JP5983492B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP5983492B2
JP5983492B2 JP2013063429A JP2013063429A JP5983492B2 JP 5983492 B2 JP5983492 B2 JP 5983492B2 JP 2013063429 A JP2013063429 A JP 2013063429A JP 2013063429 A JP2013063429 A JP 2013063429A JP 5983492 B2 JP5983492 B2 JP 5983492B2
Authority
JP
Japan
Prior art keywords
slag
hot metal
desiliconization
mass
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013063429A
Other languages
Japanese (ja)
Other versions
JP2013227664A (en
Inventor
内田 祐一
祐一 内田
直敬 佐々木
直敬 佐々木
三木 祐司
祐司 三木
田中 高太郎
高太郎 田中
川畑 涼
涼 川畑
陽三 岩城
陽三 岩城
石井 健司
健司 石井
錦織 正規
正規 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013063429A priority Critical patent/JP5983492B2/en
Publication of JP2013227664A publication Critical patent/JP2013227664A/en
Application granted granted Critical
Publication of JP5983492B2 publication Critical patent/JP5983492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理方法に関する。   The present invention relates to a hot metal pretreatment method in which a hot metal desiliconization process and a dephosphorization process are continuously performed using a single converter-type refining furnace with an intermediate waste gas removal step interposed therebetween.

温室効果ガスの排出量削減が強く求められる近年、鉄鋼業においては、転炉にて溶銑の脱燐処理及び脱炭精錬を行う際に、溶銑に熱的な余裕がある場合には、炉内の溶銑に鉄スクラップなどの冷鉄源を配合して鉄鋼製品生産に要するエネルギーを削減する方法が行われている。これは、高炉に装入される鉄鉱石のような酸化鉄と異なり、金属鉄である冷鉄源は還元する必要がなく、高炉から出銑される銑鉄を精錬して溶鋼を製造するよりも、少ないエネルギー消費量及び少ない温室効果ガス排出量で溶鋼を製造できるからである。また、高炉で製造された溶銑に冷鉄源を加えて溶鋼を溶製することで、高炉で製造される溶銑量以上の溶鋼を溶製でき、溶鋼の生産量増大も可能である。   In recent years, there has been a strong demand for reducing greenhouse gas emissions. In the iron and steel industry, when hot metal dephosphorization and decarburization refining are performed in the converter, A method of reducing the energy required for steel product production by blending a cold iron source such as iron scrap with the hot metal of this type has been carried out. Unlike iron oxide such as iron ore charged into the blast furnace, this does not require reducing the cold iron source, which is metallic iron, rather than refining pig iron discharged from the blast furnace to produce molten steel. This is because molten steel can be produced with low energy consumption and low greenhouse gas emissions. Moreover, by adding a cold iron source to the hot metal manufactured in the blast furnace and melting the molten steel, molten steel exceeding the amount of molten iron manufactured in the blast furnace can be melted, and the production amount of molten steel can be increased.

また近年、コスト面及び品質面で有利であることから、転炉での脱炭精錬の前に溶銑に対して予備処理として脱燐処理(「予備脱燐処理」ともいう)を実施し、予め溶銑中の燐を除去する精錬方法が行われている。これは、脱燐反応は精錬温度が低いほど熱力学的に進行しやすく、つまり、溶鋼段階よりも溶銑段階の方が脱燐反応は進行しやすく、少ない精錬剤で脱燐精錬を行うことができることに基づいている。   In recent years, since it is advantageous in terms of cost and quality, dephosphorization treatment (also referred to as “preliminary dephosphorization treatment”) is performed as a preliminary treatment for hot metal before decarburization refining in a converter. A refining method for removing phosphorus in hot metal has been performed. This is because the dephosphorization reaction proceeds more thermodynamically as the refining temperature is lower, that is, the dephosphorization reaction proceeds more easily in the hot metal stage than in the molten steel stage, and the dephosphorization refining can be performed with a small refining agent. Based on what can be done.

一般に溶銑の予備処理では、先ず、酸化鉄などの固体酸素源を溶銑に添加して脱珪処理を行い、この脱珪処理で発生したスラグを除去し、更に、必要に応じて溶銑を別の精錬容器に移し替えた後に脱燐精錬剤(媒溶剤)及び脱燐剤(酸素ガスなどの酸素源)を添加して脱燐処理を実施する。通常、この脱燐処理の脱燐精錬剤としては生石灰などのCaO系媒溶剤を用い、脱燐剤である酸素源としては固体酸素源(酸化鉄など)や気体酸素源(酸素ガスなど)を用いている。また、予備処理を行う精錬容器としては、トーピードカー、取鍋(高炉鍋や装入鍋)、転炉型精錬炉などが用いられている。尚、脱珪処理を行わずに直ちに脱燐処理を施す場合もあるが、珪素(Si)は燐(P)よりも酸素(O)との親和力が強く、従って、溶銑中の燐よりも珪素の方が優先的に酸化されるので、この場合の脱燐処理の精錬初期は、脱珪反応(Si+2O→SiO2)が優勢であり(この時期を「脱珪期」ともいう)、溶銑中の珪素が或る程度低減した時点から脱燐反応(2P+5O→P25)が進行する。 In general, in the hot metal pretreatment, first, a solid oxygen source such as iron oxide is added to the hot metal to perform desiliconization treatment, slag generated by this desiliconization treatment is removed, and if necessary, the hot metal is further separated. After transferring to a refining vessel, a dephosphorizing agent (medium solvent) and a dephosphorizing agent (oxygen source such as oxygen gas) are added to carry out a dephosphorization process. Usually, a CaO-based solvent such as quick lime is used as a dephosphorizing refining agent for this dephosphorization treatment, and a solid oxygen source (such as iron oxide) or a gaseous oxygen source (such as oxygen gas) is used as an oxygen source as a dephosphorizing agent. Used. In addition, torpedo cars, ladles (blast furnace pots and charging pots), converter-type refining furnaces, and the like are used as the refining containers for performing the pretreatment. Although dephosphorization may be performed immediately without desiliconization, silicon (Si) has a stronger affinity for oxygen (O) than phosphorus (P), and therefore silicon is more likely than phosphorus in hot metal. Since this is preferentially oxidized, desiliconization reaction (Si + 2O → SiO 2 ) is dominant in the initial refining process of dephosphorization in this case (this period is also called “desiliconization period”). The dephosphorization reaction (2P + 5O → P 2 O 5 ) proceeds from the point in time when the amount of silicon is reduced to some extent.

上記の方法で脱燐処理を行った溶銑は、熱源である珪素が酸化されて殆どなくなっており、炭素(C)も酸化(C+O→CO)されて炭素濃度も出銑時に比べて1.5質量%程度低下し、鉄スクラップなどの冷鉄源を溶解するための熱的な余裕がないことから、脱燐処理の施された溶銑の転炉における脱炭精錬工程では冷鉄源を配合できないという問題が生じている。このため、溶鋼の増産が必要な場合には、予備処理としての脱燐処理を放棄して、転炉で脱燐精錬と脱炭精錬とを同時に行うという、従来の転炉吹錬に戻す操業を行う場合もある。   The hot metal that has been subjected to the dephosphorization treatment by the above method is almost free from the oxidation of silicon, which is a heat source, and carbon (C) is also oxidized (C + O → CO), so that the carbon concentration is 1.5 compared to that at the start. Since there is no thermal allowance for melting cold iron sources such as iron scrap, it is not possible to add cold iron sources in the decarburization and refining process in the dephosphorized hot metal converter. The problem has arisen. For this reason, when it is necessary to increase the production of molten steel, the dephosphorization treatment as a preliminary treatment is abandoned and the dephosphorization and decarburization refining are simultaneously performed in the converter, and the operation is returned to the conventional converter blowing. May be performed.

しかしながら、脱燐処理を施すことで、コスト低減及び鋼材の品質向上を達成できることのみならず、スラグ発生量を低減できることから、このような操業形態の変更を行わず、前述のように、溶銑の脱燐処理を行い、その上で、転炉では脱炭精錬のみを行うと同時に鉄スクラップなどの冷鉄源の配合比率を増加させ、高炉で製造された単位質量あたりの溶銑からより多くの溶鋼を製造することが望ましい。   However, by performing the dephosphorization process, not only can cost reduction and quality improvement of the steel material be achieved, but also the amount of slag generation can be reduced. After dephosphorization treatment, only decarburization refining is performed in the converter, and at the same time, the blending ratio of cold iron sources such as iron scrap is increased, and more molten steel is produced from the molten iron per unit mass produced in the blast furnace. It is desirable to manufacture.

多くの冷鉄源を溶銑に溶解するためには、溶銑中の炭素及び珪素の燃焼熱を冷鉄源の溶解用熱源として有効活用する必要がある。転炉型精錬炉は、炉の空塔部が大きく溶銑の強攪拌が可能であり、且つ、酸素ガス供給流量を多くすることができるので、溶銑中の炭素及び珪素の燃焼熱を利用して溶銑中に冷鉄源を溶解するための精錬容器として有利である。そこで、脱珪処理による溶銑中珪素の燃焼熱を有効に活用し、且つ、脱燐処理に必要な脱燐精錬剤の使用量を低減させて脱燐精錬剤の滓化に要する熱量を抑制し、更に、脱珪処理と脱燐処理とを連続することで溶銑からの熱放出を抑制することにより、溶銑の熱的余裕を高めることを目的として、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理方法が幾つか提案されている。   In order to dissolve many cold iron sources in hot metal, it is necessary to effectively utilize the heat of combustion of carbon and silicon in the hot metal as a heat source for melting the cold iron source. The converter-type smelting furnace has a large empty space in the furnace and can strongly stir the hot metal, and can increase the oxygen gas supply flow rate, so the combustion heat of carbon and silicon in the hot metal is used. It is advantageous as a refining vessel for dissolving a cold iron source in hot metal. Therefore, the heat of combustion of silicon in the hot metal resulting from the desiliconization treatment is effectively utilized, and the amount of heat required for hatching the dephosphorization refining agent is reduced by reducing the amount of dephosphorization refining agent used for the dephosphorization treatment. Furthermore, with the aim of increasing the thermal margin of the hot metal by suppressing the heat release from the hot metal by continuing the desiliconization process and the dephosphorization process, Several hot metal pretreatment methods have been proposed in which the desiliconization process and the dephosphorization process are continuously performed with an intermediate evacuation process in between.

例えば、特許文献1には、炉の底部から粉体及び/またはガスを溶銑中にインジェクションする手段と、炉の上部から溶銑に酸素ガスを吹き付ける手段とを有する転炉型精錬炉を用いて溶銑の脱珪、脱燐処理を行うに際し、先ず、脱珪処理終了時のスラグの塩基度([質量%CaO]/[質量%SiO2])が0.3〜1.3の範囲に入るようにCaO系媒溶剤の供給量を調節して脱珪処理を行った後、炉を傾動して炉内に生成したスラグを炉口から排出し、次いで、脱燐処理を行うことを特徴とする溶銑の精錬方法が提案されている。 For example, Patent Document 1 discloses using a converter-type smelting furnace having a means for injecting powder and / or gas into the hot metal from the bottom of the furnace and a means for blowing oxygen gas into the hot metal from the top of the furnace. desiliconization of, in performing the dephosphorization process, first, as the desiliconization treatment at the end of the slag basicity ([wt% CaO] / [wt% SiO 2]) is in the range of 0.3 to 1.3 After the desiliconization process is performed by adjusting the supply amount of the CaO-based medium solvent, the furnace is tilted to discharge the slag generated in the furnace from the furnace port, and then the dephosphorization process is performed. A hot metal refining method has been proposed.

特開平10−152714号公報Japanese Patent Laid-Open No. 10-152714

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

溶銑中の珪素を酸化除去する脱珪処理においては、生成されるSiO2によってスラグの塩基度([質量%CaO]/[質量%SiO2])が低下する。このような塩基度の低いスラグは、熱力学的に脱燐能力が低く、仮にスラグ中に燐が存在する場合には、スラグ中の燐は溶銑に移行し、所謂「復燐反応」が発生する。つまり、溶銑の燐濃度が復燐反応によって上昇する。 In the desiliconization treatment in which the silicon in the hot metal is removed by oxidation, the basicity of slag ([mass% CaO] / [mass% SiO 2 ]) is reduced by the generated SiO 2 . Such a low basicity slag has a low thermodynamic dephosphorization ability, and if phosphorus is present in the slag, the phosphorus in the slag shifts to hot metal and the so-called “rephosphorus reaction” occurs. To do. That is, the phosphorus concentration in the hot metal is increased by the recovery reaction.

特許文献1では、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを交互に行っており、脱珪処理を行う際、炉内には前チャージの脱燐処理で生成した脱燐スラグの一部が炉壁などに付着して残留していることが多い。この脱燐スラグが残留したまま、次チャージの脱珪処理を開始すると、残留した脱燐スラグは、脱珪反応の進行に伴って生成する低塩基度のスラグと反応して、つまり低塩基度のスラグに吸収されて塩基度が低下し、脱燐スラグに含有されていた燐(P25)が溶銑に移行する復燐反応が生じる。1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを交互に行う場合、熱回収及び鉄源回収を目的として、前チャージの脱燐スラグを積極的に炉内に残留させる場合には、復燐量が更に大きくなる。 In Patent Document 1, hot metal desiliconization treatment and dephosphorization treatment are alternately performed using one converter-type refining furnace. When performing desiliconization treatment, the furnace is pre-charged with dephosphorization treatment. In many cases, part of the generated dephosphorization slag remains attached to the furnace wall or the like. When the desiliconization process of the next charge is started with the dephosphorization slag remaining, the remaining dephosphorization slag reacts with the low basicity slag generated as the desiliconization reaction proceeds, that is, the low basicity. As a result, the basicity is lowered by the slag, and the phosphorus (P 2 O 5 ) contained in the dephosphorized slag is transferred to the molten iron. When the hot metal desiliconization and dephosphorization processes are alternately performed using one converter-type smelting furnace, the pre-charge dephosphorization slag remains actively in the furnace for the purpose of heat recovery and iron source recovery. In this case, the amount of recovered phosphorus is further increased.

脱珪処理時に復燐反応によって溶銑の燐濃度が上昇すれば、引き続いて行う脱燐処理における脱燐精錬剤(CaO系媒溶剤)の使用量を増加せざるを得ず、効率的な脱燐処理を行うことができなくなる。特許文献1は、この問題について何ら考慮していない。   If the phosphorus concentration in the hot metal is increased by dephosphorization during the desiliconization process, the amount of dephosphorizing agent (CaO-based solvent) used in the subsequent dephosphorization process must be increased, and efficient dephosphorization. Processing cannot be performed. Patent document 1 does not consider this problem at all.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理方法において、脱珪処理時及び途中の排滓工程での復燐反応を防止し、コスト面及び品質面から十分な脱燐処理を行うことを可能とする、溶銑の予備処理方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to perform hot metal desiliconization treatment and dephosphorization treatment using a single converter-type refining furnace with an intermediate waste removal step in between. In the continuous hot metal pretreatment method, the dephosphorization reaction is prevented during the desiliconization process and during the exhaust process, and the dephosphorization process can be performed sufficiently from the cost and quality aspects. Is to provide a preliminary processing method.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]転炉型精錬炉内の溶銑に上吹きランスから酸素源を供給して溶銑を脱珪処理する脱珪処理工程と、該脱珪処理工程で生成したスラグの少なくとも一部を前記転炉型精錬炉から排滓する排滓工程と、該排滓工程後、前記転炉型精錬炉内にCaO系媒溶剤を添加し、前記上吹きランスから酸素源を供給して残留させた溶銑を脱燐処理する脱燐処理工程と、を有する溶銑の予備処理方法であって、前記脱珪処理工程における炉内スラグの組成がSiO2の飽和領域にならないように、炉内スラグの塩基度([質量%CaO]/[質量%SiO2])を溶銑温度及びスラグ中鉄酸化物濃度に応じて調整することを特徴とする、溶銑の予備処理方法。
[2]前記脱燐処理工程の後に前記転炉型精錬炉から溶銑を排出し、その後、転炉型精錬炉内に脱燐処理工程で生成したスラグの全量または大半を残留させた状態で溶銑を装入し、転炉型精錬炉内に装入した溶銑に脱珪処理を施すことを特徴とする、上記[1]に記載の溶銑の予備処理方法。
[3]前記脱珪処理工程において、脱珪処理後の炉内スラグの塩基度([質量%CaO]/[質量%SiO2])を0.8以上に調整することを特徴とする、上記[1]または上記[2]に記載の溶銑の予備処理方法。
[4]前記脱珪処理工程において、脱珪処理後の炉内スラグの温度を1280℃以上1380℃以下に調整することを特徴とする、上記[1]ないし上記[3]のいずれか1項に記載の溶銑の予備処理方法。
[5]前記脱珪処理工程において、脱珪処理後の炉内スラグのトータル鉄含有量とマンガン酸化物含有量との和を10質量%以上30質量%以下に調整することを特徴とする上記[1]ないし上記[4]のいずれか1項に記載の溶銑の予備処理方法。
[6]前記脱珪処理工程において、脱珪処理中の炉内スラグの塩基度([質量%CaO]/[質量%SiO2])を0.8以上に調整することを特徴とする、上記[1]ないし上記[5]のいずれか1項に記載の溶銑の予備処理方法。
[7]前記脱燐処理工程で生成したスラグの50質量%以上の量のスラグを転炉型精錬炉内に残留させることを特徴とする、上記[2]ないし上記[6]のいずれか1項に記載の溶銑の予備処理方法。
The gist of the present invention for solving the above problems is as follows.
[1] A desiliconization process for desiliconizing the hot metal by supplying an oxygen source from an upper blow lance to the hot metal in the converter-type refining furnace, and at least a part of the slag generated in the desiliconization process. An exhausting process for exhausting from the furnace type refining furnace, and after the exhausting process, a hot metal left by adding a CaO-based medium solvent into the converter type refining furnace and supplying an oxygen source from the top blowing lance A dephosphorization process for dephosphorizing the hot metal, and the basicity of the slag in the furnace so that the composition of the slag in the furnace in the desiliconization process does not reach the SiO 2 saturation region. ([Mass% CaO] / [mass% SiO 2 ]) is adjusted in accordance with the hot metal temperature and the iron oxide concentration in the slag, and the hot metal pretreatment method.
[2] After the dephosphorization process, the hot metal is discharged from the converter-type smelting furnace, and then the molten iron is left in a state where all or most of the slag generated in the dephosphorization process remains in the converter-type smelting furnace. The hot metal pretreatment method according to [1], wherein the hot metal charged in the converter-type refining furnace is subjected to desiliconization treatment.
In [3] the desiliconization step, and adjusting the basicity of the furnace slag after desiliconizing treatment ([mass% CaO] / [wt% SiO 2]) to 0.8 or more, the [1] or the hot metal pretreatment method according to [2].
[4] In the desiliconization process, the temperature of the in-furnace slag after the desiliconization process is adjusted to 1280 ° C. or higher and 1380 ° C. or lower, and any one of [1] to [3] above The hot metal pretreatment method according to claim 1.
[5] In the desiliconization treatment step, the sum of the total iron content and the manganese oxide content of the in-furnace slag after the desiliconization treatment is adjusted to 10% by mass or more and 30% by mass or less. The hot metal pretreatment method according to any one of [1] to [4].
In [6] the desiliconization step, and adjusting the basicity of the furnace slag during desiliconization treatment ([mass% CaO] / [wt% SiO 2]) to 0.8 or more, the [1] The hot metal pretreatment method according to any one of [5] above.
[7] Any one of [2] to [6] above, wherein slag in an amount of 50% by mass or more of the slag produced in the dephosphorization process is left in a converter type refining furnace. The hot metal pretreatment method according to Item.

本発明によれば、同一の転炉型精錬炉を用いて途中の排滓工程を挟んで脱珪処理工程及び脱燐処理工程を交互に行う際に、脱珪処理工程において、炉内スラグの組成がSiO2の飽和領域にならないように、溶銑温度及びスラグ中鉄酸化物濃度に応じて、炉内スラグの塩基度([質量%CaO]/[質量%SiO2])を調整するので、前チャージの脱燐スラグが炉内に残留しても、残留した脱燐スラグからの溶銑への復燐反応が防止され、次の脱燐処理工程では少ないCaO系媒溶剤の使用量で十分な脱燐処理を行うこと、つまり、コスト面及び品質面から十分な脱燐処理を行うことが実現される。 According to the present invention, when the desiliconization treatment step and the dephosphorization treatment step are alternately performed using the same converter-type refining furnace, with the intermediate removal step interposed, in the desiliconization treatment step, composition to avoid the saturation region of the SiO 2, in accordance with the molten iron temperature and the slag Zhongtie oxide concentration, since adjusting the basicity of the furnace slag ([wt% CaO] / [wt% SiO 2]), Even if the pre-charged dephosphorization slag remains in the furnace, the dephosphorization reaction from the remaining dephosphorization slag to the molten iron is prevented, and a small amount of CaO-based solvent is sufficient in the next dephosphorization process. It is possible to perform the dephosphorization process, that is, to perform a sufficient dephosphorization process in terms of cost and quality.

本発明に係る溶銑の予備処理方法を実施する際に用いる転炉型精錬炉の概略断面図である。It is a schematic sectional drawing of the converter type refining furnace used when enforcing the hot metal preliminary processing method concerning the present invention. 本発明に係る溶銑の予備処理方法を工程順に示す概略図である。It is the schematic which shows the hot metal pre-processing method which concerns on this invention in order of a process. CaO、SiO2、FeOの3成分状態図の1300℃における等温断面図の一部を示す図である。CaO, illustrates a portion of isothermal cross section at 1300 ° C. for 3 component phase diagram of the SiO 2, FeO.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る溶銑の予備処理方法を実施する際に用いる転炉型精錬炉の概略断面図、図2は、本発明に係る溶銑の予備処理方法を工程順に示す概略図である。尚、図1は、図2−(B)の脱珪処理工程を示す図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a converter type refining furnace used when carrying out the hot metal pretreatment method according to the present invention, and FIG. 2 is a schematic view showing the hot metal pretreatment method according to the present invention in the order of steps. . In addition, FIG. 1 is a figure which shows the desiliconization process process of FIG. 2- (B).

本発明による溶銑の予備処理方法では、図1に示すような上底吹き可能な転炉型精錬炉1を用いる。上吹きは、転炉型精錬炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から酸素源として酸素含有ガスを溶銑5に向けて供給して行われる。酸素含有ガスとしては、酸素ガス、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスを使用することができる。図1では、酸素含有ガスとして酸素ガス8を使用した例を示している。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉型精錬炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはArガスや窒素ガスなどの不活性ガスのみでもよいが、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するほか、底吹き羽口3から搬送用ガスとともに造滓剤を溶銑中に吹き込む機能を有するものでもよい。   In the hot metal preliminary treatment method according to the present invention, a converter-type refining furnace 1 capable of top bottom blowing as shown in FIG. 1 is used. The top blowing is performed by supplying an oxygen-containing gas toward the hot metal 5 as an oxygen source from the tip of the top blowing lance 2 via the top blowing lance 2 that can move up and down inside the converter type refining furnace 1. As the oxygen-containing gas, oxygen gas, oxygen-enriched air, air, or a mixed gas of oxygen gas and inert gas can be used. FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas. Here, the oxygen gas 8 is industrial pure oxygen. The bottom blowing is performed through a bottom blowing tuyere 3 provided at the bottom of the converter type refining furnace 1. The bottom blowing gas 9 may be a gas containing oxygen gas or only an inert gas such as Ar gas or nitrogen gas, but by blowing into the hot metal, the stirring of the hot metal 5 is strengthened to dissolve the cold iron source. In addition to having the function of promoting, the bottom blowing tuyere 3 may have a function of blowing the iron making agent into the molten iron together with the transfer gas.

本発明においては、溶銑5の精錬に2基以上の転炉型精錬炉1を使用し、そのうちの少なくとも1基の転炉型精錬炉1を本発明に係る溶銑予備処理に使用し、残りの少なくとも1基を、本発明に係る溶銑予備処理の施された溶銑5の脱炭精錬に使用する。つまり、溶銑予備処理用の転炉型精錬炉1で予備処理を行い、次いで溶銑5を脱炭精錬用の転炉型精錬炉1に移し替えて脱炭処理を行う。   In the present invention, two or more converter-type refining furnaces 1 are used for refining the hot metal 5, and at least one of these converter-type refining furnaces 1 is used for the hot metal pretreatment according to the present invention, and the rest At least one group is used for decarburization refining of the hot metal 5 subjected to the hot metal pretreatment according to the present invention. That is, the pretreatment is performed in the converter type refining furnace 1 for hot metal pretreatment, and then the hot metal 5 is transferred to the converter type refining furnace 1 for decarburization refining and decarburization treatment is performed.

本発明に係る溶銑5の予備処理方法では、図2−(A)に示すように、予め鉄スクラップなどの冷鉄源7が装入された転炉型精錬炉1に、装入鍋10を介して溶銑5を装入する。   In the pretreatment method of the hot metal 5 according to the present invention, as shown in FIG. 2- (A), the charging pot 10 is placed in the converter-type refining furnace 1 in which the cold iron source 7 such as iron scrap is previously charged. Then, the hot metal 5 is charged.

次いで、この転炉型精錬炉内の溶銑5に、酸素源として酸素ガス或いは酸化鉄を供給して、図2−(B)に示すように脱珪処理を実施する。溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO2)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。この脱珪処理前及び/または脱珪処理中に、必要に応じてスラグ6の塩基度([質量%CaO]/[質量%SiO2])(以下、単に「塩基度」とのみ表示することもある)を調整するために、CaO系媒溶剤を転炉型精錬炉1に添加する。脱珪処理において生成するスラグ6は「脱珪スラグ」とも呼ばれる。 Next, oxygen gas or iron oxide is supplied as an oxygen source to the hot metal 5 in the converter type refining furnace, and desiliconization processing is performed as shown in FIG. Silicon contained in the hot metal 5 reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ), and the desiliconization process proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the dissolution of the cold iron source 7 in the hot metal is promoted. Before the desiliconization treatment and / or during the desiliconization treatment, the basicity of the slag 6 ([mass% CaO] / [mass% SiO 2 ]) (hereinafter simply indicated as “basicity”) as necessary. In addition, a CaO-based solvent is added to the converter-type refining furnace 1. The slag 6 generated in the desiliconization process is also called “desiliconization slag”.

脱珪処理のための酸素源としては、上吹きランス2からの酸素ガス8のみでもよく、また、酸素ガス8に酸化鉄(図示せず)を併用してもよい。短時間で行われる脱珪処理中に目標とする塩基度のスラグ6を形成させるためには、CaO系媒溶剤の滓化を促進させる機能を有する酸化鉄を使用することが効果的であるが、本発明の目的の1つである多量の冷鉄源7を溶解させる観点からは、昇熱時及び分解時に吸熱する酸化鉄を用いることは好ましくなく、従って、酸素源として酸化鉄を用ることは可能な限り避けることが好ましい。また、精錬容器として転炉型精錬炉1を使用するので、強攪拌が可能であり、酸素ガス8のみを用いて脱珪処理を行っても、十分に目標とする塩基度のスラグ6を形成させることができる。   As an oxygen source for the silicon removal treatment, only the oxygen gas 8 from the top blowing lance 2 may be used, or iron oxide (not shown) may be used in combination with the oxygen gas 8. In order to form the slag 6 having the target basicity during the desiliconization process performed in a short time, it is effective to use iron oxide having a function of promoting the hatching of the CaO-based solvent. From the viewpoint of dissolving a large amount of cold iron source 7 which is one of the objects of the present invention, it is not preferable to use iron oxide that absorbs heat during heating and decomposition. Therefore, iron oxide is used as an oxygen source. This is preferably avoided as much as possible. Moreover, since the converter-type smelting furnace 1 is used as a smelting vessel, strong stirring is possible, and even when desiliconization treatment is performed using only oxygen gas 8, a sufficiently basic slag 6 is formed. Can be made.

この脱珪処理工程のあとに、図2−(C)に示すように、排滓工程を設け、脱珪処理で発生した、SiO2を大量に含む低塩基度のスラグ6を転炉型精錬炉1の炉口から排出する。 After this desiliconization treatment step, as shown in FIG. 2- (C), an exhausting step is provided to convert the low basicity slag 6 generated in the desiliconization treatment and containing a large amount of SiO 2 into a converter type refining process. Discharge from the furnace port of the furnace 1.

排滓工程後は、転炉型精錬炉内に残留させた溶銑5にCaO系媒溶剤及び酸素源を供給して、図2−(D)に示すように、溶銑5を脱燐処理する。脱燐処理工程において、炉内のスラグの塩基度は1.5〜3.5の範囲に調整する。この脱燐処理工程において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。本発明は多量の冷鉄源7の溶解を目的の1つとするものであり、昇熱時及び分解時に吸熱する酸化鉄を酸素源として使用することはできるだけ避けることが好ましい。   After the exhausting step, the hot metal 5 remaining in the converter type refining furnace is supplied with a CaO-based solvent and an oxygen source, and the hot metal 5 is dephosphorized as shown in FIG. In the dephosphorization process, the basicity of the slag in the furnace is adjusted to a range of 1.5 to 3.5. The oxygen source used in this dephosphorization process is mainly composed of the oxygen gas 8 from the top blowing lance 2 as in the desiliconization process, but a part of iron oxide may be used. The present invention aims to dissolve a large amount of the cold iron source 7, and it is preferable to avoid the use of iron oxide that absorbs heat during heating and decomposition as an oxygen source as much as possible.

脱燐処理で使用するCaO系媒溶剤としては、生石灰や炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱燐処理時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。   As the CaO-based medium solvent used in the dephosphorization treatment, quick lime, calcium carbonate, or the like can be used. However, it is not limited to these, What contains 50 mass% or more of CaO, and also contains other components, such as a fluorine and an alumina as needed, can be used as a CaO type | system | group solvent solvent at the time of a dephosphorization process. . As a method for adding the CaO-based medium solvent, granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged through an upper blowing lance 2 or the like.

溶銑中の燐は供給される酸素源中の酸素に酸化されて燐酸化物(P25)となり、この燐酸化物が、CaO系媒溶剤の滓化によって形成され、脱燐精錬剤として機能するスラグ中に3CaO・P25なる安定形態の化合物として取り込まれ、溶銑5の脱燐反応が進行する。 Phosphorus in the hot metal is oxidized to oxygen in the supplied oxygen source to become phosphorus oxide (P 2 O 5 ), which is formed by the incubation of the CaO-based solvent and functions as a dephosphorizing refining agent. Incorporated into the slag as a stable compound of 3CaO · P 2 O 5 , the dephosphorization reaction of the hot metal 5 proceeds.

脱燐反応が進行し溶銑中燐濃度が所定の値に低下したなら、脱燐処理を終了し、図2−(E)に示すように、転炉型精錬炉1を出湯口4が設置された側に傾転させて転炉型精錬炉内の溶銑5を出湯口4を介して溶銑保持容器(図示せず)に出湯する(出湯工程)。脱燐処理において生成するスラグは「脱燐スラグ」とも呼ばれる。以下、脱燐処理において生成するスラグを脱燐スラグと記す。   When the dephosphorization reaction proceeds and the phosphorus concentration in the hot metal is lowered to a predetermined value, the dephosphorization process is finished, and the converter-type refining furnace 1 is provided with a tap 4 as shown in FIG. The hot metal 5 in the converter type refining furnace is discharged to a hot metal holding container (not shown) through the hot water outlet 4 (a hot water discharge step). The slag generated in the dephosphorization process is also called “dephosphorization slag”. Hereinafter, the slag generated in the dephosphorization process is referred to as dephosphorization slag.

この出湯工程後、炉内の脱燐スラグを排出せずに、転炉型精錬炉1に冷鉄源7及び溶銑5を装入し、次チャージの脱珪処理工程を開始してもよく、また、炉内の脱燐スラグを排出した後、冷鉄源7及び溶銑5を装入し、次チャージの脱珪処理工程を開始してもよい。炉内に形成された脱燐スラグの全量または大半を炉内に残留させて次チャージの脱珪処理を開始した場合には、前チャージの脱燐スラグの有する熱量及び鉄分を次チャージの脱珪処理において回収することができるとともに、前チャージの脱燐スラグ中のCaO分を次チャージの脱珪処理におけるCaO源として活用することができ、脱珪処理時のCaO系媒溶剤の使用量を削減することができる。   After discharging the hot water, without discharging the dephosphorization slag in the furnace, the converter type refining furnace 1 may be charged with the cold iron source 7 and the hot metal 5 to start the next charge desiliconization process. In addition, after the dephosphorization slag in the furnace is discharged, the cold iron source 7 and the hot metal 5 may be charged to start the next charge desiliconization process. When all or most of the dephosphorization slag formed in the furnace is left in the furnace and desiliconization treatment for the next charge is started, the amount of heat and iron content of the dephosphorization slag of the previous charge is depleted. It can be recovered in the treatment, and the CaO content in the dephosphorization slag of the previous charge can be used as a CaO source in the desiliconization treatment of the next charge, reducing the amount of CaO-based solvent used during the desiliconization treatment can do.

本発明では、このようにして溶銑5に脱珪処理及び脱燐処理を施す際に、炉内に残留している脱燐スラグから溶銑5への復燐反応が脱珪処理工程において生じないように、脱珪処理時に生成するスラグ6(以下、「脱珪スラグ6」と記す)の塩基度([質量%CaO]/[質量%SiO2])を適切に調整する。 In the present invention, when performing desiliconization treatment and dephosphorization treatment on the hot metal 5 in this way, the dephosphorization reaction from the dephosphorization slag remaining in the furnace to the hot metal 5 does not occur in the desiliconization treatment step. In addition, the basicity ([mass% CaO] / [mass% SiO 2 ]) of the slag 6 generated during the desiliconization treatment (hereinafter referred to as “desiliconized slag 6”) is appropriately adjusted.

脱燐スラグ中の燐は、多くの場合、2CaO・SiO2と3CaO・P25との固溶体として存在することが知られている。従って、復燐反応を防止するためには、この固溶体が、脱燐スラグと低塩基度の脱珪スラグ6とが反応した場合に、反応後の脱珪スラグ6に溶解することを防ぐようにすればよい。本発明者らは、鋭意研究の結果、脱珪処理後の脱珪スラグ6の塩基度が、状態図上のSiO2飽和領域に到達しないように脱珪スラグ6の組成を調整することで、復燐反応を実質的に防止できることを見出した。 It is known that phosphorus in the dephosphorized slag is often present as a solid solution of 2CaO · SiO 2 and 3CaO · P 2 O 5 . Therefore, in order to prevent the dephosphorization reaction, when the dephosphorization slag and the low basicity desiliconization slag 6 are reacted, the solid solution is prevented from dissolving in the desiliconization slag 6 after the reaction. do it. As a result of intensive studies, the inventors have adjusted the composition of the desiliconized slag 6 so that the basicity of the desiliconized slag 6 after the desiliconization treatment does not reach the SiO 2 saturation region on the phase diagram. It has been found that the recovery reaction can be substantially prevented.

脱珪スラグ6の主成分はCaO、SiO2、FeOの3成分と見なすことができ、この3成分状態図の1300℃における等温断面図の一部を図3に示す。図3において、1300℃におけるSiO2飽和領域は、「斜線部」の範囲として表される。脱燐スラグの塩基度はSiO2飽和領域よりも高塩基度側、即ち、高CaO濃度側であるが、脱珪反応の進行に伴ってSiO2が生成し、このSiO2と脱燐スラグとが反応することから、炉内の脱珪スラグ6の組成は高SiO2側へ移動する。本発明では、脱珪スラグ6の組成が、高SiO2側に移動してもSiO2飽和領域に達しないように、脱珪スラグ6の組成を調整する。 The main components of the desiliconized slag 6 can be regarded as three components of CaO, SiO 2 , and FeO. FIG. 3 shows a part of an isothermal sectional view at 1300 ° C. of the three component phase diagram. In FIG. 3, the SiO 2 saturated region at 1300 ° C. is represented as a “shaded part” range. Basicity of dephosphorization slag SiO 2 high basicity side than the saturation region, i.e., is a high CaO concentration side, SiO 2 is produced with the progress of the desiliconizing reaction, and the SiO 2 and dephosphorization slag Reacts, the composition of the desiliconized slag 6 in the furnace moves to the high SiO 2 side. In the present invention, the composition of the desiliconized slag 6 is adjusted so that the composition of the desiliconized slag 6 does not reach the SiO 2 saturation region even if it moves to the high SiO 2 side.

SiO2飽和領域の境界線上の組成は、スラグ中のFeO濃度つまり鉄酸化物濃度に依存する。図3には、10質量%と20質量%との異なるFeO濃度での境界線上の組成を示した。スラグ中のFeO濃度が10質量%の場合は、脱珪スラグ6の塩基度が0.7以下になるとSiO2飽和領域に達し、スラグ中のFeO濃度が20質量%の場合は、脱珪スラグ6の塩基度が0.5以下になるとSiO2飽和領域に達する。スラグ中のFeO濃度は脱珪処理期間の吹錬条件(送酸流量、底吹きガス流量など)で決まるが、吹錬条件から予想されるスラグ中のFeO濃度に応じて、境界線上の組成を越えないように適切に脱珪スラグ6の目標塩基度を設定すればよい。 The composition on the boundary line of the SiO 2 saturated region depends on the FeO concentration in the slag, that is, the iron oxide concentration. FIG. 3 shows the composition on the boundary line at different FeO concentrations of 10 mass% and 20 mass%. When the FeO concentration in the slag is 10% by mass, the SiO 2 saturation region is reached when the basicity of the desiliconized slag 6 is 0.7 or less, and when the FeO concentration in the slag is 20% by mass, the desiliconized slag is obtained. When the basicity of 6 is 0.5 or less, the SiO 2 saturation region is reached. The FeO concentration in the slag is determined by the blowing conditions during the desiliconization process (such as acid flow rate and bottom blowing gas flow rate), but the composition on the boundary line depends on the FeO concentration in the slag expected from the blowing conditions. What is necessary is just to set the target basicity of desiliconization slag 6 appropriately so that it may not be exceeded.

また、SiO2飽和領域は脱珪スラグ6の温度によって変化する。一般には温度が高くなるほどSiO2飽和領域は小さくなり、温度が低くなるほど大きくなる。従って、脱珪処理時に目標とする温度において、CaO、SiO2、FeOの3元状態図のSiO2飽和領域の境界線上の組成を確認し、脱珪スラグ6の目標塩基度を設定すればよい。 Further, the SiO 2 saturation region changes depending on the temperature of the desiliconized slag 6. In general, the higher the temperature, the smaller the SiO 2 saturation region and the larger the temperature. Therefore, at the target temperature during the desiliconization process, the composition on the boundary line of the SiO 2 saturation region of the ternary phase diagram of CaO, SiO 2 , and FeO may be confirmed, and the target basicity of the desiliconization slag 6 may be set. .

通常の脱珪処理条件においては、溶銑温度が1300℃程度で、脱珪スラグ中のFeO濃度が10〜20%程度であることを勘案すると、実用的には脱珪処理後の脱珪スラグ6の塩基度を0.8以上とすることで復燐反応が抑制される。上記の考えをより確実に実行するには、脱珪処理の全期間を通じて、脱珪スラグ6の組成がSiO2飽和領域に到達しないように、つまり脱珪スラグ6の塩基度を0.8以上に調整すればよい。尚、脱珪スラグ6の温度は溶銑5の温度と同等と考えればよい。 Considering that the normal desiliconization treatment condition is that the hot metal temperature is about 1300 ° C. and the FeO concentration in the desiliconization slag is about 10 to 20%, the desiliconization slag 6 after the desiliconization treatment is practically used. By setting the basicity to 0.8 or more, the recovery reaction is suppressed. In order to more reliably execute the above idea, the composition of the desiliconized slag 6 does not reach the SiO 2 saturation region throughout the entire period of the desiliconization process, that is, the basicity of the desiliconized slag 6 is 0.8 or more. You may adjust to. In addition, what is necessary is just to consider that the temperature of the desiliconization slag 6 is equivalent to the temperature of the hot metal 5.

この考え方に基づけば、通常の高炉で出銑された燐濃度が0.10〜0.15質量%程度の脱珪処理前の溶銑が、前チャージに由来する燐を含有する脱珪スラグと接触しても、復燐反応を生じさせることなく、排滓後の脱燐処理工程を有利に行うことが実現される。   Based on this concept, the hot metal before desiliconization treatment with a phosphorus concentration of about 0.10 to 0.15% by mass in a normal blast furnace is in contact with desiliconized slag containing phosphorus derived from the precharge. Even in this case, it is possible to advantageously perform the dephosphorization treatment step after the draining without causing the recovery reaction.

尚、本発明では、脱珪スラグ中の鉄酸化物をFeOと見なして状態図上の解釈を行っている。鉄酸化物にはFe23も存在するが、脱珪スラグ6を含めて製鋼スラグでは鉄酸化物の主成分はFeOであり、実質的にFeOとして取り扱っても問題はない。また、製鋼スラグにはMgOやAl23などの他のスラグ成分も存在するが、これらの影響は状態図計算ソフトなどを用いて考慮してもよい。 In the present invention, the iron oxide in the desiliconized slag is regarded as FeO and is interpreted on the phase diagram. Fe 2 O 3 is also present in iron oxide, but in steelmaking slag including desiliconized slag 6, the main component of iron oxide is FeO, and there is no problem even if it is handled as FeO substantially. In addition, other slag components such as MgO and Al 2 O 3 are present in steelmaking slag, but these effects may be taken into account using phase diagram calculation software or the like.

脱珪スラグ6の塩基度([質量%CaO]/[質量%SiO2])は、下記の(1)式に基づいて計算することができる。
塩基度=[(炉内残留CaO量(kg/溶銑-t))+(脱珪処理での添加CaO量(kg/溶銑-t))]÷[(炉内残留SiO2量(kg/溶銑-t))+(脱珪処理での生成SiO2量(kg/溶銑-t))]…(1)
尚、脱珪処理での生成SiO2量は、脱珪処理前後の溶銑中Si濃度の変化から算出できる。
The basicity ([mass% CaO] / [mass% SiO 2 ]) of the desiliconized slag 6 can be calculated based on the following formula (1).
Basicity = [(furnace residual amount of CaO (kg / molten pig iron -t)) + (addition amount of CaO in the desiliconization treatment (kg / molten pig iron -t))] ÷ [(furnace residual SiO 2 amount (kg / molten pig iron -t)) + (Amount of SiO 2 produced by desiliconization treatment (kg / mol -t))] ... (1)
Note that the amount of SiO 2 produced in the desiliconization treatment can be calculated from the change in the Si concentration in the hot metal before and after the desiliconization treatment.

本発明においては、脱珪スラグ6の塩基度の調整のために、脱珪処理前及び/または脱珪処理中に、(1)式に則り、必要に応じてCaO系媒溶剤を炉内に添加する。このCaO系媒溶剤としては、生石灰、炭酸カルシウム、ドロマイト、転炉スラグ(転炉での脱炭精錬で生成するスラグ)、取鍋内スラグ(取鍋内の溶鋼上に存在するスラグであって、出鋼時に混入した転炉スラグとアルミナなどの脱酸生成物とに、生石灰などのスラグ改質剤を添加したもの)などが使用できる。   In the present invention, in order to adjust the basicity of the desiliconization slag 6, before the desiliconization treatment and / or during the desiliconization treatment, a CaO-based solvent is introduced into the furnace as required according to the formula (1). Added. The CaO-based solvent includes quick lime, calcium carbonate, dolomite, converter slag (slag generated by decarburization refining in the converter), slag in the ladle (slag present on the molten steel in the ladle, In addition, a converter slag mixed at the time of steel production and a deoxidation product such as alumina added with a slag modifier such as quicklime can be used.

脱珪処理では炉内温度が1250〜1350℃程度と低く、数分間の短時間の処理で大量のSiO2が生成することから、少ないCaO系媒溶剤の添加量で効率的に復燐を抑制するためには、低融点で滓化しやすく、且つCaO含有量の高いCaO系媒溶剤を用いることが好ましい。具体的には1300℃での液相比率が25体積%以上となるCaO系媒溶剤が望ましく、このようなCaO系媒溶剤の例としては、塩基度([質量%CaO]/[質量%SiO2])が2〜4.5であり、Fe23含有量とAl23含有量との和が10質量%以上の製鋼スラグが挙げられる。 In the desiliconization process, the furnace temperature is as low as about 1250 to 1350 ° C., and a large amount of SiO 2 is generated in a short time of several minutes. Therefore, rephosphorization is efficiently suppressed with a small addition amount of CaO-based solvent. In order to do this, it is preferable to use a CaO-based medium solvent that has a low melting point and easily hatches and has a high CaO content. Specifically, a CaO-based solvent having a liquid phase ratio of 25% by volume or more at 1300 ° C. is desirable. Examples of such a CaO-based solvent include basicity ([mass% CaO] / [mass% SiO 2 ]) is 2 to 4.5, and a steelmaking slag having a sum of Fe 2 O 3 content and Al 2 O 3 content of 10% by mass or more can be mentioned.

CaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。CaO系媒溶剤の添加時期は脱珪処理を開始してからでもよいが、脱珪処理中に脱珪スラグ6を十分に滓化させるためには、CaO系媒溶剤を事前に炉内に投入しておいてもよい。前チャージの脱燐スラグを炉内に積極的に残留させた場合は、脱珪処理工程に供する溶銑5の珪素濃度が低い場合には、CaO系媒溶剤の添加が必要でないことがある。尚、CaO系媒溶剤の使用量削減のためには、炉内に残留させる脱燐スラグの量は50質量%以上であることが好ましい。   As a method for adding the CaO-based medium solvent, granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged via an upper blowing lance 2 or the like. The CaO-based solvent may be added after the desiliconization process is started, but in order to sufficiently hatch the desiliconized slag 6 during the desiliconization process, the CaO-based solvent is introduced into the furnace in advance. You may keep it. When the pre-charge dephosphorization slag is actively left in the furnace, it may not be necessary to add a CaO-based solvent if the silicon concentration of the hot metal 5 used in the desiliconization process is low. In order to reduce the amount of CaO-based solvent used, the amount of dephosphorization slag remaining in the furnace is preferably 50% by mass or more.

本発明に係る溶銑5の予備処理方法では、脱珪処理終了後、転炉型精錬炉1から炉内のSiO2を大量に含む低塩基度の脱珪スラグ6を排出する。排滓性の観点から、排出する脱珪スラグ6の塩基度は1.5以下とし、且つ、脱珪スラグ6の温度を1280℃以上とすることが好ましい。これは、脱珪スラグ6の流動性を確保して、良好な排滓性及び排滓率(排滓率(質量%)=(排出スラグ質量)×100/[(脱珪処理工程で生成したスラグ質量)+(前チャージの残留スラグ質量)])を得るためである。CaO系媒溶剤の添加量を削減する観点からは、脱珪スラグ6の組成がSiO2飽和領域に達しない範囲内で、更に塩基度を低下させることが望ましく、従って、塩基度を1.2以下、より望ましくは1.0以下とすることが好適である。 In the pretreatment method of the hot metal 5 according to the present invention, after the desiliconization process is completed, the low-basic desiliconization slag 6 containing a large amount of SiO 2 in the furnace is discharged from the converter type refining furnace 1. From the viewpoint of exhaustability, the basicity of the desiliconized slag 6 to be discharged is preferably 1.5 or less, and the temperature of the desiliconized slag 6 is preferably 1280 ° C. or higher. This ensures the fluidity of the desiliconized slag 6, and has good evacuation property and evacuation rate (exhaust rate (mass%) = (exhaust slag mass) × 100 / [(generated in the desiliconization process). This is to obtain (slag mass) + (residual slag mass of the previous charge)]). From the viewpoint of reducing the addition amount of the CaO-based solvent, it is desirable to further reduce the basicity within a range in which the composition of the desiliconized slag 6 does not reach the SiO 2 saturation region. Hereinafter, it is more preferable to set it to 1.0 or less.

脱珪スラグ6の塩基度が1.5を超える場合、固相スラグが生じることでスラグ流動性が低くなり、また、脱珪スラグ6の温度が1280℃を下回っても、同様に固相スラグの増加によるスラグ流動性の低下、並びに、液相スラグ自体の粘性上昇が生じることから、脱珪スラグ6の流動性が低くなり排滓が困難になる。これを防止するために、使用する溶銑5の初期条件によっては、例えば脱珪処理が進んで溶銑中珪素濃度が0.05質量%を下回るような段階であっても、脱珪スラグ6の温度が1280℃を下回る場合が発生するが、この場合には、酸素ガスを更に供給して脱炭反応を進めてスラグ温度を高めて排滓工程を行う必要がある。排滓のための更に好ましい条件は、脱珪スラグ6の塩基度が1.0以下、脱珪スラグ6の温度が1320℃以上である。   When the basicity of the desiliconized slag 6 exceeds 1.5, the solid phase slag is generated, so that the slag fluidity is lowered, and even if the temperature of the desiliconized slag 6 is lower than 1280 ° C., the solid phase slag is similarly produced. Since the decrease in slag fluidity due to the increase in the viscosity and the increase in the viscosity of the liquid phase slag itself occur, the fluidity of the desiliconized slag 6 becomes low and it becomes difficult to discharge. In order to prevent this, depending on the initial conditions of the hot metal 5 to be used, for example, even if the silicon removal process proceeds and the silicon concentration in the hot metal is less than 0.05% by mass, the temperature of the silicon removal slag 6 However, in this case, it is necessary to further supply oxygen gas to advance the decarburization reaction to increase the slag temperature and to perform the exhausting process. More preferable conditions for the removal are that the basicity of the desiliconized slag 6 is 1.0 or less and the temperature of the desiliconized slag 6 is 1320 ° C. or more.

一方、脱珪スラグ6の温度が高すぎると、脱珪スラグ6の塩基度を0.8以上に調整しても脱珪スラグからの復燐が起きることがあるので、脱珪処理終了後の溶銑温度は1380℃以下であることが好ましい。   On the other hand, if the temperature of the desiliconization slag 6 is too high, dephosphorization from the desiliconization slag may occur even if the basicity of the desiliconization slag 6 is adjusted to 0.8 or more. The hot metal temperature is preferably 1380 ° C. or lower.

脱珪処理後の脱珪スラグからの復燐反応を実用的に抑制する観点から、脱珪処理後の炉内スラグのトータル鉄(T.Fe)含有量とマンガン酸化物(MnO)含有量との和を10質量%以上30質量%以下に調整することが好ましい。ここで、トータル鉄含有量とは、スラグ中の鉄酸化物(FeO、Fe23)に含まれる鉄の濃度を意味するものである。スラグ中の鉄酸化物及びマンガン酸化物は、ともに溶銑中の燐を酸化する酸化源となり得るので、脱珪処理終了後のスラグ塩基度が0.8以上1.5以下の条件では、スラグ中のトータル鉄含有量とマンガン酸化物含有量との和を10質量%以上にすれば、復燐反応を実用的に抑制することができる。また、スラグ中のトータル鉄含有量とマンガン酸化物含有量との和が30質量%を超えると、スラグ中に移行した燐を安定化するのに必要なCaO濃度が減少してしまうとともに、有価金属成分(Mn、Fe)の損失が増大し、また、操業上もスラグのフォーミングやスロッピングの制御が困難となることから、望ましくない。 From the viewpoint of practically suppressing the dephosphorization reaction from the desiliconized slag after the desiliconization treatment, the total iron (T.Fe) content and the manganese oxide (MnO) content of the furnace slag after the desiliconization treatment Is preferably adjusted to 10 mass% or more and 30 mass% or less. Here, the total iron content means the concentration of iron contained in the iron oxide (FeO, Fe 2 O 3 ) in the slag. Both iron oxide and manganese oxide in the slag can be an oxidizing source that oxidizes phosphorus in the hot metal. Therefore, under conditions where the slag basicity after the desiliconization treatment is 0.8 to 1.5, If the sum of the total iron content and the manganese oxide content is 10% by mass or more, the dephosphorization reaction can be practically suppressed. In addition, when the sum of the total iron content and the manganese oxide content in the slag exceeds 30% by mass, the CaO concentration necessary for stabilizing the phosphorus that has migrated into the slag decreases, and valuable. Loss of metal components (Mn, Fe) increases, and slag forming and slopping are difficult to control in operation.

脱珪スラグ中のトータル鉄含有量とマンガン酸化物含有量との和(=[質量%T.Fe]+[質量%MnO])は、上吹き酸素ガスの供給速度、底吹きガスの供給速度、上吹きガスの浴面位置での動圧、酸化鉄及び酸化マンガンの供給速度のうちの少なくとも一つ以上を調節することにより制御される。   The sum of the total iron content and manganese oxide content in desiliconized slag (= [mass% T. Fe] + [mass% MnO]) is the supply rate of the top blown oxygen gas and the feed rate of the bottom blown gas It is controlled by adjusting at least one of the dynamic pressure at the bath surface position of the top blowing gas and the supply rate of iron oxide and manganese oxide.

本発明において、排滓工程における脱珪スラグ6の排滓率は30質量%以上を確保する。これは、その後の脱燐処理工程においては脱燐反応を進める上で脱燐スラグの塩基度を1.5〜3.5に調整する必要があり、排滓率が30質量%を下回ると、脱燐処理工程で添加すべきCaO系媒溶剤の量が多くなってしまうだけでなく、脱燐処理におけるスラグ量が多くなり、脱燐処理中のスラグフォーミングが抑制できず、転炉型精錬炉1の炉口からのスラグ漏洩による操業支障が生じるからである。   In the present invention, the removal rate of the desiliconized slag 6 in the removal process ensures 30% by mass or more. This is because it is necessary to adjust the basicity of the dephosphorization slag to 1.5 to 3.5 in order to advance the dephosphorization reaction in the subsequent dephosphorization process, and when the rejection rate is less than 30% by mass, Not only will the amount of CaO-based solvent to be added in the dephosphorization process increased, but the amount of slag in the dephosphorization process will increase, and slag forming during the dephosphorization process will not be suppressed, and a converter type refining furnace This is because an operational trouble due to slag leakage from the furnace port 1 occurs.

また、従来の溶銑予備処理から転炉脱炭精錬までの平均的な生石灰の原単位に比較してコスト高を回避し、且つ、脱燐処理での最低限必要な残留スラグ量を確保するためには、排滓率を50質量%以上80質量%以下とすることが好ましい。つまり、溶銑5の予備処理から脱炭精錬までで消費するCaO系媒溶剤の総使用量を抑制するためには、排滓率を50質量%以上に高めることが好ましい。一方、生成した脱珪スラグ6の80質量%を超えて排滓してしまうと、次工程の脱燐処理工程において新たに添加するCaO系媒溶剤の滓化が損なわれ、脱燐反応が阻害される虞があるので、排滓率は80質量%以下とすることが好ましい。   In addition, in order to avoid a high cost compared to the average unit of quick lime from conventional hot metal pretreatment to converter decarburization refining, and to secure the minimum amount of residual slag required for dephosphorization In this case, it is preferable that the rejection rate is 50% by mass or more and 80% by mass or less. That is, in order to suppress the total amount of CaO-based medium solvent consumed from the pretreatment of the hot metal 5 to the decarburization and refining, it is preferable to increase the waste rate to 50% by mass or more. On the other hand, if the generated desiliconized slag 6 exceeds 80% by mass, the hatching of the CaO-based solvent newly added in the next dephosphorization treatment step is impaired, and the dephosphorization reaction is inhibited. Therefore, the rejection rate is preferably 80% by mass or less.

以上説明したように、本発明によれば、同一の転炉型精錬炉1を用いて途中の排滓工程を挟んで脱珪処理工程及び脱燐処理工程を交互に行う際に、脱珪処理工程において、脱珪スラグ6の組成がSiO2の飽和領域にならないように、脱珪スラグ6の塩基度([質量%CaO]/[質量%SiO2])を調整するので、前チャージの脱燐スラグが炉内に残留しても、残留した脱燐スラグからの溶銑5への復燐反応が防止され、次の脱燐処理工程では少ないCaO系媒溶剤の使用量で十分な脱燐処理を行うことが実現される。 As described above, according to the present invention, the desiliconization process is performed when the desiliconization process and the dephosphorization process are alternately performed by using the same converter-type refining furnace 1 with the intermediate desorption process interposed therebetween. In the process, the basicity ([mass% CaO] / [mass% SiO 2 ]) of the desiliconized slag 6 is adjusted so that the composition of the desiliconized slag 6 does not become the SiO 2 saturation region. Even if phosphorus slag remains in the furnace, the dephosphorization reaction from the remaining dephosphorization slag to the hot metal 5 is prevented, and the dephosphorization process is sufficient with a small amount of CaO-based solvent used in the next dephosphorization process. Is realized.

また、本発明では、転炉型精錬炉1で溶銑5の脱珪処理を行うので、炉容積に余裕があり、酸化鉄を使用しなくても多量の気体酸素源を短時間で溶銑5に供給することが可能であり、珪素の燃焼熱は酸化鉄の分解熱に費やされることはなく、この燃焼熱を冷鉄源7の溶解に活用することが可能となり、更に、本発明では、脱珪処理後に連続的に脱燐処理を行うので、精錬容器の移し替えによる放熱分を冷鉄源溶解のための熱として活用することが可能となる。   Further, in the present invention, since the hot metal 5 is desiliconized in the converter-type refining furnace 1, the furnace volume is sufficient, and a large amount of gaseous oxygen source can be converted into the hot metal 5 in a short time without using iron oxide. The combustion heat of silicon is not expended on the heat of decomposition of iron oxide, and this heat of combustion can be used to dissolve the cold iron source 7. Since the dephosphorization process is continuously performed after the silicidation process, it is possible to utilize the heat released by the transfer of the refining vessel as the heat for melting the cold iron source.

尚、本発明は上記説明の範囲に限るものではなく、種々の変更が可能である。例えば、脱珪処理及び脱燐処理においては、溶銑5への熱付与をより有利に行うために、熱付与機能を有するデバイス(二次燃焼促進型ランス、燃料供給型ランス)を使用するなどしてもよい。   In addition, this invention is not limited to the range of the said description, A various change is possible. For example, in the desiliconization process and the dephosphorization process, a device having a heat application function (secondary combustion promoting lance, fuel supply type lance) may be used in order to more advantageously apply heat to the hot metal 5. May be.

図1に示すような容量300トン規模の転炉型精錬炉を用いて溶銑予備処理を実施した。転炉型精錬炉に収容された300トンの溶銑に対し、上吹きランスから精錬用の酸素ガスを溶銑に吹き付けるとともに、炉底に設けた底吹き羽口から撹拌用の窒素ガスを溶銑中に吹き込んで予備処理を実施した。CaO系媒溶剤としては、脱珪処理及び脱燐処理ともに生石灰(CaO)を使用した。   The hot metal preliminary treatment was performed using a converter-type refining furnace having a capacity of 300 tons as shown in FIG. Oxygen for refining is blown to the hot metal from the top blowing lance against 300 tons of hot metal contained in the converter-type refining furnace, and nitrogen gas for stirring is introduced into the hot metal from the bottom blowing tuyeres provided at the bottom of the furnace. Pretreatment was performed by blowing. As the CaO-based solvent, quick lime (CaO) was used for both the desiliconization treatment and the dephosphorization treatment.

溶銑の予備処理は、図2に示すように、転炉型精錬炉に溶銑を装入し更に生石灰を添加し、上吹きランスから酸素ガスを供給して脱珪処理を行い、次いで、脱珪スラグの一部を排滓し、その後、生石灰を添加した後に引き続き上吹きランスから酸素ガスを供給して溶銑の脱燐処理を行った。脱燐処理後、脱燐スラグは炉内への付着分を除いて全て排出し、次チャージの脱珪処理工程を行った。脱珪処理工程に供する溶銑は、その温度が1300℃、燐濃度が0.10質量%に調整し、脱珪処理後の排滓工程での脱珪スラグの排滓率は50質量%に調整した。脱燐処理後の溶銑の燐濃度の目標値は0.030質量%以下とした。   As shown in FIG. 2, the hot metal preliminary treatment is performed by introducing hot metal into a converter-type refining furnace, adding quick lime, supplying oxygen gas from an upper blowing lance, and performing a desiliconization process. A part of the slag was discharged, and after adding quick lime, oxygen gas was subsequently supplied from the top blowing lance to dephosphorize the hot metal. After the dephosphorization treatment, the dephosphorization slag was completely discharged except for the amount adhering to the furnace, and the next charge desiliconization treatment step was performed. The hot metal to be used in the desiliconization process is adjusted to a temperature of 1300 ° C. and a phosphorus concentration of 0.10% by mass, and the desiliconization slag rejection rate in the exhaust process after the desiliconization process is adjusted to 50% by mass. did. The target value of the phosphorus concentration in the hot metal after the dephosphorization treatment was set to 0.030% by mass or less.

この予備処理方法において、本発明例1及び本発明例2では、脱珪処理工程における脱珪スラグの塩基度が0.8以上になるように、(1)式に則って生石灰の添加量を調整し、また、脱燐処理工程では脱燐スラグの塩基度が2.0となるように生石灰を添加した。一方、比較例1及び比較例2では、脱珪処理工程における脱珪スラグの塩基度が0.8未満になるように、生石灰の添加量を調整した。但し、比較例1及び比較例2では、脱珪処理工程及び脱燐処理工程での生石灰の合計添加量がそれぞれ本発明例1及び本発明例2と同一になるように、脱燐処理工程での生石灰の添加量を増加させた。   In this preliminary treatment method, in the present invention example 1 and the present invention example 2, the amount of quicklime added according to the formula (1) is adjusted so that the basicity of the desiliconized slag in the desiliconization process is 0.8 or more. In addition, quick lime was added so that the basicity of the dephosphorization slag was 2.0 in the dephosphorization process. On the other hand, in the comparative example 1 and the comparative example 2, the addition amount of quicklime was adjusted so that the basicity of the desiliconization slag in a desiliconization process might be less than 0.8. However, in Comparative Example 1 and Comparative Example 2, in the dephosphorization treatment step, the total amount of quicklime added in the desiliconization treatment step and the dephosphorization treatment step is the same as that of Invention Example 1 and Invention Example 2, respectively. The amount of quicklime added was increased.

脱珪処理工程に供した溶銑の珪素濃度、脱珪処理時の生石灰添加量、脱珪処理後に採取した脱珪スラグの塩基度、脱珪スラグ中のトータル鉄含有量とマンガン酸化物含有量との和(=[質量%T.Fe]+[質量%MnO])、脱珪スラグの温度を表1に示す。また、排滓工程後の脱燐処理工程での生石灰添加量、脱燐処理後の溶銑中燐濃度、脱珪処理工程と脱燐処理工程とでの生石灰合計添加量を併せて表1に示す。   The silicon concentration of the hot metal used in the desiliconization process, the amount of quicklime added during the desiliconization process, the basicity of the desiliconized slag collected after the desiliconization process, the total iron content and the manganese oxide content in the desiliconized slag Table 1 shows the temperature of desiliconized slag (= [mass% T. Fe] + [mass% MnO]). Further, Table 1 shows the quick lime addition amount in the dephosphorization treatment step after the waste removal step, the concentration of phosphorus in hot metal after the dephosphorization treatment, and the total quick lime addition amount in the desiliconization treatment step and the dephosphorization treatment step. .

Figure 0005983492
Figure 0005983492

脱珪処理工程に供した溶銑の珪素濃度が同一である本発明例1と比較例1、及び、本発明例2と比較例2において、生石灰の合計添加量が同一になるように予備処理を行ったが、脱珪処理中及び処理後の脱珪スラグの塩基度が0.8以上である本発明例1、2では、脱燐処理後の溶銑の燐濃度が目標の0.030質量%以下となった。これに対して、脱珪処理中及び処理後の脱珪スラグの塩基度が0.8未満の比較例1、2では、脱燐処理後の溶銑の燐濃度が目標の0.030質量%を超えており、予備処理後の後工程で行われた転炉での脱炭精錬において、燐除去のために通常よりも過剰の生石灰を必要とした。   In the present invention example 1 and comparative example 1 in which the silicon concentration of the hot metal provided in the desiliconization treatment process is the same, and in the present invention example 2 and comparative example 2, the preliminary treatment is performed so that the total amount of quicklime is the same. In the present invention examples 1 and 2 in which the basicity of the desiliconization slag during and after the desiliconization treatment is 0.8 or more, the phosphorus concentration of the hot metal after the dephosphorization treatment is a target of 0.030% by mass. It became the following. On the other hand, in Comparative Examples 1 and 2 in which the basicity of the desiliconized slag during and after the desiliconization treatment is less than 0.8, the phosphorus concentration of the hot metal after the dephosphorization treatment is the target of 0.030% by mass. In the decarburization and refining in the converter performed in the post-process after the pretreatment, an excess of quick lime was required to remove phosphorus.

実施例1で使用した転炉型精錬炉を用いて溶銑予備処理を実施した。この溶銑予備処理では、前チャージの脱燐スラグを炉内に残留させたこと、及び、脱珪処理後の排滓工程での脱珪スラグの排滓率を60質量%に調整したこと以外は、実施例1と同様の条件で溶銑の予備処理を実施した。前チャージの脱燐スラグの残留率(=100−排滓率)は、30〜100質量%の範囲で変更した。脱珪処理工程に供する溶銑は、その温度が1300℃、燐濃度が0.10質量%に調整し、脱燐処理後の溶銑の燐濃度の目標値は0.030質量%以下とした。   The hot metal preliminary treatment was performed using the converter type refining furnace used in Example 1. In this hot metal preliminary treatment, the dephosphorization slag of the pre-charge was left in the furnace, and the removal rate of the desiliconization slag in the removal process after the desiliconization treatment was adjusted to 60% by mass. The hot metal preliminary treatment was performed under the same conditions as in Example 1. The residual rate (= 100-exhaust rate) of the dephosphorization slag of the precharge was changed in the range of 30 to 100% by mass. The temperature of the hot metal used in the desiliconization process was adjusted to 1300 ° C. and the phosphorus concentration to 0.10% by mass, and the target value of the phosphorus concentration of the hot metal after the dephosphorization process was set to 0.030% by mass or less.

本発明例3では、脱珪処理工程に供する溶銑の珪素濃度が0.30質量%であり、残留させた前チャージの脱燐スラグだけで脱珪スラグの塩基度が0.8を確保できることから、生石灰を添加しないで脱珪処理を実施した。本発明例4〜8では、脱珪処理工程における脱珪スラグの塩基度が0.8以上になるように生石灰の添加量を調整した。一方、比較例3、4では、生石灰を添加せずに脱珪処理を行った結果、脱珪処理工程における脱珪スラグの塩基度は0.8未満になった。   In Example 3 of the present invention, the silicon concentration of the hot metal used for the desiliconization process is 0.30% by mass, and the basicity of the desiliconization slag can be ensured to be 0.8 only by the dephosphorization slag of the remaining precharge. The desiliconization treatment was carried out without adding quick lime. In Invention Examples 4 to 8, the amount of quicklime was adjusted so that the basicity of the desiliconized slag in the desiliconization process was 0.8 or more. On the other hand, in Comparative Examples 3 and 4, as a result of performing the desiliconization treatment without adding quick lime, the basicity of the desiliconization slag in the desiliconization treatment step was less than 0.8.

また、本発明例9〜11では、生石灰を添加して脱珪処理を行ったが、本発明例9は、脱珪スラグのトータル鉄含有量とマンガン酸化物含有量との和(=[質量%T.Fe]+[質量%MnO])を10質量%以下、本発明例10は、脱珪スラグの温度を1380℃以上、本発明例11は、脱珪スラグのトータル鉄含有量とマンガン酸化物含有量との和を30質量%以上とした場合の結果である。   Further, in the inventive examples 9 to 11, the desiliconization treatment was performed by adding quick lime, but the inventive example 9 is the sum of the total iron content and the manganese oxide content of the desiliconized slag (= [mass % T.Fe] + [mass% MnO]) is 10 mass% or less, Example 10 of the present invention has a desiliconization slag temperature of 1380 ° C. or more, Example 11 of the present invention is the total iron content of manganese and the manganese It is a result when the sum with oxide content is 30 mass% or more.

前チャージの脱燐スラグの炉内残留率、当該チャージの脱珪処理工程に供した溶銑の珪素濃度、脱珪処理時の生石灰添加量、及び、脱珪処理後に採取した脱珪スラグの塩基度、脱珪スラグ中のトータル鉄含有量とマンガン酸化物含有量との和、脱珪スラグの温度を表2に示す。また、当該チャージの排滓工程後の脱燐処理工程での生石灰添加量、脱燐処理後の溶銑中燐濃度、脱珪処理工程と脱燐処理工程とでの生石灰合計添加量を併せて表2に示す。   Residual rate of dephosphorization slag in pre-charge in furnace, silicon concentration of hot metal used in desiliconization process of charge, amount of quick lime added during desiliconization process, basicity of desiliconized slag collected after desiliconization process Table 2 shows the sum of the total iron content and the manganese oxide content in the desiliconized slag and the temperature of the desiliconized slag. In addition, the amount of quicklime added in the dephosphorization process after the discharge process of the charge, the concentration of phosphorus in hot metal after the dephosphorization process, and the total amount of quicklime added in the desiliconization process and the dephosphorization process are also shown. It is shown in 2.

Figure 0005983492
Figure 0005983492

脱珪処理工程に供した溶銑の珪素濃度が同じ0.40質量%で、脱燐スラグの全量を炉内に残留させて次チャージの脱珪処理を行った本発明例4と比較例3とで比較すると、脱珪処理後の脱珪スラグの塩基度が0.8以上である本発明例4では、脱燐処理後の溶銑燐濃度が目標の0.030質量%以下となった。これに対して、脱珪処理後の脱珪スラグの塩基度が0.8未満の比較例3では、生石灰の合計添加量が本発明例4よりも多いにも拘わらず、脱燐処理後の溶銑の燐濃度が目標の0.030質量%を超えており、予備処理後の後工程で行われた転炉での脱炭精錬において、燐除去のために通常よりも過剰の生石灰を必要とした。   Example 4 of the present invention and Comparative Example 3 in which the silicon concentration of the hot metal used in the desiliconization treatment step was the same 0.40% by mass, and the entire amount of dephosphorization slag was left in the furnace to perform the desiliconization treatment of the next charge. In the present invention example 4 in which the basicity of the desiliconized slag after the desiliconization treatment is 0.8 or more, the hot metal phosphorous concentration after the dephosphorization treatment became a target of 0.030% by mass or less. On the other hand, in Comparative Example 3 in which the basicity of the desiliconized slag after the desiliconization treatment is less than 0.8, the total amount of quicklime is greater than that of the present invention example 4, but after the dephosphorization treatment. The phosphorus concentration in the hot metal exceeds the target of 0.030% by mass, and in the decarburization and refining in the converter performed in the post-process after the pretreatment, an excess of quick lime is required to remove phosphorus. did.

脱燐処理後、脱燐スラグを炉内に残留させて次チャージの脱珪処理を行った本発明例3〜8では、積極的に脱燐スラグを炉内に残さなかった、実施例1に示す本発明例1、2と比較して、生石灰の合計添加量が同等或いは少ない量で目標の燐濃度の溶銑を得ることができた。   In the inventive examples 3 to 8 where the dephosphorization slag was left in the furnace after the dephosphorization treatment and the desiliconization treatment of the next charge was performed, the dephosphorization slag was not actively left in the furnace. Compared with the present invention examples 1 and 2, the hot metal having the target phosphorus concentration could be obtained with the same or less total amount of quicklime added.

また、本発明例9では、脱珪スラグのトータル鉄含有量とマンガン酸化物含有量との和が10質量%に達していないことから、途中の排滓を十分に行うことができず、一方、本発明例10では、脱珪スラグの温度が1380℃を超えており、本発明例9及び本発明例10では、脱珪処理において復燐を抑制するため生石灰の添加量が本発明例3〜8と比較して増大した。   Further, in Example 9 of the present invention, since the sum of the total iron content and the manganese oxide content of the desiliconized slag does not reach 10% by mass, it is not possible to perform exhaustion in the middle sufficiently, In the present invention example 10, the temperature of the desiliconized slag exceeds 1380 ° C., and in the present invention example 9 and the present invention example 10, the amount of quicklime added to suppress the dephosphorization in the desiliconization process is the present invention example 3. Increased compared to ~ 8.

本発明例11は、脱珪スラグのトータル鉄含有量とマンガン酸化物含有量との和が30質量%を超えており、脱珪処理中のスロッピングの制御が困難となった結果、吹錬の中断を強いられ、操業時間の延長による生産性の低下を余儀なくされた。また、脱珪スラグのトータル鉄含有量とマンガン酸化物含有量との和が高いことでスラグ中のCaO濃度が減少してしまい、脱燐処理での生石灰使用量も本発明例3〜8と比較すると増大した。   In Invention Example 11, the sum of the total iron content and the manganese oxide content of the desiliconized slag exceeds 30% by mass, and it is difficult to control the slopping during the desiliconization process. The company was forced to cease productivity and reduce productivity by extending operating hours. Moreover, the CaO density | concentration in slag reduces because the sum of the total iron content and manganese oxide content of desiliconization slag is low, and the amount of quicklime used in the dephosphorization process is also Examples 3-8 of the present invention. Increased in comparison.

比較例4は、生石灰の合計添加量が12.5kg/溶銑−tと多いにも拘わらず脱燐処理後の溶銑燐濃度は目標値を大幅に超えていた。   In Comparative Example 4, although the total amount of quicklime added was 12.5 kg / molten metal-t, the molten iron concentration after the dephosphorization treatment significantly exceeded the target value.

1 転炉型精錬炉
2 上吹きランス
3 底吹き羽口
4 出湯口
5 溶銑
6 スラグ
7 冷鉄源
8 酸素ガス
9 底吹きガス
10 装入鍋
DESCRIPTION OF SYMBOLS 1 Converter type refining furnace 2 Top blowing lance 3 Bottom blowing tuyere 4 Outlet 5 Hot metal 6 Slag 7 Cold iron source 8 Oxygen gas 9 Bottom blowing gas 10 Charging pan

Claims (4)

転炉型精錬炉内の溶銑に上吹きランスから酸素源を供給して溶銑を脱珪処理する脱珪処理工程と、該脱珪処理工程で生成したスラグの少なくとも一部を前記転炉型精錬炉から排滓する排滓工程と、該排滓工程後、前記転炉型精錬炉内にCaO系媒溶剤を添加し、前記上吹きランスから酸素源を供給して残留させた溶銑を脱燐処理する脱燐処理工程と、を有する溶銑の予備処理方法であって、
前記脱珪処理工程において、脱珪処理の全期間を通じて炉内スラグの組成がSiO2の飽和領域にならないように、前記脱珪処理中に前記転炉型精錬炉内にCaO系媒溶剤を添加して炉内スラグの塩基度([質量%CaO]/[質量%SiO2])を0.8以上に調整するとともに、
脱珪処理後の炉内スラグの温度を1280℃以上1380℃以下に調整し、且つ、脱珪処理後の炉内スラグの塩基度([質量%CaO]/[質量%SiO 2 ])を0.8以上1.2以下に調整し、
前記脱珪処理後の炉内スラグの温度及び塩基度([質量%CaO]/[質量%SiO 2 ])の調整によって炉内スラグの流動性を確保し、前記排滓工程における炉内スラグの排滓率(排滓率(質量%)=(排出スラグ質量)×100/[(脱珪処理工程で生成したスラグ質量)+(前チャージの残留スラグ質量)])を50質量%以上80質量%以下の範囲内にすることを特徴とする、溶銑の予備処理方法。
A desiliconization treatment step of desiliconizing the hot metal by supplying an oxygen source from the top blow lance to the hot metal in the converter type refining furnace, and at least a part of the slag generated in the desiliconization treatment step An exhausting process for exhausting from the furnace, and after the exhausting process, a CaO-based solvent is added to the converter type refining furnace, and an oxygen source is supplied from the top blowing lance to dephosphorize the molten iron remaining. A dephosphorization treatment step to treat, a hot metal pretreatment method comprising:
Said have you to desiliconization treatment step, as the composition of the in-furnace slag throughout the entire period of desiliconization work not saturation region of the SiO 2, CaO-based media solvent to the converter type refining furnace in the desiliconization treatment with adjusting basicity of furnace slag ([mass% CaO] / [wt% SiO 2]) to 0.8 or more by adding,
The temperature of the in-furnace slag after desiliconization treatment is adjusted to 1280 ° C. or more and 1380 ° C. or less, and the basicity ([mass% CaO] / [mass% SiO 2 ]) of the in-furnace slag after desiliconization treatment is 0 .8 to 1.2
The fluidity of the in-furnace slag is secured by adjusting the temperature and basicity ([mass% CaO] / [mass% SiO 2 ]) of the in-furnace slag after the desiliconization treatment , The rejection rate (rejection rate (mass%) = (exhaust slag mass) x 100 / [(slag mass generated in the desiliconization process) + (residual slag mass of the previous charge)]) is 50 mass% or more and 80 mass % Hot metal pretreatment method, characterized by being in the range of not more than% .
前記脱燐処理工程の後に前記転炉型精錬炉から溶銑を排出し、その後、転炉型精錬炉内に脱燐処理工程で生成したスラグの50質量%以上の量のスラグを残留させた状態で溶銑を装入し、転炉型精錬炉内に装入した溶銑に脱珪処理を施すことを特徴とする、請求項1に記載の溶銑の予備処理方法。 After the dephosphorization step, the hot metal is discharged from the converter type refining furnace, and then, the slag in an amount of 50% by mass or more of the slag generated in the dephosphorization step is left in the converter type refining furnace. The hot metal pretreatment method according to claim 1, wherein the hot metal is charged in step 1 and desiliconization is performed on the hot metal charged in the converter type refining furnace. 前記脱燐処理工程で生成したスラグの全量を転炉型精錬炉内に残留させることを特徴とする、請求項2に記載の溶銑の予備処理方法。 3. The hot metal preliminary treatment method according to claim 2, wherein the entire amount of slag generated in the dephosphorization process is left in a converter type refining furnace. 前記脱珪処理工程において、脱珪処理後の炉内スラグのトータル鉄含有量とマンガン酸化物含有量との和を10質量%以上30質量%以下に調整することを特徴とする、請求項1ないし請求項のいずれか1項に記載の溶銑の予備処理方法。 The sum of the total iron content and the manganese oxide content of the in-furnace slag after the desiliconization treatment is adjusted to 10 mass% or more and 30 mass% or less in the desiliconization treatment step. The hot metal pretreatment method according to any one of claims 3 to 3 .
JP2013063429A 2012-03-26 2013-03-26 Hot metal pretreatment method Active JP5983492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063429A JP5983492B2 (en) 2012-03-26 2013-03-26 Hot metal pretreatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012068751 2012-03-26
JP2012068751 2012-03-26
JP2013063429A JP5983492B2 (en) 2012-03-26 2013-03-26 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JP2013227664A JP2013227664A (en) 2013-11-07
JP5983492B2 true JP5983492B2 (en) 2016-08-31

Family

ID=49675569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063429A Active JP5983492B2 (en) 2012-03-26 2013-03-26 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP5983492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191555B2 (en) * 2014-07-22 2017-09-06 Jfeスチール株式会社 Sea area environment improving material and sea area environment improving method using the same
WO2016098347A1 (en) * 2014-12-16 2016-06-23 Jfeスチール株式会社 Molten iron pre-treatment method
JP6277991B2 (en) * 2015-03-30 2018-02-14 Jfeスチール株式会社 Slag component estimation method, solvent calculation method and hot metal pretreatment method
CN114606360A (en) * 2022-02-20 2022-06-10 山西太钢不锈钢股份有限公司 Production process of high-silicon molten iron low lime in CONARC electric furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152714A (en) * 1996-11-25 1998-06-09 Nippon Steel Corp Method for refining molten iron
JP2001271113A (en) * 2000-03-27 2001-10-02 Nippon Steel Corp Converter-refining method for by-producing steel manufacturing slag having low free lime content
JP2002241829A (en) * 2001-02-20 2002-08-28 Nippon Steel Corp Desiliconizing method for molten iron
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron
JP5487959B2 (en) * 2009-12-28 2014-05-14 新日鐵住金株式会社 Hot metal removal Si removal P treatment method

Also Published As

Publication number Publication date
JP2013227664A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
JP5440733B2 (en) Hot metal refining method
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP5983492B2 (en) Hot metal pretreatment method
JP2006274349A (en) Method for refining steel
JP6693536B2 (en) Converter steelmaking method
JP2004190101A (en) Method for pre-treating molten iron
JP5408379B2 (en) Hot metal pretreatment method
JP4977870B2 (en) Steel making method
JP5867520B2 (en) Hot metal pretreatment method
JP6665884B2 (en) Converter steelmaking method
JP6361885B2 (en) Hot metal refining method
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP2015017323A (en) Preliminary treatment method for molten iron
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP3854482B2 (en) Hot metal pretreatment method and refining method
JP4695312B2 (en) Hot metal pretreatment method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP5979017B2 (en) Hot metal refining method
JP4981248B2 (en) Hot metal processing method
JP2001107124A (en) Method for dephosphorizing molten iron
JPH11323419A (en) Refining of molten iron
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JP2011058046A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250