JP2016079462A - Method for refining hot pig iron - Google Patents

Method for refining hot pig iron Download PDF

Info

Publication number
JP2016079462A
JP2016079462A JP2014212595A JP2014212595A JP2016079462A JP 2016079462 A JP2016079462 A JP 2016079462A JP 2014212595 A JP2014212595 A JP 2014212595A JP 2014212595 A JP2014212595 A JP 2014212595A JP 2016079462 A JP2016079462 A JP 2016079462A
Authority
JP
Japan
Prior art keywords
desiliconization
hot metal
treatment
mass
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014212595A
Other languages
Japanese (ja)
Other versions
JP6405876B2 (en
Inventor
務川 進
Susumu Mukawa
進 務川
隆之 西
Takayuki Nishi
隆之 西
太田 光彦
Mitsuhiko Ota
光彦 太田
孝二郎 川辺
Kojiro Kawabe
孝二郎 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014212595A priority Critical patent/JP6405876B2/en
Publication of JP2016079462A publication Critical patent/JP2016079462A/en
Application granted granted Critical
Publication of JP6405876B2 publication Critical patent/JP6405876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for manufacturing a high purity steel from hot pig iron having a silicon concentration of 0.45 mass% or more efficiently at low cost.SOLUTION: A method includes a desiliconization process for conducting a desiliconization treatment by adding a desiliconization agent to a blast furnace molten iron having a silicon concentration of 0.45 mass% to make a silicon concentration of 0.2 mass% to 0.4 mass%, a desulfurization process for conducting a desulfurization treatment by adding a desulfurization agent to the molten pig iron after the desiliconization treatment and a dephosphorization process for conducting a dephosphorization treatment by injecting the molten pig iron after the desulfurization treatment and adding a dephosphorization agent to suppress FeO contained in a desiliconization slag before the desulfurization treatment to 16 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、珪素濃度が0.45質量%以上の溶銑から高純度鋼を製造するのに適した溶銑の精錬方法に関するものである。   The present invention relates to a hot metal refining method suitable for producing high purity steel from hot metal having a silicon concentration of 0.45 mass% or more.

近年、P,S,およびC等の含有量を極低レベルにまで低減させた高純度鋼の製造技術に関し、各種技術が開発されている(例えば、特許文献1等)。   In recent years, various techniques have been developed for manufacturing technology of high-purity steel in which the contents of P, S, C, and the like are reduced to an extremely low level (for example, Patent Document 1).

従来、これらの高純度鋼の製造には、Si等の含有率の低い原料が使用されてきた。しかし、近年、鉄鋼業界における厳しい価格競争の中、原料価格を抑制すべく、Si等の含有率の高い原料(いわゆる「劣質原料」)へのシフトが行われており、これらの劣質原料を使用しつつ、従来同様に質の高い高純度鋼を、効率よく、かつ、低コストに製造する技術への要求が高まっている。   Conventionally, raw materials having a low content such as Si have been used for the production of these high purity steels. However, in recent years, due to severe price competition in the steel industry, there has been a shift to raw materials with a high content such as Si (so-called “poor raw materials”) to control raw material prices. However, there is an increasing demand for technology for producing high-quality high-purity steel as efficiently and at low cost as in the past.

特開2013−127087号公報JP2013-127087A

本発明の目的は、珪素濃度が0.45質量%以上の溶銑から、高純度鋼を、効率よく、かつ、低コストに製造する技術を提供することである。   An object of the present invention is to provide a technique for producing high-purity steel efficiently and at low cost from hot metal having a silicon concentration of 0.45% by mass or more.

本発明では上記の課題を解決するための手段として、溶銑の精錬方法において、「珪素濃度0.45質量%以上の高炉溶銑に脱珪剤を添加して脱珪処理を行い、珪素濃度を0.2質量%〜0.4質量%とする脱珪工程と、脱珪処理後の溶銑に脱硫剤を添加して脱硫処理を行う脱硫工程と、脱硫処理後の溶銑を転炉型反応容器に挿入し、脱燐剤を添加して脱燐処理を行う脱燐工程を有し、前記脱硫処理前の脱珪スラグ中に含まれるFeOを、16質量%以下に抑制する」構成を採用している。   In the present invention, as a means for solving the above-mentioned problem, in the hot metal refining method, “a silicon removal process is performed by adding a silicon removal agent to a blast furnace hot metal having a silicon concentration of 0.45 mass% or more to reduce the silicon concentration to 0”. The desiliconization step of 2 mass% to 0.4 mass%, the desulfurization step of adding a desulfurizing agent to the hot metal after the desiliconization treatment and performing the desulfurization treatment, and the hot metal after the desulfurization treatment into the converter reactor Having a dephosphorization step of inserting, adding a dephosphorization agent and performing a dephosphorization process, and adopting a configuration in which FeO contained in the desiliconized slag before the desulfurization process is suppressed to 16% by mass or less. Yes.

なお、脱燐処理後の溶銑を主として酸素ガスにより脱炭処理を行う脱炭工程を有し、前記の脱珪剤が、この脱炭工程で生成した脱炭スラグを、25mm未満に破砕、整粒したものを含むことが好ましく、また、前記の脱珪処理は、脱珪スラグの塩基度が、(CaO)/(SiO)=0.3〜1.5となる条件下で行うことが好ましい。 In addition, the degassing process has a decarburization process in which the hot metal after the dephosphorization process is mainly deoxygenated with oxygen gas. It is preferable to include a granulated one, and the desiliconization treatment is performed under conditions where the basicity of the desiliconization slag is (CaO) / (SiO 2 ) = 0.3 to 1.5. preferable.

脱珪工程と、脱硫工程と、脱燐工程と、脱炭工程を有し、この順序で精錬する溶銑の精錬技術は、例えば、「鉄と鋼 第74年(1988) 第2号 270〜277頁」に開示されているが、この技術は、脱珪工程において、珪素濃度を0.15%以下にまで低減させる処理を必須とする技術である。従来のように、Si等の含有率の低い鉄鉱石を原料とする場合、この従来技術でも、特段の問題はないが、Si等の含有率の高い劣質原料を用いる場合、珪素濃度を0.15質量%未満にまで低減させようとした場合、脱珪剤(FeOを含有するフラックス)が相当量必要になり、脱珪処理時間は、脱珪剤の使用量とともに増加するため、脱珪処理に時間がかかり生産性が低下する問題がある。また、脱珪剤を大量に使用すると、脱珪スラグ中のFeO量が増加するが、このFeOが脱珪スラグとともに、次工程(脱硫工程)に持ち越されると、脱硫反応を阻害する問題や、脱珪工程において、珪素濃度を0.15質量%未満にまで低減させた場合、スラグの主成分となるSiが不足するため、脱燐工程におけるスラグ生成量が少なくなり、前工程(脱硫工程)から持ち越された脱硫スラグに含まれる硫黄濃度を希釈することができず、脱燐工程で復硫が生じて高純度鋼に要求される硫黄濃度を達成できないという問題がある。   The hot metal refining technology, which includes a desiliconization process, a desulfurization process, a dephosphorization process, and a decarburization process, and is refined in this order, is, for example, “Iron and Steel 74th (1988) No. 2 270-277. Although this is disclosed in “Page”, this technique is a technique in which a treatment for reducing the silicon concentration to 0.15% or less is essential in the desiliconization step. In the case where iron ore having a low content such as Si is used as a raw material as in the prior art, there is no particular problem with this conventional technique, but when a poor material having a high content such as Si is used, the silicon concentration is set to 0. When trying to reduce the amount to less than 15% by mass, a considerable amount of desiliconizing agent (flux containing FeO) is required, and the desiliconizing time increases with the amount of desiliconizing agent used. It takes a long time to reduce productivity. Further, when a large amount of desiliconizing agent is used, the amount of FeO in the desiliconized slag increases. However, when this FeO is carried over to the next process (desulfurization process) together with the desiliconization slag, the problem of inhibiting the desulfurization reaction, In the desiliconization process, when the silicon concentration is reduced to less than 0.15% by mass, the amount of slag produced in the dephosphorization process is reduced because of the lack of Si as the main component of the slag, and the previous process (desulfurization process). Therefore, the sulfur concentration contained in the desulfurized slag carried over cannot be diluted, and there is a problem that the sulfur concentration required for high-purity steel cannot be achieved due to resulfurization in the dephosphorization process.

これに対し、本発明によれば、「脱珪処理後の珪素濃度を0.2質量%〜0.4質量%に止め、また、脱硫処理前の脱珪スラグ中に含まれるFeOを、16質量%以下に抑制」しているため、上記技術と比較して、脱珪剤の使用量を低減してボトルネック工程となる脱珪処理時間を短縮することができ、生産性の向上を図ることができる。また、脱珪剤の使用量を低減した結果、従来脱珪剤を大量に使用した際生じていた上記の各問題(脱硫反応を阻害する問題や、脱燐工程で復硫が生じる問題、或いは脱珪時のスロッピングの問題)を回避することができる。   On the other hand, according to the present invention, “the silicon concentration after the desiliconization treatment is stopped at 0.2 mass% to 0.4 mass%, and FeO contained in the desiliconization slag before the desulfurization treatment is reduced to 16%. Since it is “suppressed by mass% or less”, the amount of desiliconization agent used can be reduced and the desiliconization processing time, which is a bottleneck process, can be shortened compared to the above-mentioned technology, thereby improving productivity. be able to. In addition, as a result of reducing the amount of desiliconizing agent used, each of the above problems (problems that inhibit the desulfurization reaction, problems that cause desulfurization in the dephosphorization process, or The problem of slopping during desiliconization can be avoided.

なお、上記の従来技術では、溶銑鍋(フリーボード部がない容器)における脱燐処理を前提としているため、脱燐処理時のスラグフォーミング回避の観点から、事前の脱珪工程で、珪素濃度を「0.15質量%未満」にまで低減させることが要求されたが、本発明では、脱燐処理を転炉型反応容器で行う構成としているため、ある程度のスラグフォーミングは許容でき、事前の脱珪工程における脱珪処理後珪素濃度の目標レベルを「0.2質量%〜0.4質量%」に高めることができる。   In the above prior art, since it is premised on the dephosphorization process in the hot metal ladle (container having no free board part), from the viewpoint of avoiding the slag forming during the dephosphorization process, the silicon concentration is set in the prior desiliconization process. Although it has been required to reduce to “less than 0.15% by mass”, in the present invention, since the dephosphorization process is performed in the converter reactor, a certain amount of slag forming is acceptable, and prior degassing is possible. The target level of the silicon concentration after the desiliconization process in the silicon process can be increased to “0.2 mass% to 0.4 mass%”.

本発明のフローを説明する図である。It is a figure explaining the flow of this invention.

以下に本発明の好ましい実施形態を示す。本実施形態の溶銑の精錬方法は、図1に示すように、脱珪工程〜脱硫工程〜脱燐工程〜脱炭工程の順に、各工程を経て、珪素濃度0.45質量%以上の高炉溶銑から高純度鋼を溶製する溶銑の精錬方法である。以下、各工程について詳述する。   Preferred embodiments of the present invention are shown below. As shown in FIG. 1, the hot metal refining method of the present embodiment is blast furnace hot metal having a silicon concentration of 0.45% by mass or more through each step in the order of desiliconization step, desulfurization step, dephosphorization step, and decarburization step. This is a method for refining hot metal from high purity steel. Hereinafter, each process is explained in full detail.

<脱珪工程>
高炉から出銑された溶銑は、高炉鋳床を経て、溶銑搬送用の混銑車に挿入される。本実施形態では、この混銑車を精錬容器として、珪素濃度を0.2質量%〜0.4質量%とする脱珪処理を行っている。
<Desiliconization process>
The hot metal discharged from the blast furnace passes through the blast furnace casting floor and is inserted into a kneading wheel for hot metal conveyance. In this embodiment, the silicon carbide is used as a smelting vessel, and silicon removal is performed with a silicon concentration of 0.2 mass% to 0.4 mass%.

本実施形態では、脱珪反応([Si]+O→SiO)のための酸素源として、固体酸素源と酸素ガスを使用している。ここで、[Si] :溶銑中の珪素、SiO:スラグ中のSiOである。 In this embodiment, a solid oxygen source and oxygen gas are used as an oxygen source for the desiliconization reaction ([Si] + O 2 → SiO 2 ). Here, [Si]: silicon in the molten iron, SiO 2: a SiO 2 in the slag.

固体酸素源としては、ミルスケール、製鉄ダスト、焼結粉の少なくとも何れかを用い、溶銑を高炉鋳床から落下させて混銑車に挿入する際に、その落下流に巻き込ませて投入している。固体酸素源を投入する際、他の脱珪剤も、同様に、その落下流に巻き込ませて投入することが好ましい。   As the solid oxygen source, at least one of mill scale, iron-making dust, and sintered powder is used, and when the hot metal is dropped from the blast furnace casting floor and inserted into the kneading car, it is put into the falling flow. . Similarly, when introducing the solid oxygen source, it is preferable that other desiliconizing agents are also introduced in the falling flow.

固体酸素源の不足分は、ランスを介した微粉吹き込みにより追加投入することができる。酸素ガスは、ランスを使用して、混銑車の上方から吹きつけ、もしくは、混銑車内への吹き込みを行っている。撹拌力の観点からは、混銑車内への吹き込みが好ましいが、羽口の溶損のリスクもあるため、適宜最適な手段を選択することが好ましい。   The shortage of solid oxygen source can be additionally charged by blowing fine powder through a lance. Oxygen gas is blown from above the chaotic vehicle using a lance, or is blown into the chaotic vehicle. From the viewpoint of stirring power, blowing into the kneading vehicle is preferable, but since there is a risk of tuyere melting, it is preferable to select an optimal means as appropriate.

脱珪剤FeOを含有するフラックスは、媒溶剤(CaO等)との混合原料として投入されるが、本実施形態では、この混合原料に、後段の脱炭工程で生成した脱炭スラグを25mm未満に破砕、整粒したものを含ませたものを使用している。この脱炭スラグの併用により、脱珪処理に伴うフォーミングを抑制する効果や、生石灰等の使用量低減効果の他、脱炭スラグの再利用による系外排出スラグの削減効果を得ることができる。   The flux containing the desiliconizing agent FeO is input as a mixed raw material with a solvent medium (CaO or the like). In this embodiment, the decarburized slag generated in the subsequent decarburizing step is less than 25 mm in this mixed raw material. Is used that contains crushed and sized particles. By using this decarburized slag in combination, it is possible to obtain the effect of reducing the discharge slag outside the system by reusing the decarburized slag, in addition to the effect of suppressing forming associated with the desiliconization process and the effect of reducing the amount of quicklime used.

前記の媒溶剤には、脱珪処理に伴い生成するスラグ(以下、脱珪スラグという)の塩基度([質量%CaO]/ [質量%SiO])を調整して、スラグの流動性を調整する作用があり、本実施形態では、脱珪スラグの塩基度が、(CaO)/(SiO)=0.3〜1.5となる比較的低塩基度の条件下で脱珪処理を行っている。 The above-mentioned solvent solvent adjusts the basicity ([mass% CaO] / [mass% SiO 2 ]) of the slag generated by the desiliconization process (hereinafter referred to as desiliconized slag) to improve the fluidity of the slag. has the effect of adjusting, in the present embodiment, the basicity of the desiliconization slag, a (CaO) / (SiO 2) = 0.3~1.5 become relatively desiliconization treatment under conditions of low basicity Is going.

脱珪スラグの塩基度が1.5超となると、スラグの流動性が低下する結果、FeOの還元反応が進行し難くなり、脱珪反応が阻害されるとともに脱珪スラグ中のFeO濃度が高位にとどまるため好ましくない。また、流動性が低下したスラグは溶銑と分離しやすくなるため、脱珪処理後の溶銑を次工程(脱硫工程)用の精錬容器に払い出す際、溶銑と共に持ち越されるスラグ量が減少して、脱硫処理中に精錬容器内に存在するスラグ(以下、脱硫スラグという)中の硫黄濃度が上昇し、この硫黄濃度が上昇した脱硫スラグが更に次工程(脱燐工程)に持ち越された場合、復硫(脱硫処理によってスラグ中に移行した硫黄が、再び溶銑中に移行する現象)が起こりやすくなるため好ましくない。   When the basicity of the desiliconized slag exceeds 1.5, the flowability of the slag decreases, and as a result, the reduction reaction of FeO is difficult to proceed, and the desiliconization reaction is inhibited and the FeO concentration in the desiliconized slag is high. It is not preferable because it stays. In addition, since the slag with reduced fluidity is easily separated from the hot metal, the amount of slag carried over with the hot metal is reduced when the hot metal after desiliconization is discharged to the refining vessel for the next process (desulfurization process). If the sulfur concentration in the slag (hereinafter referred to as desulfurization slag) existing in the smelting vessel is increased during the desulfurization treatment, and the desulfurization slag with the increased sulfur concentration is carried over to the next process (dephosphorization process), This is not preferable because sulfur (a phenomenon in which sulfur transferred into the slag by the desulfurization treatment is transferred again into the molten iron) is likely to occur.

脱珪スラグの塩基度が0.3未満では、FeOの還元速度が遅くなって脱珪処理効率が低下するため好ましくない。また、FeOの還元速度が遅くなるため、十分な脱珪処理時間を確保せず次工程に進んだ場合、脱珪スラグ中に残存するFeO濃度が高くなる。FeO濃度が高いスラグが次工程(脱硫工程)に持ち越されると、還元反応である脱硫反応の進行が阻害され、脱硫効率が著しく低下するため、好ましくない。脱硫反応は、[S]+CaO→CaS+[O]のように進行し、ここで、 [S]:溶銑中の硫黄、CaO:スラグ中のCaO、CaS:スラグ中のCaS、[O]:溶銑中の酸素である。   If the basicity of the desiliconized slag is less than 0.3, the reduction rate of FeO becomes slow and the desiliconization efficiency is lowered, which is not preferable. In addition, since the reduction rate of FeO is slowed, the FeO concentration remaining in the desiliconized slag increases when the next process is performed without securing a sufficient desiliconization time. If slag having a high FeO concentration is carried over to the next step (desulfurization step), the progress of the desulfurization reaction, which is a reduction reaction, is hindered, and the desulfurization efficiency is remarkably lowered. The desulfurization reaction proceeds as [S] + CaO → CaS + [O], where [S]: sulfur in hot metal, CaO: CaO in slag, CaS: CaS in slag, [O]: hot metal It is oxygen inside.

本実施形態では、脱硫効率の観点から、脱硫処理前の脱珪スラグ中に含まれるFeOは、16質量%以下に抑制している。スラグ中FeO量のコントロールは、脱珪剤の投入量、塩基度、および撹拌条件の調整により行うことができる。   In this embodiment, from the viewpoint of desulfurization efficiency, FeO contained in the desiliconized slag before the desulfurization treatment is suppressed to 16% by mass or less. The amount of FeO in the slag can be controlled by adjusting the amount of desiliconizing agent input, basicity, and stirring conditions.

なお、脱珪スラグ中に残存するFeO濃度が高くなった場合でも、脱珪処理後の溶銑を次工程(脱硫工程)用の精錬容器に払い出す際、脱珪スラグを完全に取り除く処理を行えば、理論上、上記のような脱硫効率の低下は生じないが、完全な排滓には手間や時間がかかる他、排滓に伴う鉄分のロスにより歩留まりが悪化するため、工業ベースでは実用的な手段とはいえない。これに対し、脱珪スラグの塩基度の調整や、脱珪スラグ中に含まれるFeO濃度の調整という、本実施形態の手法によればこれらの欠点を回避することができる。   Even when the concentration of FeO remaining in the desiliconization slag becomes high, the desiliconization slag is completely removed when the hot metal after the desiliconization process is discharged to the refining vessel for the next process (desulfurization process). For example, theoretically, the desulfurization efficiency does not decrease as described above, but complete waste is time-consuming and time consuming, and the yield deteriorates due to iron loss accompanying waste, so it is practical on an industrial basis. It is not a safe means. On the other hand, according to the method of the present embodiment, adjustment of the basicity of the desiliconized slag and adjustment of the FeO concentration contained in the desiliconized slag, these disadvantages can be avoided.

本実施形態では、脱珪剤の添加後から脱珪処理が終了するまで、撹拌しながら脱珪反応を行わせている。脱珪反応は、スラグ/溶銑界面で進行するため、撹拌によって反応界面を増加させ、反応促進を図り、脱珪スラグ中のFeOを効率よく低下させることが出来る。撹拌手段は特に限定されず、機械式攪拌、ガス吹き式攪拌等、任意の手段を採用することができる。   In the present embodiment, the desiliconization reaction is performed with stirring until the desiliconization process is completed after the addition of the desiliconizing agent. Since the desiliconization reaction proceeds at the slag / hot metal interface, the reaction interface can be increased by stirring to promote the reaction, and FeO in the desiliconized slag can be efficiently reduced. The stirring means is not particularly limited, and any means such as mechanical stirring and gas blowing stirring can be adopted.

<脱硫工程>
前記の脱珪工程を経て、脱珪スラグを排出した後、溶銑は、脱硫処理用の精錬容器に挿入され、脱硫剤を添加して脱硫処理が行われる。ここで、精錬容器や撹拌手段は、特に限定されず、溶銑鍋や混銑車での脱硫剤インジェクション方式や、溶銑鍋での機械撹拌方式を採用することができる。
<Desulfurization process>
After discharging the desiliconization slag through the desiliconization step, the hot metal is inserted into a refining vessel for desulfurization treatment, and a desulfurization agent is added to perform the desulfurization treatment. Here, the refining vessel and the stirring means are not particularly limited, and a desulfurization agent injection method in a hot metal ladle or a kneading vehicle, or a mechanical stirring method in a hot metal ladle can be adopted.

本実施形態では、前記のように、脱硫処理前の脱珪スラグ中に含まれるFeOを16質量%以下に抑制して、脱硫反応([S]+CaO→CaS+[O])の促進を図っている。   In the present embodiment, as described above, FeO contained in the desiliconized slag before the desulfurization treatment is suppressed to 16% by mass or less to promote the desulfurization reaction ([S] + CaO → CaS + [O]). Yes.

<脱燐工程>
脱燐反応は、2[P]+5[O]+3CaO→3CaO・Pのように進行し、ここで、 [P]:溶銑中の燐、[O]:溶銑中の酸素(酸素ガスあるいは酸化鉄)、CaO:スラグ中のCaO、CaO・P:スラグ中のCaOに固定されたPである。
<Dephosphorization process>
The dephosphorization reaction proceeds as 2 [P] +5 [O] + 3CaO → 3CaO · P 2 O 5 , where [P]: phosphorus in hot metal, [O]: oxygen in hot metal (oxygen gas) or iron oxide), CaO: CaO in the slag, CaO · P 2 O 5: a P 2 O 5 which is fixed to the CaO in the slag.

前記の工程を経て、脱硫スラグを排出した後、溶銑は、脱燐工程用の転炉型反応容器に挿入され、脱燐剤を添加して、上底吹き撹拌により、脱燐処理が行われる。従来技術のように、脱燐処理を溶銑鍋(フリーボード部がない容器)で行う場合、脱燐処理時のスラグフォーミング回避の観点から、事前の脱珪工程で、珪素濃度を「0.15質量%未満」程度にまで低減させることが要求されるが、本実施形態のように、脱燐処理を転炉型反応容器で行う構成とすることにより、ある程度のスラグフォーミングが許容され、事前の脱珪工程における脱珪処理後珪素濃度の目標レベルを「0.2質量%〜0.4質量%」に高めることができる。脱珪工程で、溶銑中に残存したSiは、この脱燐工程でスラグ化して溶銑から除かれる。   After discharging the desulfurization slag through the above steps, the hot metal is inserted into a converter reactor for the dephosphorization step, and a dephosphorization process is performed by adding a dephosphorization agent and stirring the top bottom. . When the dephosphorization process is performed in a hot metal pan (a container without a free board portion) as in the prior art, the silicon concentration is set to “0.15” in the prior desiliconization process from the viewpoint of avoiding slag forming during the dephosphorization process. It is required to be reduced to a level of less than “mass%”. However, by adopting a configuration in which the dephosphorization process is performed in a converter reactor as in this embodiment, a certain amount of slag forming is allowed, The target level of the silicon concentration after the desiliconization process in the desiliconization process can be increased to “0.2 mass% to 0.4 mass%”. Si remaining in the hot metal in the desiliconization process is converted into slag and removed from the hot metal in the dephosphorization process.

本実施形態では、前記のように、脱珪処理後珪素濃度を「0.2質量%〜0.4質量%」に留めることにより、脱燐工程初期におけるスラグボリュームを充分確保し、スラグボリューム確保を目的とした副原料(蛍石等、)使用量を低減するとともに、石灰源の滓化を促進して、脱燐効率を高めている。   In the present embodiment, as described above, the silicon concentration after the desiliconization treatment is kept at “0.2 mass% to 0.4 mass%”, thereby sufficiently securing the slag volume at the initial stage of the dephosphorization process and securing the slag volume. In addition to reducing the amount of secondary materials (fluorite, etc.) used for the purpose of promoting the hatching of lime sources, the dephosphorization efficiency is increased.

<その他の工程>
必要に応じて、脱燐処理後の溶銑に脱炭剤を添加して脱炭処理を行う脱炭工程や、その後の2次精錬(脱ガス、脱硫)工程を追加することもできる。
<Other processes>
If necessary, a decarburization process in which a decarburizing agent is added to the hot metal after the dephosphorization process to perform a decarburization process, and a subsequent secondary refining (degassing, desulfurization) process may be added.

高Si溶銑280tを、混銑車脱珪→(スラグ排出)→鍋脱硫→転炉脱燐のプロセスで処理した結果を下記(表1)の実施例1〜4、比較例1〜3に示している。
尚、実施例2、3では、混銑車脱珪処理中に、脱珪剤として粒径25mm以下の細粒脱炭滓を溶銑に添加した。表1において、[%Si] [%P] [%S]は、各々、溶銑中の各元素濃度を示し、C/Sは脱珪スラグの塩基度、FeOは脱珪スラグ中のFeO濃度、(%S)は、スラグ中の硫黄濃度を示している。表1の溶銑又はスラグ中の各濃度は全て質量%である。また、比較例1〜3で、本発明の範囲外となった濃度を、下線付きの太字で表示している。
The results of treating the high Si hot metal 280t by the process of kneading car desiliconization → (slag discharge) → pan desulfurization → converter dephosphorization are shown in Examples 1 to 4 and Comparative Examples 1 to 3 below (Table 1). Yes.
In Examples 2 and 3, fine decarburized soot having a particle size of 25 mm or less was added to the molten iron as a desiliconizing agent during the kneading wheel desiliconization treatment. In Table 1, [% Si] [% P] [% S] indicates the concentration of each element in the hot metal, C / S is the basicity of the desiliconized slag, FeO is the FeO concentration in the desiliconized slag, (% S) indicates the sulfur concentration in the slag. All concentrations in the hot metal or slag in Table 1 are mass%. Moreover, the density | concentration which became out of the range of this invention in Comparative Examples 1-3 is displayed with the underlined bold type.

表1に示すように、脱珪処理後の珪素濃度を0.2質量%〜0.4質量%とし、脱硫処理前の脱珪スラグ中に含まれるFeOを、16質量%以下に抑制している実施例1〜4では、上記プロセスを経て、極低硫極低リン溶銑を得る事ができた。   As shown in Table 1, the silicon concentration after the desiliconization treatment is 0.2 mass% to 0.4 mass%, and FeO contained in the desiliconization slag before the desulfurization treatment is suppressed to 16 mass% or less. In Examples 1 to 4, it was possible to obtain extremely low sulfur and low phosphorus hot metal through the above process.

一方、脱珪処理後の珪素濃度が0.12質量%となるまで、脱珪処理を行った比較例1,2では、脱燐効率の著しい低下が確認された。また、脱硫処理前の脱珪スラグ中に含まれるFeOが16質量%超である比較例1〜3では、実施例1〜3と比較して脱硫効率の低下が認められ、上記プロセスを経ても、極低硫極低リン溶銑を得る事ができなかった。   On the other hand, in Examples 1 and 2 where the silicon removal treatment was performed until the silicon concentration after the silicon removal treatment was 0.12% by mass, a significant decrease in the phosphorus removal efficiency was confirmed. Moreover, in Comparative Examples 1-3 in which FeO contained in the desiliconized slag before the desulfurization treatment exceeds 16% by mass, a decrease in the desulfurization efficiency is recognized as compared with Examples 1-3, and even through the above process. It was not possible to obtain ultra-low sulfur and low phosphorus hot metal.

具体的には、比較例1では脱珪後の[%Si]が低く、スラグの色などの状況からFeO濃度が高いと予想されたため、脱珪スラグの長時間排滓を行った。その結果、脱硫工程に持ち越されるスラグ量が減少し、かつ、脱硫工程で生成したスラグ量が少ないため、相対的にスラグ中の硫黄濃度(%S)が高くなった。この脱硫スラグが脱りん工程に持ち越されて、脱りん工程での復硫が大きくなったため、脱燐処理後溶銑の硫黄濃度が0.003質量%以下の極低硫黄鋼を溶製することが出来なかった。比較例2は、比較例1同様に脱珪後の[%Si]を過度に低くしたが、比較例1のような排滓を行なわず、通常の排滓程度で脱硫工程に移行したため、脱硫効率が低く、極低硫黄鋼の溶製が出来なかった。比較例3は、脱珪処理後の脱珪スラグの塩基度が過剰であったため、FeOの還元が進行せず、FeO濃度が高いと予想されたため、脱硫前の排滓を強化する操業を行った結果、比較例1同様に脱硫スラグ中の硫黄濃度(%S)が過度に高くなり、脱りん工程での復硫が大きくなったため極低硫鋼溶製に至らなかった。   Specifically, in Comparative Example 1, since [% Si] after desiliconization was low and the FeO concentration was expected to be high from the situation such as the color of slag, the desiliconization slag was discharged for a long time. As a result, the amount of slag carried over to the desulfurization process decreased and the amount of slag generated in the desulfurization process was small, so the sulfur concentration (% S) in the slag was relatively high. Since this desulfurization slag was carried over to the dephosphorization process and the resulfurization in the dephosphorization process became large, it was possible to produce ultra-low sulfur steel with a sulfur concentration of 0.003% by mass or less after the dephosphorization process. I could not do it. In Comparative Example 2, [% Si] after desiliconization was excessively lowered as in Comparative Example 1, but the desulfurization process was carried out at a normal desulfurization step without performing the desulfurization as in Comparative Example 1, and thus desulfurization. The efficiency was low, and it was not possible to melt extremely low sulfur steel. In Comparative Example 3, since the basicity of the desiliconized slag after the desiliconization treatment was excessive, the reduction of FeO did not proceed and the FeO concentration was expected to be high. As a result, as in Comparative Example 1, the sulfur concentration (% S) in the desulfurized slag was excessively high, and the resulfurization in the dephosphorization step was increased, so that the ultra-low sulfur steel was not melted.

Claims (3)

珪素濃度0.45質量%以上の高炉溶銑から高純度鋼を溶製する溶銑の精錬方法であって、
前記の高炉溶銑に脱珪剤を添加して脱珪処理を行い、脱珪処理後の溶銑の珪素濃度を0.2質量%〜0.4質量%とする脱珪工程と、
脱珪処理後の溶銑に脱硫剤を添加して脱硫処理を行う脱硫工程と、
脱硫処理後の溶銑を転炉型反応容器に挿入し、脱燐剤を添加して脱燐処理を行う脱燐工程を有し、
前記脱硫処理前の脱珪スラグ中に含まれるFeOを、16質量%以下に抑制することを特徴とする溶銑の精錬方法。
A hot metal refining method for producing high purity steel from a blast furnace hot metal having a silicon concentration of 0.45% by mass or more,
A desiliconization step of adding a desiliconizing agent to the blast furnace hot metal to perform a desiliconization process, and setting the silicon concentration of the hot metal after the desiliconization process to 0.2 mass% to 0.4 mass%;
A desulfurization process in which a desulfurizing agent is added to the hot metal after the desiliconization treatment to perform the desulfurization treatment;
Inserting the hot metal after the desulfurization treatment into a converter type reaction vessel, adding a dephosphorization agent and carrying out a dephosphorization treatment,
A hot metal refining method, wherein FeO contained in desiliconized slag before desulfurization treatment is suppressed to 16% by mass or less.
更に、脱燐処理後の溶銑に脱炭剤を添加して脱炭処理を行う脱炭工程を有し、
前記の脱珪剤が、この脱炭工程で生成した脱炭スラグを、25mm未満に破砕、整粒したものを含むことを特徴とする請求項1記載の溶銑の精錬方法。
Furthermore, it has a decarburization step of adding a decarburizing agent to the hot metal after the dephosphorization treatment and performing a decarburization treatment,
The hot metal refining method according to claim 1, wherein the desiliconizing agent includes a material obtained by crushing and sizing the decarburized slag produced in the decarburizing step to less than 25 mm.
前記の脱珪処理は、脱珪スラグの塩基度が、(CaO)/(SiO)=0.3〜1.5となる条件下で行うことを特徴とする請求項1または2記載の溶銑の精錬方法。 3. The hot metal according to claim 1, wherein the desiliconization treatment is performed under a condition in which the basicity of the desiliconization slag is (CaO) / (SiO 2 ) = 0.3 to 1.5. Refining method.
JP2014212595A 2014-10-17 2014-10-17 Hot metal refining method Active JP6405876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212595A JP6405876B2 (en) 2014-10-17 2014-10-17 Hot metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212595A JP6405876B2 (en) 2014-10-17 2014-10-17 Hot metal refining method

Publications (2)

Publication Number Publication Date
JP2016079462A true JP2016079462A (en) 2016-05-16
JP6405876B2 JP6405876B2 (en) 2018-10-17

Family

ID=55957679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212595A Active JP6405876B2 (en) 2014-10-17 2014-10-17 Hot metal refining method

Country Status (1)

Country Link
JP (1) JP6405876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016909A1 (en) * 2016-07-22 2018-01-25 현대제철 주식회사 Method for refining molten metal in converter
CN115074478A (en) * 2022-06-29 2022-09-20 中冶华天工程技术有限公司 Efficient desiliconization agent and desiliconization method for molten iron pretreatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055115A (en) * 1991-06-21 1993-01-14 Nippon Steel Corp Method for pre-treating molten iron
JPH111714A (en) * 1997-06-10 1999-01-06 Sumitomo Metal Ind Ltd Steelmaking method
JP2002047509A (en) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd Method for refining molten iron
JP2002129221A (en) * 2000-10-30 2002-05-09 Nippon Steel Corp Method for refining molten iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055115A (en) * 1991-06-21 1993-01-14 Nippon Steel Corp Method for pre-treating molten iron
JPH111714A (en) * 1997-06-10 1999-01-06 Sumitomo Metal Ind Ltd Steelmaking method
JP2002047509A (en) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd Method for refining molten iron
JP2002129221A (en) * 2000-10-30 2002-05-09 Nippon Steel Corp Method for refining molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016909A1 (en) * 2016-07-22 2018-01-25 현대제철 주식회사 Method for refining molten metal in converter
CN115074478A (en) * 2022-06-29 2022-09-20 中冶华天工程技术有限公司 Efficient desiliconization agent and desiliconization method for molten iron pretreatment

Also Published As

Publication number Publication date
JP6405876B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP5343308B2 (en) Desulfurization method for molten steel
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP5170348B2 (en) Hot metal desiliconization and phosphorus removal methods
JP6693536B2 (en) Converter steelmaking method
JP2016151027A (en) Production method of molten steel
JP6222490B2 (en) Hot phosphorus dephosphorization method
JP6405876B2 (en) Hot metal refining method
JP4977870B2 (en) Steel making method
JP7151494B2 (en) Method for recycling converter slag
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP6665884B2 (en) Converter steelmaking method
WO2018123991A1 (en) Molten pig iron pretreatment method and method for producing ultra-low phosphorus steel
JP2008063646A (en) Dephosphorizing method of molten iron
JP6500476B2 (en) How to smelt molten metal
KR101412548B1 (en) Method for pre-treating pig iron
JP7302749B2 (en) Molten iron dephosphorization method
JP7348519B2 (en) Method of dephosphorizing hot metal
KR101412546B1 (en) Desurfurization method for hot metal
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP7107099B2 (en) Hot metal refining method
JP5402383B2 (en) Steelmaking refining process using converter and method for producing low phosphorus steel
JP2009249666A (en) Dephosphorization refining method for molten iron
JP3339982B2 (en) Converter steelmaking method
JP2023049462A (en) Dephosphorization of hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6405876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350