JP2001192720A - Converter steel making process - Google Patents

Converter steel making process

Info

Publication number
JP2001192720A
JP2001192720A JP2000176574A JP2000176574A JP2001192720A JP 2001192720 A JP2001192720 A JP 2001192720A JP 2000176574 A JP2000176574 A JP 2000176574A JP 2000176574 A JP2000176574 A JP 2000176574A JP 2001192720 A JP2001192720 A JP 2001192720A
Authority
JP
Japan
Prior art keywords
slag
converter
stage
coolant
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000176574A
Other languages
Japanese (ja)
Other versions
JP4065097B2 (en
Inventor
Manabu Yoshimi
学 吉見
Yuichi Hirokawa
雄一 廣川
Keisuke Okuhara
圭介 奥原
Masanori Kumakura
政宣 熊倉
Toshiyuki Kaneko
敏行 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000176574A priority Critical patent/JP4065097B2/en
Publication of JP2001192720A publication Critical patent/JP2001192720A/en
Application granted granted Critical
Publication of JP4065097B2 publication Critical patent/JP4065097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter steel making process for recycling of slag after decarburization refining at hot. SOLUTION: The converter steel making process using coolants having a large amount of iron oxide for cooling slag after decarburization refining in a fifth stage in executing a first stage of charging the molten iron or the molten iron and the scrap as main raw materials to a converter, a second stage of executing desiliconizing and dephosphorizing, a third stage of discharging the formed slag, a fourth stage of executing decarburization blowing thereafter and a fifth stage of tapping steel allowing the slag to remain after the decarburization refining, then returning to the first stage and repetitively executing up to the fifth stage by recycling the slag made to remain in the fifth stage in the desiliconizing and dephosphorizing of the second stage. Accordingly, the time for cooling the slag may be shortened, quicklime as au auxiliary raw material may be saved and the dephosphorization efficiency above ordinary operation may be obtained by using iron ores, etc., as the coolants in hot recycling of the decarburization slag. The recycling of the slag may be achieved without worrying out the problem of the unslagged off lime in the dephosphorizing slag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱C精錬後のスラ
グの熱間での再利用を図るための転炉製鋼法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter steelmaking method for hot reuse of slag after de-C refining.

【0002】[0002]

【従来の技術】従来での転炉における溶銑の精錬は、転
炉へ高炉溶銑を装入し、生石灰を主体とするフラックス
投入と、酸素吹錬により溶銑を脱P・脱Cし、鋼を溶製
する方法が一般的であった。その後、多工程にわたる精
錬機能を転炉に集約して行い、溶銑のもつエネルギーロ
スを大幅に低減すると共に、転炉前後工程の固定費(設
備費、労務費)の大幅な軽減を可能とする方法が、例え
ば特開平2−181989号公報に開示されている。
2. Description of the Related Art Conventionally, refining of hot metal in a converter involves charging a blast furnace hot metal into a converter, feeding a flux mainly composed of quick lime, and removing P and C from the hot metal by oxygen blowing to remove steel. The method of melting was common. After that, the refining function over multiple processes is centralized in the converter to significantly reduce the energy loss of the hot metal, and to significantly reduce the fixed costs (equipment costs and labor costs) of the processes before and after the converter. The method is disclosed in, for example, JP-A-2-181989.

【0003】該発明は、第一工程として溶銑を転炉に装
入し、第二工程としてフラックス添加と酸素吹き込みを
行って脱Si・脱P精錬を施し、所定のP含有量まで低
減させ、第三工程として前記転炉を傾動して第二工程で
生成したスラグを排出し、その後第四工程として同一転
炉にてフラックス添加と酸素吹錬により、所定のC含有
量まで脱Cを行い、第五工程として第四工程で生成した
スラグを該転炉内に残したまま出鋼して再び第一工程へ
戻り、前記第五工程までを繰り返し実施するもので、場
合によっては、第四工程で生成したスラグを第一工程に
戻さず、第五工程において出鋼した後、スラグを全量排
出する方法である。
According to the invention, as a first step, molten iron is charged into a converter, and as a second step, flux addition and oxygen blowing are performed to remove Si and P, thereby reducing the P content to a predetermined level. As a third step, the converter is tilted to discharge the slag generated in the second step, and then, as a fourth step, decarbonization is performed to a predetermined C content by flux addition and oxygen blowing in the same converter. As a fifth step, the slag generated in the fourth step is left in the converter and the steel is returned to the first step, and the steps up to the fifth step are repeatedly performed. This is a method in which the slag generated in the process is not returned to the first process, and the entire amount of slag is discharged after tapping in the fifth process.

【0004】また、特開平8−199218号公報に
は、上底吹き転炉型精錬装置を用いて、前チャージで生
成したスラグを排出することなく受銑する工程(工程
1)、溶銑の脱燐精錬工程(工程2)、排滓工程(工程
3)、脱C工程(工程4)、出鋼工程(工程5)を連続
して実施する転炉製鋼法において、工程5の後、スラグ
を炉内に残留させた状態で炉を直立させ、工程4と同一
もしくは、他の上吹きランスから窒素、Ar、CO、C
2 の1種もしくは、2種以上を混合せしめたガスを吹
き付けた後、工程1を実施する脱C滓をリサイクルする
転炉製鋼法が記載されている。
Japanese Unexamined Patent Publication No. 8-199218 discloses a process of receiving iron without discharging slag generated by pre-charging using an upper-bottom blow converter type refining apparatus (process 1), and removing hot metal. In the converter steelmaking method in which a phosphorus refining step (step 2), a waste step (step 3), a de-C step (step 4), and a tapping step (step 5) are continuously performed, after step 5, slag is removed. The furnace is allowed to stand upright with it remaining in the furnace, and nitrogen, Ar, CO, C
A converter steelmaking method is described in which a gas in which one or two or more types of O 2 are mixed is blown, and then the C-removed slag for carrying out step 1 is recycled.

【0005】さらに、特開平4−72007号公報に開
示されている技術は、溶銑の装入、脱P・脱S精錬、排
滓、脱C精錬、出鋼、脱Cスラグを残したまま次チャー
ジの溶銑装入、という工程を連続して行う溶鋼製造法で
ある。
[0005] Further, the technology disclosed in Japanese Patent Application Laid-Open No. 4-72007 discloses a method of charging molten iron, removing P and removing S, removing slag, removing C, removing steel, and removing C slag. This is a method for producing molten steel in which the process of charging hot metal is continuously performed.

【0006】一方、特開平5−25527号公報には連
鋳滓および/または造塊滓と酸化鉄、さらに必要に応じ
て転炉滓とを含む脱燐剤を溶銑に添加し、所要の酸化力
を有する溶滓を生成させ、該溶滓と溶銑とを撹拌するこ
とを特徴とする溶銑の脱燐方法が示されている。
On the other hand, JP-A-5-25527 discloses that a dephosphorizing agent containing continuous casting slag and / or ingot slag and iron oxide and, if necessary, converter slag is added to hot metal to obtain a required oxidation. There is disclosed a method for dephosphorizing hot metal, which comprises producing a hot slag and stirring the hot slag and the hot metal.

【0007】[0007]

【発明が解決しようとする課題】前記特開平2−181
989号公報による方法では、同一転炉を用いて脱P、
脱C工程を続けて行うプロセスで実施するので、脱P工
程から脱C工程へ移る際のエネルギーロスを少なくする
ことができ、また固定費(設備費、労務費)の大幅な軽
減を可能にすることができる。
Problems to be Solved by the Invention
In the method according to Japanese Patent No. 989, de-P,
Since it is implemented in a process that continuously performs the de-C step, energy loss when moving from the de-P step to the de-C step can be reduced, and the fixed costs (equipment costs and labor costs) can be significantly reduced. can do.

【0008】ところが、第三工程でのスラグ排出量が少
ないと、第二工程でスラグ中に除去したPが第四工程で
再び溶鋼中に戻ってくるため、第四工程にて再び脱Pす
る必要が生じ、生石灰等のフラックス量を増加させねば
ならずコスト増につながる。しかも、この第四工程でP
濃度が高くなったスラグが第二工程で再び使用されるた
め、第二工程での脱P負過が増加しコスト増になる。こ
のように第三工程でのスラグ排出量が少ないと、脱Pを
行うための負過の増大を避けることができず、コストア
ップに繋がるという問題が生ずる。
However, if the amount of slag discharged in the third step is small, the P removed in the slag in the second step returns to the molten steel in the fourth step again, so that P is removed again in the fourth step. The need arises, and the amount of flux such as quicklime must be increased, leading to an increase in cost. Moreover, in this fourth step, P
Since the slag having a higher concentration is reused in the second step, the removal of P from the second step is increased and the cost is increased. If the amount of slag discharged in the third step is small as described above, it is impossible to avoid an increase in overload for performing de-P, resulting in an increase in cost.

【0009】また、特開平8−199218では、スラ
グを冷却することにより、溶銑装入時の突沸を防止して
いるが、転炉を直立させた状態でAr,CO,CO2
冷却ガスとして用いているので、表面のスラグが過冷却
になり次の脱P処理時に該スラグが溶けるまでに時間を
要し、そのため処理時間の延長につながる。こため脱P
反応効率が悪化する。
In Japanese Patent Application Laid-Open No. Hei 8-199218, bumping during hot metal charging is prevented by cooling slag, but Ar, CO, CO 2 is used as a cooling gas while the converter is upright. Since it is used, the slag on the surface is supercooled, and it takes time until the slag is melted at the time of the next de-P treatment, which leads to an increase in the treatment time. Because of this P
The reaction efficiency deteriorates.

【0010】さらに、特開平4−72007号公報に開
示されている方法では、溶銑の移し変えに伴う熱ロスは
発生しないが、脱Cスラグは(T・Fe)が高いため溶
融状態で次チャージの溶銑を装入すると、溶銑中のCと
急激に反応し溶銑とスラグが炉外に噴出する、いわゆる
突沸が起こるという問題がある。これを回避するため
に、溶銑装入前に、石灰石やスクラップを冷材としてス
ラグに添加し、転炉を数回傾動させるという手法がとら
れているが、添加した冷却材がスラグ中で冷却に長時間
を要するため生産性を著しく阻害するという問題があっ
た。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 4-72007, no heat loss occurs due to the transfer of hot metal, but the decharged C slag has a high (T · Fe), so that the next charge in the molten state is high. When hot metal is charged, there is a problem that so-called bumping occurs in which hot metal and slag spout out of the furnace by reacting rapidly with C in the hot metal. To avoid this, limestone or scrap is added to the slag as a cold material before charging the hot metal, and the converter is tilted several times.However, the added coolant is cooled in the slag. Requires a long period of time, thereby causing a problem that productivity is significantly impaired.

【0011】CaO分を含む冷却材を使用した場合、冷
却材中のCaO分の一部は未滓化のまま脱P処理スラグ
に残留し、該スラグの路盤材等への利用を阻害してい
た。そこで該スラグの活用を図るためには、当該スラグ
を路盤材へ適用するための処理期間(エージング期間)
を設けなければならず、そのための期間を必要とするの
で、設備・労力・時間等コストアップに繋がるという欠
点があった。また、スクラップについても比較的大きい
(100mm以上)形状のものを冷却材として用いた場
合、スラグから冷却材への熱移動に長時間(5分以上)
を要するため、生産性を低下する問題があった。
When a coolant containing CaO is used, a portion of the CaO in the coolant remains in the slag-removed slag without leaving slag, which hinders the use of the slag for roadbed materials and the like. Was. In order to utilize the slag, a processing period (aging period) for applying the slag to the roadbed material is required.
, Which requires a period of time, which leads to an increase in equipment, labor, time and other costs. When a relatively large (100 mm or more) scrap is used as a coolant, heat transfer from the slag to the coolant takes a long time (5 minutes or more).
Therefore, there is a problem that productivity is reduced.

【0012】一方、特開平5−25527号公報では連
鋳滓および/または造塊滓さらに必要に応じて転炉滓と
を含む脱P剤を溶銑に添加しているが、これらのスラグ
は融点1500℃以上と高く、また密な構造を有してい
ることから、脱P処理時の炉内温度では溶解が不完全と
なる問題がある。溶解が不完全となった場合は、スラグ
は脱P剤としての機能を果たさないばかりでなく、脱P
のばらつき増大、熱ロスの原因となりコストの大幅悪化
につながる。
On the other hand, in JP-A-5-25527, a P-removing agent containing continuous casting slag and / or ingot slag and, if necessary, converter slag is added to hot metal. Since the temperature is as high as 1500 ° C. or more and has a dense structure, there is a problem that melting is incomplete at a furnace temperature during the de-P treatment. If the dissolution becomes incomplete, the slag not only does not function as a de-P
This leads to increased variation and heat loss, leading to significant cost reduction.

【0013】本発明は、溶銑装入時に残留させて置いた
スラグが、突沸を起こすことなく安全に脱C滓をリサイ
クルすることにより、少ない生石灰原単位で、かつ生産
性の高い転炉製鋼法を実現するための転炉における脱C
滓の冷却方法を提供することを目的とするものである。
[0013] The present invention provides a converter steelmaking method in which the amount of quicklime is reduced and the productivity is high by slag that has been left at the time of charging hot metal and safely recycles decarbonized slag without causing bumping. In the converter to achieve
It is an object of the present invention to provide a method for cooling slag.

【0014】[0014]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨とするところは、下記手段にある。 (1) 転炉に溶銑、または溶銑とスクラップを主原料
として装入する第一工程、脱Si・脱Pを行う第二工
程、生成したスラグを排滓する第三工程、その後脱C吹
錬を行う第四工程、脱C精錬後スラグを残して出鋼する
第五工程、その後第一工程に戻り、第二工程の脱Si・
脱Pでは第五工程で残したスラグをリサイクル使用し、
前記五工程までを繰り返し実施するに際し、前記第五工
程での脱C精錬後のスラグ冷却に酸化鉄を多量に含有す
る冷却材を用いる転炉製鋼法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and its gist lies in the following means. (1) The first step of charging hot metal or hot metal and scrap as main raw materials into a converter, the second step of removing Si and P, the third step of discharging generated slag, and the subsequent C blowing The fourth step is to remove the slag after de-C refining, and the fifth step is to return to the first step.
In de-P, the slag left in the fifth step is recycled and used.
A converter steelmaking method in which a coolant containing a large amount of iron oxide is used for cooling the slag after the C-free refining in the fifth step when repeatedly performing the five steps.

【0015】(2) 前記冷却材として用いる冷却材量
は、第五工程で残置する脱C精錬後スラグ量に対して3
0〜150%である(1)記載の転炉における転炉製鋼
法。 (3) 前記第五工程に用いる冷却材として鉄鉱石、焼
結鉱、製鉄ダストを使用する(1)または(2)記載の
転炉製鋼法。
(2) The amount of the coolant used as the coolant is 3 to the amount of the slag after the de-C refining remaining in the fifth step.
The converter steelmaking method in the converter according to (1), which is 0 to 150%. (3) The converter steelmaking method according to (1) or (2), wherein iron ore, sintered ore, and ironmaking dust are used as the coolant used in the fifth step.

【0016】(4) 前記第二工程において、炉内に残
したスラグに加えて使用する副原料として連続鋳造滓及
び/又は造塊滓及び/又は転炉滓を使用する(1)ない
し(3)のいずれかに記載の転炉製鋼法。 (5) 前記第二工程において、脱Si・脱P処理終点
温度が1300℃〜1350℃である(1)ないし
(4)のいずれかに記載の転炉製鋼法。 (6) 前記第四工程において、脱C吹錬時の脱C滓中
のAl23 濃度が2〜5%である(1)ないし(5)
のいずれかに記載の転炉製鋼法。
(4) In the second step, continuous casting slag and / or ingot slag and / or converter slag are used as auxiliary materials to be used in addition to the slag left in the furnace (1) to (3). 2.) The converter steelmaking method according to any one of (1) to (3). (5) The converter steelmaking method according to any one of (1) to (4), wherein in the second step, the end point temperature of the de-Si / de-P treatment is 1300 ° C to 1350 ° C. (6) In the fourth step, the concentration of Al 2 O 3 in the decarbonized slag during the decarbonizing blowing is 2 to 5% (1) to (5).
Converter steelmaking method according to any one of the above.

【0017】[0017]

【発明の実施の形態】本発明者らは、脱C滓の冷却につ
いて種々の検討を行った結果、冷却材として用いられる
材料が、第二工程での脱P時に障害にならず、かつ脱P
のために有用な効果を発揮できれば、冷却と脱Pのため
の効能を兼ね備えた効果を得ることができることに気付
き、そのための冷却材として有用な作用を有する酸化鉄
を多量含有する材料の使用に着目した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on the cooling of C-removed slag. As a result, the material used as a coolant does not hinder the removal of P in the second step, P
If it is possible to exert a useful effect for cooling, it is possible to obtain an effect having both the effect of cooling and the effect of removing P, and to use a material containing a large amount of iron oxide having a useful effect as a coolant for that purpose. I paid attention.

【0018】単に脱C滓の冷却のみに冷却に着目するな
らば、転炉で用いられる副原料中、石灰石やスクラップ
を用いることもできるが、前記課題として取り挙げたよ
うに、添加したスラグ中での冷却材の未滓化の問題(第
二工程での時間が冷却材中のCaOを溶解するのに必要
とする時間に満たない場合)や、スクラップの形状が比
較的大きい場合には生産性の低下の問題が生じる。
If attention is paid only to the cooling of the decarbonized slag, limestone and scrap can be used in the auxiliary material used in the converter, but as mentioned above, the added slag Of unslagging of the coolant at the time (when the time in the second step is less than the time required for dissolving CaO in the coolant) or when the shape of the scrap is relatively large The problem of the deterioration of the performance arises.

【0019】一方、脱P反応を効率よく行うためには、
スラグ中の酸化鉄濃度を高く制御するのが望ましい。脱
Si・脱P期においてはメタル中にCが多く存在するた
め、スラグ中の酸化鉄は還元されやすく、スラグ中の酸
化鉄濃度を高く制御するのは困難である。しかし、一度
CaO−FeO,CaO−Fe23 系融体を形成する
と酸化鉄は還元されにくくなり、スラグ中の酸化鉄濃度
を高く制御することに役立つ。
On the other hand, in order to carry out the de-P reaction efficiently,
It is desirable to control the iron oxide concentration in the slag to be high. In the de-Si / P phase, since a large amount of C is present in the metal, iron oxide in the slag is easily reduced, and it is difficult to control the iron oxide concentration in the slag to a high level. However, once the CaO-FeO, iron oxide and forming a CaO-Fe 2 O 3 KeiTorukarada is less likely to be reduced, it helps to increase the control of iron oxide concentration in the slag.

【0020】CaO−FeO,CaO−Fe23 系融
体の形成促進には、滓化しているCaOと酸化鉄の接触
機会を増やすことが有効であると考えられ、滓化してい
るCaOを多く含むスラグを多量の酸化鉄を含有する材
料(少なくとも酸化鉄の割合が50%以上が望ましい)
で冷却するのが望ましいとの知見を得るに至った。すな
わち、従来から冷却材としては一般にスクラップまたは
未滓化のCaOを含有する副原料が使用されていたが、
これに代えて酸化鉄を多量に含有する鉄鉱石、焼結鉱、
製鉄ダスト等(以下これらを代表して単に鉄鉱石と呼
ぶ)を用いるならば、未滓化の問題を懸念する必要がな
く、かつ脱P時に有効な酸化鉄を予め含有させて置くこ
とができ、優れた効用を持たせることができるとの結論
に到達した。
In order to promote the formation of CaO-FeO and CaO-Fe 2 O 3 -based melts, it is considered effective to increase the chances of contact between slagging CaO and iron oxide. A material containing a large amount of iron oxide containing a large amount of slag (at least 50% or more of iron oxide is desirable)
It has been found that it is desirable to perform cooling at room temperature. In other words, conventionally, auxiliary materials containing scrap or unslagged CaO have been generally used as a coolant.
Instead, iron ore, sinter,
If iron-making dust or the like (hereinafter simply referred to simply as iron ore) is used, there is no need to worry about the problem of unslagging, and an effective iron oxide can be contained in advance at the time of removing P. , And concluded that it could have excellent utility.

【0021】ここで、製鉄ダストとは、転炉集塵ダスト
や連鋳スケール,ミルスケール等の製鉄所内で発生する
ダスト類の内、主成分に酸化鉄を含むものを意味し、形
状は粉体または50mm以下のブリケット状のものであ
る。
[0021] Here, iron-made dust refers to dust that is mainly contained in iron oxide among dusts generated in steelworks such as converter dust and continuous cast scale and mill scale. It is a body or a briquette of 50 mm or less.

【0022】脱C滓を脱P処理に熱間で再利用する場合
に、溶銑装入時の突沸現象やスラグフォーミングを抑制
するためには、スラグの冷却または脱酸を行う必要があ
ることは知られていた。しかして、前記したように従
来、スラグの冷却には石灰石やスクラップの冷却材が使
用されてきたが、大量生産を指向している現在の転炉操
業においては、生産性を高めるために短時間でスラグの
冷却を行う必要がある。このため突沸現象やスラグフォ
ーミングを完全に回避できる冷却条件下では、スラグが
過冷却となり脱P反応効率が悪化する難点があった。
In the case where C-removed slag is re-used hot for de-P treatment, it is necessary to cool or deoxidize slag in order to suppress bumping phenomenon and slag forming at the time of charging hot metal. Was known. In the past, as described above, limestone and scrap coolant have been used for cooling slag.However, in the current converter operation that is directed to mass production, a short time is required to increase productivity. Slag needs to be cooled. For this reason, under the cooling condition in which the bumping phenomenon and the slag forming can be completely avoided, the slag is supercooled, and there has been a problem that the de-P reaction efficiency is deteriorated.

【0023】本発明においては、脱C滓を脱P処理に熱
間で再利用する場合の冷却材として、従来使用されてい
なかった酸化鉄分を多量に含有する鉄鉱石を冷却材とし
て用いるものである。鉄鉱石をスラグ冷却過程であらか
じめ脱C滓と混合し、滓化して置くことにより、脱P効
率向上に有利なCaO−FeO,CaO−Fe23
融体の速やかな生成が起こると考えられ、脱P反応効率
悪化を招いていた従来の課題を容易に解決できる。
In the present invention, iron ore containing a large amount of iron oxide, which has not been conventionally used, is used as a cooling material when the C-removed slag is reused hot for the de-P treatment. is there. It is thought that by mixing iron ore in advance with slag removal in the slag cooling process and forming slag, CaO-FeO, CaO-Fe 2 O 3 -based melt, which is advantageous for improving the P removal efficiency, is generated promptly. Therefore, it is possible to easily solve the conventional problem that has caused deterioration of the P removal reaction efficiency.

【0024】また、脱C滓と冷却材の混合の際に、上吹
きまたは底吹きにより撹拌を行うことは一層効果的であ
る。さらに、未滓化CaO分を含まないため、脱P時の
スラグ中に残存する未滓化CaOの原因とならない。ま
た、鉄鉱石は一般的にその大きさは、50mm以下の小
さな形状を有しているため短時間(2分以内)でスラグ
冷却が可能であり、生産性を阻害することはない。
In addition, it is more effective to carry out stirring by top blowing or bottom blowing when mixing the de-C residue and the coolant. Furthermore, since it does not contain unslagged CaO, it does not cause unslagged CaO remaining in the slag at the time of P removal. In addition, since iron ore generally has a small shape of 50 mm or less, slag cooling can be performed in a short time (within 2 minutes), and productivity is not hindered.

【0025】このようにCaO−FeO,CaO−Fe
23 系融体による脱P反応向上、脱Pスラグへの未滓
化石灰の残存防止、短時間でのスラグ冷却実現の課題を
同時に解決できる冷却材は、酸化鉄を多量に含有する鉄
鉱石のみである。
As described above, CaO—FeO, CaO—Fe
A coolant that can simultaneously solve the problems of improving the de-P reaction by the 2 O 3 -based melt, preventing unslagged lime from remaining in the de-P slag, and achieving slag cooling in a short time is an iron ore containing a large amount of iron oxide. Only stones.

【0026】鉄鉱石を例にとると残置する脱C精錬後ス
ラグ量に対して用いる冷却材の量は、30〜150%
(対スラグ)であることが必要である。この量が30%
未満で有ると冷却材としての効果か薄れ、スラグを固化
できず溶融状態のままで、次工程での溶銑の装入を受け
ると溶銑中のCと急激に反応し、突沸現象が起こり溶銑
およびスラグが炉外に噴出する。また、この量が150
%を超えるとスラグが過冷却状態となり、第二工程では
スラグの一部が溶融せず、脱P反応の効率が低下する。
When iron ore is taken as an example, the amount of the coolant used is 30 to 150% based on the amount of slag after de-C refining remaining.
(Against slag). This amount is 30%
If it is less than the value, the effect as a coolant will be weakened, the slag cannot be solidified and remains in a molten state, and when charged with hot metal in the next process, it will react rapidly with C in the hot metal, bumping phenomenon will occur and hot metal and Slag gushes out of the furnace. Also, if this amount is 150
%, The slag is in a supercooled state, a part of the slag is not melted in the second step, and the efficiency of the P removal reaction is reduced.

【0027】さらに、本発明においては、冷却固化され
た連鋳滓、造塊滓、転炉滓(普通銑スラグ、脱C滓)等
のスラグの有効利用も可能となる。これらのスラグは、
従来より脱P剤として有用な組成を有していることは知
られていたが、融点が脱P処理時の炉内温度に比べて高
く、緻密な構造を有していることから滓化性が悪く、ス
ラグ相が固液共存で反応が進む通常の脱Si・脱P処理
では完全な滓化に至らない場合が多く発生する。完全に
滓化しない場合はスラグが脱P剤として機能しないばか
りでなく、溶融スラグ量がばらつくことによる脱Pのば
らつき増大、反応に寄与しない固相スラグを加熱するこ
とによる熱ロスの原因となるため、従来大量使用は困難
であった。
Further, in the present invention, it is possible to effectively use slag such as continuous solidified slag, ingot slag, and converter slag (normal iron slag, de-C slag) that have been cooled and solidified. These slugs
It has been known that it has a useful composition as a de-P agent, but its melting point is higher than the furnace temperature at the time of de-P treatment and it has a dense structure, so that However, in many cases, complete slag formation is not achieved by ordinary Si / P removal treatment in which the reaction proceeds in the coexistence of slag phase and solid-liquid. If the slag is not completely formed, not only does the slag not function as a de-P agent, but also the dispersion of the de-P is increased due to variation in the amount of molten slag, and heat loss is caused by heating the solid slag that does not contribute to the reaction. Therefore, it has been difficult to use it in large quantities.

【0028】本願発明者らは脱P処理時の転炉内環境に
おける冷却固化された連鋳滓、造塊滓、転炉滓等の滓化
挙動に注目し、その場観察実験を行った。その結果、冷
却固化された連鋳滓、造塊滓、転炉滓等の滓化は、周り
のスラグ相の状態の影響を強く受け、周りのスラグが完
全に液相になっている場合には短時間で完全滓化状態が
得られることが判明した。
The inventors of the present application focused on the slagging behavior of the cooled and solidified continuous casting slag, ingot slag, converter slag, etc. in the environment inside the converter during the de-P treatment, and conducted an in-situ observation experiment. As a result, slagging of continuous solidified slag, ingot slag, converter slag, etc., which is cooled and solidified, is strongly affected by the state of the surrounding slag phase, and when the surrounding slag is completely in the liquid phase. It was found that a complete slagging state was obtained in a short time.

【0029】一方、本発明においては、炉内残置した脱
C滓の冷却過程であらかじめ脱C滓と鉄鉱石と混合し滓
化しておくことを特徴としているため、脱C滓の組成が
変化し融点が低下することが期待できる。そこで本法に
より冷却固化したスラグと従来法である石灰石やスクラ
ップにより冷却固化したスラグについて、脱Si・脱P
処理時の炉内温度における状態を確認するためその場観
察実験行った。その結果、本法により冷却固化した脱C
滓は1250℃程度で完全に液相になったのに対し、従
来法の場合脱P処理温度である1350℃においても完
全な液相は得られなかった。
On the other hand, the present invention is characterized in that, in the cooling process of the decarbonized slag remaining in the furnace, the chlorinated slag is mixed with iron ore in advance to form slag, so that the composition of the decarbonized slag changes. The melting point can be expected to decrease. Therefore, the slag cooled and solidified by this method and the slag cooled and solidified by limestone and scrap, which are the conventional methods, are de-Si / P-free.
An in-situ observation experiment was performed to confirm the state at the furnace temperature during the treatment. As a result, the C
The slag completely became a liquid phase at about 1250 ° C., whereas in the case of the conventional method, a complete liquid phase could not be obtained even at 1350 ° C., which is the de-P treatment temperature.

【0030】本法では脱P処理開始直後から炉内のスラ
グは液相単相となり、脱P剤として新たに転炉炉内に装
入したスラグの表面は全て低融点の液相スラグで覆われ
る。融点が高く、緻密な構造を有しているため滓化性が
悪いスラグであっても、固相表面で低融点の液層スラグ
への化学的溶解が活発に起こり、完全な滓化が得やすい
ため脱P剤として大量使用が可能である。
In this method, the slag in the furnace becomes a single-phase liquid phase immediately after the start of the de-P treatment, and the surface of the slag newly charged into the converter furnace as a P-removing agent is entirely covered with a low-melting liquid slag. Will be Even if the slag has a high melting point and a dense structure and poor slagging properties, chemical dissolution into the low-melting liquid slag on the solid phase surface occurs actively, and complete slagging is obtained. Because it is easy to use, it can be used in large quantities as a de-P agent.

【0031】溶銑脱P処理終点温度については1300
℃以上1350℃以下の範囲に制御することが望まし
い。前記のように脱C滓と鉄鉱石と混合し滓化したスラ
グの融点は1250℃程度であり、確実に溶融スラグを
存在させるためには1300℃以上の温度が必要であ
る。一方、脱P反応効率の観点からは、1350℃以上
の温度になるとスラグ中酸化鉄の還元が起こりスラグの
酸化力が低下するため、スラグからの復Pが起こる。こ
のため1350℃以下の温度が必要である。
The hot metal de-P treatment end point temperature is 1300
It is desirable to control the temperature within a range of not less than 1350 ° C. As described above, the melting point of slag mixed with de-C slag and iron ore to form a slag is about 1250 ° C., and a temperature of 1300 ° C. or higher is required to ensure the presence of molten slag. On the other hand, from the viewpoint of the de-P reaction efficiency, when the temperature becomes 1350 ° C. or higher, iron oxide in the slag is reduced, and the oxidizing power of the slag is reduced. For this reason, a temperature of 1350 ° C. or less is required.

【0032】脱P処理の後の脱C処理時のスラグ中Al
23 濃度についてもある範囲内であることが望まし
い。Al23 はスラグの融点降下剤としての機能があ
り、スラグ中未滓化石灰割合の低減に効果がある。その
効果は(%Al23 )=2%以上の条件においては未
滓化CaO割合=2%以下でほぼ一定となるため、Ca
O量を削減するためには(%Al23 )=2%以上で
あることが望ましい。一方、Al23 は溶融スラグに
おいて粘性を上昇させる性質もあるため、濃度が高いと
スロッピングの原因となる。スロッピングの発生頻度は
(%Al23 )=5%以上で顕著となるため、(%A
23 )=5%以下が望ましい。
Al in slag at the time of de-C treatment after de-P treatment
It is desirable that the concentration of 2 O 3 is also within a certain range. Al 2 O 3 has a function as a melting point depressant for slag, and is effective in reducing the ratio of unslagged lime in slag. The effect is almost constant under the condition of (% Al 2 O 3 ) = 2% or more and the unslagged CaO ratio is 2% or less.
In order to reduce the amount of O, it is desirable that (% Al 2 O 3 ) = 2% or more. On the other hand, Al 2 O 3 also has the property of increasing the viscosity of the molten slag, so that high concentrations cause slopping. Since the occurrence frequency of the slopping becomes remarkable when (% Al 2 O 3 ) = 5% or more, (% A 2 O 3 )
l 2 O 3 ) = 5% or less is desirable.

【0033】[0033]

【実施例】(実施例1)実施例として330t転炉を用
い、脱C滓を20〜40kg/t炉内に残置し、鉄鉱石
を15〜20kg/t投入し、スラグ冷却を行ったもの
(本発明)と、比較のため従来でのスクラップ冷却を行
ったもの(スラグの冷却条件はほぼ同一とした)につい
て、次回の転炉での溶製のために溶銑を装入し、副原料
として冷却固化した連続鋳造滓及び造塊滓及び転炉滓を
合計10〜30kg/t投入し、脱Si・脱P処理終点
温度1300〜1350℃として脱P処理を実施し、生
成したスラグを排出した後の脱C吹錬においては脱C滓
中のAl23 濃度を2〜5%とした場合における例を
図1と図2に示した。
(Example 1) As an example, a 330-t converter was used, C-removed slag was left in a 20 to 40 kg / t furnace, iron ore was charged at 15 to 20 kg / t, and slag was cooled. For the present invention, and for comparison, the conventional scrap cooling was performed (slag cooling conditions were almost the same), and molten iron was charged for melting in the next converter. A total of 10 to 30 kg / t of the continuous cast slag, ingot slag, and converter slag that have been cooled and solidified are charged, the de-P treatment is performed at an end temperature of 1300 to 1350 ° C. for de-Si and de-P processing, and the generated slag is discharged. 1 and 2 show an example in which the Al 2 O 3 concentration in the decarbonized slag was set to 2 to 5% in the decarbonizing blowing after the above.

【0034】スラグの冷却に要した時間(冷却材投入か
らスラグ固化確認までの時間)は、鉄鉱石によるスラグ
冷却が平均1.5分であったのに対し、スクラップによ
るスラグ冷却では平均5.3分であった。
The time required for cooling the slag (the time from the introduction of the coolant to the confirmation of the solidification of the slag) was 1.5 minutes on average for slag cooling with iron ore, whereas the average time for slag cooling with scrap was 5. 3 minutes.

【0035】図1はスラグの塩基度とT・Feの関係を
示したもので、図2はスラグの塩基度と脱P処理後のP
濃度の関係を示したものである。図から明らかななよう
に本発明によるものは、従来法に比しT・Feが高目に
なっており、また、脱P処理後のP濃度は低目になって
いる。
FIG. 1 shows the relationship between the basicity of slag and T.Fe, and FIG. 2 shows the basicity of slag and P after de-P treatment.
It shows the relationship between the concentrations. As is clear from the figure, in the case of the present invention, T.Fe is higher than in the conventional method, and the P concentration after the de-P treatment is lower.

【0036】スラグ中のT・Feはスラグ中の酸化鉄濃
度に比例する。本発明を用いると、スラグ中の酸化鉄濃
度を高く制御することが可能であり、このため脱P反応
を効率よく行うことが可能となることが判る。
The T.Fe in the slag is proportional to the iron oxide concentration in the slag. It is understood that the use of the present invention makes it possible to control the concentration of iron oxide in the slag to a high level, and thus it is possible to efficiently perform the de-P reaction.

【0037】(実施例2)実施例として330t転炉を
用い、脱C滓を20〜40kg/t炉内に残置し、鉄鉱
石を15〜20kg/t投入し、スラグを冷却固化した
場合(本発明例)と、脱C滓を20〜40kg/t炉内
に残置し、石灰石を15〜20kg/t投入し、スラグ
を冷却固化した場合(比較例)について、次回の転炉で
の溶製のために溶銑を装入し、副原料として冷却固化し
た連続鋳造滓及び造塊滓及び転炉滓を合計10〜30k
g/t投入し、脱Si・脱P処理終点温度1300〜1
350℃として脱P処理を行い、生成したスラグを排出
した後の脱C吹錬においては脱C滓中のAl23 濃度
を2〜5%とした場合における、脱P処理後スラグ中の
冷却固化した連続鋳造滓及び造塊滓及び転炉滓の残存状
況を調査した例を図3に示した。
(Example 2) In a case where a 330-t converter was used as an example, C-removed slag was left in a 20 to 40 kg / t furnace, iron ore was charged at 15 to 20 kg / t, and slag was cooled and solidified. In the case of the present invention) and the case where the decalcified slag is left in a 20 to 40 kg / t furnace, limestone is charged at 15 to 20 kg / t, and the slag is cooled and solidified (comparative example), The continuous casting slag, the ingot slag, and the converter slag which were charged with hot metal for the production and cooled and solidified as auxiliary materials were 10-30 k in total.
g / t, and end point temperature of de-Si and de-P treatment 1300-1
The de-P treatment was performed at 350 ° C., and in the de-C blowing after discharging the generated slag, in the slag after the de-P treatment when the Al 2 O 3 concentration in the de-C residue was 2 to 5%. FIG. 3 shows an example in which the remaining state of the cooled and solidified continuous casting slag, ingot slag, and converter slag was investigated.

【0038】本法の場合、脱Si・脱P期のスラグは均
一で転炉滓の粒は回収されなかった。一方、従来法の場
合、脱Si・脱P期のスラグから転炉滓の粒が回収され
た。このことから、本法によると脱Si・脱P期におけ
る冷却固化されたスラグの滓化性が向上することが判
る。
In the case of this method, the slag in the Si-removing and P-removing phases was uniform, and the particles of the converter slag were not recovered. On the other hand, in the case of the conventional method, particles of the converter slag were recovered from the slag in the de-Si / P phase. From this fact, it can be seen that according to the present method, the slag property of the cooled and solidified slag in the de-Si / P phase is improved.

【0039】(実施例3)実施例として330t転炉を
用い、脱C滓を20〜40kg/t炉内に残置し、鉄鉱
石を15〜20kg/t投入し、スラグを冷却固化し、
脱Si・脱P処理時に冷却固化した連続鋳造滓及び造塊
滓及び転炉滓を合計10〜30kg/t投入して脱Si
・脱P処理を行い、生成したスラグを排出した後の脱C
吹錬においては脱C滓中のAl23 濃度を2〜5%と
した場合の、脱Si・脱Pスラグ中のP25 濃度の温
度依存性を測定した例を図4に示した。
(Example 3) As a working example, a 330-t converter was used, leaving decarbonized slag in a furnace of 20-40 kg / t, charging iron ore of 15-20 kg / t, cooling and solidifying the slag,
Continuous casting slag, ingot slag, and converter slag cooled and solidified at the time of de-Si / de-P treatment are fed in a total of 10 to 30 kg / t to remove Si.
・ De-C after de-P treatment and discharge of generated slag
FIG. 4 shows an example of measuring the temperature dependence of the P 2 O 5 concentration in the Si-free and P-free slag when the Al 2 O 3 concentration in the C-removed slag is 2 to 5% in the blowing. Was.

【0040】スラグ中のP25 は脱Pが効率的に行わ
れた場合に高い値となり、本実施例ではある温度範囲で
脱Si・脱Pスラグ中のP25 は最大値5〜7%でば
らつきも少なく安定していた。
The P 2 O 5 in the slag has a high value when de-P is efficiently performed. In this embodiment, the P 2 O 5 in the de-Si / P-free slag has a maximum value of 5 in a certain temperature range. It was stable with little variation at ~ 7%.

【0041】図4より温度について1300〜1350
℃が脱P効率が高く、操業最適条件であることが判る。
As shown in FIG.
It can be seen that ° C has a high de-P efficiency and is an optimal operation condition.

【0042】(実施例4)実施例として330t転炉を
用い、脱C滓を20〜40kg/t炉内に残置し、鉄鉱
石を15〜20kg/t投入し、スラグを冷却固化し、
脱Si・脱P処理時に冷却固化した連続鋳造滓及び造塊
滓及び転炉滓を合計10〜30kg/t投入した場合
の、脱Si・脱P処理に続く脱C処理における未滓化石
灰割合とスロッピング発生頻度の脱C処理時のスラグ中
Al23 濃度依存性を測定した例を図5に示した。
(Example 4) As a working example, a 330-t converter was used. De-C slag was left in a 20 to 40 kg / t furnace, iron ore was charged at 15 to 20 kg / t, and slag was cooled and solidified.
The ratio of uncalcified lime in the de-C treatment following the de-Si and de-P treatment when a continuous casting slag, ingot slag, and converter slag cooled and solidified during the de-Si and de-P treatment are added in a total amount of 10 to 30 kg / t. FIG. 5 shows an example in which the dependency of the frequency of occurrence of slopping on the concentration of Al 2 O 3 in slag during the de-C treatment was measured.

【0043】未滓化石灰は低いほど石灰の利用効率が高
くコスト上有利である。本試験条件ではAl23 が2
%より高ければ未滓化石灰割合のばらつきの上限は2%
以下でほぼ一定であった。
The lower the unslagged lime, the higher the lime utilization efficiency and the more advantageous the cost. Under the test conditions, Al 2 O 3 was 2
If it is higher than 2%, the upper limit of variation of unslagized lime ratio is 2%
It was almost constant below.

【0044】図5よりAl23 濃度については、未滓
化石灰割合から2%以上が、スロッピング発生頻度から
5%以下が最適であることが判る。
From FIG. 5, it can be seen that the Al 2 O 3 concentration is optimally 2% or more based on the ratio of uncalcified lime and 5% or less from the frequency of occurrence of slopping.

【0045】[0045]

【発明の効果】本発明によれば、脱C滓の熱間再使用時
の冷却材として鉄鉱石等を用いることにより、スラグ冷
却時間を短縮すると共に、副原料としての生石灰の節減
ができ、スクラップや石灰等を冷却材として用いた通常
操業以上の脱P効率を得ることが期待できる。
According to the present invention, by using iron ore or the like as a coolant at the time of hot reuse of de-C slag, it is possible to shorten the slag cooling time and to save quicklime as an auxiliary material. It can be expected to obtain a de-P efficiency higher than the normal operation using scrap, lime, etc. as a coolant.

【0046】また、脱Pスラグ中の未滓化石灰の問題が
解決できるので、生産性を阻害することなくスラグの再
利用を図ることができる。さらに冷却固化されたスラグ
についても、完全な滓化状態が得やすくなるため脱P剤
として大量使用することができる。
Further, since the problem of unslagged lime in the P-free slag can be solved, slag can be reused without impairing productivity. Furthermore, the slag that has been cooled and solidified can be used in large quantities as a P-removing agent because it is easy to obtain a complete slag state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スラグの塩基度とT・Feの関係を示した図FIG. 1 is a diagram showing a relationship between basicity of slag and T · Fe.

【図2】スラグの塩基度と脱P処理後のP濃度の関係を
示した図
FIG. 2 is a diagram showing a relationship between basicity of slag and P concentration after de-P treatment.

【図3】冷却固化された連続鋳造滓/造塊滓/転炉滓の
脱Si脱P処理における滓化状況を示した図
FIG. 3 is a view showing a slag formation state in a removal of Si from a continuous cast slag / ingot slag / converter slag solidified by cooling;

【図4】脱Si脱P処理後スラグ中の(%P25 )の
温度依存性を示した図
FIG. 4 is a diagram showing the temperature dependence of (% P 2 O 5 ) in the slag after the Si removal from the P treatment;

【図5】脱C処理後スラグ中の未滓化石灰割合とスロッ
ピング発生状況の(%Al2 3 )依存性を示した図
FIG. 5: Ratio of unslagged lime in slag after sludge removal
Ping occurrence (% AlTwo O Three Figure showing dependency

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21C 5/36 C21C 5/36 (72)発明者 奥原 圭介 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 熊倉 政宣 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 金子 敏行 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4K002 AB01 AB04 AE06 AF04 BD04 4K014 AA01 AA03 AB04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21C 5/36 C21C 5/36 (72) Inventor Keisuke Okuhara 1st Nishinosu Oaza, Oita City, Oita Prefecture Nippon Steel Corporation Oita Works, Ltd. (72) Inventor Masanobu Kumakura, Oita, Oita, Oita, Nishi-no-Shi, 1 Nippon Steel Co., Ltd. F-term in Oita Works (reference) 4K002 AB01 AB04 AE06 AF04 BD04 4K014 AA01 AA03 AB04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 転炉に溶銑、または溶銑とスクラップを
主原料として装入する第一工程、脱Si・脱Pを行う第
二工程、生成したスラグを排滓する第三工程、その後脱
C吹錬を行う第四工程、脱C精錬後スラグを残して出鋼
する第五工程、その後第一工程に戻り、第二工程の脱S
i・脱Pでは第五工程で残したスラグをリサイクル使用
し、前記五工程までを繰り返し実施するに際し、前記第
五工程での脱C精錬後のスラグ冷却に酸化鉄を多量に含
有する冷却材を用いることを特徴とする転炉製鋼法。
1. A first step of charging hot metal or hot metal and scrap as a main raw material into a converter, a second step of removing Si and P, a third step of discharging generated slag, and then removing C. A fourth step of blowing, a fifth step of tapping while leaving slag after de-C refining, and then returning to the first step to remove the S in the second step.
In i. De-P, the slag left in the fifth step is recycled and used, and when repeating the above-mentioned five steps, the coolant containing a large amount of iron oxide is used for cooling the slag after the de-C refining in the fifth step. Converter steelmaking method characterized by using
【請求項2】 前記冷却材として用いる冷却材量は、第
五工程で残置する脱C精錬後スラグ量に対して30〜1
50%であることを特徴とする請求項1記載の転炉製鋼
法。
2. The amount of the coolant used as the coolant is 30 to 1 with respect to the amount of the slag after the C-free refining remaining in the fifth step.
2. The converter steelmaking method according to claim 1, wherein the ratio is 50%.
【請求項3】 前記第五工程に用いる冷却材として鉄鉱
石、焼結鉱、製鉄ダストを使用することを特徴とする請
求項1または2記載の転炉製鋼法。
3. The converter steelmaking method according to claim 1, wherein iron ore, sinter, or ironmaking dust is used as a coolant used in the fifth step.
【請求項4】 前記第二工程において、炉内に残したス
ラグに加えて使用する副原料として連続鋳造滓及び/又
は造塊滓及び/又は転炉滓を使用することを特徴とする
請求項1ないし3のいずれかに記載の転炉製鋼法。
4. The method according to claim 2, wherein in the second step, continuous casting slag and / or ingot slag and / or converter slag are used as auxiliary raw materials in addition to the slag left in the furnace. 4. The converter steelmaking method according to any one of 1 to 3.
【請求項5】 前記第二工程において、脱Si・脱P処
理終点温度が1300℃〜1350℃であることを特徴
とする請求項1ないし4のいずれかに記載の転炉製鋼
法。
5. The converter steelmaking method according to claim 1, wherein, in the second step, the end point temperature of the Si / P removal treatment is 1300 ° C. to 1350 ° C.
【請求項6】 前記第四工程において、脱C吹錬時の脱
C滓中のAl23濃度が2〜5%であることを特徴と
する請求項1ないし5のいずれかに記載の転炉製鋼法。
6. The method according to claim 1, wherein, in the fourth step, the concentration of Al 2 O 3 in the decarbonized slag during the decarbonizing blowing is 2 to 5%. Converter steelmaking method.
JP2000176574A 1999-10-26 2000-06-13 Converter steelmaking Expired - Fee Related JP4065097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176574A JP4065097B2 (en) 1999-10-26 2000-06-13 Converter steelmaking

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-303447 1999-10-26
JP30344799 1999-10-26
JP2000176574A JP4065097B2 (en) 1999-10-26 2000-06-13 Converter steelmaking

Publications (2)

Publication Number Publication Date
JP2001192720A true JP2001192720A (en) 2001-07-17
JP4065097B2 JP4065097B2 (en) 2008-03-19

Family

ID=26563518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176574A Expired - Fee Related JP4065097B2 (en) 1999-10-26 2000-06-13 Converter steelmaking

Country Status (1)

Country Link
JP (1) JP4065097B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239085A (en) * 2006-03-13 2007-09-20 Jfe Steel Kk Method for dephosphorize-treating molten iron
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method
JP2014169492A (en) * 2013-03-05 2014-09-18 Nippon Steel & Sumitomo Metal Method for manufacturing molten steel
CN108265148A (en) * 2018-01-03 2018-07-10 北京首钢股份有限公司 A kind of method for making steel
JP2022057595A (en) * 2020-09-30 2022-04-11 Jfeスチール株式会社 Dephosphorization method of molten iron and production method of molten steel
CN115369208A (en) * 2022-06-21 2022-11-22 阳春新钢铁有限责任公司 Method for limestone-making early-stage slag for converter steelmaking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944936B (en) * 2020-07-10 2022-03-18 首钢京唐钢铁联合有限责任公司 Method for utilizing latent heat of slag of decarburization furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239085A (en) * 2006-03-13 2007-09-20 Jfe Steel Kk Method for dephosphorize-treating molten iron
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method
CN104769136A (en) * 2012-10-30 2015-07-08 杰富意钢铁株式会社 Refine method of hot metal
KR101680094B1 (en) * 2012-10-30 2016-11-28 제이에프이 스틸 가부시키가이샤 Method for refining hot metal
JP2014169492A (en) * 2013-03-05 2014-09-18 Nippon Steel & Sumitomo Metal Method for manufacturing molten steel
CN108265148A (en) * 2018-01-03 2018-07-10 北京首钢股份有限公司 A kind of method for making steel
JP2022057595A (en) * 2020-09-30 2022-04-11 Jfeスチール株式会社 Dephosphorization method of molten iron and production method of molten steel
JP7363731B2 (en) 2020-09-30 2023-10-18 Jfeスチール株式会社 Method for dephosphorizing hot metal and manufacturing method for molten steel
CN115369208A (en) * 2022-06-21 2022-11-22 阳春新钢铁有限责任公司 Method for limestone-making early-stage slag for converter steelmaking

Also Published As

Publication number Publication date
JP4065097B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
WO1995001458A1 (en) Steel manufacturing method using converter
JP6421634B2 (en) Manufacturing method of molten steel
JP2582692B2 (en) Converter steelmaking method
JP6693536B2 (en) Converter steelmaking method
WO2014068933A1 (en) Hot metal refining method
JP2001192720A (en) Converter steel making process
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP2003239009A (en) Dephosphorization refining method of hot metal
JPH0141681B2 (en)
JP2002220615A (en) Converter steelmaking method
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JP3644307B2 (en) Hot phosphorus dephosphorization method
JP3419254B2 (en) Hot metal dephosphorization method
JP7243185B2 (en) Hot slag recycling method
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JP7363731B2 (en) Method for dephosphorizing hot metal and manufacturing method for molten steel
JP5145736B2 (en) Dephosphorization method of hot metal in converter type refining furnace
JPH0892618A (en) Prerefining method
JP2000256719A (en) Steelmaking method
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JP2023049462A (en) Dephosphorization of hot metal
JPS62290815A (en) Steel making method
JPH01312020A (en) Method for dephosphorizing molten iron by heating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R151 Written notification of patent or utility model registration

Ref document number: 4065097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees