にCaO源を添加して上吹き送酸するBlow1吹錬(第1の吹錬)により脱P溶湯を溶製した後、生成したスラグを排滓し、前記脱P溶湯に新たに生石灰を添加して上吹き送酸するBlow2吹錬(第2の吹錬)を行う溶銑の精錬方法において、
前記CaO源として、CaOを含む造塊スラグ及び生石灰のいずれか一方又は双方を含む副原料を用い、
前記Blow1吹錬後の前記スラグを、Al濃度:3.5質量%以上10質量%以下、塩基度:0.8以上1.2以下とし、
前記Blow1吹錬後の前記スラグの排滓を、該Blow1吹錬で生成した前記スラグの総質量を100質量%として50質量%以上80質量%以下の範囲で行う。
The hot metal refining method according to the present invention that meets the above-described object is a method of melting a de-P molten metal by Blow 1 blowing (first blowing) in which a CaO source is added to the hot metal in a converter type vessel and the acid is blown upward. After that, in the refining method of hot metal that performs Blow 2 blowing (second blowing) in which the generated slag is discharged, fresh lime is newly added to the de-P molten metal, and the acid is blown upward.
As the CaO source, using an auxiliary material containing either one or both of ingot slag containing CaO and quick lime,
The slag after the Blow 1 blowing, Al 2 O 3 concentration: 3.5 mass% or more and 10 mass% or less, basicity: 0.8 or more and 1.2 or less,
The slag after Blow 1 blowing is discharged in the range of 50% by mass to 80% by mass with 100% by mass as the total mass of the slag produced by Blow 1 blowing.

本発明に係る溶銑の精錬方法において、前記CaO源として更に、過去の溶銑の精錬で発生した脱炭スラグを用いることが好ましい。   In the hot metal refining method according to the present invention, it is preferable to further use decarburized slag generated in the past hot metal refining as the CaO source.

本発明に係る溶銑の精錬方法は、Blow1吹錬後のスラグを、Al濃度:3.5〜10質量%、塩基度:0.8〜1.2とするので、Blow1吹錬後のスラグの排滓率(中間排滓率)と、Blow2吹錬へのスラグとしての持ち込みP量のバラツキを、従来よりも低減できる。そして、このBlow1吹錬後のスラグの排滓を、スラグの総質量の50〜80質量%の範囲で行うので、Blow2吹錬で新たに添加する生石灰の添加量を十分に削減でき、Blow1吹錬とBlow2吹錬の双方で添加する新たな生石灰の添加量も、従来よりも削減できる。 In the hot metal refining method according to the present invention, the slag after Blow 1 blowing is Al 2 O 3 concentration: 3.5 to 10% by mass and basicity: 0.8 to 1.2. The slag rejection rate (intermediate rejection rate) and the variation in the amount of brought-in P as slag for Blow 2 blowing can be reduced as compared with the conventional case. And since the slag removal after this Blow1 blowing is performed in the range of 50-80 mass% of the total mass of slag, the addition amount of the quick lime newly added by Blow2 blowing can fully be reduced, and Blow1 blowing The amount of new quicklime added in both smelting and Blow 2 blowing can also be reduced as compared with the conventional case.

溶銑の精錬方法の説明図である。It is explanatory drawing of the refining method of hot metal. 中間排滓率の算出のための説明図である。It is explanatory drawing for calculation of an intermediate rejection rate.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、溶銑の精錬方法の概要について、図1を参照しながら説明する。
容器10から転炉型容器11内へ溶銑12を装入する(装入工程)。
この転炉型容器11内の溶銑12にCaO源を添加し、ランス13を用いて上吹き送酸するBlow1吹錬により、脱P溶湯14を溶製する。なお、Blow1吹錬では、主として脱P処理が行われる(Blow1工程)。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the outline of the hot metal refining method will be described with reference to FIG.
Hot metal 12 is charged from the container 10 into the converter-type container 11 (charging process).
A deoxidized P molten metal 14 is melted by Blow 1 blowing, in which a CaO source is added to the molten iron 12 in the converter type vessel 11 and the lance 13 is used to blow and send the acid. In Blow 1 blowing, de-P treatment is mainly performed (Blow 1 process).

次に、転炉型容器11を傾動させ、Blow1吹錬で生成した炉内のスラグ15を、炉口16から排滓する(中間排滓工程)。
そして、中間排滓後の脱P溶湯14に、新たに生石灰(以下、新規生石灰とも記載する)を添加し、ランス13を用いて上吹き送酸するBlow2吹錬を行う。なお、Blow2吹錬では、主として脱C処理が行われるが、脱P処理も行われる(Blow2工程)。
転炉型容器11を傾動させ、脱P処理と脱C処理を行った溶鋼17を、出鋼口18から出鋼する(出鋼工程)。
Next, the converter-type vessel 11 is tilted, and the slag 15 in the furnace generated by Blow 1 blowing is discharged from the furnace port 16 (intermediate discharge process).
Then, quick lime (hereinafter, also referred to as new quick lime) is newly added to the de-P molten 14 after the intermediate waste, and blow 2 blowing is performed by using the lance 13 to perform top blowing. In Blow 2 blowing, de-C treatment is mainly performed, but de-P treatment is also performed (Blow 2 process).
The converter-type vessel 11 is tilted, and the molten steel 17 that has been subjected to de-P treatment and de-C treatment is produced from the steel exit 18 (steel production step).

前記したように、従来技術では、Blow1吹錬において、スラグを高塩基度化して脱P処理を高効率化しているが、この高塩基度化はスラグの中間排滓率のバラツキを招くことから、中間排滓率が悪い場合(Blow2吹錬へのスラグによるPの持ち込み量が多い場合)に合わせて、Blow2吹錬で新たに添加する生石灰の添加量を決めることが必要となる。   As described above, in the conventional technology, in Blow 1 blowing, the slag is made highly basic and the de-P treatment is made highly efficient, but this high basicity leads to variations in the intermediate rejection rate of slag. In addition, it is necessary to determine the amount of quick lime to be newly added in Blow 2 blowing in accordance with the case where the intermediate waste rate is poor (when the amount of P brought in by slag into Blow 2 blowing is large).

本発明者らは、Blow1吹錬時のスラグを従来よりも低塩基度化し(脱P効率はやや下げて)、スラグの中間排滓率を安定化させ、Blow2吹錬へのスラグによるPの持ち込み量のバラツキをなくすことで、Blow2吹錬での新規生石灰の添加量を安定して削減できることに想到した。
これにより、Blow1吹錬とBlow2吹錬の双方で添加する新規生石灰の総添加量を、従来に比べて顕著に削減できることを新たに見出した。
The inventors of the present invention have reduced the slag at the time of Blow 1 blowing to a lower basicity than before (deterioration efficiency of P is slightly lowered), stabilized the intermediate rejection rate of slag, and reduced the P of the slag to Blow 2 blowing. It was conceived that the amount of new quicklime added in Blow 2 blowing could be stably reduced by eliminating variations in the amount brought in.
Thereby, it discovered newly that the total addition amount of the new quicklime added by both Blow1 blowing and Blow2 blowing could be reduced notably compared with the past.

即ち、本発明の一実施の形態に係る溶銑の精錬方法は、Blow1吹錬で添加するCaO源として、CaOを含む造塊スラグ(造塊滓)及び生石灰のいずれか一方又は双方を含む副原料を用い、Blow1吹錬後のスラグを、Al濃度:3.5質量%以上10質量%以下、塩基度:0.8以上1.2以下とし、Blow1吹錬後のスラグの排滓、即ち中間排滓率を、このBlow1吹錬で生成したスラグの総質量を100質量%として50質量%以上80質量%以下の範囲で行う方法である。以下、詳しく説明する。 That is, the hot metal refining method according to one embodiment of the present invention is a secondary raw material containing either one or both of ingot slag containing CaO and quick lime as a CaO source to be added in Blow 1 blowing. Slag after Blow 1 blowing, Al 2 O 3 concentration: 3.5 mass% to 10 mass%, basicity: 0.8 to 1.2, and slag discharged after Blow 1 blowing In other words, the intermediate rejection rate is a method in which the total mass of the slag produced by Blow 1 blowing is 100% by mass within a range of 50% by mass to 80% by mass. This will be described in detail below.

[1]中間排滓率のバラツキ抑制について
スラグが低融点化すると液相率が向上する。
液相化したスラグは、Blow1吹錬の末期において、フォーミング性が良く、中間排滓時の転炉型容器の傾転初期から排滓が開始し、傾転末期(脱P溶湯の漏出直前)まで排滓が安定して継続する。この結果、安定した中間排滓率を実現することができる。
しかし、スラグの融点が高い場合、液相率やフォーミングの発生状況の再現性が、処理チャージによって悪くなる。この原因としては、添加した造塊スラグや新たな生石灰の添加状況、送酸による溶湯の撹拌状況、等が考えられるが、明確ではない。
また、液相率やフォーミングの発生状況がばらつくと、傾転末期のみで排滓が行われる場合も発生し、中間排滓率がばらつく。
[1] Suppression of variation in intermediate rejection rate When the slag has a low melting point, the liquid phase rate is improved.
The liquid phase slag has good forming properties at the end of Blow 1 blowing, and the drainage starts from the beginning of the tilting of the converter-type vessel at the time of intermediate dumping, and the end of the tilting (just before the leakage of the molten P molten metal) The evacuation continues stably until. As a result, a stable intermediate rejection rate can be realized.
However, when the melting point of the slag is high, the reproducibility of the liquid phase ratio and the occurrence of forming deteriorates due to the processing charge. Possible causes of this include the added agglomeration slag and the addition of new quicklime, and the state of stirring of the molten metal by acid delivery, but are not clear.
In addition, if the liquid phase ratio and the state of foaming vary, there may be cases in which evacuation is performed only at the end of the tilt, and the intermediate evacuation ratio varies.

そこで、低融点スラグ組成を確保するため、前記したように、Blow1吹錬後のスラグのAl濃度(アルミナ濃度)と塩基度((スラグ中のCaO質量%)/(スラグ中のSiO質量%):以下、単にC/Sとも記載する)を規定した。
ここで、スラグのAl濃度が3.5質量%未満の場合、スラグ融点の低下が不足するため、フォーミング発生のバラツキの原因となる。また、スラグの滓化が不足するため脱P反応も進み難い。
一方、スラグのAl濃度が10質量%超であっても、必要なスラグ融点の低下は達成できるが、相対的にCaO量が減少するため、脱P性が低下する。
Therefore, in order to ensure a low melting point slag composition, as described above, the Al 2 O 3 concentration (alumina concentration) and basicity ((CaO mass% in slag) / (SiO in slag) of Blow 1 blown slag. 2 mass%): hereinafter also simply referred to as C / S).
Here, when the Al 2 O 3 concentration of the slag is less than 3.5% by mass, the slag melting point is not sufficiently lowered, which causes variations in forming. Moreover, since the hatching of slag is insufficient, the de-P reaction is difficult to proceed.
On the other hand, even if the Al 2 O 3 concentration of the slag is more than 10% by mass, the necessary decrease in the melting point of the slag can be achieved, but since the CaO amount is relatively reduced, the de-P property is lowered.

以上のことから、Blow1吹錬後のスラグのAl濃度を、3.5質量%以上10質量%以下(好ましくは、上限を8質量%、更には5質量%)とした。
このスラグのAl濃度(アルミナ成分)の制御には、造塊スラグの使用が有効である。これは、造塊スラグが一般に、アルミナ成分を多量に含むことによる。
なお、造塊スラグは、プリメルト品と実質的に同等であるため滓化し易く、CaOも含むためCaO源としても有効である。
From the above, the Al 2 O 3 concentration of the slag after Blow 1 blowing was set to 3.5% by mass or more and 10% by mass or less (preferably, the upper limit was 8% by mass, and further 5% by mass).
Use of ingot slag is effective for controlling the Al 2 O 3 concentration (alumina component) of the slag. This is because the ingot slag generally contains a large amount of an alumina component.
In addition, since the ingot slag is substantially equivalent to the premelt product, the ingot slag is easy to hatch, and also contains CaO and is effective as a CaO source.

また、スラグの塩基度が0.8未満の場合、スラグ中のCaO量がSiO量に対して減少し、Blow1吹錬における脱P性が顕著に悪化する。
一方、スラグの塩基度が1.2超の場合、スラグ融点の低下が不足し、フォーミング状況や中間排滓率のバラツキにつながる。
以上のことから、Blow1吹錬後のスラグの塩基度を、0.8以上1.2以下(好ましくは、下限を0.85)とした。
このスラグの塩基度の制御には、CaO源として生石灰(CaO)を使用できる。
また、CaO源として更に、過去の溶銑の精錬で発生した脱炭スラグを用いることもできる。この脱炭スラグは、過去の溶銑の精錬において、Blow2吹錬後に得られるスラグであり、溶解状態のものでもよく、また、固体状態(石ころ状)のものでもよい。
Moreover, when the basicity of slag is less than 0.8, the amount of CaO in the slag is reduced with respect to the amount of SiO 2 , and the de-P property in Blow 1 blowing is significantly deteriorated.
On the other hand, when the basicity of the slag exceeds 1.2, the slag melting point is insufficiently reduced, leading to variations in the forming situation and the intermediate rejection rate.
From the above, the basicity of the slag after Blow 1 blowing was set to 0.8 or more and 1.2 or less (preferably, the lower limit was 0.85).
For controlling the basicity of the slag, quick lime (CaO) can be used as a CaO source.
Further, decarburized slag generated by refining hot metal in the past can also be used as a CaO source. This decarburization slag is a slag obtained after Blow 2 blowing in past hot metal refining, and may be in a molten state or in a solid state (stone-like shape).

[2]中間排滓率について
上記したように、Blow1吹錬後のスラグのAl濃度と塩基度を規定して、中間排滓率のバラツキを抑制したとしても、Blow2吹錬時に添加する新規生石灰を有効活用するには、中間排滓率に適正値が存在することを、本発明者らは明らかにした。
即ち、前記したように、Blow1吹錬で生成したスラグの総質量を100質量%として50質量%以上80質量%以下の範囲で中間排滓を行う必要がある。
なお、中間排滓率の調整は、例えば、オペーレータ(作業者)が、上記した転炉型容器11の傾動角度を調整することで実施できる。
[2] About the intermediate rejection rate As described above, even if the Al 2 O 3 concentration and basicity of the slag after Blow 1 blowing is regulated to suppress the variation in the intermediate rejection rate, it is added at the time of Blow 2 blowing In order to effectively utilize the new quicklime, the present inventors have revealed that there is an appropriate value for the intermediate excretion rate.
That is, as described above, it is necessary to perform intermediate waste in the range of 50% by mass or more and 80% by mass or less with the total mass of the slag generated by Blow 1 blowing being 100% by mass.
The intermediate rejection rate can be adjusted, for example, by an operator (operator) adjusting the tilt angle of the converter-type container 11 described above.

ここで、中間排滓率が50質量%未満の場合、Blow2吹錬に持ち込まれるP濃度が増加し、復Pが発生するため、脱C時の新規生石灰の添加量が増加する。
一方、中間排滓率が80質量%超の場合、Blow1吹錬からBlow2吹錬へのスラグの持ち込み量が減少するため、Blow2吹錬時に添加する新規生石灰の滓化に必要なSiO量やAl量が不足する。この結果、Blow2吹錬時に添加した新規生石灰の滓化不良が発生し、脱Pのバラツキが発生するため、新規生石灰を多く添加する必要があり、新規生石灰の添加量の削減ができない。
即ち、新規生石灰の滓化不良を防ぐためには、Blow1吹錬から適量のスラグを持ち越す必要がある。
Here, when the intermediate waste rate is less than 50% by mass, the concentration of P brought into Blow 2 blowing increases and recovery P is generated, so the amount of new quicklime added during de-C is increased.
On the other hand, when the intermediate rejection rate is more than 80% by mass, the amount of slag brought from Blow 1 blowing to Blow 2 blowing decreases, so the amount of SiO 2 required for hatching of new quicklime added during Blow 2 blowing The amount of Al 2 O 3 is insufficient. As a result, the hatching failure of the new quicklime added at the time of Blow 2 blowing occurs, and the variation of de-P occurs. Therefore, it is necessary to add a lot of new quicklime, and the amount of new quicklime added cannot be reduced.
That is, in order to prevent the hatching failure of new quicklime, it is necessary to carry over an appropriate amount of slag from Blow 1 blowing.

上記した中間排滓率の算出方法について、以下に説明する。
中間排滓率とは、Blow1吹錬後に生成したスラグ(滓)を、中間排滓にて、Blow2吹錬に装入(持ち越し)せずに、Blow1吹錬後に生成した全スラグ量から除去したスラグ量の割合を指す。なお、スラグの秤量を行わない場合は、中間排滓率を定量化するために、SiOの収支計算から求めるとよい。
以下、この計算方法例について、図2を参照しながら説明する。
A method for calculating the above-described intermediate rejection rate will be described below.
The intermediate slag rate is the removal of slag (slag) generated after Blow 1 blowing from the total amount of slag generated after Blow 1 blowing without charging (carrying over) Blow 2 blowing. Refers to the percentage of slag. When you do not weighing of the slag, in order to quantify the intermediate drain slag ratio, it may obtained from balance calculations of SiO 2.
Hereinafter, an example of this calculation method will be described with reference to FIG.

Blow1工程からBlow2工程までの、SiO収支計算(マスバランス計算)を行い、中間排滓率の定量化を行う。
Blow1工程では、Si(溶銑やスクラップ等に存在)とSiO(副原料等に存在)が、精錬開始時に転炉型容器に装入(図2中のBlow1装入)され、Blow1吹錬が実行される。
Blow1工程が終了すると、SiとSiOは全て、SiOとして全量スラグに移行する(図2中の(I):Blow1吹錬後)。
The SiO 2 balance calculation (mass balance calculation) from the Blow 1 process to the Blow 2 process is performed, and the intermediate rejection rate is quantified.
In the Blow 1 process, Si (existing in hot metal, scrap, etc.) and SiO 2 (existing in auxiliary materials, etc.) are charged into the converter type vessel (Blow 1 charging in FIG. 2) at the start of refining, and Blow 1 blowing is performed. Executed.
When the Blow 1 process is completed, all of Si and SiO 2 shift to slag as SiO 2 ((I) in FIG. 2: after Blow 1 blowing).

全量スラグに移行したSiOは、中間排滓時に除去されるもの(炉外へ排出されるもの)と、未排滓のもの(炉内に残留するもの)に分かれ(図2中の(II):中間排滓後)、未排滓のものは全てBlow2工程の転炉型容器に装入される。
なお、図2中のBlow2吹錬後は、Blow2工程が終了した後の転炉型容器内のSiO量を示している。即ち、上記した未排滓のもの(図2中の(III))と、Blow2工程で新たに生成したもの(Blow2装入)である。
以上のことから、Blow2吹錬後の上記した未排滓のSiO(図2中の「B」)と、Blow1装入のSiO(図2中の「A」)との質量比「{1−(B/A)}×100」が、中間排滓率(質量%)と、定義される。
The SiO 2 transferred to the total amount of slag is divided into one that is removed at the time of intermediate evacuation (one that is discharged outside the furnace) and one that is not evacuated (one that remains in the furnace) ((II in FIG. 2). ): After intermediate evacuation), all un-exhausted stuff is charged into the Blow 2 process converter type vessel.
Note that after Blow2 blowing in Figure 2 shows the amount of SiO 2 of the converter-type vessel after the Blow2 step is completed. That is, the above-mentioned unexcluded one ((III) in FIG. 2) and one newly generated in the Blow 2 process (Blow 2 charging).
From the above, the mass ratio of the above-mentioned undrained SiO 2 (“B” in FIG. 2) after Blow 2 blowing and SiO 2 (“A” in FIG. 2) charged with Blow 1 “{ 1- (B / A)} × 100 ”is defined as the intermediate rejection rate (mass%).

そこで、スラグ成分は判明値であるため、中間排滓率をa(=1−(B/A))とし、このa(単位:−)を未知数として式(1)で定義した。なお、後述する式(2)と式(3)を含め、用いる記号は以下の表1に示す通りである。   Therefore, since the slag component is a known value, the intermediate rejection rate is defined as a (= 1− (B / A)), and this a (unit: −) is defined as an unknown number by Equation (1). In addition, the symbols used, including formula (2) and formula (3) described later, are as shown in Table 1 below.

Figure 2018115350
Figure 2018115350

即ち、式(1)で定義した中間排滓率aは、Blow1工程からBlow2工程へ持ち越したSiO量(式(1)左辺)と、Blow2工程のスラグの総質量(トン)中のSiO質量からBlow2で装入したSiO質量を引いた質量(式(1)の右辺)とを、等量とする式で表せる。
SiO2 Blow1×(1−a)=SWBlow2×SCSiO2 Blow2−WSiO2 Blow2 ・・・(1)
SiO2 Blow1:Blow1工程で転炉型容器内に装入したSiO量(トン)。SiO換算した溶銑やスクラップに含まれる金属Si(SiO量に換算)と、副原料に含まれるSiOの合計値。
SWBlow2:Blow2工程におけるスラグの質量(トン)。
SCSiO2 Blow2:Blow2吹錬後のスラグのSiO濃度(質量%)。
SiO2 Blow2:Blow2工程で転炉型容器内に装入したSiO量(トン)。スラグリサイクル(造塊スラグや脱炭スラグ)及び/又は珪石等の副原料に含まれるSiOの合計値。なお、Blow1工程から持ち越したスラグに含まれるSiO量は除く。
In other words, the intermediate rejection rate a defined by the equation (1) is determined by the amount of SiO 2 carried over from the Blow 1 step to the Blow 2 step (left side of the equation (1)) and the SiO 2 in the total mass (tons) of slag in the Blow 2 step. The mass obtained by subtracting the mass of SiO 2 charged with Blow 2 from the mass (the right side of the formula (1)) can be expressed by an equation with an equivalent amount.
W SiO2 Blow1 × (1-a) = SW Blow2 × SC SiO2 Blow2- W SiO2 Blow2 (1)
W SiO2 Blow1 : Amount of SiO 2 (tons) charged into the converter type vessel in the Blow 1 process. A metal Si contained in terms of SiO 2 was molten iron and scrap (converted into SiO 2 amount), the sum of SiO 2 contained in the auxiliary raw material.
SW Blow2 : Mass (ton) of slag in the Blow2 process.
SC SiO2 Blow2: Blow2 SiO 2 concentration of the slag after blowing (mass%).
W 2 SiO 2 Blow 2 : The amount of SiO 2 (tons) charged into the converter type vessel in the Blow 2 process. Total value of SiO 2 contained in auxiliary materials such as slag recycling (ingot slag and decarburized slag) and / or silica stone. The amount of SiO 2 contained in the slag carried over from the Blow 1 process is excluded.

上記した式(1)の未知数となるBlow2工程での炉内スラグの質量(SWBlow2)を、式(3)より導出する。なお、式(3)で用いるSWBlow1は、式(2)より導出する。この導出には、Blow1工程とBlow2工程のスラグ中のCaO濃度及びSiO濃度(単位は質量%)と、主原料及び副原料から装入するCaO総質量及びSiO総質量(単位はトン)を、それぞれ用いる。
SWBlow1=(WCaO Blow1+WSiO2 Blow1)/(SCCaO Blow1+SCSiO2 Blow1) ・・・(2)
SWBlow2={(1−a)×SWBlow1×(SCCaO Blow1+SCSiO2 Blow1)+(WCaO Blow2+WSiO2 Blow2)}/(SCCaO Blow2+SCSiO2 Blow2) ・・・(3)
CaO Blow1:Blow1工程で転炉型容器内に装入したCaO量(トン)。造塊スラグ及び/又は生石灰の副原料に含まれるCaOの合計値。
SCCaO Blow1:Blow1吹錬後のスラグのCaO濃度(質量%)。
SCSiO2 Blow1:Blow1吹錬後のスラグのSiO濃度(質量%)。
SWBlow1:Blow1工程におけるスラグ質量。
CaO Blow2:Blow2工程で転炉型容器内に装入したCaO量(トン)。スラグリサイクル及び/又は生石灰の副原料に含まれるCaOの合計値。
SCCaO Blow2:Blow2吹錬後のスラグのCaO濃度(質量%)。
SCSiO2 Blow2:Blow2吹錬後のスラグのSiO濃度(質量%)。
以上の計算から、中間排滓率を算出できる。
The mass (SW Blow2 ) of the in-furnace slag in the Blow2 process, which is an unknown quantity of the above formula (1), is derived from the formula (3). Note that SW Blow1 used in Equation (3) is derived from Equation (2). For this derivation, the CaO concentration and SiO 2 concentration (unit: mass%) in the slag of the Blow 1 process and Blow 2 process, and the total CaO mass and SiO 2 total mass (unit: tons) charged from the main raw material and auxiliary raw material Are used respectively.
SW Blow 1 = (W CaO Blow 1 + W SiO 2 Blow 1 ) / (SC CaO Blow 1 + SC SiO 2 Blow 1 ) (2)
SW Blow2 = {(1-a) × SW Blow 1 × (SC CaO Blow 1 + SC SiO 2 Blow 1 ) + (W CaO Blow 2 + W SiO 2 Blow 2 )} / (SC CaO Blow 2 + SC SiO2 Blow 2 ) (3)
W CaO Blow1 : The amount of CaO (tons) charged into the converter type vessel in the Blow1 process. Total value of CaO contained in the agglomerated slag and / or quick lime auxiliary material.
SC CaO Blow 1 : CaO concentration (mass%) of slag after Blow 1 blowing.
SC SiO2 Blow1 : SiO 2 concentration (mass%) of slag after Blow 1 blowing.
SW Blow1 : Slag mass in Blow1 process.
W CaO Blow2 : The amount of CaO (tons) charged in the converter vessel in the Blow2 process. Total value of CaO contained in slag recycling and / or auxiliary raw material of quicklime.
SC CaO Blow2 : CaO concentration (mass%) of slag after Blow2 blowing.
SC SiO2 Blow2: Blow2 SiO 2 concentration of the slag after blowing (mass%).
From the above calculation, the intermediate rejection rate can be calculated.

また、Blow2吹錬中の脱P実施のためには、Blow2吹錬での新規生石灰の添加を、以下に示す式に基づいて行う。
Blow2吹錬で投入する新規生石灰量は、Blow2吹錬における脱Pに必要とする脱P巾から計算される。
この脱P巾は、Blow2吹錬終了時の「目標P」(例えば、製品に要求されている成分スペックに相当)とインプットするP「溶銑P」から計算されるため、これらを項とした以下に示す式(4)〜式(6)から、Blow2吹錬での新規生石灰量を決定する。
Moreover, in order to carry out de-P during Blow 2 blowing, addition of new quicklime in Blow 2 blowing is performed based on the following formula.
The amount of new quicklime introduced in Blow 2 blowing is calculated from the de-P width required for de-P in Blow 2 blowing.
This P removal width is calculated from the “target P” at the end of Blow 2 blowing (for example, equivalent to the component specifications required for the product) and the input “P” hot metal P. From the formulas (4) to (6) shown in Fig. 4, the amount of new quicklime in Blow 2 blowing is determined.

(Blow2吹錬での新規生石灰量)={(中間排滓後[P])−(目標[P])}×α ・・・(4)
(中間排滓後[P])=(Blow1吹錬後[P])+{100%−(中間排滓率(%))}×{(溶銑[P])−(Blow1吹錬後[P])} ・・・(5)
(Blow1吹錬後[P])=(溶銑[P])×{100%−(Blow1吹錬の脱P率(%))} ・・・(6)
ここで、αは0.1〜0.4(過去の実績値から得られた吹錬の工程能力に応じた定数)、[P]は溶鉄中に含まれるP濃度(質量%)、である。
(New quicklime amount in Blow 2 blowing) = {(after intermediate waste [P]) − (target [P])} × α (4)
(After intermediate waste [P]) = (After blow 1 blowing [P]) + {100% − (Intermediate waste rate (%))} × {(molten iron [P]) − (After blow 1 blow [P] ])} (5)
(After blow 1 blowing [P]) = (molten iron [P]) × {100% − (depletion rate of blow 1 blowing (%))} (6)
Here, α is 0.1 to 0.4 (a constant corresponding to the process capability of blowing obtained from past performance values), and [P] is the P concentration (mass%) contained in the molten iron. .

次に、本発明の作用効果を確認するために行った実施例について説明する。   Next, examples carried out for confirming the effects of the present invention will be described.

実験条件
1)主原料の条件
a)量
下記の装入物を用い、合計で300〜400トンの溶湯を転炉(転炉型容器)で溶製した。
・溶銑の装入量:250〜350トン
・冷銑の装入量:0又は0を超え50トン以下
・スクラップの装入量:0又は0を超え100トン以下
b)転炉に装入した溶銑の主要成分
・C:3.0〜5.0(質量%)
・Si:10〜100(×10−2質量%)
・Mn:5〜10(×10−2質量%)
・P:50〜200(×10−3質量%)
・S:1〜20(×10−3質量%)
2)副原料(副材)の条件
・投入銘柄:生石灰、石灰石、珪石、MgO、炭材、スラグリサイクル(脱炭スラグや造塊スラグ)
・投入方法:上方添加
3)転炉の形態
・上底吹転炉
・上吹条件/送酸速度:40000〜95000(Nm/hr)
・底吹条件/底吹ガス種:O、CO、N、LPG
Experimental conditions 1) Condition a) amount of main raw material A total of 300 to 400 tons of molten metal was melted in a converter (converter type vessel) using the following charges.
-Hot metal charge: 250-350 tons-Cold iron charge: 0 or more than 0 and 50 tons-Scrap charge: 0 or more than 0 and 100 tons b) Charged to the converter Main components of hot metal-C: 3.0-5.0 (mass%)
・ Si: 10 to 100 (× 10 −2 mass%)
・ Mn: 5 to 10 (× 10 −2 mass%)
· P: 50~200 (× 10 -3 wt%)
S: 1-20 ( x10-3 mass%)
2) Sub-raw material (sub-material) conditions and input brands: quicklime, limestone, silica, MgO, charcoal, slag recycling (decarburized slag and ingot slag)
And launch methods: upper adding 3) BOF embodiment, the upper base吹転furnace, the upper spray conditions / oxygen-flow-rate: from 40000 to 95000 (Nm 3 / hr)
-Bottom blowing conditions / bottom blowing gas types: O 2 , CO 2 , N 2 , LPG

上記した実施条件を基にして実施した試験条件と試験結果を、表2に示す。   Table 2 shows test conditions and test results performed based on the above-described execution conditions.

Figure 2018115350
Figure 2018115350

表2中の「%」は、全て「質量%」を意味する。
表2中の「Blow1吹錬」の「脱P率(%)」は、以下の式で示される。
{1−(Blow1吹錬の吹き止め時の溶湯の到達P濃度(質量%))/(吹錬開始前(Blow1吹錬開始前)の溶湯P濃度(質量%))}×100
表2中の「Blow2吹錬」の「目標P濃度」は、「中間排滓率」の「最小値」を実施したときの溶鋼のP濃度である。なお、「中間排滓率」の「最小値」と「最大値」はそれぞれ、同様の操業を実施した際の中間排滓率のバラツキの最小値と最大値である。
表2中の「新規生石灰」の単位である「kg/t」は、溶湯1トンあたりの新規生石灰の添加量である。なお、「新規生石灰」の「Blow1+Blow2」とは、「Blow1吹錬」と「Blow2吹錬」の「新規生石灰」の合計量である。
表2中の「新規生石灰」の「評価」は、28(kg/t)以下を「少」(新規生石灰の添加量を十分に削減できた)とし、28(kg/t)超を「多」(新規生石灰の添加量を削減できなかった)とした。
“%” In Table 2 means “mass%”.
The “De-P ratio (%)” of “Blow 1 blowing” in Table 2 is represented by the following formula.
{1- (Achieved P concentration (% by mass) of molten metal at the time of Blow 1 blowing) / (Mold P concentration (% by mass) before starting blowing (before starting Blow 1))} × 100
The “target P concentration” of “Blow 2 blowing” in Table 2 is the P concentration of molten steel when the “minimum value” of the “intermediate rejection rate” is implemented. The “minimum value” and “maximum value” of the “intermediate rejection rate” are the minimum value and the maximum value of the variation of the intermediate rejection rate when the same operation is performed, respectively.
“Kg / t” which is a unit of “new quicklime” in Table 2 is the amount of new quicklime added per ton of molten metal. “Blow 1 + Blow 2” of “new quick lime” is the total amount of “new quick lime” of “Blow 1 blowing” and “Blow 2 blowing”.
The “evaluation” of “new quicklime” in Table 2 is 28 (kg / t) or less as “low” (addition of new quicklime was sufficiently reduced), and over 28 (kg / t) “high” (The amount of new quicklime added could not be reduced).

まず、Blow1吹錬後のスラグのAl濃度が、新規生石灰の添加量に及ぼす影響について、実施例1、2と比較例1、2を参照しながら説明する。なお、実施例1、2と比較例1、2のBlow1吹錬後のスラグの塩基度(C/S)は、1.2とした。
表2に示すように、実施例1、2は、Al濃度を適正範囲内(3.5〜10%)としたため、中間排滓率のバラツキを抑制できた。そして、中間排滓率を適正範囲内(50〜80%)にすることで、目標P濃度15×10−3%を達成するために必要な「Blow2吹錬」の新規生石灰の添加量を26.7(kg/t)に削減でき、その結果、「Blow1+Blow2」の新規生石灰の添加量を26.7(kg/t)に削減できた。
First, Al 2 O 3 concentration of the slag after Blow1 blowing is, the effect on the amount of new quicklime will be described with reference to Comparative Examples 1 and 2 Examples 1 and 2. In addition, the basicity (C / S) of the slag after Blow1 blowing of Examples 1 and 2 and Comparative Examples 1 and 2 was set to 1.2.
As shown in Table 2, in Examples 1 and 2, since the Al 2 O 3 concentration was within the appropriate range (3.5 to 10%), variation in the intermediate rejection rate could be suppressed. And the amount of new quick lime addition of “Blow 2 blowing” required to achieve the target P concentration of 15 × 10 −3 % by setting the intermediate rejection rate within the appropriate range (50 to 80%) is 26 As a result, the amount of new quicklime added to “Blow1 + Blow2” could be reduced to 26.7 (kg / t).

一方、比較例1は、Al濃度を上記した適正範囲の下限値未満(3.0質量%)としたため、スラグの滓化が不足して、中間排滓率が上記した適正範囲の下限を逸脱し(40〜70%)、また、脱P反応も進み難くなった(脱P率:30%)。このため、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を29.8(kg/t)まで増加させる必要があり、その結果、「Blow1+Blow2」の新規生石灰量も増加した。
また、比較例2は、Al濃度を適正範囲の上限値超(12質量%)としたため、相対的にCaO量が減少して脱P性が低下した(脱P率:30%)。このため、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を28.7(kg/t)まで増加させる必要があり、その結果、「Blow1+Blow2」の新規生石灰量も増加した。
On the other hand, Comparative Example 1, because it is less than the lower limit of the above-described appropriate range of concentration of Al 2 O 3 (3.0 mass%), slag formation of slag is insufficient, the intermediate discharge slag ratio of the above-described appropriate range The lower limit was exceeded (40 to 70%), and the de-P reaction was difficult to proceed (de-P rate: 30%). For this reason, it is necessary to increase the addition amount of new quick lime of “Blow 2 blowing” required to achieve the target P concentration to 29.8 (kg / t). As a result, the amount of new quick lime of “Blow 1 + Blow 2” is also increased. Increased.
In Comparative Example 2, since the upper limit value of the proper range the concentration of Al 2 O 3 greater than (12 wt%), de P of relatively CaO amount is reduced is decreased (de P ratio: 30%) . For this reason, it is necessary to increase the addition amount of new quick lime of “Blow 2 blowing” required to achieve the target P concentration to 28.7 (kg / t). As a result, the amount of new quick lime of “Blow 1 + Blow 2” is also increased. Increased.

次に、Blow1吹錬後のスラグの塩基度が、新規生石灰の添加量に及ぼす影響について、実施例1、3と比較例3、4を参照しながら説明する。なお、実施例1、3と比較例3、4のBlow1吹錬後のスラグのAl濃度は、3.5とした。
表2に示すように、実施例1、3は、塩基度を適正範囲内(0.8〜1.2)としたため、中間排滓率のバラツキを抑制できた。そして、中間排滓率を上記した適正範囲内にすることで、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を26.7(kg/t)に削減でき、その結果、「Blow1+Blow2」の新規生石灰の添加量を26.7(kg/t)に削減できた。
Next, the influence which the basicity of the slag after Blow1 blowing has on the addition amount of new quicklime will be described with reference to Examples 1 and 3 and Comparative Examples 3 and 4. Incidentally, Al 2 O 3 concentration of the slag after Blow1 blowing of Comparative Examples 3 and 4 as in Examples 1 and 3 was set to 3.5.
As shown in Table 2, since Examples 1 and 3 set the basicity within an appropriate range (0.8 to 1.2), it was possible to suppress variations in the intermediate rejection rate. And, by setting the intermediate rejection rate within the above-described appropriate range, the amount of new quicklime added to achieve the target P concentration can be reduced to 26.7 (kg / t), As a result, the amount of new quicklime added as “Blow1 + Blow2” could be reduced to 26.7 (kg / t).

一方、比較例3は、塩基度を適正範囲の下限値未満(0.5)としたため、脱P性が顕著に悪化した(脱P率:30%)。このため、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を28.7(kg/t)まで増加させる必要があり、その結果、「Blow1+Blow2」の新規生石灰量も増加した。
また、比較例4は、塩基度を適正範囲の上限値超(1.5)としたため、Blow1吹錬で新規生石灰を添加する必要があり、また、高塩基度とすることで中間排滓率がばらついた(45〜90%)。このため、目標P濃度達成のため、「Blow1吹錬」で新規生石灰を3(kg/t)添加する必要があり、また、「Blow2吹錬」で新規生石灰を26.6(kg/t)添加する必要があり、その結果、「Blow1+Blow2」の新規生石灰の添加量を29.6(kg/t)に増加させる必要があった。
On the other hand, in Comparative Example 3, since the basicity was less than the lower limit (0.5) of the appropriate range, the de-P property was significantly deteriorated (de-P rate: 30%). For this reason, it is necessary to increase the addition amount of new quick lime of “Blow 2 blowing” required to achieve the target P concentration to 28.7 (kg / t). As a result, the amount of new quick lime of “Blow 1 + Blow 2” is also increased. Increased.
Further, in Comparative Example 4, since the basicity was over the upper limit (1.5) of the appropriate range, it is necessary to add new quick lime by Blow 1 blowing, and the intermediate rejection rate by setting high basicity Varied (45-90%). Therefore, in order to achieve the target P concentration, it is necessary to add 3 (kg / t) of fresh quicklime in “Blow 1 blowing”, and 26.6 (kg / t) of fresh quick lime in “Blow 2 blowing” As a result, it was necessary to increase the amount of new quicklime of “Blow1 + Blow2” to 29.6 (kg / t).

最後に、スラグの中間排滓率が、新規生石灰の添加量に及ぼす影響について、実施例1と比較例5、6を参照しながら説明する。なお、実施例1と比較例5、6のBlow1吹錬後のスラグのAl濃度は3.5とし、スラグの塩基度は1.2とした。
前記したように、実施例1は、Al濃度と塩基度をそれぞれ上記した適正範囲内としたため、中間排滓率のバラツキを抑制できた。そして、中間排滓率を上記した適正範囲内にすることで、目標P濃度達成のため、「Blow1+Blow2」の新規生石灰の添加量を26.7(kg/t)に削減できた。
一方、比較例5は、中間排滓率を、適正範囲の上限を超えた範囲(90〜100%)に調整したため(Blow1吹錬後にスラグのほとんど全部を排滓したため)、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を30.7(kg/t)まで増加させる必要があり、その結果、「Blow1+Blow2」の新規生石灰量も増加した。
また、比較例6は、中間排滓率を、適正範囲の下限を逸脱する範囲(40〜70%)に調整したため、Blow2吹錬に持ち込まれるP量が多くなり、目標P濃度達成のために必要な「Blow2吹錬」の新規生石灰の添加量を28.3(kg/t)まで増加させる必要があり、その結果、「Blow1+Blow2」の新規生石灰量も増加した。
Finally, the influence of the intermediate slag rejection rate on the amount of new quicklime added will be described with reference to Example 1 and Comparative Examples 5 and 6. Incidentally, Al 2 O 3 concentration of the slag after Blow1 blowing of Comparative Examples 5 and 6 Example 1 was set to 3.5, the slag basicity was 1.2.
As described above, in Example 1, since the Al 2 O 3 concentration and the basicity were within the above-described appropriate ranges, variation in the intermediate rejection rate could be suppressed. Then, by setting the intermediate rejection rate within the above-described proper range, the amount of new quicklime added as “Blow1 + Blow2” could be reduced to 26.7 (kg / t) in order to achieve the target P concentration.
On the other hand, in Comparative Example 5, since the intermediate rejection rate was adjusted to a range (90 to 100%) exceeding the upper limit of the appropriate range (because almost all of the slag was discharged after Blow 1 blowing), the target P concentration was achieved. Therefore, it is necessary to increase the amount of new quicklime added to “Blow2 blowing” to 30.7 (kg / t), and as a result, the amount of new quicklime of “Blow1 + Blow2” also increased.
Moreover, since the comparative example 6 adjusted the intermediate rejection rate to the range (40 to 70%) that deviates from the lower limit of the appropriate range, the amount of P brought into Blow 2 blowing increases and the target P concentration is achieved. It was necessary to increase the necessary amount of new quicklime of “Blow2 blowing” to 28.3 (kg / t), and as a result, the amount of new quicklime of “Blow1 + Blow2” also increased.

以上のことから、本発明の溶銑の精錬方法を用いることで、Blow1吹錬後にスラグを排滓してBlow2吹錬を行うに際し、新たに添加する生石灰の添加量を従来よりも削減できることを確認できた。   From the above, by using the hot metal refining method of the present invention, it is confirmed that the amount of newly added quick lime can be reduced as compared with the conventional method when slag is discharged after Blow 1 blowing and Blow 2 blowing is performed. did it.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の溶銑の精錬方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the molten iron refining method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:容器、11:転炉型容器、12:溶銑、13:ランス、14:脱P溶湯、15:スラグ、16:炉口、17:溶鋼、18:出鋼口 10: Vessel, 11: Converter type vessel, 12: Hot metal, 13: Lance, 14: De-P molten metal, 15: Slag, 16: Furnace port, 17: Molten steel, 18: Outlet port

Claims (2)

転炉型容器内の溶銑にCaO源を添加して上吹き送酸するBlow1吹錬により脱P溶湯を溶製した後、生成したスラグを排滓し、前記脱P溶湯に新たに生石灰を添加して上吹き送酸するBlow2吹錬を行う溶銑の精錬方法において、
前記CaO源として、CaOを含む造塊スラグ及び生石灰のいずれか一方又は双方を含む副原料を用い、
前記Blow1吹錬後の前記スラグを、Al濃度:3.5質量%以上10質量%以下、塩基度:0.8以上1.2以下とし、
前記Blow1吹錬後の前記スラグの排滓を、該Blow1吹錬で生成した前記スラグの総質量を100質量%として50質量%以上80質量%以下の範囲で行うことを特徴とする溶銑の精錬方法。
After melting the de-P molten metal by Blow 1 blowing, which adds the CaO source to the hot metal in the converter vessel and feeds it with oxygen, the generated slag is discharged, and new quick lime is added to the de-P molten metal In the refining method of hot metal that performs Blow 2 blowing,
As the CaO source, using an auxiliary material containing either one or both of ingot slag containing CaO and quick lime,
The slag after the Blow 1 blowing, Al 2 O 3 concentration: 3.5 mass% or more and 10 mass% or less, basicity: 0.8 or more and 1.2 or less,
The refining of hot metal, wherein the slag after Blow 1 blowing is discharged in a range of 50% by mass to 80% by mass, with the total mass of the slag generated by Blow 1 blowing being 100% by mass. Method.
請求項1記載の溶銑の精錬方法において、前記CaO源として更に、過去の溶銑の精錬で発生した脱炭スラグを用いることを特徴とする溶銑の精錬方法。   2. The hot metal refining method according to claim 1, wherein decarburization slag generated in the past hot metal refining is further used as the CaO source.
JP2017005200A 2017-01-16 2017-01-16 Hot metal refining method Active JP6844267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005200A JP6844267B2 (en) 2017-01-16 2017-01-16 Hot metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005200A JP6844267B2 (en) 2017-01-16 2017-01-16 Hot metal refining method

Publications (2)

Publication Number Publication Date
JP2018115350A true JP2018115350A (en) 2018-07-26
JP6844267B2 JP6844267B2 (en) 2021-03-17

Family

ID=62983896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005200A Active JP6844267B2 (en) 2017-01-16 2017-01-16 Hot metal refining method

Country Status (1)

Country Link
JP (1) JP6844267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436839B2 (en) 2020-06-09 2024-02-22 日本製鉄株式会社 Melting method for ultra-low phosphorus steel
RU2818100C1 (en) * 2021-01-26 2024-04-24 ДжФЕ СТИЛ КОРПОРЕЙШН Liquid iron refining method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262576A (en) * 2006-02-28 2007-10-11 Jfe Steel Kk Method for smelting molten iron
JP2008063645A (en) * 2006-09-11 2008-03-21 Jfe Steel Kk Steelmaking method
JP2011058053A (en) * 2009-09-10 2011-03-24 Kobe Steel Ltd Dephosphorizing method
JP2016029212A (en) * 2014-07-23 2016-03-03 Jfeスチール株式会社 Refining method of molten iron
JP2016151027A (en) * 2015-02-16 2016-08-22 新日鐵住金株式会社 Production method of molten steel
JP2017002363A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262576A (en) * 2006-02-28 2007-10-11 Jfe Steel Kk Method for smelting molten iron
JP2008063645A (en) * 2006-09-11 2008-03-21 Jfe Steel Kk Steelmaking method
JP2011058053A (en) * 2009-09-10 2011-03-24 Kobe Steel Ltd Dephosphorizing method
JP2016029212A (en) * 2014-07-23 2016-03-03 Jfeスチール株式会社 Refining method of molten iron
JP2016151027A (en) * 2015-02-16 2016-08-22 新日鐵住金株式会社 Production method of molten steel
JP2017002363A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436839B2 (en) 2020-06-09 2024-02-22 日本製鉄株式会社 Melting method for ultra-low phosphorus steel
RU2818100C1 (en) * 2021-01-26 2024-04-24 ДжФЕ СТИЛ КОРПОРЕЙШН Liquid iron refining method

Also Published As

Publication number Publication date
JP6844267B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
WO1995001458A1 (en) Steel manufacturing method using converter
JP2010090428A (en) Method for recovering chromium from chromium-containing slag
JP5408379B2 (en) Hot metal pretreatment method
JP5983492B2 (en) Hot metal pretreatment method
JP2018115350A (en) Refining method of hot metal
JP2019194350A (en) Recycling method of converter slag
JP6269974B2 (en) Steel melting method
JP3458890B2 (en) Hot metal refining method
JP2002012908A (en) Method for smelting nitrogen-containing steel
JP2000109924A (en) Method for melting extra-low sulfur steel
JP3924059B2 (en) Steelmaking method using multiple converters
JP3486886B2 (en) Steelmaking method using two or more converters
JPH08311519A (en) Steelmaking method using converter
JPH0734113A (en) Converter refining method
JP2958842B2 (en) Converter refining method
JP6627642B2 (en) How to reduce iron ore
JP5979017B2 (en) Hot metal refining method
WO2022154024A1 (en) Converter refining method
WO2022154023A1 (en) Converter-refining method
JP2011149083A (en) Method for dephosphorizing molten pig iron
JP2005206899A (en) Hot metal refining method
JP6691324B2 (en) Manufacturing method of low nitrogen steel
JPH0718318A (en) Converter refining method
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R151 Written notification of patent or utility model registration

Ref document number: 6844267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151