JP2023049462A - Dephosphorization of hot metal - Google Patents

Dephosphorization of hot metal Download PDF

Info

Publication number
JP2023049462A
JP2023049462A JP2021159209A JP2021159209A JP2023049462A JP 2023049462 A JP2023049462 A JP 2023049462A JP 2021159209 A JP2021159209 A JP 2021159209A JP 2021159209 A JP2021159209 A JP 2021159209A JP 2023049462 A JP2023049462 A JP 2023049462A
Authority
JP
Japan
Prior art keywords
slag
dephosphorization
mass
blowing
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021159209A
Other languages
Japanese (ja)
Inventor
惇史 久志本
Atsushi Kushimoto
正樹 加藤
Masaki Kato
佑馬 黒川
Yuma Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021159209A priority Critical patent/JP2023049462A/en
Publication of JP2023049462A publication Critical patent/JP2023049462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a dephosphorization method of hot metal for the inexpensive and efficient melting of low phosphorus steel.SOLUTION: In a dephosphorization blowing, the charged basicity, which is the ratio of the mass of SiO2 produced by the oxidation of Si in hot metal and SiO2 contained in a sub-material containing the lime source to be fed before dephosphorization blowing, to the mass of CaO pure in the lime source, is controlled to 1.7 -2.2. As converter slag, 10-30 kg per ton of hot metal is used, which is composed of CaO/SiO2 of 3.0 or more, total concentration of CaO and SiO2 of 50 mass% or more, P2O5 concentration of less than 2.0 mass%, and the remainder of FetO, Al2O3, MnO, MgO, S, and inevitable impurities.SELECTED DRAWING: Figure 1

Description

本発明は、特に中間排滓を行う操業での溶銑の脱りん方法に関する。 TECHNICAL FIELD The present invention relates to a method for dephosphorizing hot metal, particularly in operations with intermediate waste.

従来、P濃度が0.02質量%未満の低りん鋼を溶製する場合、リサイクルスラグに含まれるP25により復りんが生じてしまうため、当該鋼種を溶製する際の脱りん吹錬では、リサイクルスラグを用いずに全量新規の石灰を用いてスラグ塩基度を調整している。そのため、低りん鋼を溶製する場合には多量の石灰を必要とし、コストが多くかかってしまう。 Conventionally, when melting low-phosphorus steel with a P concentration of less than 0.02% by mass, rephosphorization occurs due to P 2 O 5 contained in recycled slag. In smelting, the slag basicity is adjusted using all new lime without using recycled slag. Therefore, when melting low-phosphorus steel, a large amount of lime is required, resulting in high costs.

そこで、脱りん吹錬において、リサイクルスラグを用いる様々な技術が提案されている。特許文献1には、P濃度が0.02質量%未満の低りん溶銑を脱りんして生成された高塩基度スラグを、再び他鋼種の脱りん吹錬に戻し、塩基度が2以下の条件で脱りん吹錬を行う技術が開示されている。特許文献2には、脱りん吹錬において転炉スラグをリサイクルする際に、転炉スラグを5~50mmに調整し、吹錬後のスラグ塩基度が2以上、かつスラグ中のT.Feが10~15質量%となるように吹錬を行う技術が開示されている。また、特許文献3には、脱炭吹錬後のスラグを残し、石灰、ドロマイト、造塊スラグ等の固化材を投入して脱炭スラグを固化させ、そのまま脱りん吹錬を行う技術が開示されている。 Therefore, in dephosphorization blowing, various techniques using recycled slag have been proposed. In Patent Document 1, high basicity slag produced by dephosphorizing low phosphorus hot metal with a P concentration of less than 0.02% by mass is returned to another steel type dephosphorization blowing, and the basicity is 2 or less. Techniques for performing dephosphorization blowing under certain conditions have been disclosed. In Patent Document 2, when recycling the converter slag in dephosphorization blowing, the converter slag is adjusted to 5 to 50 mm, the slag basicity after blowing is 2 or more, and the T.E. A technique of blowing so that Fe becomes 10 to 15% by mass is disclosed. In addition, Patent Document 3 discloses a technique of leaving the slag after decarburization blowing, adding a solidifying material such as lime, dolomite, and ingot-making slag to solidify the decarburization slag, and performing dephosphorization blowing as it is. It is

特開平10-237525号公報JP-A-10-237525 特開2004-124145号公報JP 2004-124145 A 特許第6421634号公報Japanese Patent No. 6421634

一般的に、リサイクルスラグを用いて脱りん吹錬を行う場合には、できるだけP25の少ないリサイクルスラグを用いれば、復りんを抑えることができる。しかしながら、特にMURC法のように中間排滓を行う操業では、スラグの泡立ちによるスラグ溢れ(以後、スロッピング)が生じた時点で吹錬を継続できなくなり、中間排滓前の時点で溶銑中のP濃度を十分に低くすることが困難であるため、操業条件に制約が多い。そのため、P25の少ないリサイクルスラグを用いるだけでは、効率よく低りん鋼を溶製することができない。 In general, when recycled slag is used for dephosphorization blowing, rephosphorization can be suppressed by using recycled slag containing as little P 2 O 5 as possible. However, especially in an operation such as the MURC process in which intermediate slag is discharged, blowing cannot be continued when slag overflow (hereinafter referred to as slopping) due to slag bubbling occurs, and before the intermediate slag is discharged, Since it is difficult to make the P concentration sufficiently low, there are many restrictions on operating conditions. Therefore, low-phosphorus steel cannot be efficiently smelted only by using recycled slag with a small amount of P 2 O 5 .

特許文献1に記載の方法は、溶銑を脱りん炉で脱りん処理した後に脱炭炉に移して脱炭処理を行うプロセスを前提としており、中間排滓を容易にするためのスラグ組成を考慮していないため、脱りん処理後に中間排滓を行い同一炉で脱炭処理を行う操業において安定的に低りん鋼を得ることはできない。同様に、特許文献2に記載の方法は中間排滓を行う操業を想定しておらず、中間排滓を容易にするためのスラグ組成を考慮していないため、中間排滓を行う操業において効率よく低りん鋼を溶製することができない。さらに、特許文献3では、脱りん処理後に中間排滓を行い同一炉で脱炭処理を行うプロセスを基本とし、脱炭処理した後の出鋼後に脱炭スラグを転炉内に残し、ドロマイト等のスラグ固化剤およびAl23を含有する造塊スラグを投入してスラグを固化させ、次回脱りん処理のための溶銑装入時にスラグが突沸することを防止しながらスラグリサイクルを実施する方法が記載されている。しかしながら、ホットリサイクルスラグに対してスラグ固化剤を添加して固める一方でAl23を含有する造塊スラグを添加して溶融を促進する方法は、スラグ固化・溶融の制御に難しさがあり、Al23を含有する造塊スラグを添加することによってスラグ量が増大して脱りん処理におけるスロッピングを早期化させるため、安定した低りん化を目的とする場合には最善の方法ではない。 The method described in Patent Document 1 is premised on a process in which hot metal is dephosphorized in a dephosphorization furnace and then transferred to a decarburization furnace for decarburization, and the slag composition for facilitating intermediate slag is considered. Therefore, it is not possible to stably obtain low-phosphorus steel in an operation in which intermediate slag is discharged after dephosphorization and decarburization is performed in the same furnace. Similarly, the method described in Patent Document 2 does not assume an operation that performs intermediate waste, and does not consider the slag composition for facilitating intermediate waste. It is not possible to smelt low-phosphorus steel well. Furthermore, in Patent Document 3, the process of performing intermediate slag after dephosphorization treatment and decarburization treatment in the same furnace is basically used. Ingot-making slag containing a slag solidifying agent and Al 2 O 3 is charged to solidify the slag, and the slag is recycled while preventing the slag from bumping when the hot metal is charged for the next dephosphorization treatment. is described. However, the method of adding a slag solidification agent to hot recycled slag to solidify it while adding ingot-making slag containing Al 2 O 3 to promote melting has difficulty in controlling slag solidification and melting. The addition of ingot-making slag containing Al 2 O 3 increases the amount of slag and accelerates slopping in the dephosphorization treatment. do not have.

本発明は前述の問題点を鑑み、安価に、かつ効率よく低りん鋼を溶製するための溶銑の脱りん方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a hot metal dephosphorization method for producing low-phosphorus steel efficiently and inexpensively.

本発明者らは、リサイクルスラグを用いて効率よく脱りん吹錬を行うための条件についいて鋭意検討を行った。その結果、中間排滓を行う操業において、適切な塩基度、転炉スラグの組成及び量などが存在することが判明し、本発明に至った。 The present inventors have earnestly studied the conditions for efficiently performing dephosphorization blowing using recycled slag. As a result, it was found that there are appropriate basicity, composition and amount of converter slag, etc. in the operation of performing intermediate waste, leading to the present invention.

本発明は以下の通りである。
(1)
上吹きランスを具備した転炉型精錬装置において溶銑を装入し、少なくとも転炉スラグを含む石灰源を投入するとともに前記上吹きランスから酸素を吹き付けて前記溶銑の脱りん吹錬を実施し、生成した脱りんスラグの一部を炉傾動により排滓した後に石灰源を追装して脱炭吹錬を実施し、脱炭吹錬後の溶鋼中P濃度が0.020質量%未満の低りん鋼を溶製する溶銑の脱りん方法であって、
前記脱りん吹錬において、溶銑中Siの酸化で生成されるSiO2および脱りん吹錬前に投入する、前記石灰源を含む副材に含まれるSiO2の質量と、前記石灰源中のCaO純分の質量との比である装入塩基度を1.7~2.2とし、
前記転炉スラグとして、CaO/SiO2が3.0以上、CaOとSiO2の濃度の合計が50質量%以上、P25濃度が2.0質量%未満、残部がFetO(酸化鉄FeO、Fe23の総和)、Al23、MnO、MgO、Sおよび不可避的不純物で構成される転炉スラグを溶銑トンあたり10~30kg使用することを特徴とする、溶銑の脱りん方法。
(2)
前記転炉スラグは、80質量%以上の割合で粒径が5~30mmであることを特徴とする、上記(1)に記載の溶銑の脱りん方法。
The present invention is as follows.
(1)
charging molten iron into a converter-type refining apparatus equipped with a top-blowing lance, introducing a lime source containing at least converter slag, and blowing oxygen from the top-blowing lance to dephosphorize the molten iron; After part of the generated dephosphorization slag is discharged by tilting the furnace, decarburization blowing is performed by adding a lime source, and the P concentration in the molten steel after decarburization blowing is reduced to a low level of less than 0.020% by mass. A hot metal dephosphorization method for melting phosphorous steel,
In the dephosphorization blowing, the mass of SiO 2 generated by the oxidation of Si in the hot metal, the mass of SiO 2 contained in the secondary material containing the lime source, which is put in before the dephosphorization blowing, and CaO in the lime source The charged basicity, which is the ratio to the mass of the pure component, is 1.7 to 2.2,
As the converter slag, CaO/SiO 2 is 3.0 or more, the total concentration of CaO and SiO 2 is 50% by mass or more, the P 2 O 5 concentration is less than 2.0% by mass, and the balance is Fe t O (oxidized (sum of iron (FeO, Fe 2 O 3 )), Al 2 O 3 , MnO, MgO, S and unavoidable impurities. Phosphorus method.
(2)
The method for dephosphorizing molten iron according to (1) above, wherein the converter slag has a particle size of 5 to 30 mm at a rate of 80% by mass or more.

本発明によれば、安価に、かつ効率よく低りん鋼を溶製するための溶銑の脱りん方法を提供することができる。 According to the present invention, it is possible to provide a hot metal dephosphorization method for producing low-phosphorus steel efficiently and inexpensively.

脱りん効率の改善方法を説明するための図である。It is a figure for demonstrating the improvement method of dephosphorization efficiency. 装入塩基度と脱Si外酸素量との関係を示す図である。FIG. 4 is a diagram showing the relationship between charged basicity and the amount of oxygen removed from Si.

以下、本発明の実施形態について図面を参照しながら説明する。
本実施形態においては、上吹きランスを具備した転炉型精錬装置において、まず溶銑の脱りん吹錬を実施し、生成した脱りんスラグの一部を炉傾動により中間排滓する。そして、後に石灰源を追装して脱炭吹錬を実施し、脱炭吹錬後の溶鋼中P濃度が0.020質量%未満の低りん鋼を溶製する。溶銑の脱りん吹錬では、石灰源として転炉スラグおよび新規の石灰(生石灰など)を投入する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In this embodiment, in a converter-type refining apparatus equipped with a top-blowing lance, dephosphorization blowing of hot metal is first carried out, and part of the produced dephosphorization slag is subjected to intermediate slag by tilting the furnace. Then, decarburization blowing is performed by adding a lime source later, and low phosphorus steel having a P concentration in the molten steel after decarburization blowing of less than 0.020% by mass is produced. In the dephosphorization blowing of hot metal, converter slag and new lime (such as quicklime) are added as lime sources.

脱りん処理と脱炭処理とを分離し、中間排滓を行う操業での脱りん吹錬では、操業上スラグおよび溶銑の状態から求まるみかけの平衡P濃度に対して溶銑中のP濃度が高くなる。よって、スラグ組成や溶銑温度を変更することによって化学平衡の改善を図ることは脱りん改善への効果が小さい。そこで、図1に示すように、(1)酸素供給量を増やす方法、あるいは(2)Pの物質移動を促進させることが脱りん効率の改善に有効である。 In dephosphorization blowing in which the dephosphorization treatment and the decarburization treatment are separated and intermediate slag is discharged, the P concentration in the hot metal is higher than the apparent equilibrium P concentration obtained from the state of the slag and hot metal in the operation. Become. Therefore, improving the chemical equilibrium by changing the slag composition and hot metal temperature has little effect on improving dephosphorization. Therefore, as shown in FIG. 1, it is effective to (1) increase the amount of oxygen supplied or (2) promote the mass transfer of P to improve the dephosphorization efficiency.

そこで、脱りん吹錬の時間を延ばして酸素供給量を増やすためには、吹錬時間確保のネックとなるスロッピングの発生時期を遅延させることが重要である。図2には、装入CaO/SiO2(装入塩基度)と脱Si外酸素量(上吹き送酸した酸素量のうち、溶銑Siの酸化に消費された酸素分を除外した酸素量)との関係を示す。図2における脱Si外酸素量は、脱りん吹錬を開始してからスロッピングが発生するまでの酸素供給量を表している。また、装入塩基度とは、溶銑中Siの酸化で生成するSiO2および脱りん吹錬前に投入する副材に含まれるSiO2の質量と、石灰源中のCaO純分の質量との比を表す。ここで副材とは、脱りん吹錬時に投入されるリサイクルスラグ(転炉スラグ)や珪石などが含まれる。また、石灰源には、上記転炉スラグのみならず、新規の石灰(生石灰など)も含まれる。図2に示すように、装入塩基度が大きいほどスロッピングの発生時期が遅延して、酸素供給量を増加させることができる。 Therefore, in order to extend the time of dephosphorization blowing and increase the amount of oxygen supplied, it is important to delay the timing of occurrence of slopping, which is a bottleneck in securing blowing time. Fig. 2 shows charged CaO/SiO 2 (charged basicity) and amount of oxygen removed from Si (the amount of oxygen excluding the oxygen consumed for oxidizing hot metal Si, out of the amount of top-blown oxygen). indicates a relationship with The external oxygen amount for desiliconization in FIG. 2 represents the oxygen supply amount from the start of dephosphorization blowing to the occurrence of slopping. In addition, the charge basicity is the mass of SiO2 generated by the oxidation of Si in hot metal and the mass of SiO2 contained in the secondary material charged before dephosphorization blowing, and the mass of pure CaO in the lime source. represents a ratio. Here, secondary materials include recycled slag (converter furnace slag), silica stone, and the like, which are introduced during dephosphorization blowing. Lime sources include not only the converter slag but also new lime (quicklime, etc.). As shown in FIG. 2, the greater the charged basicity, the later the timing of occurrence of slopping, and the more oxygen supply can be increased.

一方で、脱りんスラグの塩基度が高いと、固相の増加、溶融スラグの粘度低下により、スロッピングが発生しにくくなることで中間排滓率が著しく低下してしまう。また、スラグ塩基度の増加で、脱りん吹錬初期のスラグの液相率も低下するため、Pの物質移動も停滞してしまう。そこで、脱りん時間を確保するために装入塩基度を高位としつつ、Pの物質移動を促進させる手法として、本実施形態では石灰源として転炉スラグを活用する。但し、転炉スラグ中にはP25を含んでおり、復りんをなるべく防止するために、なるべくスラグ中P25濃度が低いものを分別することが前提となる。 On the other hand, if the basicity of the dephosphorization slag is high, the solid phase increases and the viscosity of the molten slag decreases, making slopping less likely to occur, resulting in a marked reduction in the slag rate. In addition, due to the increase in slag basicity, the liquid phase ratio of slag in the initial stage of dephosphorization blowing also decreases, and mass transfer of P also becomes stagnant. Therefore, in this embodiment, converter slag is used as a lime source as a method of promoting the mass transfer of P while keeping the charging basicity high in order to secure the dephosphorization time. However, converter furnace slag contains P 2 O 5 , and in order to prevent rephosphorization as much as possible, it is a prerequisite to separate slag having a low P 2 O 5 concentration as much as possible.

ここで、石灰源として生石灰と転炉スラグとを用いる場合に、転炉スラグの割合を変えた場合の脱りん挙動、スラグ塩基度、スラグの液相率を調査したところ、石灰源に生石灰のみを用いた場合と比較して、転炉スラグが多くなるほど液相率が上昇し、脱りん挙動が改善した。この要因としては、転炉スラグの方が生石灰よりも溶解速度が緩やかであるため、スラグ塩基度が低く推移して液相量を維持できたことが考えられる。 Here, when quicklime and converter slag are used as the lime source, the dephosphorization behavior, slag basicity, and slag liquid phase ratio when changing the ratio of converter slag were investigated. As compared with the case of using BOF slag, the liquid phase ratio increased and the dephosphorization behavior improved. As a factor for this, it is considered that the dissolution rate of converter slag is slower than that of quicklime, so that the slag basicity remained low and the amount of liquid phase could be maintained.

以上のように本実施形態においては、酸素供給量を増やして吹錬時間を確保するとともに、石灰源として転炉スラグを活用してPの物質移動を促進させることによって、安価に、かつ効率よく脱りん反応を促進させることができる。 As described above, in the present embodiment, the oxygen supply amount is increased to secure the blowing time, and the converter slag is used as the lime source to promote the mass transfer of P, thereby making it inexpensive and efficient. Dephosphorization reaction can be accelerated.

次に、本実施形態における脱りん吹錬での詳細な条件について説明する。 Next, detailed conditions for dephosphorization blowing in this embodiment will be described.

(装入塩基度:1.7~2.2)
図2に示したように、装入塩基度が高いほど脱りん吹錬時のスロッピングが遅延し、酸素供給量を増やすことができる。そのため、P濃度が0.02質量%未満の低りん鋼を製造するためには、装入塩基度を1.7以上とする。一方で、装入塩基度が2.2を超えると、逆にスロッピングが殆ど生じず、中間排滓率が著しく悪化してしまう。そのため装入塩基度の上限は2.2とする。
(Charging basicity: 1.7 to 2.2)
As shown in FIG. 2, the higher the charge basicity, the more delayed the slopping during dephosphorization blowing, and the more oxygen supply can be increased. Therefore, in order to produce a low phosphorus steel with a P concentration of less than 0.02% by mass, the charging basicity is set to 1.7 or more. On the other hand, if the charged basicity exceeds 2.2, slopping hardly occurs and the slag rate is significantly deteriorated. Therefore, the upper limit of the charged basicity is set to 2.2.

(転炉スラグの塩基度:3.0以上)
石灰源として投入する転炉スラグの塩基度が3.0を下回ると、脱りんスラグ内部の組織としてダイカルシウムシリケート(以下C2S)が多量に生成してしまい、脱りん吹錬で投入した際の溶解速度が著しく低下してしまう。また、脱りんスラグの塩基度(装入塩基度)を上記の範囲に調整するために多くの転炉スラグが必要になってしまう場合がある。一方、塩基度が3.0以上であれば、SiO2に対しCaOが余剰に存在するため、スラグ組織として低融点のCaO-FeOが存在し、一定の溶解速度を確保することができる。なお、転炉スラグの塩基度の上限については特に限定しないが、上述のように装入塩基度に範囲が存在し、かつ後述のように転炉スラグの投入量にも加減が存在することから、実質的に上限が存在する。
(Converter slag basicity: 3.0 or more)
When the basicity of the converter slag charged as a lime source is less than 3.0, a large amount of dicalcium silicate (hereinafter referred to as C 2 S) is generated as a structure inside the dephosphorization slag, and it is charged in the dephosphorization blowing. The actual dissolution rate is remarkably lowered. In addition, a large amount of converter slag may be required in order to adjust the basicity (charged basicity) of the dephosphorization slag to the above range. On the other hand, if the basicity is 3.0 or more, CaO is present in excess relative to SiO 2 , so CaO—FeO with a low melting point exists as a slag structure, and a constant dissolution rate can be secured. Although the upper limit of the basicity of the converter slag is not particularly limited, there is a range in the charging basicity as described above, and there is also an adjustment in the amount of converter slag input as described later. , there is a substantial upper limit.

(転炉スラグ中のCaOとSiO2の濃度の合計:50質量%以上)
CaOとSiO2の濃度の合計が50質量%未満であると、脱りんスラグの塩基度を調整するのに多くの転炉スラグが必要になることに加え、相対的にFetO(酸化鉄FeO、Fe23の総和)が増加する。このため溶解速度が大きくなりすぎてしまい、脱りんスラグの実塩基度が高くなって脱りんスラグの液相率が低下してしまう。このため、転炉スラグ中のCaOとSiO2の濃度の合計が50質量%以上とする。
(Total concentration of CaO and SiO2 in converter slag: 50% by mass or more)
If the total concentration of CaO and SiO 2 is less than 50% by mass, a large amount of converter slag is required to adjust the basicity of the dephosphorization slag. FeO, the sum of Fe 2 O 3 ) increases. As a result, the dissolution rate becomes too high, the actual basicity of the dephosphorization slag increases, and the liquid fraction of the dephosphorization slag decreases. Therefore, the total concentration of CaO and SiO 2 in the converter slag is set to 50% by mass or more.

(転炉スラグ中のP25濃度:2.0質量%未満)
転炉スラグ中のP25濃度が高いと、溶銑への復りんが増えてしまい、その多くが脱炭吹錬に持ち越されてしまう。これにより、転炉吹錬トータルでの脱りん能が低下してしまう。したがって、転炉スラグ中のP25濃度は2.0質量%未満とする。
(P 2 O 5 concentration in converter slag: less than 2.0% by mass)
If the P 2 O 5 concentration in the converter slag is high, the amount of phosphorus returned to the hot metal increases, and most of it is carried over to decarburization blowing. As a result, the total dephosphorization performance of the converter blowing is lowered. Therefore, the P 2 O 5 concentration in converter slag is set to less than 2.0% by mass.

ここで、上記のような組成範囲を満たす転炉スラグの分別方法について説明する。一般的な脱炭スラグのP25濃度は3質量%前後であるため、転炉スラグ中のP25濃度を2質量%未満にするためには、例えば低りん鋼向けの吹錬で生成された脱炭スラグに絞ってスラグを分別する必要がある。スラグの分別方法については特に限定されず、複数の吹錬で生じたスラグを混合してもよく、上記の組成範囲を満たす転炉スラグであればどのように転炉スラグを用いてもよい。 Here, a method for separating converter slag that satisfies the composition range as described above will be described. Since the P 2 O 5 concentration of general decarburized slag is around 3% by mass, in order to make the P 2 O 5 concentration in the converter slag less than 2% by mass, for example, blowing for low phosphorus steel It is necessary to separate the slag by focusing on the decarburized slag produced in The slag separation method is not particularly limited, and slag produced by multiple blows may be mixed, and converter slag may be used in any manner as long as it satisfies the above composition range.

(転炉スラグのその他の成分)
転炉スラグのその他の成分としては、FetO、Al23、MnO、MgO、Sおよび不可避的不純物が挙げられる。これらの濃度については特に限定しないが、CaOとSiO2の濃度の合計、およびP25濃度が上述の条件を満たしていればよい。
(Other Components of Converter Slag)
Other components of converter slag include Fe t O, Al 2 O 3 , MnO, MgO, S and incidental impurities. These concentrations are not particularly limited as long as the total concentration of CaO and SiO 2 and the concentration of P 2 O 5 satisfy the above conditions.

(転炉スラグの量:10~30kg/t)
投入する転炉スラグの量が10kg/t未満であると、脱りんスラグの液相率が低位となり、脱りん改善効果が得られない。一方で、投入する転炉スラグの量が30kg/tを超えると、脱りんスラグの量を抑えながら上記の範囲の装入塩基度を調整するのが困難になり、相対的に転炉スラグからの復りん量も増加してしまう。また、上記の範囲に装入塩基度を調整しようとすると、転炉スラグの量が増えその溶解に時間を要するため、スラグ塩基度が低い時間が長くなり、脱りんの遅れやスロッピングの早期発生による脱りん時間の不足が起こりやすい。
(Amount of converter slag: 10 to 30 kg/t)
If the amount of the converter slag to be charged is less than 10 kg/t, the liquid phase ratio of the dephosphorization slag will be low, and the dephosphorization improvement effect will not be obtained. On the other hand, when the amount of charged converter slag exceeds 30 kg/t, it becomes difficult to adjust the charging basicity within the above range while suppressing the amount of dephosphorization slag. The amount of phosphorus reversion also increases. In addition, when trying to adjust the charge basicity within the above range, the amount of converter slag increases and it takes time to dissolve it, so the time when the slag basicity is low increases, delaying dephosphorization and early slopping. Shortage of dephosphorization time due to generation is likely to occur.

(転炉スラグの粒径:転炉スラグの80質量%以上が5~30mm)
実際の破砕分級の負荷や脱りん効率を考慮すると、転炉スラグの粒径は30mm以下とすることが好ましい。ただし、あまり粒径を小さくしすぎると、集塵ロスにより転炉スラグの添加歩留まりが低下してしまう。したがって転炉スラグの粒径は、転炉スラグの80質量%以上が5~30mmであることが好ましい。
(Particle size of converter slag: 5 to 30 mm for 80% by mass or more of converter slag)
Considering the actual crushing and classification load and the dephosphorization efficiency, the particle size of the converter slag is preferably 30 mm or less. However, if the particle size is too small, the addition yield of the converter slag will decrease due to dust collection loss. Therefore, the particle size of the converter slag is preferably 5 to 30 mm in 80% by mass or more of the converter slag.

(その他の条件)
脱りん吹錬中の上吹き送酸速度の範囲は、スロッピングの発生時期などを考慮して一般的な吹錬条件とし、具体的には、80~150Nm3/h/tとすることが好ましい。また、石灰源として上記転炉スラグ以外に生石灰などの石灰を投入して装入塩基度を上記の範囲に調整するが、脱りんスラグ中のSiO2量を調整するために、珪石などを投入してもよい。
(other conditions)
The range of the top-blown oxygen supply rate during dephosphorization blowing is set to general blowing conditions in consideration of the timing of occurrence of slopping, specifically, 80 to 150 Nm 3 /h/t. preferable. In addition to the converter slag, lime such as quicklime is added as a lime source to adjust the charging basicity to the above range. You may

次に、本発明の実施例について説明するが、この条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この実施例の記載に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する種々の手段にて実施することができる。 Next, an example of the present invention will be described, but this condition is an example of conditions for confirming the feasibility and effect of the present invention, and the present invention is limited to the description of this example. isn't it. The present invention can be implemented in various ways to achieve the objects of the present invention without departing from the gist of the present invention.

表1に示す組成の溶銑300tを転炉型精錬容器に装入し、表1に示す量および組成の転炉スラグおよび生石灰を投入して上吹きランスから80~150Nm3/h/tの送酸速度で酸素を吹き付け、脱りん吹錬を実施した。脱りん吹錬の後、中間排滓を実施して脱りんスラグの一部を排出した。なお、中間排滓率は表1に示した結果であった。その後、生石灰などの副材を再装入し、上吹きランスから200~220Nm3/h/tの送酸速度で酸素を吹き付け、脱炭吹錬を実施した。また、転炉スラグとして脱炭スラグを用い、30~90mmまたは5~30mmに破砕分級し、80質量%以上がこれらの範囲となるような脱炭スラグを用意した。そして、30~90mmに分級した脱炭スラグを投入する際には転炉のスクラップシュートより投入し、5~30mmに分級した脱炭スラグを投入する際には転炉の炉上バンカーより投入した。 300 tons of molten iron having the composition shown in Table 1 was charged into a converter-type refining vessel, and converter slag and quicklime having the amount and composition shown in Table 1 were charged and fed from a top-blowing lance at 80 to 150 Nm 3 /h/t. Dephosphorization blowing was performed by blowing oxygen at an acid rate. After dephosphorization blowing, intermediate slag was carried out to discharge part of the dephosphorization slag. Table 1 shows the intermediate waste rate. After that, secondary materials such as quicklime were recharged, and oxygen was blown from a top blowing lance at an oxygen feeding rate of 200 to 220 Nm 3 /h/t to carry out decarburization blowing. Further, decarburized slag was used as the converter slag, crushed and classified to 30 to 90 mm or 5 to 30 mm, and decarburized slag having 80% by mass or more of these ranges was prepared. When the decarburized slag classified to 30 to 90 mm was charged, it was charged from the scrap chute of the converter, and when the decarburized slag classified to 5 to 30 mm was charged, it was charged from the furnace bunker of the converter. .

発明の効果については、脱炭吹錬後の溶鋼中P濃度が0.020質量%未満で効果ありと判断し、0.015質量%未満で発明の効果が顕著に得られたと判断した。 Regarding the effects of the invention, it was determined that the P concentration in molten steel after decarburization blowing was less than 0.020% by mass was effective, and that the effects of the invention were significantly obtained at less than 0.015% by mass.

Figure 2023049462000002
Figure 2023049462000002

表1中の下線は、本発明の条件を満たしていないことを表している。Ch.No.1~8は、溶鋼中P濃度が0.020質量%未満となり、発明の効果が得られた。特にCh.6~8では、より細かい粒度の転炉スラグを用いたため、溶鋼中P濃度が0.015質量%未満となり、発明の効果がより顕著に得られた。 The underlines in Table 1 indicate that the conditions of the present invention are not satisfied. Ch. No. 1 to 8, the P concentration in the molten steel was less than 0.020% by mass, and the effect of the invention was obtained. Especially Ch. In Nos. 6 to 8, converter slag with a finer grain size was used, so the P concentration in the molten steel was less than 0.015% by mass, and the effects of the invention were obtained more remarkably.

一方、Ch.No.9は転炉スラグの塩基度が低すぎたため、ダイカルシウムシリケート(以下C2S)が多量に生成して溶解速度が低すぎたことから、脱りん吹錬終了後の溶銑中P濃度が高くなってしまった。Ch.10は転炉スラグ中のCaOとSiO2の濃度の合計が低すぎたため、相対的にFetOが増加し、溶解速度が高くなり過ぎて液相率が下がったため、脱りん吹錬終了後の溶銑中P濃度が高くなってしまった。Ch.11は転炉スラグ中のP25濃度が高すぎたため、復りんの影響により脱りん吹錬終了後の溶銑中P濃度が高くなってしまった。 On the other hand, Ch. No. In 9, since the basicity of the converter slag was too low, a large amount of dicalcium silicate (hereinafter referred to as C 2 S) was generated and the dissolution rate was too low. It is had. Ch. In No. 10, the total concentration of CaO and SiO 2 in the converter slag was too low, so Fe t O increased relatively, and the dissolution rate became too high and the liquid phase ratio decreased. The concentration of P in the molten pig iron has become high. Ch. In No. 11, since the P 2 O 5 concentration in the converter slag was too high, the P concentration in the hot metal after the dephosphorization blowing ended increased due to the effect of rephosphorization.

Ch.12は転炉スラグの量が少なかったことから脱りんスラグの液相率を十分に上げることができなかったため、脱りん吹錬終了後の溶銑中P濃度が高くなってしまった。Ch.13は転炉スラグの量が多すぎたことで、スラグ塩基度が低い時間が長くなり、脱りんの遅れおよびスロッピングの早期発生により脱P不良が生じてしまった。 Ch. In No. 12, since the amount of converter slag was small, the liquid phase ratio of the dephosphorization slag could not be sufficiently increased, so the P concentration in the hot metal after the completion of dephosphorization blowing increased. Ch. In No. 13, since the amount of converter slag was too large, the period of low slag basicity was prolonged, and dephosphorization was delayed and early slopping occurred, resulting in defective P removal.

Ch.14は装入塩基度が低すぎたため、スロッピングが早まって吹錬時間を十分に確保できず、脱りん吹錬終了後の溶銑中P濃度が高くなってしまった。Ch.15は装入塩基度が高すぎたため、脱りんスラグが硬化してスロッピングがほとんど起こらず、中間排滓率が低かった。そのため、脱りん吹錬終了後の溶銑中P濃度が低かったものの、脱炭吹錬後の溶鋼中P濃度は高かった。 Ch. In No. 14, since the charged basicity was too low, slopping was accelerated and sufficient blowing time could not be secured, resulting in a high P concentration in the hot metal after dephosphorization blowing. Ch. In No. 15, since the charge basicity was too high, the dephosphorization slag hardened and slopping hardly occurred, resulting in a low intermediate slag rate. Therefore, although the P concentration in molten iron after dephosphorization blowing was low, the P concentration in molten steel after decarburization blowing was high.

Claims (2)

上吹きランスを具備した転炉型精錬装置において溶銑を装入し、少なくとも転炉スラグを含む石灰源を投入するとともに前記上吹きランスから酸素を吹き付けて前記溶銑の脱りん吹錬を実施し、生成した脱りんスラグの一部を炉傾動により排滓した後に石灰源を追装して脱炭吹錬を実施し、脱炭吹錬後の溶鋼中P濃度が0.020質量%未満の低りん鋼を溶製する溶銑の脱りん方法であって、
前記脱りん吹錬において、溶銑中Siの酸化で生成されるSiO2および脱りん吹錬前に投入する、前記石灰源を含む副材に含まれるSiO2の質量と、前記石灰源中のCaO純分の質量との比である装入塩基度を1.7~2.2とし、
前記転炉スラグとして、CaO/SiO2が3.0以上、CaOとSiO2の濃度の合計が50質量%以上、P25濃度が2.0質量%未満、残部がFetO(酸化鉄FeO、Fe23の総和)、Al23、MnO、MgO、Sおよび不可避的不純物で構成される転炉スラグを溶銑トンあたり10~30kg使用することを特徴とする、溶銑の脱りん方法。
charging molten iron into a converter-type refining apparatus equipped with a top-blowing lance, introducing a lime source containing at least converter slag, and blowing oxygen from the top-blowing lance to dephosphorize the molten iron; After part of the generated dephosphorization slag is discharged by tilting the furnace, decarburization blowing is performed by adding a lime source, and the P concentration in the molten steel after decarburization blowing is reduced to a low level of less than 0.020% by mass. A hot metal dephosphorization method for melting phosphorous steel,
In the dephosphorization blowing, the mass of SiO 2 generated by the oxidation of Si in the hot metal, the mass of SiO 2 contained in the secondary material containing the lime source, which is put in before the dephosphorization blowing, and CaO in the lime source The charged basicity, which is the ratio to the mass of the pure component, is 1.7 to 2.2,
As the converter slag, CaO/SiO 2 is 3.0 or more, the total concentration of CaO and SiO 2 is 50% by mass or more, the P 2 O 5 concentration is less than 2.0% by mass, and the balance is Fe t O (oxidized (sum of iron (FeO, Fe 2 O 3 )), Al 2 O 3 , MnO, MgO, S and unavoidable impurities. Phosphorus method.
前記転炉スラグは、80質量%以上の割合で粒径が5~30mmであることを特徴とする、請求項1に記載の溶銑の脱りん方法。 2. The method for dephosphorizing hot metal according to claim 1, wherein the converter slag has a particle size of 5 to 30 mm at a rate of 80% by mass or more.
JP2021159209A 2021-09-29 2021-09-29 Dephosphorization of hot metal Pending JP2023049462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021159209A JP2023049462A (en) 2021-09-29 2021-09-29 Dephosphorization of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021159209A JP2023049462A (en) 2021-09-29 2021-09-29 Dephosphorization of hot metal

Publications (1)

Publication Number Publication Date
JP2023049462A true JP2023049462A (en) 2023-04-10

Family

ID=85802251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021159209A Pending JP2023049462A (en) 2021-09-29 2021-09-29 Dephosphorization of hot metal

Country Status (1)

Country Link
JP (1) JP2023049462A (en)

Similar Documents

Publication Publication Date Title
WO1995001458A1 (en) Steel manufacturing method using converter
JP6693536B2 (en) Converter steelmaking method
JPH11158526A (en) Production of high p slag
JP6665884B2 (en) Converter steelmaking method
JP2023049462A (en) Dephosphorization of hot metal
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP2001192720A (en) Converter steel making process
JP3458890B2 (en) Hot metal refining method
JP3924059B2 (en) Steelmaking method using multiple converters
JP2900011B2 (en) Converter refining method
JP5286892B2 (en) Dephosphorization method of hot metal
JP4192503B2 (en) Manufacturing method of molten steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP2016079462A (en) Method for refining hot pig iron
JP2002129221A (en) Method for refining molten iron
JP2958842B2 (en) Converter refining method
JP3194212B2 (en) Converter steelmaking method
JP7248195B2 (en) Converter steelmaking method
JPH10245615A (en) Method for dephosphorizing molten iron in converter type refining vessel
JP2000328121A (en) Dephosphorization method of molten iron
JP3339982B2 (en) Converter steelmaking method
JP2003193121A (en) Method for refining molten iron
JP2022160777A (en) Smelting method of low phosphorus steel
JP3297997B2 (en) Hot metal removal method
JP2004156146A (en) Method for refining molten iron