JP6421634B2 - Manufacturing method of molten steel - Google Patents

Manufacturing method of molten steel Download PDF

Info

Publication number
JP6421634B2
JP6421634B2 JP2015027796A JP2015027796A JP6421634B2 JP 6421634 B2 JP6421634 B2 JP 6421634B2 JP 2015027796 A JP2015027796 A JP 2015027796A JP 2015027796 A JP2015027796 A JP 2015027796A JP 6421634 B2 JP6421634 B2 JP 6421634B2
Authority
JP
Japan
Prior art keywords
slag
mass
furnace
decarburized
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015027796A
Other languages
Japanese (ja)
Other versions
JP2016151027A (en
Inventor
政樹 宮田
政樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015027796A priority Critical patent/JP6421634B2/en
Publication of JP2016151027A publication Critical patent/JP2016151027A/en
Application granted granted Critical
Publication of JP6421634B2 publication Critical patent/JP6421634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、高炉溶銑を転炉を用いて精錬して溶鋼を製造する方法であって、より具体的には転炉で溶銑に脱りん処理を施した後にその溶銑を残してスラグを排出し、その残した溶銑に脱炭、脱りん処理を施して溶鋼を製造した後、その処理後のスラグを残して溶鋼を出鋼し、その残したスラグを次チャージの溶銑の脱りん処理に利用することを繰り返す溶鋼の製造方法に関する。   The present invention is a method for producing molten steel by refining blast furnace hot metal using a converter, more specifically, after dephosphorizing the hot metal in the converter, leaving the hot metal and discharging slag. After the debris is decarburized and dephosphorized to produce molten steel, the slag after the treatment is left to produce the molten steel, and the remaining slag is used for dephosphorization of the hot metal in the next charge. It is related with the manufacturing method of the molten steel which repeats doing.

転炉における溶銑の精錬は、転炉へ高炉溶銑を装入し、生石灰を主体とするフラックス投入と、酸素吹錬により溶銑を脱りん、脱炭し、鋼を溶製する方法が一般的だった。その後、多工程にわたる精錬機能を転炉に集約し、溶銑の熱エネルギーのロスを大幅に低減するとともに、転炉前後工程の諸経費の大幅な削減を図った製鋼法が、例えば特許文献1に開示されている。   Hot metal refining in a converter is generally carried out by charging the converter with blast furnace hot metal, adding flux mainly composed of quick lime, and dephosphorizing and decarburizing the hot metal by oxygen blowing to produce steel. It was. Subsequently, a steelmaking method that consolidates the refining functions over multiple processes into the converter, greatly reducing the loss of hot metal heat energy, and significantly reducing the expenses before and after the converter is disclosed in Patent Document 1, for example. It is disclosed.

この発明を要約して示すと、高炉溶銑を精錬して溶鋼を製造するに際し、第1工程として屑鉄、溶銑を転炉へ装入し、第2工程としてフラックスを添加し、スラグの塩基度(CaO/SiO)を1.0〜2.0、処理温度を1350℃以下で吹酸して脱りん処理を行い、第3工程として第2工程で生成したスラグを排出し、第4工程としてフラックス添加と吹酸により、所定の[C]、[P]まで脱炭、脱りん処理を行い、第5工程として第4工程で生成したスラグを残したまま出鋼し、第6工程として炭材を添加してスラグ中(FeO)を低減し、再び第1工程へ戻って、以降は第2工程でのフラックス中石灰添加量をゼロないしは前記第2工程における同添加量の25%以下として第6工程までを繰り返し実施する転炉製鋼法である。 In summary, when refining blast furnace hot metal to produce molten steel, scrap iron and hot metal are charged into the converter as the first step, flux is added as the second step, and slag basicity ( CaO / the SiO 2) 1.0 to 2.0, the process temperature and吹酸at 1350 ° C. or less subjected to dephosphorization process, to discharge the slag generated in the second step as a third step, a fourth step By adding flux and blowing acid, decarburization and dephosphorization are performed up to the specified [C] and [P], and the steel is produced while leaving the slag generated in the fourth step as the fifth step, and the charcoal as the sixth step. The material is added to reduce slag (FeO), and the process returns to the first step. Thereafter, the amount of lime in the flux in the second step is set to zero or 25% or less of the amount added in the second step. It is a converter steelmaking method that repeats up to the sixth step.

この方法で第6工程が必要なのは、次チャージの第1工程時の(i)式による突沸を回避するためである。   The reason why the sixth step is necessary in this method is to avoid bumping by the equation (i) at the first step of the next charge.

FeO+[C]=CO+[Fe] ・・・・・(i)
しかしながら、第6工程に時間を要するため生産性が低下すること、およびスラグ中(FeO)濃度が低下するとスラグの融点が上昇するため、次チャージの第2工程でのスラグの溶解速度が低下して、第2工程での脱りん率が低下してしまうことという問題がある。
FeO + [C] = CO + [Fe] (i)
However, since the sixth step takes time, productivity decreases, and when the concentration of slag (FeO) decreases, the melting point of slag increases, so the dissolution rate of slag in the second step of the next charge decreases. Thus, there is a problem that the dephosphorization rate in the second step is lowered.

これらの問題を解決するため、例えば特許文献2には、炉内に残した脱炭スラグへ固化剤(軽焼ドロマイトまたは生ドロマイト)を装入して脱炭スラグを固化した後に、次チャージの注銑を行う方法が開示されている。   In order to solve these problems, for example, in Patent Document 2, after solidifying the decarburized slag by charging the decarburized slag left in the furnace with a solidifying agent (light-burned dolomite or raw dolomite), A method of making an order is disclosed.

特許第2582692号明細書Japanese Patent No. 2558292 特許第3486889号明細書Japanese Patent No. 34868989

特許文献1に開示されている方法では、一炉で多数の工程を実施するため、炉体占有時間が長いので、生産性向上のためにはサイクルタイム短縮が不可欠である。そのために、特許文献2に記載された方法は炉内に残した脱炭スラグの固化時間を短縮するには有効である。また、特許文献1の方法では、次チャージの溶銑を装入する前に、屑鉄(スクラップ)を投入する。このスクラップは強力な冷材なので、炉内に残した脱炭スラグをほぼ完全に凝固し易い。但し、その際、スクラップと脱炭スラグのかなりの部分が転炉炉底に固着してしまい、次チャージの溶銑脱りん時(第2工程)の早期には炉底から剥離して浴面上へ浮上し難くなる。特許文献2に記載のように、固化剤のみを添加した場合であっても同様である。   In the method disclosed in Patent Document 1, since a large number of steps are performed in one furnace, the furnace body occupation time is long, and thus shortening the cycle time is indispensable for improving productivity. Therefore, the method described in Patent Document 2 is effective for shortening the solidification time of the decarburized slag left in the furnace. Moreover, in the method of patent document 1, scrap iron (scrap) is injected | thrown-in before charging the hot metal of the next charge. Since this scrap is a powerful cold material, it is easy to solidify the decarburized slag left in the furnace almost completely. However, at that time, a considerable part of scrap and decarburized slag adheres to the bottom of the converter furnace, and peels off from the furnace bottom at the early stage of the hot metal dephosphorization of the next charge (second step). It becomes difficult to surface. The same applies to the case where only a solidifying agent is added, as described in Patent Document 2.

なお、脱炭スラグの融点は通常1500℃以上と高温なため、溶銑脱りん時の温度1400℃以下では溶解しない。すると、固化した脱炭スラグは、第二工程で上吹き酸素や酸化鉄と溶銑中の[Si]とが反応((ii)、(iii)式)して生成したSiOと接触して低融点の溶融スラグを形成できず、脱りん反応が進み難くなってしまうという問題がある。 Since the melting point of decarburized slag is usually as high as 1500 ° C. or higher, it does not melt at a temperature of 1400 ° C. or lower during hot metal dephosphorization. Then, the solidified decarburized slag is low in contact with SiO 2 generated by the reaction ((ii), (iii)) of the top blown oxygen or iron oxide with [Si] in the hot metal in the second step. There is a problem in that a melting slag having a melting point cannot be formed and the dephosphorization reaction is difficult to proceed.

+[Si]=SiO ・・・・・(ii)
2FeO+[Si]=SiO+2[Fe] ・・・・・(iii)
本発明の目的は、高炉溶銑を転炉を用いて精錬して溶鋼を製造するに際し、前記した特許文献1に記載された発明を実施する際の生産性の低下や、脱りん率の低下等の問題を解決する方法を提供することである。
O 2 + [Si] = SiO 2 (ii)
2FeO + [Si] = SiO 2 +2 [Fe] (iii)
The purpose of the present invention is to produce a molten steel by refining the blast furnace hot metal using a converter, a decrease in productivity when the invention described in Patent Document 1 is carried out, a decrease in dephosphorization rate, etc. It is to provide a way to solve the problem.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、特許文献1に記載された発明において、その第6工程のFeO低減操作に代えて、スラグ組成と添加する固形剤の種類や量とを考慮しつつ、さらに従来ではスロッピングを誘発させがちであるために使用が控えられていたAl濃度の高い造塊滓を併せて用いるスラグ固化操作を加えることによって、上記課題を解決できることを知見し、本発明を完成した。本発明は、以下に列記のとおりである。 As a result of intensive studies in order to solve the above problems, the present inventor, in the invention described in Patent Document 1, in place of the FeO reduction operation in the sixth step, the slag composition and the type of solid agent to be added In addition, by adding a slag solidification operation using an agglomerate with a high concentration of Al 2 O 3, which has been refrained from being used because it tends to induce slopping in the past, Knowing that the problem can be solved, the present invention has been completed. The present invention is listed below.

(1)高炉溶銑を精錬して溶鋼を製造する溶鋼の製造方法であって、第一工程として屑鉄および溶銑を転炉へ装入し、装入する副原料の量を調整してスラグの装入塩基度(CaO質量/SiO質量)を1.0〜2.0、処理温度を1350℃以下で吹酸して脱りん処理を行い、第二工程として第一工程で生成したスラグを排出し、第三工程としてフラックス添加と吹酸により、組成が質量%で、CaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%であって、塩基度:CaO質量/SiO質量=3.5〜5.0である脱炭スラグを生成させて脱炭、脱りん処理を行い、第四工程として第三工程で生成した脱炭スラグを残したまま出鋼し、第五工程として炉内に残した脱炭スラグへ、粒径が50mm以下であって10〜50mmの比率が20質量%以上とした生石灰、石灰石、軽焼ドロマイト、生ドロマイトおよび冷却固化した脱炭スラグから選ばれた1種または2種以上の固化剤と共に、粒径が10〜50mmであるとともに組成が質量%で、CaO=30〜50%、Al=10〜30%、T.Fe=5〜15%、SiO=8〜20%、である造塊スラグを添加して該脱炭スラグを固化させ、その後、再び第一工程へ戻って、次チャージの屑鉄および溶銑を前記第五工程を終えた転炉へ装入し、前記第一工程として規定した条件で脱りん処理を行って、以降の第五工程までを順次実施することを繰り返すことを特徴とする溶鋼の製造方法。 (1) A method for producing molten steel by refining blast furnace hot metal to produce molten steel, as a first step, charging scrap iron and molten iron into a converter and adjusting the amount of secondary raw materials to be charged The basicity (CaO mass / SiO 2 mass) is 1.0-2.0, the treatment temperature is 1350 ° C. or less to perform dephosphorization treatment, and the slag produced in the first step is discharged as the second step. In the third step, the composition is mass% by addition of flux and blowing acid, CaO = 30-50%, Al 2 O 3 = 1-5%, T.W. Fe = 10~30%, SiO 2 = 8~15%, a MgO = 6 to 12%, basicity: to produce a decarburization slag is CaO wt / SiO 2 mass = 3.5 to 5.0 The decarburization and dephosphorization processes are performed, and the decarburization slag generated in the third step is left as the fourth step, and the steel is left out, and the particle size is 50 mm or less to the decarburization slag left in the furnace as the fifth step. The particle size is one or more solidifying agents selected from quick lime, limestone, light calcined dolomite, raw dolomite and cooled and decarburized slag having a ratio of 10 to 50 mm of 20% by mass or more. 10-50 mm and the composition is mass%, CaO = 30-50%, Al 2 O 3 = 10-30%, T.I. An ingot slag of Fe = 5-15% and SiO 2 = 8-20% is added to solidify the decarburized slag, and then the process returns to the first step again, and the scrap iron and hot metal of the next charge are Charged to the converter after finishing the fifth step, dephosphorizing under the conditions defined as the first step, and repeatedly performing the subsequent fifth step in order to produce molten steel, Method.

(2)前記第五工程において、炉内に残した脱炭スラグに添加する固化剤の質量を当該脱炭スラグの質量の10〜30%とし、かつ、添加する造塊スラグの質量を該固化剤の質量の10〜100%とすることを特徴とする上記(1)に記載の溶鋼の製造方法。   (2) In the fifth step, the mass of the solidifying agent added to the decarburized slag left in the furnace is 10 to 30% of the mass of the decarburized slag, and the mass of the ingot slag to be added is solidified. The method for producing molten steel according to the above (1), characterized in that the content is 10 to 100% of the mass of the agent.

本発明において、造塊スラグとは、取鍋内の溶鋼を連続鋳造機等に供給し終えた後に取鍋内に残ったスラグのことである。その組成は本発明で用いることにしたCaO=30〜50%、Al=10〜30%、T.Fe=5〜15%、SiO=8〜20%、が一般的である。造塊スラグの中には造塊スラグを冷却する際に粉化し易いものもあるが、本発明では粉化し難く(塊の割合が多く)ハンドリングし易いものを用いる。 In the present invention, the ingot slag is slag remaining in the ladle after the molten steel in the ladle has been supplied to a continuous casting machine or the like. Its composition is CaO = 30 to 50%, Al 2 O 3 = 10 to 30%, T. Fe = 5~15%, SiO 2 = 8~20%, but is common. Some ingot slag is easy to be pulverized when the ingot slag is cooled, but in the present invention, one that is difficult to be pulverized (a large proportion of lumps) and is easy to handle is used.

また、第一工程で調整する装入塩基度(CaO質量/SiO質量)とは、「装入する副原料中のCaO質量/{(溶銑中のSi質量+スクラップ中のSi質量)×2.14+装入する副原料中のSiO質量}で計算される値であって、前チャージで残留させ固化させた脱炭スラグや、添加したスラグ固化剤および造塊スラグも、装入副原料中に含めて計算する値である。したがって、第一工程で新たに装入する副原料は、前チャージでの条件およびこれから脱りん処理する溶銑および屑鉄の条件によっては、装入量を0とすることもあり得る。 Moreover, the charging basicity (CaO mass / SiO 2 mass) adjusted in the first step is “CaO mass in the auxiliary raw material to be charged / {(Si mass in hot metal + Si mass in scrap) × 2”. .14 + SiO 2 mass in the auxiliary raw material to be charged}, the decarburized slag remaining in the pre-charge and solidified, the added slag solidifying agent and the ingot slag are also charged auxiliary raw material Therefore, depending on the conditions in the previous charge and the conditions of the hot metal and scrap iron to be dephosphorized from now on, the auxiliary material newly charged in the first step is set to zero. It is possible to do.

本発明によれば、第五工程において転炉底の脱炭スラグ表面に添加された低融点の造塊スラグが、第一工程の早期に溶融して転炉底から剥離・浮上することで、転炉底に残された脱炭スラグが凸凹になる。すると、底吹きガスによって攪拌されて強く流動している溶銑が炉底に付着した凸凹スラグを剥離して浮上させ易くなり、第一工程で新たに生成したFeO,SiOや先に溶解・浮上した造塊スラグと溶銑浴上で速やかに反応して溶融スラグを生成するため、脱りん速度が向上して、第一工程後の脱りん率が向上する。 According to the present invention, the low melting point ingot slag added to the decarburized slag surface of the converter bottom in the fifth step is melted at an early stage of the first step and separated from the converter bottom and floated. The decarburized slag left on the converter bottom becomes uneven. Then, hot metal that is flowing strongly agitated by the bottom blowing gas is likely floated by peeling off the uneven slag adhering to the furnace bottom, newly generated FeO, dissolved-air bearing on SiO 2 or above in the first step Since the molten slag reacts promptly on the ingot-making slag and the hot metal bath to produce molten slag, the dephosphorization rate is improved and the dephosphorization rate after the first step is improved.

また、造塊スラグ中のAlが第一工程で生成する脱りんスラグのフォーミングを助長するので、第二工程のスラグ排出率が向上する。すると、第三工程へ持ち越されるりん酸の量が減るため、第三工程後の溶鋼中[P]濃度および第四工程後の鍋中溶鋼中[P]濃度を低減できる。 Moreover, since Al 2 O 3 in the ingot slag promotes forming of the dephosphorization slag generated in the first step, the slag discharge rate in the second step is improved. Then, since the amount of phosphoric acid carried over to the third step is reduced, the [P] concentration in the molten steel after the third step and the [P] concentration in the molten steel in the pan after the fourth step can be reduced.

ところで、従来、第一工程で生成するスラグ中Al濃度が高いと、第一工程で激しくスロッピングするという問題があった。例えば、前チャージの脱炭スラグを炉底に固着させた状態で注銑し、造塊スラグを添加して第一工程(溶銑脱りん吹錬)を実施すると、炉底に固着した脱炭スラグの剥離・浮上が遅いため生成するスラグの塩基度が低く、しかも造塊スラグは早期に溶解するため、初期段階では炉内溶融スラグのアルミナ濃度が高いという、極めてスロッピングし易い状況を発生させていた。 By the way, conventionally, when the Al 2 O 3 concentration in the slag produced in the first step is high, there has been a problem of intense slopping in the first step. For example, when the pre-charged decarburized slag is poured into the furnace bottom and poured into the furnace bottom, the ingot slag is added and the first step (hot metal dephosphorization blowing) is performed. Since the slag produced is low in basicity due to slow peeling and flotation of the slag, and the ingot agglomerated slag dissolves early, the initial concentration of the molten slag in the furnace has a high alumina concentration. It was.

それに対し、本法のようにAlを10〜30%含有する造塊スラグをスラグ固化剤に混ぜて適用すると、比較的早期に炉底に固着した脱炭スラグが剥離・浮上するようになるため、第一工程で生成する脱りんスラグの塩基度が早期に高くなる。また、脱炭スラグの溶解によって生成する脱りんスラグ量が増加するため、造塊スラグ由来のアルミナが薄まり、スラグ中Al濃度が低下する。その結果、第一工程におけるスロッピング挙動は造塊スラグを用いない従来法と同レベルにできているものと考えられる。 On the other hand, when the ingot slag containing 10 to 30% Al 2 O 3 is mixed with the slag solidifying agent and applied as in this method, the decarburized slag fixed to the furnace bottom is separated and floated relatively early. Therefore, the basicity of the dephosphorization slag produced in the first step is increased early. Further, since the dephosphorization slag amount produced by dissolution of the decarburization slag increases, alumina derived from ingot slag Usumari, decreases the concentration of Al 2 O 3 in the slag. As a result, the slapping behavior in the first step is considered to be at the same level as the conventional method that does not use ingot slag.

本発明を実施するための形態を、第一工程として屑鉄50tおよび溶銑290t(組成:[C]≒4.4質量%、[Si]≒0.4質量%、[P]≒0.10質量%)を転炉へ装入し、脱炭処理終了後の[C]≒0.10質量%で出鋼後の取鍋内溶鋼の[P]濃度が0.019質量%以下である溶鋼を製造する例を用いて説明する。勿論、本発明の技術的範囲は、以下に例示する屑鉄量や溶銑条件等の条件に限られず、通常の高炉溶銑を対象として通常の溶鋼を製造するために行う転炉製鋼法の全てに適用することが可能である。   The form for carrying out the present invention is as follows: scrap iron 50t and hot metal 290t (composition: [C] ≈4.4 mass%, [Si] ≈0.4 mass%, [P] ≈0.10 mass %) Is charged into the converter, and [C] after decarburization is about 0.10% by mass, and the [P] concentration of the molten steel in the ladle after steel removal is 0.019% by mass or less. This will be described using an example of manufacturing. Of course, the technical scope of the present invention is not limited to the conditions such as the amount of scrap iron and hot metal conditions exemplified below, and is applicable to all converter steelmaking methods for producing ordinary molten steel for ordinary blast furnace hot metal. Is possible.

以降の説明では、含有濃度に関する「%」は、特に断らない限り質量%の意味で用いる。
第一工程として、上記した屑鉄および溶銑を転炉へ装入し、スラグの装入塩基度が1.0〜2.0となるように、前チャージで残留させ固化させた脱炭スラグや、添加したスラグ固化剤および造塊スラグも考慮に入れて、副原料を装入する。適度に流動性のあるフォーミングスラグを形成して脱りん反応を促進させるためである。この副原料の炉内への装入時期は、溶銑を装入する前でも後でも良いが、その滓化に要する時間を考えて吹錬用酸素の供給を始めてから1分経過するより前に行うことが望ましい。この副原料には、一般的な生石灰のほか、石灰石や軽焼ドロマイト等を適宜用いれば良い。また温度調整用に酸化鉄を添加し、処理温度が一般的な1350℃以下で脱りん吹錬を行う。供給ガス流量は、上吹き酸素:40000Nm/h、底吹き酸素:3000Nm/h、底吹きLPG:200Nm/h程度である。
第二工程として、第一工程で生成したスラグを約80%排出する。
第三工程として、脱炭スラグの塩基度(CaO質量/SiO質量)3.5〜5であって、その組成が質量%で、CaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%となるように生石灰、軽焼ドロマイト(組成:CaO≒60%、MgO≒34%)を添加し、また温度調整用に酸化鉄を添加して、[C]≒0.10%まで脱炭吹錬(同時に脱りんも進行)を行う。この脱炭スラグの組成は、脱炭吹錬後に製品レベルまで脱りんが可能で且つ転炉耐火物の溶損を極力抑制可能なものである。供給ガス流量は、上吹き酸素:80000Nm/h、底吹き酸素:3000Nm/h、底吹きLPG:200Nm/h程度である。
第四工程として、第三工程で生成した脱炭スラグを炉内に残したまま出鋼する。
第五工程として、炉体を傾動して炉口から脱炭スラグの一部を排出して炉内に所定量残した脱炭スラグへ生石灰、石灰石、軽焼ドロマイト、生ドロマイトおよび冷却固化した脱炭スラグから選ばれた1種または2種以上の固化剤と共に、組成が質量%で、CaO=30〜50%、Al=10〜30%、T.Fe=5〜15%、SiO=8〜20%、である造塊スラグを添加して、炉内残留スラグとともに固化させる。その後、再び第一工程へ戻って、次チャージの屑鉄50tおよび溶銑290tと副原料とを前記第五工程を終えた転炉へ装入して脱りん処理を行う。
以降は、順次第五工程まで実施し、その後また第一工程から第五工程までを順次繰り返す。
この固化剤および造塊スラグの粒径は、後述する理由により、固化剤は50mm以下であって10〜50mmの比率が20質量%以上のものとし、造塊スラグは10〜50mmのものとする必要がある。この粒径は、10mm四方の網目を通過しなかったスラグの粒径を10mm以上とし、50mm四方の網目を通過したスラグの粒径を50mm以下とする。
なお、固化剤の添加時期は第四工程における出鋼の完了後、10分以内であることが好ましい。
In the following description, “%” relating to the concentration is used in the meaning of mass% unless otherwise specified.
As the first step, decarburized slag that has been charged and left in the previous charge so that the scrap iron and hot metal described above are charged into the converter and the basicity of the slag is 1.0 to 2.0, The auxiliary raw material is charged in consideration of the added slag solidifying agent and ingot slag. This is because a forming fluid slag having a moderate fluidity is formed to promote the dephosphorization reaction. The charging time of the auxiliary material into the furnace may be before or after charging the molten iron, but before 1 minute has elapsed since the supply of oxygen for blowing was started in consideration of the time required for the hatching. It is desirable to do. As this auxiliary material, limestone, light-burned dolomite, or the like may be used as appropriate in addition to general quick lime. Further, iron oxide is added for temperature adjustment, and dephosphorization blowing is performed at a processing temperature of 1350 ° C. or lower. Feed gas flow rate, the top-blown oxygen: 40000Nm 3 / h, bottom-blown oxygen: 3000 Nm 3 / h, bottom-blown LPG: a 200 Nm 3 / h approximately.
As the second step, about 80% of the slag generated in the first step is discharged.
As a third step, a basicity of decarburization slag (CaO mass / SiO 2 mass) 3.5 to 5, in its composition by mass%, CaO = 30~50%, Al 2 O 3 = 1~5 %, T.A. Fe = 10~30%, SiO 2 = 8~15%, MgO = 6~12% become so quicklime, dolomitic (composition: CaO ≒ 60%, MgO ≒ 34%) was added and the temperature adjusted For this purpose, iron oxide is added, and decarburization blown (at the same time dephosphorization proceeds) to [C] ≈0.10%. The composition of this decarburized slag can be dephosphorized to the product level after decarburization blowing and can suppress the melting loss of the converter refractory as much as possible. Feed gas flow rate, the top-blown oxygen: 80000Nm 3 / h, bottom-blown oxygen: 3000 Nm 3 / h, bottom-blown LPG: a 200 Nm 3 / h approximately.
As the fourth step, steel is output with the decarburized slag generated in the third step left in the furnace.
As a fifth step, the furnace body is tilted to discharge a portion of the decarburized slag from the furnace port, leaving a predetermined amount of decarburized slag in the furnace. Along with one or more solidifying agents selected from charcoal slag, the composition is mass%, CaO = 30-50%, Al 2 O 3 = 10-30%, T.P. An agglomerated slag of Fe = 5-15% and SiO 2 = 8-20% is added and solidified together with the residual slag in the furnace. Thereafter, returning to the first step again, the scrap iron 50t, the molten iron 290t, and the auxiliary materials of the next charge are charged into the converter after the fifth step and the dephosphorization process is performed.
Thereafter, the process is sequentially performed up to the fifth process, and then the first process to the fifth process are sequentially repeated.
The particle diameters of the solidifying agent and the ingot slag are, for the reasons described later, the solidifying agent is 50 mm or less and the ratio of 10 to 50 mm is 20% by mass or more, and the ingot slag is 10 to 50 mm. There is a need. The particle diameter of the slag that has not passed through the 10 mm square mesh is 10 mm or more, and the particle diameter of the slag that has passed through the 50 mm square mesh is 50 mm or less.
In addition, it is preferable that the addition time of the solidifying agent is within 10 minutes after the completion of steel production in the fourth step.

また、添加する固化剤の質量は、炉内に残した脱炭スラグの質量の10〜30%とし、かつ、添加する造塊スラグ質量を該固化剤の質量の10〜100%とすることが好ましい。
炉内に残した脱炭スラグの質量は、転炉を傾動して炉口からスラグを排出する際の「炉体傾動角」から推定することができる。炉体傾動角と炉内残留スラグ量との相関関係は、生成スラグ量をマスバランス計算から推定し、炉体傾動角毎の排出スラグ量を測定して予め求めておく。脱炭スラグは比較的流動性が高いので、炉体傾動角と炉内残留スラグ量には良い相関がある。
したがって、本発明を実施するに際しては、炉体傾動角と炉内残留スラグ量との関係を予め調べておき、炉体傾動角から炉内残留スラグ量を把握して固化剤等の添加条件を調整することが好ましい。但し、繰り返し操業を行うことを通じて、経験的に炉内残留スラグ量を把握して固化剤等の条件を定めることにしても、本発明の諸要件を満足させて本発明の効果を享受することができる。
Moreover, the mass of the solidifying agent to be added is 10 to 30% of the mass of the decarburized slag left in the furnace, and the mass of the agglomerated slag to be added is 10 to 100% of the mass of the solidifying agent. preferable.
The mass of the decarburized slag remaining in the furnace can be estimated from the “furnace body tilt angle” when the converter is tilted and the slag is discharged from the furnace port. The correlation between the furnace body tilt angle and the residual slag amount in the furnace is obtained in advance by estimating the generated slag amount from the mass balance calculation and measuring the discharge slag amount for each furnace body tilt angle. Since decarburized slag has relatively high fluidity, there is a good correlation between the furnace body tilt angle and the amount of residual slag in the furnace.
Therefore, when carrying out the present invention, the relationship between the furnace body tilt angle and the amount of residual slag in the furnace is examined in advance, the amount of residual slag in the furnace is ascertained from the furnace body tilt angle, and the conditions for adding a solidifying agent and the like are determined. It is preferable to adjust. However, through repeated operations, even if the amount of residual slag in the furnace is grasped empirically and the conditions such as solidifying agent are determined, the requirements of the present invention can be satisfied and the effects of the present invention can be enjoyed. Can do.

上記した固化剤および造塊スラグの添加条件を調査するために、装入塩基度を0.9〜2.2とし、固化剤を炉内残留スラグ量に対して0〜40質量%添加し、造塊スラグは固化剤に対し0〜120質量%添加して、他の条件は上記した本発明を実施するための形態で例示した条件に統一して、脱りん成績と注銑時の突沸現象の有無を調査した。   In order to investigate the addition conditions of the above-described solidifying agent and ingot slag, the charging basicity is set to 0.9 to 2.2, and the solidifying agent is added in an amount of 0 to 40% by mass with respect to the amount of residual slag in the furnace. The agglomerated slag is added in an amount of 0 to 120% by mass with respect to the solidifying agent, and other conditions are unified to the conditions exemplified in the embodiment for carrying out the present invention, and the dephosphorization results and the bumping phenomenon at the time of pouring are performed. The presence or absence of was investigated.

この調査に際しては、炉内の残留脱炭スラグの量は、転炉を傾動して炉口から排出したスラグを鍋に受けて、鍋ごと秤量して求め、転炉を傾動して炉口からスラグを排出する際の「炉体傾動角」から推定する方法との対応を併せて確認した。脱炭スラグは比較的流動性が高いので、炉体傾動角と炉内残留スラグ量には良い相関があることが確認された。   In this investigation, the amount of residual decarburized slag in the furnace is obtained by tilting the converter, receiving the slag discharged from the furnace port into the pan, weighing it with the pan, and tilting the converter from the furnace port. The correspondence with the method estimated from the "furnace body tilt angle" when discharging slag was also confirmed. Since decarburized slag has a relatively high fluidity, it was confirmed that there is a good correlation between the furnace tilt angle and the amount of residual slag in the furnace.

調査した結果を表1に示す。各条件で6Ch連続して実施し、2〜6Ch目の平均値を表1に記載した。   The survey results are shown in Table 1. The test was carried out continuously for 6 Ch under each condition, and the average values of 2 to 6 Ch are listed in Table 1.

なお、評価基準は、注銑時に突沸せず、出鋼後の鍋中[P]が0.019質量%以下の場合に「○」(出鋼後の鍋中[P]が0.016質量%以下の場合は「◎」)、それ以外の場合に「×」とした。   In addition, the evaluation criterion is “no” (no [P] in the pan after steel is 0.016 mass) when the steel is not bumped during pouring and [P] in the pan after steel is 0.019 mass% or less. % Or less, “◎”), otherwise “×”.

Figure 0006421634
Figure 0006421634

(1)第五工程における造塊スラグ添加の影響(本発明1、7、8、9、比較例1)
固化剤を添加する条件下で造塊スラグを添加しなかった場合(比較例1)、炉底に固着した脱炭スラグが次チャージの第一工程の早期に剥離・浮上し難かったため、第一工程での脱りん率が低下し、出鋼後鍋中[P]濃度が0.021%と高値になった。
(1) Effect of ingot slag addition in the fifth step (Invention 1, 7, 8, 9, Comparative Example 1)
When the ingot slag was not added under the condition of adding the solidifying agent (Comparative Example 1), the decarburized slag adhered to the furnace bottom was difficult to peel and float early in the first step of the next charge. The dephosphorization rate in the process decreased, and the [P] concentration in the pan after the steelmaking became as high as 0.021%.

一方、第五工程において粒径10〜50mmの造塊スラグを固化剤に対して10〜120%添加した場合(本発明1、7、8、9)、出鋼後の鍋中[P]濃度は、造塊スラグを添加したことで0.017%以下になった。但し、粒径10〜50mmの造塊スラグを固化剤に対して120%添加した場合(本発明9)は、他の10〜100%添加した場合に比べて出鋼後鍋中[P]濃度が0.017%と相対的に高目になったので、造塊スラグの固化剤に対する添加比率は10〜100%とすることが好適といえる。   On the other hand, when 10 to 120% of the ingot slag having a particle size of 10 to 50 mm is added to the solidifying agent in the fifth step (Invention 1, 7, 8, 9), the concentration of [P] in the pan after leaving steel Became 0.017% or less by adding ingot slag. However, when 120% of ingot-making slag having a particle size of 10-50 mm is added to the solidifying agent (Invention 9), the concentration of [P] in the pan after leaving the steel is higher than when other 10-100% is added. Therefore, it can be said that the addition ratio of the ingot slag to the solidifying agent is preferably 10 to 100%.

これは、以下の様に考えられる。造塊スラグの粒径が適度に大きかったため、造塊スラグが炉内残留脱炭スラグへ均一溶解する前に固化した。そして、次チャージの注銑後、早期に造塊スラグが溶融・浮上した。それは、造塊スラグの融点が低く、溶銑温度でも溶融するためである。一方、脱炭スラグの融点は1500℃以上と高く、溶銑温度では溶融しない。   This is considered as follows. Since the particle size of the ingot slag was moderately large, the ingot slag solidified before being uniformly dissolved into the residual decarburization slag in the furnace. And after the injection of the next charge, ingot slag melted and floated early. This is because the ingot slag has a low melting point and melts even at the hot metal temperature. On the other hand, the melting point of decarburized slag is as high as 1500 ° C. or higher and does not melt at the hot metal temperature.

そして、上記のごとく造塊スラグが溶融浮上すると、転炉底に残された脱炭スラグが凸凹になる。すると、底吹きガスによって攪拌されて強く流動している溶銑が炉底に付着した凸凹スラグを剥離して浮上させ易くなり、第一工程で新たに生成したFeO,SiOや先に溶解・浮上した造塊スラグと溶銑浴上で速やかに反応して溶融スラグを生成するため、脱りん速度が向上して、第一工程後の脱りん率が向上した。但し、造塊スラグの添加量が100%を超えて多くなると、上記した機構が十分に機能しにくくなったと考えられる。 When the ingot slag melts and floats as described above, the decarburized slag remaining on the converter bottom becomes uneven. Then, hot metal that is flowing strongly agitated by the bottom blowing gas is likely floated by peeling off the uneven slag adhering to the furnace bottom, newly generated FeO, dissolved-air bearing on SiO 2 or above in the first step Since the molten slag was rapidly reacted on the molten ingot slag and the hot metal bath, the dephosphorization rate was improved and the dephosphorization rate after the first step was improved. However, when the amount of ingot slag added exceeds 100%, it is considered that the above-described mechanism has become difficult to function sufficiently.

(2)第一工程での装入塩基度の影響(本発明2,3、比較例2、3)
第一工程での装入塩基度を1.0〜2.0とした場合(本発明2,3)、適度に流動性のあるフォーミングスラグが形成されて脱りん反応が進み、その後の第二工程で排滓率80%を確保できた。一方、装入塩基度が0.9と低い場合(比較例2)、スラグの脱りん能が低く、第一工程での脱りん率が低かった。そのため、第三工程へ持ち込まれる[P]量が増えて、出鋼後の鍋中[P]濃度が0.021質量%まで上昇してしまったと考えられる。そして、装入塩基度が2.2と高い場合(比較例3)、スラグの融点が高いため流動性が低く、あまりフォーミングもしなかったため、第二工程での排滓率が60%まで低下してしまった。そのため、第三工程へ持ち込まれる[P]量が増えて、出鋼後の鍋中[P]濃度が0.022質量%まで上昇してしまったと考えられる。
(2) Influence of the basicity of charging in the first step (Inventions 2 and 3, Comparative Examples 2 and 3)
When the charging basicity in the first step is 1.0 to 2.0 (Inventions 2 and 3), a moderately fluid forming slag is formed and the dephosphorization reaction proceeds, and then the second A rejection rate of 80% was secured in the process. On the other hand, when the charge basicity was as low as 0.9 (Comparative Example 2), the dephosphorization ability of the slag was low, and the dephosphorization rate in the first step was low. For this reason, it is considered that the amount of [P] brought into the third process has increased, and the [P] concentration in the pan after steelmaking has increased to 0.021% by mass. And when charging basicity is as high as 2.2 (comparative example 3), since the melting | fusing point of slag is high and fluidity | liquidity is low and it did not form much, the rejection rate in a 2nd process falls to 60%. I have. For this reason, it is considered that the amount of [P] brought into the third process has increased, and the [P] concentration in the pan after steelmaking has increased to 0.022% by mass.

(3)固化剤添加の影響(本発明1、4、5、6)
固化剤の粒径は、50mm以下であって10〜50mmの比率が固化剤全体の20質量%以上のものとした。粒径が大き過ぎると、次チャージの第一工程で滓化させにくくなるし、一方、粒径が細かいものばかりでは固化剤添加時に溶融スラグと混じりにくいからである。
(3) Influence of solidifying agent addition (Invention 1, 4, 5, 6)
The particle diameter of the solidifying agent was 50 mm or less, and the ratio of 10 to 50 mm was 20% by mass or more of the entire solidifying agent. If the particle size is too large, it is difficult to hatch in the first step of the next charge. On the other hand, if the particle size is small, it is difficult to mix with the molten slag when the solidifying agent is added.

固化剤添加量を炉内残留脱炭スラグの10〜30%とした場合(本発明1、5)、次チャージの注銑時に突沸が生じず、出鋼後の鍋中[P]は目標値0.016質量%以下を達成した。   When the amount of solidifying agent added is 10 to 30% of the residual decarburization slag in the furnace (Inventions 1 and 5), bumping does not occur at the time of pouring the next charge, and [P] in the pan after steel output is the target value 0.016 mass% or less was achieved.

一方、固化剤添加量を炉内残留脱炭スラグ量の8%まで下げた場合(本発明4)、出鋼後の鍋中[P]は0.019質量%と目標0.019質量%以下をギリギリ達成した。これは、固化材添加量が少なく、その分造塊スラグ添加量が少なかったことで、炉底に固着した脱炭スラグが第一工程での早期に剥離・浮上し難かったことによると考えられる。   On the other hand, when the solidifying agent addition amount is lowered to 8% of the residual decarburization slag amount in the furnace (Invention 4), [P] in the pan after steel is 0.019% by mass and the target is 0.019% or less. The last minute was achieved. This is thought to be due to the fact that the decarburized slag adhered to the furnace bottom was difficult to peel and float early in the first step due to the small amount of solidification material added and the amount of added agglomerated slag being small. .

また、固化剤添加量を炉内残留脱炭スラグ量の40%まで増加した場合(本発明6)、脱炭スラグが強力に炉底へ固着してしまうが、造塊スラグを添加したことで、第一工程中にやや遅れてでも浮上できたため、出鋼後の鍋中[P]濃度が0.019質量%と目標0.019質量%以下をギリギリ達成するに止まったと考えられる。   In addition, when the amount of solidifying agent added is increased to 40% of the amount of residual decarburized slag in the furnace (Invention 6), the decarburized slag is strongly fixed to the furnace bottom. In addition, it was thought that the [P] concentration in the pan after the steel was achieved to 0.019% by mass and the target of 0.019% by mass or less because it was able to surface even slightly delayed during the first step.

(4)造塊スラグの粒径の影響(本発明1、比較例4、5)
造塊スラグの粒径を10mm未満とすると(比較例4)、炉内残留脱炭スラグへ細かく溶解してしまい、次チャージの第一工程で脱炭スラグが炉底から剥離・浮上する時期が顕著には早くならなかった。それは、上述した炉底に固着したスラグの凸凹が小さかったため、溶銑流動による固着スラグの剥離が遅くなったのだと考えられる。その結果、出鋼後鍋中[P]濃度は0.020質量%と目標0.019質量%以下を僅かに達成することができなかったと考えられる。
(4) Effect of particle size of ingot slag (Invention 1, Comparative Examples 4 and 5)
If the particle size of the ingot slag is less than 10 mm (Comparative Example 4), it will be finely dissolved in the residual decarburization slag in the furnace, and the time when the decarburization slag peels off and rises from the furnace bottom in the first step of the next charge. It was not noticeably early. It can be considered that the unevenness of the slag adhered to the furnace bottom described above was small, so that the separation of the adhered slag by the molten iron flow was delayed. As a result, it is considered that the [P] concentration in the pan after the steelmaking could not reach the target of 0.020% by mass and 0.019% by mass or less.

一方、造塊スラグの粒径を50mm超にすると(比較例5)、上記のごとく造塊スラグは溶融浮上するものの、転炉底に残された脱炭スラグにできる凸凹の数が少な過ぎて、底吹きガスによって攪拌されて強く流動している溶銑をもってしても、炉底に付着した脱炭スラグの剥離・浮上がそれほど早くならず、出鋼後鍋中[P]濃度は0.019質量%と目標0.019質量%以下を僅かに達成することができなかったと考えられる。   On the other hand, when the particle size of the ingot slag exceeds 50 mm (Comparative Example 5), although the ingot slag melts and floats as described above, the number of irregularities that can be made into the decarburized slag left at the bottom of the converter is too small. Even if the molten iron stirred and flowed strongly by the bottom blowing gas is used, the decarburization slag adhering to the bottom of the furnace does not peel and rise so fast, and the [P] concentration in the pan after the steel is 0.019 It is considered that the mass% and the target of 0.019 mass% or less could not be achieved slightly.

(5)固化剤無添加で造塊スラグのみ添加の影響(比較例6)
固化剤無添加で造塊スラグのみ添加したところ、次チャージの注銑時に突沸した。
この場合、鉄屑添加後も鉄屑と非接触な造塊スラグが溶融状態で存在していたため、注銑時に突沸してしまったと考えられる。
(5) Effect of adding only agglomerated slag without adding a solidifying agent (Comparative Example 6)
When only the ingot slag was added without the addition of a solidifying agent, bumping occurred at the time of pouring the next charge.
In this case, the ingot-making slag that is not in contact with the iron scrap was present in a molten state even after the iron scrap was added, so it is considered that bumping occurred during pouring.

[実施例1]
本発明に係る所定の要件を満たして脱炭吹錬を行った後、炉体を傾動して炉口から脱炭スラグ(組成:CaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%、塩基度:CaO質量/SiO質量=3.5〜5.0)の一部を排出して炉内に約20kg/t残した脱炭スラグへ固化剤として石灰石(粒径50mm以下であって、粒径10〜50mmの比率が石灰石全体の20質量%以上としたもの)2kg/tと共に粒径10〜50mmの造塊スラグ(組成:CaO約45%、Al約20%、T.Fe約10%、SiO約10%、MgO約10%)1.0kg/tを添加(炉内残留スラグに対し固化剤は10質量%、造塊スラグは固化剤に対し50質量%)して脱炭スラグを固化した。
[Example 1]
After performing the decarburization blown by satisfying the predetermined requirements according to the present invention, the furnace body is tilted to decarburize slag (composition: CaO = 30 to 50%, Al 2 O 3 = 1 to 5%). , T.Fe = 10-30%, SiO 2 = 8-15%, MgO = 6-12%, basicity: CaO mass / SiO 2 mass = 3.5-5.0) Limestone as a solidifying agent to decarburized slag left in the furnace at about 20 kg / t (particle size is 50 mm or less, and the ratio of particle size of 10 to 50 mm is 20% by mass or more of the whole limestone) Ingot slag having a diameter of 10 to 50 mm (composition: CaO about 45%, Al 2 O 3 about 20%, T.Fe about 10%, SiO 2 about 10%, MgO about 10%) 1.0 kg / t (added) 10% by mass of solidifying agent and 50% by mass of ingot slag with respect to solidifying agent) It solidified the decarburization slag.

その後に、屑鉄50tを添加してから次チャージの注銑(290t(組成:[Si]約0.4%、[P]約0.10%))を行い、装入塩基度が1.4となるように生石灰4.7kg/tを添加し、目標処理温度を1330℃として脱りん吹錬(上吹き酸素流量40000Nm/h、底吹き酸素流量3000Nm/h、底吹きLPG流量200Nm/h)して脱りん処理を行った。 After that, after adding scrap iron 50t, injection of the next charge (290t (composition: [Si] about 0.4%, [P] about 0.10%)) is performed, and the charging basicity is 1.4. It was added and made as quicklime 4.7 kg / t, blowing dephosphorization blowing (above the target processing temperature of 1330 ° C. oxygen flow rate 40000Nm 3 / h, bottom-blown oxygen flow rate 3000 Nm 3 / h, bottom-blown LPG flow 200 Nm 3 / H) to remove the phosphorus.

第二工程として第一工程で生成したスラグを約80%排出し、第三工程として脱炭スラグの組成をCaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%、塩基度:CaO質量/SiO質量=3.5〜5.0となるように生石灰5kg/t、軽焼ドロマイト(組成:CaO=60%、MgO=34%)3.5kg/tを添加し、[C]≒0.10%まで脱炭吹錬した(同時に脱りんも進行)。このとき、上吹き酸素流量は80000Nm/h、底吹き酸素流量を3000Nm/h、底吹きLPG流量を200Nm/hとした。 About 80% of the slag produced in the first step is discharged as the second step, and the composition of the decarburized slag is CaO = 30 to 50%, Al 2 O 3 = 1 to 5%, T. Fe = 10~30%, SiO 2 = 8~15%, MgO = 6~12%, basicity: CaO mass / SiO 2 mass = 3.5-5.0 become as quicklime 5 kg / t, Light burned Dolomite (composition: CaO = 60%, MgO = 34%) was added at 3.5 kg / t, and decarburized and blown to [C] ≈0.10% (at the same time, dephosphorization proceeded). At this time, was a top-blown oxygen flow rate 80000Nm 3 / h, bottom-blown oxygen flow rate 3000 Nm 3 / h, bottom and blown LPG flow 200 Nm 3 / h.

第四工程として第三工程で生成した脱炭スラグを炉内に残したまま出鋼し、出鋼後の[P]濃度が0.014%の溶鋼を得た。   As the fourth step, the decarburized slag produced in the third step was left out in the furnace, and a molten steel having a [P] concentration of 0.014% after the steel was obtained.

第五工程として炉体を傾動して炉口から脱炭スラグの一部を排出して炉内に約20kg/t残した脱炭スラグへ固化剤として石灰石(粒径50mm以下であって、粒径10〜50mmの比率が石灰石全体の20質量%以上としたもの)2kg/tと共に粒径10〜50mmの造塊スラグ(組成:CaO約45%、Al約20%、T.Fe約10%、SiO約10%、MgO約10%)1.0kg/tを添加(炉内残留スラグに対し固化剤は10質量%、造塊スラグは固化剤に対し50質量%)して脱炭スラグを固化した。 As a fifth step, the furnace body is tilted to discharge a part of the decarburized slag from the furnace port, and to the decarburized slag left in the furnace about 20 kg / t as a solidifying agent, limestone (particle size is 50 mm or less, An agglomerated slag having a particle size of 10 to 50 mm together with 2 kg / t in which the ratio of the diameter of 10 to 50 mm is 20% by mass or more of the whole limestone (composition: CaO about 45%, Al 2 O 3 about 20%, T.Fe About 10%, SiO 2 about 10%, MgO about 10%) Add 1.0kg / t (solidifying agent is 10% by mass for residual slag in the furnace, ingot slag is 50% by mass for solidifying agent) The decarburized slag was solidified.

その後に、再び第一工程へ戻って、屑鉄50tを添加してから次チャージの注銑(290t(組成:[Si]約0.4%、[P]約0.10%))を行い、第五工程までを繰り返し実施した。5Ch連続して実施して得られた平均値を表1の本発明1に示す。注銑時の突沸は発生せず、出鋼後鍋中[P]濃度は0.014質量%と低かった。   After that, returning to the first step again, after adding the scrap iron 50t, performing the next charge injection (290t (composition: [Si] about 0.4%, [P] about 0.10%)), The process up to the fifth step was repeated. The average value obtained by carrying out for 5 Ch continuously is shown in Invention 1 of Table 1. No bumping occurred during pouring, and the [P] concentration in the pan after steeling was as low as 0.014% by mass.

[比較例1]
本発明に係る所定の要件を満たして脱炭吹錬を行った後、炉体を傾動して炉口から脱炭スラグ(組成:CaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%、塩基度:CaO質量/SiO質量=3.5〜5.0)の一部を排出して炉内に約20kg/t残した脱炭スラグへ固化剤として石灰石(粒径50mm以下であって、粒径10〜50mmの比率が石灰石全体の20質量%以上としたもの)5kg/tを添加(炉内残留スラグに対し固化剤は10質量%)して脱炭スラグを固化した。
[Comparative Example 1]
After performing the decarburization blown by satisfying the predetermined requirements according to the present invention, the furnace body is tilted to decarburize slag (composition: CaO = 30 to 50%, Al 2 O 3 = 1 to 5%). , T.Fe = 10-30%, SiO 2 = 8-15%, MgO = 6-12%, basicity: CaO mass / SiO 2 mass = 3.5-5.0) Add 5kg / t of limestone as a solidifying agent to decarburized slag left in furnace about 20kg / t (particle size is 50mm or less and the ratio of particle size is 10-50mm is 20% by mass or more of the whole limestone) (The solidifying agent was 10% by mass with respect to the residual slag in the furnace) to solidify the decarburized slag.

その後に、屑鉄50tを添加してから次チャージの注銑(290t(組成:[Si]約0.4%、[P]約0.10%)を行い、装入塩基度が1.4となるように生石灰5.0kg/tを添加し、目標処理温度を1330℃として脱りん吹錬(上吹き酸素流量40000Nm/h、底吹き酸素流量3000Nm/h、底吹きLPG流量200Nm/h)して脱りん処理を行った。 After that, after adding 50t of scrap iron, injection of the next charge (290t (composition: [Si] about 0.4%, [P] about 0.10%) is performed, and the charging basicity is 1.4. so as to the addition of lime 5.0 kg / t, blowing dephosphorization blowing (above the target processing temperature of 1330 ° C. oxygen flow rate 40000Nm 3 / h, bottom-blown oxygen flow rate 3000 Nm 3 / h, bottom-blown LPG flow rate 200 Nm 3 / h) to remove phosphorus.

第二工程として第一工程で生成したスラグを約80%排出し、第三工程として脱炭スラグの組成をCaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%、塩基度:CaO質量/SiO質量=3.5〜5.0となるように生石灰5kg/t、軽焼ドロマイト(組成:CaO=60%、MgO=34%)4kg/tを添加し、[C]≒0.10%まで脱炭吹錬した(同時に脱りんも進行)。このとき、上吹き酸素流量は80000Nm/h、底吹き酸素流量を3000Nm/h、底吹きLPG流量を200Nm/hとした。 About 80% of the slag produced in the first step is discharged as the second step, and the composition of the decarburized slag is CaO = 30 to 50%, Al 2 O 3 = 1 to 5%, T. Fe = 10~30%, SiO 2 = 8~15%, MgO = 6~12%, basicity: CaO mass / SiO 2 mass = 3.5-5.0 become as quicklime 5 kg / t, Light burned Dolomite (composition: CaO = 60%, MgO = 34%) was added at 4 kg / t, and decarburized and blown to [C] ≈0.10% (at the same time, dephosphorization proceeded). At this time, was a top-blown oxygen flow rate 80000Nm 3 / h, bottom-blown oxygen flow rate 3000 Nm 3 / h, bottom and blown LPG flow 200 Nm 3 / h.

第四工程として第三工程で生成した脱炭スラグを炉内に残したまま出鋼し、第五工程として炉体を傾動して炉口から脱炭スラグの一部を排出して炉内に約20kg/t残した脱炭スラグへ固化剤として石灰石(粒径50mm以下であって、粒径10〜50mmの比率が石灰石全体の20質量%以上としたもの)2kg/tを添加(炉内残留スラグに対し固化剤は10質量%)して脱炭スラグを固化した。   As the fourth step, the decarburized slag generated in the third step is left in the furnace, and as the fifth step, the furnace body is tilted to discharge a part of the decarburized slag from the furnace port and enter the furnace. About 20 kg / t of remaining decarburized slag was added 2 kg / t as a solidifying agent (having a particle size of 50 mm or less and a ratio of particle size of 10 to 50 mm was 20% by mass or more of the entire limestone) (inside the furnace) The decarburized slag was solidified by adding 10% by mass of a solidifying agent to the residual slag.

その後に、再び第一工程へ戻って、屑鉄50tを添加してから次チャージの注銑(290t(組成:[Si]約0.4%、[P]約0.10%))を行い、第五工程までを繰り返し実施した。5Ch連続して実施して得られた平均値を表1の比較例1に示す。注銑時の突沸は発生せず、出鋼後鍋中[P]濃度は0.021質量%と目標値0.019%以下に未達だった。   After that, returning to the first step again, after adding the scrap iron 50t, performing the next charge injection (290t (composition: [Si] about 0.4%, [P] about 0.10%)), The process up to the fifth step was repeated. The average value obtained by continuously performing for 5 Ch is shown in Comparative Example 1 of Table 1. No bumping occurred during pouring, and the [P] concentration in the pan after steeling was 0.021% by mass, not reaching the target value of 0.019% or less.

Claims (2)

高炉溶銑を精錬して溶鋼を製造する溶鋼の製造方法であって、
第一工程として屑鉄および溶銑を転炉へ装入し、装入する副原料の量を調整してスラグの装入塩基度(CaO質量/SiO質量)を1.0〜2.0、処理温度を1350℃以下で吹酸して脱りん処理を行い、
第二工程として第一工程で生成したスラグを排出し、
第三工程としてフラックス添加と吹酸により、組成が質量%で、CaO=30〜50%、Al=1〜5%、T.Fe=10〜30%、SiO=8〜15%、MgO=6〜12%であって、塩基度:CaO質量/SiO質量=3.5〜5.0である脱炭スラグを生成させて脱炭、脱りん処理を行い、
第四工程として第三工程で生成した脱炭スラグを残したまま出鋼し、
第五工程として炉内に残した脱炭スラグへ、粒径が50mm以下であって10〜50mmの比率が20質量%以上とした生石灰、石灰石、軽焼ドロマイト、生ドロマイトおよび冷却固化した脱炭スラグから選ばれた1種または2種以上の固化剤と共に、粒径が10〜50mmであるとともに組成が質量%で、CaO=30〜50%、Al=10〜30%、T.Fe=5〜15%、SiO=8〜20%、である造塊スラグを添加して該脱炭スラグを固化させ、
その後、再び第一工程へ戻って、次チャージの屑鉄および溶銑を前記第五工程を終えた転炉へ装入し、前記第一工程として規定した条件で脱りん処理を行って、以降の第五工程までを順次実施することを繰り返すことを特徴とする溶鋼の製造方法。
A method for producing molten steel by refining blast furnace hot metal to produce molten steel,
In the first step, scrap iron and hot metal are charged into the converter, the amount of the auxiliary raw material to be charged is adjusted, and the slag charging basicity (CaO mass / SiO 2 mass) is 1.0 to 2.0, treatment Perform dephosphorization by blowing acid at a temperature of 1350 ° C. or lower,
The slag generated in the first step is discharged as the second step,
As a third step, the composition is mass% with addition of flux and blowing acid, CaO = 30-50%, Al 2 O 3 = 1-5%, T.W. Fe = 10~30%, SiO 2 = 8~15%, a MgO = 6 to 12%, basicity: to produce a decarburization slag is CaO wt / SiO 2 mass = 3.5 to 5.0 To decarburize and dephosphorize,
Steel is left leaving the decarburized slag generated in the third step as the fourth step,
In the fifth step, the decarburized slag left in the furnace, quick lime, limestone, light calcined dolomite, raw dolomite and cooled and solidified decarburized having a particle size of 50 mm or less and a ratio of 10 to 50 mm of 20% by mass or more. Together with one or more solidifying agents selected from slag, the particle size is 10 to 50 mm and the composition is mass%, CaO = 30 to 50%, Al 2 O 3 = 10 to 30%, T.P. Ingot slag with Fe = 5-15% and SiO 2 = 8-20% is added to solidify the decarburized slag,
After that, returning to the first step again, the scrap iron and hot metal of the next charge are charged into the converter after finishing the fifth step, and the dephosphorization process is performed under the conditions defined as the first step. A method for producing molten steel, comprising repeatedly performing up to five steps sequentially.
前記第五工程において、炉内に残した脱炭スラグに添加する固化剤の質量を当該脱炭スラグの質量の10〜30%とし、かつ、添加する造塊スラグの質量を該固化剤の質量の10〜100%とすることを特徴とする請求項1に記載の溶鋼の製造方法。   In the fifth step, the mass of the solidifying agent added to the decarburized slag left in the furnace is 10 to 30% of the mass of the decarburized slag, and the mass of the ingot slag to be added is the mass of the solidifying agent. The manufacturing method of the molten steel of Claim 1 characterized by the above-mentioned.
JP2015027796A 2015-02-16 2015-02-16 Manufacturing method of molten steel Active JP6421634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027796A JP6421634B2 (en) 2015-02-16 2015-02-16 Manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027796A JP6421634B2 (en) 2015-02-16 2015-02-16 Manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2016151027A JP2016151027A (en) 2016-08-22
JP6421634B2 true JP6421634B2 (en) 2018-11-14

Family

ID=56696019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027796A Active JP6421634B2 (en) 2015-02-16 2015-02-16 Manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP6421634B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844267B2 (en) * 2017-01-16 2021-03-17 日本製鉄株式会社 Hot metal refining method
JP7243185B2 (en) * 2018-12-27 2023-03-22 日本製鉄株式会社 Hot slag recycling method
JP7363731B2 (en) * 2020-09-30 2023-10-18 Jfeスチール株式会社 Method for dephosphorizing hot metal and manufacturing method for molten steel
CN115369308B (en) * 2022-07-15 2023-09-15 首钢京唐钢铁联合有限责任公司 Method for producing high-strength IF steel
CN115369239B (en) * 2022-08-01 2024-01-30 包头钢铁(集团)有限责任公司 Method for preparing pellets by utilizing baiyunebo tailings to recleaning iron ore concentrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582692B2 (en) * 1991-11-16 1997-02-19 新日本製鐵株式会社 Converter steelmaking method
JP3915341B2 (en) * 1999-10-14 2007-05-16 Jfeスチール株式会社 Hot phosphorus dephosphorization method
JP6136379B2 (en) * 2013-03-05 2017-05-31 新日鐵住金株式会社 Molten steel manufacturing method

Also Published As

Publication number Publication date
JP2016151027A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6421634B2 (en) Manufacturing method of molten steel
CN105506226B (en) Method for carrying out pre-desiliconization, pre-decarburization and pre-dephosphorization on molten iron in molten iron tank
JPH07216434A (en) Production of very low carbon and very low sulfur steel
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP2008063645A (en) Steelmaking method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP2005015889A (en) Method for preventing effluence of slag in converter
JP2007270238A (en) Method for applying dephosphorize-treatment to molten iron
JP2003119511A (en) Method for operating steelmaking furnace during steelmaking process
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP2001192720A (en) Converter steel making process
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JPH0437135B2 (en)
JP6500476B2 (en) How to smelt molten metal
JP7302749B2 (en) Molten iron dephosphorization method
JP7211557B2 (en) Molten iron smelting method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP7248195B2 (en) Converter steelmaking method
JP2003105423A (en) Treating method for dephosphorization and desulfurization of molten iron
JP7243185B2 (en) Hot slag recycling method
JPH0892618A (en) Prerefining method
JP3339982B2 (en) Converter steelmaking method
JP2004010935A (en) Method for manufacturing molten steel
JPS62290815A (en) Steel making method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6421634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350