JPS61104014A - Method for reducing mn ore with high efficiency in oxidation refining furnace - Google Patents

Method for reducing mn ore with high efficiency in oxidation refining furnace

Info

Publication number
JPS61104014A
JPS61104014A JP22414584A JP22414584A JPS61104014A JP S61104014 A JPS61104014 A JP S61104014A JP 22414584 A JP22414584 A JP 22414584A JP 22414584 A JP22414584 A JP 22414584A JP S61104014 A JPS61104014 A JP S61104014A
Authority
JP
Japan
Prior art keywords
hot metal
molten iron
ore
treatment
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22414584A
Other languages
Japanese (ja)
Other versions
JPS6342686B2 (en
Inventor
Yozo Takemura
竹村 洋三
Toshiki Yamamoto
山本 利樹
Motoki Yoshida
基樹 吉田
Kiyoyuki Honda
本多 清之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22414584A priority Critical patent/JPS61104014A/en
Publication of JPS61104014A publication Critical patent/JPS61104014A/en
Publication of JPS6342686B2 publication Critical patent/JPS6342686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Abstract

PURPOSE:To reduce extremely efficiently Mn ore in an industrial scale in the stage of reducing the Mn ore in a oxidation refining furnace permitting bottom blowing by combining a novel method for preliminary treatment of molten iron and treatment stage thereby desiliconizing stably the molten iron and dephosphorizing advantageously the same. CONSTITUTION:Gas and solid oxygen are simultaneously blown into the molten iron and the ratio of gaseous oxygen is adjusted to 10-50% to desiliconize the molten iron so that the Si concn. in the molten iron attains <=0.15% and the molten iron temp. attains 1,400-1,480 deg.C in a mixer car which is a vessel for transporting the molten iron between a blast furnace and converter. The molten iron after discharge of slag is fed out to a converter charging pan 4 and a free board 3 is inserted into the pan 4. A dephosphorizing agent as well as gas and solid oxygen are blown into the molten iron under said board. The ratio of the gaseous oxygen is adjusted to 10-50% and after the treatment, the P and S levels are decreased to the standard value for the product or below and in this stage the molten iron temp. after the treatment is maintained at >=1,300 deg.C. The molten iron is subjected to decarburization and Mn reduction refining by bottom blowing O2 or O2-contg. gas at >=0.08Nm<3>/ton min flow rate while adding the refining furnace Mn ore to the furnace inside.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、醇化精錬炉において、溶銑を精錬するにあた
って、Mn鉱石を高効率で還元する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for reducing Mn ore with high efficiency when refining hot metal in a smelting furnace.

従来の技術 鉄鋼−貫メーカーでは、精錬方法がE吹き法から複合精
錬法に変更することに伴い底吹きによる溶鋼強撹拌が利
用され、炉内におけるMn鉱石の塁元率が向上したため
、複合精錬炉においては、 Mn鉱石を5〜10kgパ
ー鋼、炉内に添加して精錬終了までに、溶鋼中にhを0
.25〜0.30%まで還元しているのが現状である。
Conventional technology Iron and steel manufacturers changed their refining method from the E-blowing method to the composite refining method, and as a result, strong stirring of molten steel by bottom blowing was used, which improved the base ratio of Mn ore in the furnace, resulting in composite refining. In the furnace, 5 to 10 kg of Mn ore is added to the molten steel, and by the end of the refining, 0 h is added to the molten steel.
.. Currently, the reduction is between 25% and 0.30%.

一方、溶銑の不純物であるSi、  P、 Sを溶銑段
階で除去する方法として、S 54.10.15丸善株
発行鉄鋼便覧第2$4311〜453頁に記載の各種の
溶銑予備処理方法がある。
On the other hand, as a method for removing Si, P, and S, which are impurities in hot metal, at the hot metal stage, there are various hot metal pretreatment methods described in S 54.10.15 Steel Handbook published by Maruzen Co., Ltd., No. 2, pp. 4311 to 453. .

発明が解決しようとする問題点 前記した現状のMn鉱石還元精錬方法においては、一般
的溶銑(Si%=0.2〜Q、fi%)を使用して実施
すると以下の様な問題点があった。
Problems to be Solved by the Invention The current Mn ore reduction and refining method described above has the following problems when carried out using general hot metal (Si% = 0.2 to Q, fi%). Ta.

・xl  溶銑の不純物除去のため複合精錬炉内で発生
するスラグが70〜loOkgパー鋼と多いため、 M
n鉱石の還元率が25〜45%と極めて低い。
・xl Because the amount of slag generated in the complex smelting furnace to remove impurities from hot metal is as high as 70~loOkg par steel, M
The reduction rate of n ore is extremely low at 25-45%.

又、前記した溶銑予備処理を、高炉・転炉間の一般的溶
銑運搬容器である混銑車で実施する場合には、脱燐に最
も有利な条件である溶銑Si%を0.15%以下まで脱
硅しようとすると、混銑車内で脱硅処理中にスラグがフ
ォーミングして、混銑車炉口からあふれ出すため、混銑
車に受銑する溶銑量は規定能力を大巾におとさねばなら
ない。
In addition, when carrying out the hot metal pretreatment described above in a mixer car, which is a general container for transporting hot metal between a blast furnace and a converter, the Si% of the hot metal must be reduced to 0.15% or less, which is the most advantageous condition for dephosphorization. When desiliconization is attempted, slag forms during the desiliconization process in the pig iron mixer car and overflows from the pig iron mixer furnace mouth, so the amount of hot metal received by the pig iron mixer car must be much larger than the specified capacity.

ざらに受銑量が少ないため混銑車内での溶銑の放散熱が
増加する。脱硅処理後同−混銑車で実施される脱硅滓の
排滓及び脱燐硫処理に相当な時間がかかり、混銑車から
の放散熱量は、さらに倍加され、溶銑の含熱量が大巾に
低下する。このため、複合精錬炉においてMn鉱石を充
分還元出来る熱的裕度がなくなり、実際には精錬作業が
不可能であった。
Since the amount of pig iron received is small, the heat dissipated from the hot metal in the pig iron mixing car increases. After the desiliconization process, the slag removal and dephosphorization treatment carried out in the same pig iron mixer car take a considerable amount of time, and the amount of heat dissipated from the pig iron mixer car is further doubled, and the heat content of the hot metal greatly increases. descend. For this reason, there is no thermal margin to sufficiently reduce Mn ore in the combined smelting furnace, making refining work practically impossible.

又上記の様に、脱砂、脱燐硫反応を混銑車内で実施する
場合は混銑車が形状的に細長いものであるから、排滓が
充分完全に実施出来ない。特に脱燐硫処理時には、残っ
た残脱硅滓のため、脱燐硫を効率高〈実施することは不
可能であった。即ち、溶銑予備処理した不純物(Si、
P、 S)の少ない溶銑を使用する場合には、混銑車受
銑能力の大巾な低下、溶銑含熱量の大巾な低下によるl
l!n鉱石還元力不足、効率的脱燐硫が実施出来ないと
言う点から、ll!n鉱石を経済的にかつ効率高く、複
合精錬炉で還元することは不可能であった。
Furthermore, as described above, when desanding and dephosphorization and sulfurization reactions are carried out in a pigeon mixer car, the slag cannot be completely removed because the pigtail mixer car is elongated in shape. In particular, during dephosphorization treatment, it was impossible to carry out highly efficient dephosphorization due to the residual desilicating slag. That is, impurities (Si,
When using hot metal with low P and S), there is a large decrease in the pig iron receiving capacity of the mixed pig iron car and a large decrease in the heat content of the hot metal.
l! n From the point that the ore reducing power is insufficient and efficient dephosphorization cannot be carried out, ll! It has been impossible to economically and efficiently reduce n-ore in a complex smelting furnace.

本発明は前述した各問題点を、新しい溶銑量@    
  i・処理方法と処理工程を組み合わせることにより
解消すると共に、極めて還元効率の高い、工業的規模で
の酸化精錬炉におけるMn鉱石還元法を達成することを
目的とするものである。
The present invention solves each of the above-mentioned problems with a new amount of hot metal @
i. The purpose is to solve this problem by combining treatment methods and treatment steps, and to achieve a method for reducing Mn ore in an oxidation smelting furnace on an industrial scale, which has extremely high reduction efficiency.

問題点を解決するための手段 本発明は上記の問題点を解決し、効率よく酸化精錬炉に
おいてMn鉱石を還元するため、・多 高炉・転炉間の
溶銑運搬容器である混銑車内にて、主たる脱硅剤として
気体酸素及び固体酸素を用い、溶銑中にインジェクショ
ンし、溶銑中のSi濃度が0.15%以下、溶銑温度が
1400〜1480℃になる様、気体酸素比率を10%
〜50%の範囲で調整する脱硅工程、 多 排滓後溶銑装入鍋内に、浸漬フリーボードを装入し
、脱燐破割である石灰、蛍石等、及び酸化剤である気体
酸素及び固体酸素を溶銑中にインジェクションするに際
し、気体酸素比率を10%〜50%の範囲で調整し、処
理後P、Sレベルを成品規格値以内、処理後の溶銑温度
を1300℃以上に処理する脱燐工程。
Means for Solving the Problems The present invention solves the above problems, and in order to efficiently reduce Mn ore in an oxidation smelting furnace, the following steps are taken: Gaseous oxygen and solid oxygen are used as the main desiliconizing agents and are injected into the hot metal.The gaseous oxygen ratio is 10% so that the Si concentration in the hot metal is 0.15% or less and the hot metal temperature is 1400-1480℃.
The desiliconization process is adjusted in the range of ~50%. After the slag is removed, a immersed freeboard is charged into the hot metal charging pot, and lime, fluorite, etc., which are dephosphorization cracks, and gaseous oxygen, which is an oxidizing agent, are charged. When injecting solid oxygen into hot metal, the gaseous oxygen ratio is adjusted within the range of 10% to 50%, and the P and S levels after treatment are within the product standard values, and the hot metal temperature after treatment is 1300℃ or higher. Dephosphorization process.

・■ 上記処理後溶銑を精錬炉でMn鉱石を炉内に添加
しなからG又は02を含むガスを0.08Nm’パON
・分以上底吹きし一1脱炭、 Mn還元精錬を実施する
工程、を順次行うものである。
・■ After the above treatment, the hot metal is put into a smelting furnace, and Mn ore is not added into the furnace, and then a gas containing G or 02 is turned on at 0.08Nm'pa.
The steps of bottom blowing for more than 1 minute, decarburization, and Mn reduction refining are sequentially performed.

即ち、複合精錬炉でMn鉱石を高還元率で還元するため
の条件は、・p精錬で発生するスラグjを最小化するこ
と、・2)精錬炉内でMn鉱石を還元出来る熱量を溶銑
予備終了後において確保することであり、この条件を溶
銑予備方法を改善することにょ   ゛す、さらにその
プロセス工程を最適化することに     ゛よって、
溶銑の含熱量の低下を極力防止し、且つ極めて効率的に
工業的規模で精錬炉内でMn鉱石の還元を実施す′るも
のである。
In other words, the conditions for reducing Mn ore at a high reduction rate in a combined smelting furnace are: ・Minimizing the slag j generated in p smelting, ・2) Keeping the amount of heat that can reduce Mn ore in the smelting furnace in hot metal reserve This condition can be achieved by improving the hot metal preparation method and by optimizing the process steps.
The present invention is intended to prevent a decrease in the heat content of hot metal as much as possible and to carry out the reduction of Mn ore in a smelting furnace extremely efficiently on an industrial scale.

作用 以下、上記手段につきその作用と共に説明する。action The above-mentioned means will be explained below along with their functions.

(1)脱硅工程 混銑車を運搬容器として使用する場合の脱硅工程の技術
上の課題は、混銑車内に規定容量の溶銑を受銑し、放熱
ロスを極力少〈シ、フォーミング、スロッピングをさせ
ないで、脱燐工程で最も有利な低Siレベル(0,15
%以下)までいかに安定して脱硅するかという点である
。第1図は、 300トンの溶銑に、 CaO粉: C
aF2粉:CaCL12粉ニスケール粉= 4.5: 
 1.0:  0.5:  4.0からなる脱燐剤をイ
ンジェクションした脱燐処理における脱燐前Si値と脱
燐効率との関係図で、脱燐前Si%を低下させることに
より、脱燐効率が向上する度合を示している。
(1) Desiliconization process The technical issues in the desiliconization process when using a pig iron mixer car as a transport container are to receive a specified volume of molten metal into the mixer car and minimize heat loss through forming, slopping, etc. Low Si levels (0,15
The key point is how to remove silicate stably, down to % or less. Figure 1 shows 300 tons of hot metal mixed with CaO powder: C
aF2 powder: CaCL12 powder Niscale powder = 4.5:
This is a diagram showing the relationship between the Si value before dephosphorization and the dephosphorization efficiency in the dephosphorization treatment in which a dephosphorizing agent consisting of 1.0: 0.5: 4.0 was injected. It shows the degree to which phosphorus efficiency is improved.

一般的脱硅法として高炉鋳床脱硅、1酸インジェクショ
ン脱硅、1酸又は無酸の上吹脱硅があるが、いずれの方
法でも脱硅処理中、特にSi<0.20%レベルまでに
脱硅して来ると、混銑車で脱硅スラグがフォーミングし
、混銑車炉口からあふれ出し、作業が出来なくなるとい
う欠点があった(鋳床脱砂は安定してSi< 0.15
%にならない)。
Common desiliconization methods include blast furnace casthouse desiliconization, monoacid injection desulfurization, and monoacid or acid-free top blowing desulfurization, but all of these methods are used during the desulfurization process, especially up to the Si<0.20% level. When the desulfurization process is carried out, the desiliconization slag forms in the pig iron mixer car and overflows from the mixer car furnace mouth, making it impossible to perform the work.
%do not become).

我々は、この脱燐処理に最も有利な低Siレベルまで脱
硅処理が進んだ時に発生するスラグのフォーミング原因
を研究したところ、 1)スラブ温度によるスラグの流動性とCOガス離脱性
、 2)脱硅処理中に発生するCOガス(脱炭量)量、3)
スラグ中T a Fe%、 が主たる原因である事を見出した。
We investigated the causes of slag foaming that occurs when the dephosphorization process reaches a low Si level, which is most advantageous for dephosphorization, and found that: 1) slag fluidity and CO gas release properties depending on slab temperature; 2) Amount of CO gas (decarburization amount) generated during desiliconization treatment, 3)
It was found that T a Fe% in the slag was the main cause.

さらに、我々は脱硅処理を1酸(スケール、鉄鉱石粉等
)と無酸(酸素を含むガス体)を同時にインジェクショ
ンし、さらに気触比率(無酸中の気体酸素量(kg)/
固酸十気酸中の全酸素量(kg))X  100を10
〜50%の範囲で調整しながら、処理後の温度を140
0℃〜1480℃に制御する事によって前述した1)〜
3)の問題を全くスロッピング、フォーミングの発生し
ない領域にコントロールすることが可能であることを確
認した。第2図に、 600丁混銑車に520Tの溶銑
を装入し、インジェクション脱硅したときのフォーミン
グ限界を示した。脱硅後Si値と処理スラグ中T @ 
Fe濃度との関係図で1酸のみの使用時は処理後Si値
が0.20%以下でフォーミング領域に入ることを示し
ている。
Furthermore, we carried out desiliconization treatment by simultaneously injecting one acid (scale, iron ore powder, etc.) and an acid-free (oxygen-containing gas), and further carried out the air catalytic ratio (gaseous oxygen amount (kg) in the non-acid)/
Total amount of oxygen in solid acid (kg) x 100 to 10
The temperature after treatment was adjusted to 140% while adjusting in the range of ~50%.
By controlling the temperature between 0°C and 1480°C, the above-mentioned 1)
3) It was confirmed that it is possible to control the problem to an area where no slopping or forming occurs. Figure 2 shows the forming limit when 520T of hot metal is charged into a 600-gun pig iron mixer and desiliconization is performed by injection. Si value after desiliconization and T in treated slag @
The relationship diagram with the Fe concentration shows that when only one acid is used, the Si value after treatment falls into the forming region at 0.20% or less.

インジェクション脱硅においても無酸比率が10%より
少では処理後温度が一般に1400℃より低く    
  1なり、スラグ流動性が悪化し、COガス離脱性が
悪くなり、フォーミングを発生させるし、一方脱燐工程
で規定温度を確保するため、脱燐工程での無酸比率が5
0%より超とすると、工業的に成立たない。
Even in injection desiliconization, if the acid-free ratio is less than 10%, the temperature after treatment is generally lower than 1400℃.
1, the slag fluidity deteriorates, the CO gas removal property worsens, and foaming occurs. On the other hand, in order to ensure the specified temperature in the dephosphorization process, the acid-free ratio in the dephosphorization process is set to 5.
If it exceeds 0%, it is not industrially viable.

又、無酸比50%超では、結果的に処理後温度が148
0°C超となり、脱炭反応が優先伯に起り、COガス発
生が大となりフォーミングを起すし、無酸比率が高すぎ
ると、インジェクションランスの耐火物溶損が大きく工
業的に成立しないものとなる。第3図は2重管ランスに
て内管02ガス、外管に鉄鉱粉をN2ガスで搬送した場
合の脱硅処理時ランス寿命(インジェクション浸漬全時
間)と無酸比率との関係図である。
In addition, if the acid-free ratio exceeds 50%, the temperature after treatment will be 148%.
When the temperature exceeds 0°C, the decarburization reaction occurs preferentially, and CO gas generation becomes large, causing foaming. If the acid-free ratio is too high, the refractory of the injection lance will melt and become unfeasible industrially. Become. Figure 3 is a diagram showing the relationship between lance life (total injection immersion time) and acid-free ratio during desiliconization treatment when iron ore powder is conveyed with 02 gas in the inner pipe and N2 gas in the outer pipe in a double-pipe lance. .

一方固酸のみをインジェクションして、耐火物溶損上問
題となる無酸は上吹きする方法が考えられるが、上吹き
無酸の温度が高くなり、脱炭反応が優先的に起こり、C
Oガス発生大→フォーミング発生ばかりでなく、スラグ
面で酩素圧力が丘昇するため、排ガス中にSOx濃度が
高くなる等の問題から、排ガス処理設備が莫大なものと
なり、経済的でないという点から工業的に成立たない。
On the other hand, a method can be considered in which only solid acid is injected and the non-acid that causes problems in terms of corrosion of refractories is top-blown, but the temperature of the top-blown non-acid becomes high and the decarburization reaction occurs preferentially, resulting in carbon
Large amount of O gas generated → Not only does foaming occur, but the slag pressure rises on the slag surface, resulting in a high SOx concentration in the exhaust gas, etc., and the exhaust gas treatment equipment becomes enormous, making it uneconomical. Therefore, it is not commercially viable.

(2)脱P工程 脱P工程の技術上の課題は、脱硅処理後の溶銑から脱硅
スラグを除去した後、脱P処理を実施し、成品規格レベ
ル以下に低下させた状態(精錬炉装入前)で、Mn鉱石
を精錬炉で還元する必要な熱的レベルである溶銑温度1
300℃以上をいかにして工業的に成立する方法で確保
するかという点である。
(2) DeP process The technical issue in the deP process is that after removing the desulfurization slag from the hot metal that has been desiliconized, the deP process is carried out to reduce the product to a level below the finished product standard (smelting furnace Before charging), the hot metal temperature 1 is the necessary thermal level to reduce Mn ore in the smelting furnace.
The problem is how to ensure a temperature of 300°C or higher using an industrially viable method.

我々は上記溶銑を転炉装入鍋に払い出し後、その鍋内に
浸漬フリーボード(第4図)を装入し、フリーボード下
溶銑内部に脱燐破割であるCaO1CaF2 、 Ca
Cl2等に、1酸と気酸を気醸比で10%〜50%の範
囲で調整してインジェクションする楽によって、極めて
有利に達成出来る事を見出した。
After discharging the above hot metal into a converter charging ladle, we charged an immersed freeboard (Fig. 4) into the ladle, and deposited CaO1CaF2, Ca, which is a dephosphorization crack, inside the hot metal under the freeboard.
It has been found that this can be achieved extremely advantageously by adjusting and injecting monoacid and gas acid into Cl2 or the like at a gas ratio of 10% to 50%.

脱燐硫処理の方法として、混銑車内で実施する方法があ
るが、脱燐硫処理後、混銑車を運搬して溶銑鍋に払い出
すことによって生じる放散熱分を補償しつつ、転炉装入
前溶銑温度を1300℃以上に保つためには、混銑車脱
燐硫での無酸比率は約80%以トとなり、インジェクシ
ョンランス耐火物溶掻上工業的に成立しない、又、極め
て高い温度で脱燐処理を実施する点から脱燐効率が悪い
One method of dephosphorization treatment is to perform it inside the pig iron mixer car. In order to maintain the pre-hot metal temperature at 1,300℃ or higher, the acid-free ratio in the dephosphorization and sulfurization of the mixed pig iron car must be approximately 80% or higher, which is not commercially viable for the injection lance refractory hot-rubbing industry, and it cannot be used at extremely high temperatures. The dephosphorization efficiency is poor because of the dephosphorization process.

別の方法として、浸漬フリーボードを使用しないで大き
い溶銑鍋にてインジェクション脱燐硫をする方法も考え
られるが、浸漬フリーボードに比較して溶銑と接触する
耐火物総量が約40%以上増加し、その分散熱量が増大
し、脱燐硫時の無酸比率を約70%以上としないと、規
定溶銑温度が確保できずやはり工業的に成立しない。
Another method is to perform injection dephosphorization in a large hot metal ladle without using an immersion freeboard, but this method increases the total amount of refractories in contact with the hot metal by about 40% or more compared to an immersion freeboard. , the amount of heat dispersed increases, and unless the acid-free ratio at the time of dephosphorization and sulfurization is about 70% or more, the specified hot metal temperature cannot be ensured and it is also not commercially viable.

尚、無酸比率を10%〜50%範囲に規制している理由
は、脱硫処理で、処理後温度を1400℃以上に保持で
きれば、無酸比50%以下、即ち、インジェクションラ
ンス耐火物上有利な所で、浸漬フリーボードを使用する
場合には脱燐硫処理後温度を1300℃以上を維持出来
ると言う点と、さらに、脱燐破割であるCaO1CaF
2 、 GaCl2等と1酸と無酸を溶銑内にインジェ
クションする場合、無酸比率が10%〜30%程度の時
に最も脱燐効率が良くなる事を見出したからである。第
5図には脱燐時の無酸比率と脱燐効率との関係を示した
The reason why the acid-free ratio is regulated in the range of 10% to 50% is that if the temperature after the desulfurization treatment can be maintained at 1400°C or higher, the acid-free ratio is 50% or less, which is advantageous for injection lance refractories. By the way, when using immersion freeboard, the temperature after dephosphorization treatment can be maintained at 1300℃ or higher, and in addition, the temperature of CaO1CaF
2. This is because it has been found that when injecting GaCl2, etc., an acid, and an acid-free into hot metal, the dephosphorization efficiency is highest when the acid-free ratio is about 10% to 30%. FIG. 5 shows the relationship between the acid-free ratio during dephosphorization and the dephosphorization efficiency.

゛ この範囲が最も脱燐効率が良くなる理由は定かでな
いが、ノズル先端部でのカルシュームフェライト(Ca
O−Fete)生成状態が最も良好となるものと想定し
ている。
゛ It is not clear why this range has the highest dephosphorization efficiency, but calcium ferrite (Ca
It is assumed that the production state of O-Fete is the best.

又、脱燐硫処理後のP、 Sレベルについては、成品規
格値以下まで低下させるのが最も複合精錬炉での総合利
益が増大する。第6図に脱燐処理Pレベルと精錬炉Mn
還元率との関係を示した。
Furthermore, with regard to the P and S levels after dephosphorization and sulfurization treatment, the overall profit of the combined smelting furnace will be maximized by reducing them to below the standard values for finished products. Figure 6 shows the dephosphorization treatment P level and the smelting furnace Mn.
The relationship with the return rate is shown.

我々の開発した脱硅−説燐硫工程上の特徴点を整理する
と、酸化精錬炉でのMn鉱石還元に必要な熱的レベルを
脱硫、脱燐工程における固無酸併用インジェクションに
よって補償し、しかも無酸使用による耐火物上の間N(
無酸比50%以上では急激に悪化する)を、脱硅工程、
説燐り程にそれぞれの工程において、反応上最も望まし
い気m&をほぼ均等に配分する事と、浸漬フリーボード
方式により、処理中放熱量を低減することによって、 
     −無酸比50%以下の作業を可能にした点に
ある。
To summarize the features of the desulfurization and phosphorus sulfurization process that we have developed, we can compensate for the thermal level required for Mn ore reduction in the oxidation smelting furnace by combining solid and non-acid injection in the desulfurization and dephosphorization processes. Between N(
When the acid-free ratio exceeds 50%, the deterioration occurs rapidly), the desiliconization process,
By approximately evenly distributing the most desirable gas for the reaction in each process, and by using the immersion freeboard method to reduce the amount of heat dissipated during processing,
- It is possible to work with an acid-free ratio of 50% or less.

″ 脱硫、脱燐硫インジェクションランスのノズルとし
ては、単孔、二重菅笠色々方式が考えられるが、我々の
実験では二重管羽口で内管に無酸、外管に脱硫剤又は脱
燐破割をキャリアーガスで流す方式が、最も無酸使用時
の耐火物溶損が少ない事を見出した。第7図に特殊イン
ジェクションランス構造の1例を示す。
`` Various types of nozzles for desulfurization and dephosphorization injection lances are possible, such as single hole and double tuyere, but in our experiments, we used a double tube tuyere with no acid in the inner tube and desulfurizing agent or dephosphorization in the outer tube. It has been found that the method of flowing the fracture with a carrier gas results in the least corrosion of the refractory during acid-free use. Figure 7 shows an example of the special injection lance structure.

(3)複合精錬炉Mn鉱石還元工程 (1)工程、(2)工程を経由して来た溶銑は、基本的
には精錬炉でP、Sの除去のためのスラグは必要でない
ので、炉内はスラグレス精錬となるが、当然Mn鉱石に
含まれる不純物等から発生するスラグ成分をコントロー
ルするため、少量のCaQ、ドロマイト等の塩基性添加
物を使用する。
(3) Combined smelting furnace Mn ore reduction process The hot metal that has passed through the steps (1) and (2) basically does not require slag to remove P and S in the smelting furnace. The interior is slagless refining, but a small amount of basic additives such as CaQ and dolomite are naturally used to control slag components generated from impurities contained in the Mn ore.

底吹き攪拌ガスは、02ガス又は缶を含むガス(02に
Co、 CO2,Ar、 N等の不活性ガスを混合した
ガス又は空気等)を用い、その底吹量は0.08Nゴ/
TON・分以上あればh鉱石は70〜75%精錬中に還
元される。
The bottom-blown stirring gas used was 02 gas or a gas containing a can (a gas or air in which 02 was mixed with an inert gas such as Co, CO2, Ar, N, etc.), and the bottom blowing amount was 0.08 N/g.
If it is TON・min or more, 70 to 75% of the h ore will be reduced during refining.

尚、(3)工程で発生する精錬終了スラグは、スラグ中
にP、Sが極めて低く、Mn01Cab、  MgO1
FeO等が主成分であるので、粉砕処理後、説硅工程、
脱燐硫工程の固酸の一部として使用出来、この様に(3
)工程発生スラグを(1) 、 C2)工程にリサイク
ルするケースでは −貫Kn還元率は80〜85%とな
りFe−Mn電気炉を上廻る高還元率となる。
In addition, the slag after refining generated in the step (3) has extremely low P and S, and contains Mn01Cab and MgO1.
Since FeO etc. are the main components, after the pulverization process, the sintering process,
It can be used as part of the solid acid in the dephosphorization process, as shown in (3)
) In the case where the slag generated in the process (1) and C2) is recycled, the -Kn reduction rate is 80 to 85%, which is a high reduction rate that exceeds that of the Fe-Mn electric furnace.

実施例 800 )ン混銑車にて表1に示す如く脱硫処理を行な
い、その溶銑を340トン溶銑鍋に受銑後、浸漬フリー
ボードを装入して、脱燐硫処理を行ない。
Example 800) Desulfurization treatment was performed as shown in Table 1 in a hot metal mixer car, and the hot metal was received into a 340-ton hot metal ladle, and then a immersion freeboard was charged and dephosphorization treatment was performed.

複合精錬炉にてh鉱石を還元したところ1表1下段の如
く極めて高いMn還元歩留を得た。
When h ore was reduced in a complex refining furnace, an extremely high Mn reduction yield was obtained as shown in the lower row of Table 1.

又、溶銑予備処理しない場合(比較例1)及び1酸のみ
で溶銑予備処理する場合(比較例2)についても表1に
示した。比較例1では脱硫処理のみ行ったが、スラグレ
ス吹錬できないのでMn歩留は低い、比較例2ではスラ
グレス吹錬できるが然裕度が少ないので、Mn鉱石が大
量に入らすMn歩留発明の効果 本発明は、脱硅、脱燐両工程で、最適な無酸比でもって
、固無酸併用インジェクションを行ない、耐火物溶損を
押えながら、溶銑処理後の溶銑温度を高く保つこと、並
びに浸漬フリーボード方式により、溶銑処理時間を極め
て短縮できることから、処理中熱放散量を低減でき、又
耐大物原単位も低減できるという方法の効果により、複
合精錬炉に入る直前の溶銑の顕然(温度)並びに潜熱(
C濃度)を1300℃以上に保持しなから溶銑P、Sレ
ベルを複合精錬炉スラグレス脱炭が可能な成品規格値以
下にできるので、複合精錬炉においで。
Table 1 also shows the cases in which the hot metal was not pretreated (Comparative Example 1) and the case in which the hot metal was pretreated with only one acid (Comparative Example 2). In Comparative Example 1, only desulfurization treatment was performed, but slagless blowing is not possible, so the Mn yield is low.In Comparative Example 2, slagless blowing is possible, but the margin is small, so the Mn yield of the invention, in which a large amount of Mn ore is introduced, is low. Effect The present invention performs solid and non-acid injection at the optimum acid-free ratio in both the desiliconization and dephosphorization processes, and maintains the hot metal temperature after hot metal treatment at a high level while suppressing refractory erosion. The immersion freeboard method can significantly shorten the hot metal treatment time, reduce the amount of heat dissipated during treatment, and reduce the unit consumption of large materials. temperature) and latent heat (
The P and S levels of the hot metal can be kept below the standard values for products that allow slagless decarburization in the combined smelting furnace, while maintaining the C concentration above 1300°C.

必要にして十分なマンガン鉱石投入量の確保が可能にな
る。このため、複合精錬炉でのMu歩留が上り、吹止M
n値が成品Mn値まで上り、その結果、高価なFe−M
n合金鉄を大巾に節減でき、且つ、耐火物使用量も低減
でき、全プロセスにわたって大きな省資源、省エネルギ
ー及びコスト低減が可能となる等発明がもたらす効果は
極めて大きい。
It becomes possible to secure the necessary and sufficient input amount of manganese ore. For this reason, the Mu yield in the complex refining furnace increases, and the M
The n value rises to the finished product Mn value, resulting in expensive Fe-M
The effects of the invention are extremely large, such as the ability to save a large amount of n-alloy iron, the amount of refractories used, and the ability to significantly save resources, save energy, and reduce costs throughout the entire process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱燐処理における脱燐前Si値と脱燐効率との
関係図、第2図は混銑車でのインジェクション脱離時に
おけるフォーミング限界を示す図、第3図はインジェク
ションランス耐火物と無酸比の関係図、第4図は浸漬フ
リーボードの概要立面図、第5図は脱燐処理時の無酸比
率と脱燐効率との関係図、第6図は脱燐処理後Pレベル
と複合精錬炉Mn還元率との関係図、第7図は特殊イン
ジェクションランス構造(2重管)の1例を示す図で(
イ)は断面図、(ロ)は側面図である。 1φ・・脱硫燐剤の搬送ライン、2−1インジエクシヨ
ンランス 3 e e a浸漬フリーボード、4Φ拳・
溶銑銀、5・・・溶銑、6・・魯脱燐スラグ、7・・・
内管、8・拳・外管、9・・番耐火物製インジェクショ
ンランス、10・・−%醜導入管、11・・・脱硅剤又
は脱燐離削導入管。
Figure 1 is a diagram showing the relationship between the Si value before dephosphorization and the dephosphorization efficiency in the dephosphorization process, Figure 2 is a diagram showing the forming limit during injection desorption in a pig iron mixing car, and Figure 3 is a diagram showing the relationship between the Si value before dephosphorization and the dephosphorization efficiency. Figure 4 is a schematic elevation view of immersed freeboard, Figure 5 is a diagram of the relationship between acid-free ratio and dephosphorization efficiency during dephosphorization, and Figure 6 is P after dephosphorization. Figure 7 is a diagram showing the relationship between the level and the Mn reduction rate of the combined refining furnace, and is a diagram showing an example of the special injection lance structure (double pipe).
A) is a cross-sectional view, and (b) is a side view. 1φ...Desulfurizing phosphor agent conveyance line, 2-1 injection lance 3 e e a immersion freeboard, 4φ fist・
Hot metal silver, 5... Hot metal, 6... Lu dephosphorization slag, 7...
Inner pipe, 8. Fist/outer pipe, 9. Injection lance made of refractory, 10. -% ugly introduction pipe, 11. Desiliconizing agent or dephosphorization removal introduction pipe.

Claims (1)

【特許請求の範囲】 底吹き可能な酸化精錬炉を用いて炉内においてMn鉱石
を還元するに際し、 (1)高炉・転炉間の溶銑運搬容器である混銑車内にて
、主たる脱硅剤として気体酸素及び固体酸素を同時に溶
銑中にインジェクションし、溶銑Si含有量が0.15
%以下、溶銑温度が1400℃〜1480℃になるよう
、気体酸素比率を10%〜50%の範囲で調整する脱硅
工程、及び (2)脱硅処理後の溶銑から脱硅スラグを排滓後、溶銑
装入鍋内に浸漬フリーボードを装入し、脱燐硫剤、及び
酸化剤である気体酸素及び固体酸素を溶銑中にインジェ
クションするに際し、気体酸素比率を10%〜50%の
範囲で調整し、処理後P、Sレベルを成品規格値以下に
低下させた状態で、処理後の溶銑温度が1300℃以上
になるよう処理する脱燐工程、及び (3)上記脱硅及び脱燐処理後、溶銑を精錬炉で、Mn
鉱石を炉内に添加しながらO_2又はO_2を含むガス
を0.08Nm^3/TON・分以上の流量で底吹きし
、脱炭、Mn還元精錬を実施する工程、 を順次行うことを特徴とする酸化精錬炉におけるMn鉱
石高効率還元法。
[Claims] When reducing Mn ore in the furnace using a bottom-blowing oxidation smelting furnace, (1) As the main desiliconizing agent in the pig iron mixer car, which is a container for transporting hot metal between the blast furnace and the converter, Gaseous oxygen and solid oxygen are simultaneously injected into hot metal, and the Si content of hot metal is 0.15.
% or less, a desiliconization process in which the gaseous oxygen ratio is adjusted in the range of 10% to 50% so that the hot metal temperature is 1400℃ to 1480℃, and (2) desiliconization slag is removed from the hot metal after desiliconization treatment. After that, the immersion freeboard is charged into the hot metal charging pot, and when injecting the dephosphorizing agent and the oxidizing agent gaseous oxygen and solid oxygen into the hot metal, the gaseous oxygen ratio is set in the range of 10% to 50%. and (3) a dephosphorization process in which the hot metal temperature after treatment is adjusted to 1300°C or higher while reducing the P and S levels after treatment to below the product standard values, and (3) the above desiliconization and dephosphorization. After treatment, the hot metal is sent to a smelting furnace to produce Mn.
A process of performing decarburization and Mn reduction refining by bottom-blowing O_2 or a gas containing O_2 at a flow rate of 0.08 Nm^3/TON・min or more while adding ore into the furnace. Highly efficient reduction method for Mn ore in an oxidation smelting furnace.
JP22414584A 1984-10-26 1984-10-26 Method for reducing mn ore with high efficiency in oxidation refining furnace Granted JPS61104014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22414584A JPS61104014A (en) 1984-10-26 1984-10-26 Method for reducing mn ore with high efficiency in oxidation refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22414584A JPS61104014A (en) 1984-10-26 1984-10-26 Method for reducing mn ore with high efficiency in oxidation refining furnace

Publications (2)

Publication Number Publication Date
JPS61104014A true JPS61104014A (en) 1986-05-22
JPS6342686B2 JPS6342686B2 (en) 1988-08-25

Family

ID=16809246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22414584A Granted JPS61104014A (en) 1984-10-26 1984-10-26 Method for reducing mn ore with high efficiency in oxidation refining furnace

Country Status (1)

Country Link
JP (1) JPS61104014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133679A3 (en) * 2005-06-13 2007-05-31 Karl Konzelmann Metallschmelzw Method for adjusting pre-determined melting properties of a liquid metal, especially liquid aluminium, treatment system, transport container, and transport vehicle for liquid metal
JP2011225917A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Preliminary treatment method for molten iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513335B2 (en) 2016-10-07 2019-12-24 The Boeing Company Systems and methods for providing electrical signals to electrical devices within an interior cabin of a vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839716A (en) * 1981-08-31 1983-03-08 Sumitomo Metal Ind Ltd Treatment of molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839716A (en) * 1981-08-31 1983-03-08 Sumitomo Metal Ind Ltd Treatment of molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133679A3 (en) * 2005-06-13 2007-05-31 Karl Konzelmann Metallschmelzw Method for adjusting pre-determined melting properties of a liquid metal, especially liquid aluminium, treatment system, transport container, and transport vehicle for liquid metal
JP2011225917A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Preliminary treatment method for molten iron

Also Published As

Publication number Publication date
JPS6342686B2 (en) 1988-08-25

Similar Documents

Publication Publication Date Title
JP2013231237A (en) Method for smelting molten iron
JP6693536B2 (en) Converter steelmaking method
JP5983492B2 (en) Hot metal pretreatment method
JPH0437132B2 (en)
JPH0243803B2 (en)
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPH0141681B2 (en)
JPH0477046B2 (en)
JPH07179920A (en) Production of molten steel
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JPH0437135B2 (en)
JPH11323419A (en) Refining of molten iron
JPH0557327B2 (en)
JP3823595B2 (en) Hot metal refining method
JPS6121285B2 (en)
JPH0860221A (en) Converter steelmaking method
JP2004010935A (en) Method for manufacturing molten steel
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPS6247417A (en) Melt refining method for scrap
JP2007009237A (en) Method for producing low phosphorus molten iron
JP2005200762A (en) Method for desulfurizing molten pig iron
JPH0214404B2 (en)
JPH11193410A (en) Molten iron refining method
JP2005048238A (en) Method for dephosphorizing molten iron