WO2018016909A1 - Method for refining molten metal in converter - Google Patents

Method for refining molten metal in converter Download PDF

Info

Publication number
WO2018016909A1
WO2018016909A1 PCT/KR2017/007874 KR2017007874W WO2018016909A1 WO 2018016909 A1 WO2018016909 A1 WO 2018016909A1 KR 2017007874 W KR2017007874 W KR 2017007874W WO 2018016909 A1 WO2018016909 A1 WO 2018016909A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten iron
converter
silicon
refining
temperature
Prior art date
Application number
PCT/KR2017/007874
Other languages
French (fr)
Korean (ko)
Inventor
김경환
정권희
김기성
박종성
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2018016909A1 publication Critical patent/WO2018016909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising

Definitions

  • the present invention relates to a molten iron refining method in a converter. More specifically, the present invention relates to a molten iron refining method in a converter capable of refining high silicon (Si) and high sulfur (S) low temperature molten iron.
  • Consistent steelmaking is the process of refining molten iron produced in the blast furnace in the steelmaking process and producing cast steel through a continuous casting process.
  • molten iron is prepared by melting iron ore in a blast furnace and performing a primary refining process to remove impurities in the molten iron by sequentially performing molten iron, which is desulfurized and decarburized.
  • the molten steel is moved to the continuous casting process when the fine constituents in the molten steel are adjusted through the secondary refining process.
  • the semi-finished product is formed through a continuous casting process, and is finally manufactured through a final molding process such as rolling.
  • the converter is a facility for removing impurities in the molten iron produced in the blast furnace
  • the Tallinn converter is a facility for manufacturing ultra-high quality steel by lowering the phosphorus content in the molten iron as much as possible.
  • the decarburization furnace is a facility used to lower the concentration of carbon in the molten iron. The converter operation may be carried out in a manner of blowing the subsidiary material or oxygen into the molten iron and stirring the molten iron to promote the reaction between the subsidiary material and oxygen and the molten iron.
  • a method for refining molten iron in a converter capable of refining low-temperature molten iron containing high silicon and high sulfur is provided.
  • it is to provide a method for refining molten iron in the converter to prevent the slopping phenomenon during the molten iron blown, and excellent operation stability.
  • a method for refining molten iron in a converter that can easily dissolve the molten iron solidified in the ladle.
  • a molten iron refining method in a converter capable of stably increasing the molten iron temperature.
  • molten iron refining method in the converter that can prevent the load and damage of the equipment during refining.
  • the method for refining molten iron in the converter is a step of repairing the molten iron from the blast furnace in the ladle to charge into the pre-treatment converter, blowing the molten iron by blowing oxygen, the silicon treatment (Si); Moving the desilicon treated molten iron to a desulfurization facility, and adding a desulfurization agent to desulfurization (S); And charging the desulfurized molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired in the ladle is silicon (Si): 0.6 to 8.0% by weight, and sulfur (S): 0.03 to 0.2. It contains weight percent and the temperature is 1,250 ° C or less.
  • the de-silicon (Si) treatment when it is not be added to the pre-treatment converter.
  • the molten iron is blown under the condition of oxygen lance height: 2,000 to 2,500 mm at a delivery flow rate of 25,000 to 30,000 Nm3 / h, based on the molten steel, from 0 to 45% of the total blowing time.
  • Oxygen lance height from 1,800 to 2,300mm until 45% and 100% time point Blowing under conditions of 15,000 to 20,000 Nm3 / h, and when blowing the molten iron, oxygen blowing amount: 10 to 20Nm3 / ts can do.
  • the ladle in which the molten iron is repaired includes molten iron solidified after refining the molten iron, and the solidified molten iron may be dissolved after the desilicon treatment (Si) is completed.
  • the silicon (Si) content of the desiliconized molten iron is reduced by 0.5 to 5% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter,
  • the temperature may be 1,400-1,600 ° C.
  • the desulfurizing agent in one embodiment is calcium oxide (CaO): can be added to the amount of 0.5 ⁇ 1.3kg / ts: 10 ⁇ 16kg / ts , and calcium fluoride (CaF 2).
  • the desulfurized molten iron includes silicon (Si): 0.1 to 3.5% by weight, sulfur (S): 0.001 to 0.01% by weight, and the temperature may be 1,300 to 1,580 ° C.
  • the molten iron refining method in the converter of the present invention it is possible to refine low-temperature molten iron of silicon (Si) and high sulfur (S), and it is excellent in operational stability by preventing the slipping phenomenon during molten iron melting. It can raise the temperature stably, dissolve the molten iron solidified in the ladle easily, prevent the load and damage of the equipment during refining, and reduce the operation cost such as not adding the raw materials during the molten iron drilling. Excellent economy can be excellent.
  • FIG. 1 shows a method of molten iron refining in a converter according to an embodiment of the present invention.
  • Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
  • Figure 3a shows the molten iron refining process of the embodiment according to the present invention
  • Figure 3b shows the molten iron refining process of the comparative example for the present invention.
  • FIG 4 is a graph showing the silicon content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
  • FIG 5 is a graph showing the sulfur content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
  • FIG. 6 is a graph showing the molten iron temperature change according to the molten iron refining process of the embodiment according to the present invention.
  • One aspect of the present invention relates to a method for molten iron refining in a converter.
  • 1 shows a method of molten iron refining in a converter according to an embodiment of the present invention.
  • the molten iron refining method in the converter (S10) de-silicon step; (S20) desulfurization step; And (S30) decarburization step. More specifically, the molten iron refining method in the converter (S10) to repair the molten iron from the blast furnace in the ladle to charge into the pre-treatment converter, blow the molten iron by blowing oxygen, the desilicon (Si) treatment.
  • the molten iron drawn from the blast furnace is repaired in a ladle, charged to a pretreatment converter, blown oxygen by blowing molten iron, and then treated with silicon.
  • a pretreatment converter in addition to the desilicon (Si), some delineation (P) treatment may be performed.
  • the molten iron produced in the blast furnace may be unloaded into a topedo car, and the molten iron may be repaired in a ladle in the topedo car to charge the molten iron into the pretreatment converter.
  • the molten iron repaired on the ladle includes silicon (Si): 0.6-8.0 wt%, sulfur (S): 0.03-0.2 wt%, and the temperature is 1,250 ° C or less.
  • silicon Si
  • S sulfur
  • the temperature is 1,250 ° C or less.
  • the silicon content is less than 0.6% by weight, the reaction between oxygen and silicon is not easily performed when charged into the pretreatment converter, and the effect of increasing the molten iron temperature is lowered.
  • the silicon content is more than 8% by weight, slipping occurs during refining. The quality of molten steel to be manufactured may be degraded.
  • the content of sulfur exceeds 0.2% by weight, the quality of molten steel to be produced may be reduced.
  • the drawn molten iron may include 2 to 8 wt% of silicon (Si) and 0.03 to 0.11 wt% of sulfur (S), and may have a temperature of 1,150 ° C. to 1,250 ° C.
  • the drawn molten iron may include 4 to 8 wt% of silicon (Si) and 0.03 to 0.11 wt% of sulfur (S), and may have a temperature of 1,150 ° C. to 1,250 ° C.
  • the desulfurization reaction does not occur due to the low molten iron temperature, and now in the facility during the desulfurization operation As the amount of gold adhesion increases, it causes the load and damage of equipment such as impeller installed in KR equipment. In addition, the molten iron is solidified in the ladle after the desulfurization operation, there is a problem that the maintenance cost, such as refractory repair increases.
  • the desilicon process is first performed during the molten iron refining of the present invention, exothermic reaction occurs with high silicon during oxygen injection, thereby easily increasing the temperature of the molten iron.
  • the ladle in which the molten iron inside the blast furnace is repaired may include molten iron remaining and solidified during the refining process.
  • the molten iron recycling effect is excellent, it may be excellent in economic efficiency.
  • the molten iron is blown under a condition of flow rate: 25,000 to 30,000 Nm3 / h until the time of more than 0 to 45% of the total blowdown time, and the flow rate of flow: 15,000 until the time of more than 45% to 100% It can be blown under the condition of 20,000 Nm 3 / h. In the delivery flow rate conditions, blowing can be easily made.
  • Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
  • the height of the oxygen lance 10 based on the uppermost surface (hot water surface) of the molten iron M charged in the pretreatment converter 20 until the time of more than 0 and 45% or less with respect to the total blowing operation time.
  • H can be set to 2,000 ⁇ 2,500mm, and it can be blown by setting the oxygen lance height to 1,800 ⁇ 2,300mm up to 45% and 100%. In the above conditions, blowing can be easily performed.
  • the molten iron blown it can be blown under the oxygen blowing amount: 10 ⁇ 20Nm3 / t-s conditions.
  • 't-s' may be a unit for one ton of molten steel.
  • the exothermic reaction by the oxidation reaction with components such as silicon and carbon in the molten iron in the oxygen injection amount can easily occur, the molten iron temperature can increase.
  • the amount of oxygen blown in the pretreatment converter is calculated by the difference between the silicon (Si) content of the charged molten iron, the difference of the target silicon (Si) content in the desilicon treatment, and the ladle It can be derived by calculating the difference in tapping temperature rise after desilicon treatment at the repaired molten iron temperature.
  • the molten iron temperature rises due to an exothermic reaction by oxidation reaction with components such as silicon and carbon in the molten iron during the pretreatment before refining.
  • the silicon (Si) content of the desiliconized molten iron is reduced by 0.5 to 5% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter,
  • the temperature may be 1,400-1,600 ° C. At this temperature, the desulfurization treatment to be described later may be easily performed.
  • the desilicon-treated molten iron is silicon (Si): 0.1 to 3.5% by weight, sulfur 0.03 to 0.11% by weight, and the temperature may be 1,400 to 1,600 ° C.
  • Si silicon
  • the agitation force in the ladle is improved by increasing the molten iron temperature, and it is possible to prevent equipment load and damage such as impeller when charging molten iron into the desulfurization facility, and supply molten iron having good desulfurization ability to the decarburization converter.
  • the ladle in which the molten iron is repaired may include a molten iron remaining in the ladle after refining the molten iron.
  • the solidified molten iron may be easily dissolved by the molten iron whose temperature is increased by the exothermic reaction with the high silicon after the desilicon (Si) treatment.
  • the step is a step of moving the desilicon-treated molten iron to a desulfurization facility, by adding a desulfurization agent to desulfurization (S).
  • the desulfurization facility may be, for example, a Kanvara reactor (KR) facility.
  • the desulfurization treatment of the molten iron may be carried out in the KR facility.
  • the desulfurization treatment may be performed by adding a desulfurizing agent to a KR facility in which molten iron is loaded, and mechanically stirring with an impeller to lift sulfur S into the slag and to remove the slag.
  • the desulfurization agent may comprise quicklime and fluorspar.
  • sulfur and quicklime contained in the molten iron may be made by a reaction such as the following Chemical Formula 1.
  • the desulfurization agent may be added at a dose of quicklime (CaO): 10-16 kg / ts and fluorspar (CaF 2 ): 0.5-1.3 kg / ts.
  • quicklime 10-16 kg / ts
  • fluorspar CaF 2
  • the desulfurization treatment can be easily made.
  • the slag excretion work that floats on the upper part of the molten iron in the ladle may be performed by using a skimmer device in the KR (Kanvara Reactor). This is to remove oxidative slag such as silicon dioxide (SiO 2 ) reacted during refining operation in the pretreatment converter to satisfy the desulfurization operation conditions.
  • the impeller can be carried out by adding a desulfurizing agent after starting the molten iron stirring by lowering. After the desulfurization treatment is completed, a temperature probe and probe can be installed in the temperature measurement system.
  • a slag floating above the molten iron in the ladle is once again by using a skimmer apparatus for the purpose of preventing abdominal sulfur in the decarburization converter, which is the next process. Can be excluded.
  • the desulfurization treatment time can be operated at 18-25 minutes / heat (Ht).
  • the hit may mean unit operation. Under these conditions, sufficient desulfurization treatment time can be ensured.
  • the desulfurized molten iron is silicon (Si): 0.1 to 3.5% by weight, sulfur is 0.001 to 0.01% by weight, and the temperature may be 1,300 to 1,580 ° C.
  • the decarburization process can be easily performed under the above conditions.
  • the desulfurized molten iron is charged into a decarburization converter and subjected to decarburization (C).
  • the decarburization may be carried out in a conventional manner.
  • step S100 silicon (Si): 3% by weight, sulfur (S): 0.035% by weight, molten iron from the blast furnace, molten iron temperature: 1,208 °C was repaired to the ladle.
  • the amount of repair of the molten iron was repaired 295 tons except for 25 tons of solidification molten iron (coated molten iron remaining during the refining) attached to the ladle.
  • step S110 the molten iron is charged into the pretreatment converter, and the oxygen is blown into 4,742 Nm3 using an oxygen lance without adding scrap, secondary materials, and coolant, and silicon (Si) and carbon ( C) desilicon treatment was carried out by raising the molten iron temperature by an exothermic reaction by oxidation reaction with SiO 2 and CO.
  • the oxygen lance height was set to 2,300 mm based on the molten steel surface, and the oxygen lance height was set to 2,000 mm until the time point exceeding 45% with respect to the total blowing time.
  • the desilicon-treated molten iron included silicon (Si): 2 wt% and sulfur (S): 0.032 wt%, and the molten iron temperature was 1,455 ° C. There were 25 tons of coagulated molten iron in the ladle, but all were dissolved and the total amount of molten iron in the ladle was 320 tons.
  • step S120 the desilicon-treated molten iron was moved to a desulfurization facility, and a desulfurization agent was added to desulfurization (S).
  • the temperature before the desulfurization treatment of the molten iron was 1,402 ° C, 4.7 tons of quicklime and 199 Kg of fluorite was added as the desulfurizing agent, and desulfurization treatment by rotating the impeller.
  • the impeller rotation time was 24 minutes / Ht, the desulfurized molten iron included a temperature: 1,389 °C, silicon (Si): 2% by weight and sulfur (S): 0.001% by weight.
  • step S130 the desulfurized molten iron was charged to a decarburization converter and decarburized (C).
  • the process proceeded to repair, pretreatment furnace, KR and decarburization furnace, with components: molten silicon (Si): 3 wt% to 2 wt%, sulfur (S): 0.035 wt% to 0.01 wt%, molten iron temperature: 1,208 The temperature was changed from 1,389 ° C. to 1.
  • the molten iron drawn from the blast furnace which contained 2.4 weight% of silicon (Si) and 0.104 weight% of sulfur (S) and molten iron temperature of 1,194 degreeC was repaired to a ladle. At this time, the amount of repair of the molten iron was repaired 276 tons except for 44 tons of the solidification molten iron (coated molten iron remaining during the refining) attached to the ladle.
  • the molten iron was charged into the pretreatment converter, and the oxygen was blown to 3,319 Nm3 using an oxygen lance without adding scrap, subsidiary materials, and coolant, and the molten iron was mixed with silicon (Si), carbon (C), etc. Desilicon treatment was performed by increasing the molten iron temperature by an exothermic reaction by oxidation reaction (SiO 2 and CO generation).
  • the oxygen lance height was set to 2,300 mm based on the molten iron surface, and the oxygen lance height was set to 2,000 mm until the time point of more than 45% with respect to the total blowing time.
  • the desilicon-treated molten iron included silicon (Si): 1.2 wt% and sulfur (S): 0.094 wt%, and the molten iron temperature was 1,439 ° C.
  • Si silicon
  • S sulfur
  • the molten iron temperature was 1,439 ° C.
  • the molten molten iron was found to be 1,317 ° C. before the KR (Kanvara Reactor) process, and the amount of molten iron increased as the amount of molten iron compared to Example 1 increased.
  • the desilicon-treated molten iron was moved to a KR (Kanvara reactor) facility, and desulfurization (S) was added by adding a desulfurization agent.
  • the temperature before the desulfurization treatment of the molten iron was 1,317 ° C, 3.1 tonnes of quicklime and fluorite was added to the desulfurizing agent, and desulfurization was performed by rotating the impeller.
  • the impeller rotation time was 19 minutes / Ht, the desulfurized molten iron included a temperature: 1,303 °C, silicon (Si): 1.2% by weight and sulfur (S): 0.007% by weight.
  • the desulfurized molten iron was charged into a decarburization converter and subjected to decarburization (C).
  • the process proceeded to repair, pretreatment furnace, KR and decarburization furnace, with components: molten silicon (Si): 2.4 wt% to 1.2 wt%, sulfur (S): 0.104 wt% to 0.007 wt%, molten iron temperature: 1,194 It was changed from 1 ° C to 1,303 ° C.
  • the molten iron refining process as in FIG. 3b was performed. Specifically, in step S200, the molten iron is repaired in the ladle, and in step S210, the molten iron is moved to a desulfurization facility to perform a desulfurization process, and then charged in a pretreatment converter in step S220, and the molten iron is blown by blowing oxygen. Then, desilicon treatment (Si), and decarburization in the decarburization converter in step S230. In this case, in contrast to Example 1, only the order of the desulfurization process and the silicon removal process was changed, the detailed process of the comparative example was refined molten iron in the same process as in Example 1.
  • the desulfurization treatment was not performed due to the low molten iron temperature, and in particular, during the desulfurization operation, the amount of deposit now increased in the KR plant, causing a load on the plant of the impeller.
  • the molten iron in the ladle solidified after the desulfurization operation, and refractory repair was inevitable.
  • 4 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention.
  • 5 is a graph showing the sulfur content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention.
  • 6 is a graph showing the molten iron temperature change according to the molten iron refining process of Examples 1 to 2 according to the present invention.
  • the molten iron of Examples 1 to 2 of the present invention silicon (Si) and high sulfur (S), which were previously impossible to be steel-making, had to be subjected to cold wire, casting line, or sand treatment. It can be seen that normal decarburization process is possible even if low temperature molten iron is applied, so that molten iron refining is possible, operation stability is excellent, molten iron temperature can be raised stably, and the load and damage of equipment can be prevented during refining. there was.

Abstract

Disclosed is a method for refining molten metal in a converter. In an embodiment, the method for refining molten metal in a converter comprises the steps of: loading molten metal, tapped out from a blast furnace, in a ladle to charge a pre-treatment converter with the molten metal and then blowing the molten metal through oxygen injection to perform a desiliconization (Si) treatment; transferring the desiliconized molten metal to a Kanvara reactor (KR) system and then feeding a desulfurizing agent thereinto to perform a desulfurization (S) treatment; and charging a decarbonization converter with the desulfurized molten metal to perform a decarbonization (C) treatment, wherein the molten metal loaded in the ladle comprises silicon (Si): 0.6-8.0 wt% and sulfur (S): 0.03-0.2 wt%, and the temperature is 1,250℃ or below.

Description

전로에서의 용선 정련 방법 Charter refining method in converter
본 발명은 전로에서의 용선 정련 방법에 관한 것이다. 보다 상세하게는 고실리콘(Si) 및 고유황(S) 저온 용선을 정련할 수 있는 전로에서의 용선 정련 방법에 관한 것이다.The present invention relates to a molten iron refining method in a converter. More specifically, the present invention relates to a molten iron refining method in a converter capable of refining high silicon (Si) and high sulfur (S) low temperature molten iron.
일관(一貫) 제철이란, 고로에서 생산된 용선을 제강 공정에서 정련하여, 연속 주조공정을 통해 주편을 생산하는 공정이다. 구체적으로 상기 제강 공정에서는 철광석을 고로에서 용해하여 출선된 용선을, 탈황 및 탈탄 등의 공정을 순차적으로 수행하여 용선 내 불순물을 제거하는 1차 정련 과정을 거쳐 용강을 제조하게 된다. 불순물이 제거된 용강은 2차 정련 과정을 거쳐 용강 내의 미세 성분 조절까지 완료되면, 연속주조 공정으로 이동하게 된다. 이후 연속주조 공정을 거쳐 반제품을 성형하고, 압연 등의 최종 성형과정을 거쳐 최종적으로 얻고자 하는 형태의 제품으로 제조된다.Consistent steelmaking is the process of refining molten iron produced in the blast furnace in the steelmaking process and producing cast steel through a continuous casting process. Specifically, in the steelmaking process, molten iron is prepared by melting iron ore in a blast furnace and performing a primary refining process to remove impurities in the molten iron by sequentially performing molten iron, which is desulfurized and decarburized. After the impurities are removed, the molten steel is moved to the continuous casting process when the fine constituents in the molten steel are adjusted through the secondary refining process. After that, the semi-finished product is formed through a continuous casting process, and is finally manufactured through a final molding process such as rolling.
한편 전로는 고로에서 생산된 용선의 불순물을 제거하는 설비로, 탈린전로는 용선 중의 인 성분을 최대한 낮춰 극저린 고급강을 제조하기 위한 설비이다. 또한, 탈탄전로는 용선 내 탄소의 농도를 낮추기 위하여 사용되는 설비이다. 전로 조업은 용선에 부원료나 산소를 취입하고, 용선을 교반하여 부원료 및 산소와 용선 간 반응을 촉진하는 방식으로 수행될 수 있다.On the other hand, the converter is a facility for removing impurities in the molten iron produced in the blast furnace, the Tallinn converter is a facility for manufacturing ultra-high quality steel by lowering the phosphorus content in the molten iron as much as possible. In addition, the decarburization furnace is a facility used to lower the concentration of carbon in the molten iron. The converter operation may be carried out in a manner of blowing the subsidiary material or oxygen into the molten iron and stirring the molten iron to promote the reaction between the subsidiary material and oxygen and the molten iron.
본 발명과 관련한 배경기술은 대한민국 공개특허공보 제2015-0076252호(2015.07.06. 공개, 발명의 명칭: 용선의 정련 방법)에 개시되어 있다.Background art related to the present invention is disclosed in Korean Unexamined Patent Publication No. 2015-0076252 (2015.07.06. Publication, the name of the invention: method of refining molten iron).
본 발명의 일 실시예에 의하면, 고실리콘 및 고유황을 함유하는 저온 용선을 정련할 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a method for refining molten iron in a converter capable of refining low-temperature molten iron containing high silicon and high sulfur.
본 발명의 일 실시예에 의하면, 용선 취련시 슬로핑(slopping) 현상을 방지하며, 조업 안정성이 우수한 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, it is to provide a method for refining molten iron in the converter to prevent the slopping phenomenon during the molten iron blown, and excellent operation stability.
본 발명의 일 실시예에 의하면, 래들에 응고된 용선을 용이하게 용해시킬 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a method for refining molten iron in a converter that can easily dissolve the molten iron solidified in the ladle.
본 발명의 일 실시예에 의하면, 용선 온도를 안정적으로 상승시킬 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a molten iron refining method in a converter capable of stably increasing the molten iron temperature.
본 발명의 일 실시예에 의하면, 정련시 설비의 부하 및 손상을 방지할 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, to provide a molten iron refining method in the converter that can prevent the load and damage of the equipment during refining.
본 발명의 일 실시예에 의하면, 경제성이 우수한 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a method for refining molten iron in an converter having excellent economic efficiency.
본 발명의 하나의 관점은 전로에서의 용선 정련 방법에 관한 것이다. 한 구체예에서 상기 전로에서의 용선 정련 방법은 고로에서 출선된 용선을 래들에 수선하여 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계; 상기 탈실리콘 처리된 용선을 탈황 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하는 단계; 및 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함하며, 상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%, 유황(S): 0.03~0.2 중량%를 포함하며, 온도가 1,250℃ 이하이다.One aspect of the present invention relates to a method for molten iron refining in a converter. In one embodiment, the method for refining molten iron in the converter is a step of repairing the molten iron from the blast furnace in the ladle to charge into the pre-treatment converter, blowing the molten iron by blowing oxygen, the silicon treatment (Si); Moving the desilicon treated molten iron to a desulfurization facility, and adding a desulfurization agent to desulfurization (S); And charging the desulfurized molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired in the ladle is silicon (Si): 0.6 to 8.0% by weight, and sulfur (S): 0.03 to 0.2. It contains weight percent and the temperature is 1,250 ° C or less.
한 구체예에서 상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 부원료를 투입하지 않을 수 있다.In one embodiment, when the de-silicon (Si) treatment, it may not be added to the pre-treatment converter.
한 구체예에서 상기 용선 취련시, 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 용강 면 기준으로 산소 랜스 높이: 2,000~2,500mm에서 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며, 45% 초과 100% 시점까지 산소 랜스 높이: 1,800~2,300mm에서 송산 유량: 15,000~20,000N㎥/h 조건으로 취련하고, 상기 용선 취련시, 산소 취입량: 10~20N㎥/t-s 조건으로 취련할 수 있다.In one embodiment, the molten iron is blown under the condition of oxygen lance height: 2,000 to 2,500 mm at a delivery flow rate of 25,000 to 30,000 Nm3 / h, based on the molten steel, from 0 to 45% of the total blowing time. , Oxygen lance height from 1,800 to 2,300mm until 45% and 100% time point Blowing under conditions of 15,000 to 20,000 Nm3 / h, and when blowing the molten iron, oxygen blowing amount: 10 to 20Nm3 / ts can do.
한 구체예에서 상기 용선이 수선되는 래들에는, 기 용선의 정련 후 응고된 용선이 포함되는 것이며, 상기 응고된 용선은, 상기 탈실리콘(Si) 처리를 마친 이후 용해될 수 있다.In an embodiment, the ladle in which the molten iron is repaired includes molten iron solidified after refining the molten iron, and the solidified molten iron may be dissolved after the desilicon treatment (Si) is completed.
한 구체예에서 상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.5~5 중량% 감소되며, 상기 탈실리콘 처리된 용선의 온도는 1,400~1,600℃일 수 있다.In one embodiment, the silicon (Si) content of the desiliconized molten iron is reduced by 0.5 to 5% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter, The temperature may be 1,400-1,600 ° C.
한 구체예에서 상기 탈황제는 생석회(CaO): 10~16kg/t-s 및 형석(CaF2): 0.5~1.3kg/t-s의 투입량으로 투입할 수 있다.The desulfurizing agent in one embodiment is calcium oxide (CaO): can be added to the amount of 0.5 ~ 1.3kg / ts: 10 ~ 16kg / ts , and calcium fluoride (CaF 2).
한 구체예에서 상기 탈황 처리된 용선은, 실리콘(Si): 0.1~3.5 중량%, 유황(S): 0.001~0.01 중량%를 포함하며, 온도가 1,300~1,580℃일 수 있다.In one embodiment, the desulfurized molten iron includes silicon (Si): 0.1 to 3.5% by weight, sulfur (S): 0.001 to 0.01% by weight, and the temperature may be 1,300 to 1,580 ° C.
본 발명의 전로에서의 용선 정련 방법을 적용시, 실리콘(Si) 및 고유황(S)의 저온 용선을 정련 가능하며, 용선 취련시 슬로핑(slopping) 현상을 방지하여 조업 안정성이 우수하고, 용선 온도를 안정적으로 상승시킬 수 있으며, 래들에 응고되어 있는 용선을 용이하게 용해시킬 수 있고, 정련시 설비의 부하 및 손상을 방지할 수 있고, 용선 취련시 부원료 미투입 등 조업 비용을 절감하는 효과가 우수하여 경제성이 우수할 수 있다.When applying the molten iron refining method in the converter of the present invention, it is possible to refine low-temperature molten iron of silicon (Si) and high sulfur (S), and it is excellent in operational stability by preventing the slipping phenomenon during molten iron melting. It can raise the temperature stably, dissolve the molten iron solidified in the ladle easily, prevent the load and damage of the equipment during refining, and reduce the operation cost such as not adding the raw materials during the molten iron drilling. Excellent economy can be excellent.
도 1은 본 발명의 한 구체예에 따른 전로에서의 용선 정련 방법을 나타낸 것이다.1 shows a method of molten iron refining in a converter according to an embodiment of the present invention.
도 2는 본 발명의 탈실리콘 처리를 위한 예비처리 전로를 나타낸 것이다.Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
도 3a는 본 발명에 따른 실시예의 용선 정련 과정을 나타낸 것이며, 도 3b는 본 발명에 대한 비교예의 용선 정련 과정을 나타낸 것이다.Figure 3a shows the molten iron refining process of the embodiment according to the present invention, Figure 3b shows the molten iron refining process of the comparative example for the present invention.
도 4는 본 발명에 따른 실시예의 용선 정련 과정에 따른 용선의 실리콘 함량 변화를 나타낸 그래프이다.4 is a graph showing the silicon content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
도 5는 본 발명에 따른 실시예의 용선 정련 과정에 따른 용선의 유황 함량 변화를 나타낸 그래프이다.5 is a graph showing the sulfur content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
도 6은 본 발명에 따른 실시예의 용선 정련 과정에 따른 용선 온도 변화를 나타낸 그래프이다.6 is a graph showing the molten iron temperature change according to the molten iron refining process of the embodiment according to the present invention.
이하, 본 발명을 상세히 설명한다. 이때, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Hereinafter, the present invention will be described in detail. In this case, when it is determined that the detailed description of the related known technology or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators, and the definitions should be made based on the contents throughout the specification for describing the present invention.
전로에서의 용선 정련 방법Charter refining method in converter
본 발명의 하나의 관점은 전로에서의 용선 정련 방법에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 전로에서의 용선 정련 방법을 나타낸 것이다. 상기 도 1을 참조하면, 상기 전로에서의 용선 정련 방법은 (S10) 탈실리콘 단계; (S20) 탈황 단계; 및 (S30) 탈탄 단계;를 포함한다. 좀 더 구체적으로, 상기 전로에서의 용선 정련 방법은 (S10) 고로에서 출선된 용선을 래들에 수선하여 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계; (S20) 상기 탈실리콘 처리된 용선을 탈황 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하는 단계; 및 (S30) 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함한다.One aspect of the present invention relates to a method for molten iron refining in a converter. 1 shows a method of molten iron refining in a converter according to an embodiment of the present invention. Referring to Figure 1, the molten iron refining method in the converter (S10) de-silicon step; (S20) desulfurization step; And (S30) decarburization step. More specifically, the molten iron refining method in the converter (S10) to repair the molten iron from the blast furnace in the ladle to charge into the pre-treatment converter, blow the molten iron by blowing oxygen, the desilicon (Si) treatment. ; (S20) moving the desilicon treated molten iron to a desulfurization facility, and adding a desulfurization agent to desulfurization (S); And (S30) charging the desulfurized molten iron into a decarburization converter to perform decarburization (C).
이하, 본 발명에 따른 전로에서의 용선 정련 방법을 단계별로 상세히 설명하도록 한다.Hereinafter, the molten iron refining method in the converter according to the present invention will be described in detail step by step.
(S10) 탈실리콘 단계(S10) De-silicon Step
상기 단계는 고로에서 출선된 용선을 래들(ladle)에 수선하여 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계이다. 상기 예비처리 전로에서는 탈실리콘(Si)과 함께, 일부 탈린(P) 처리가 이루어질 수 있다. 한 구체예에서 상기 고로에서 생산된 용선을 토페도카(torpedo car)로 출선하고, 상기 토페도카에서 래들로 상기 용선을 수선하여, 상기 예비처리 전로에 용선을 장입할 수 있다.In the step, the molten iron drawn from the blast furnace is repaired in a ladle, charged to a pretreatment converter, blown oxygen by blowing molten iron, and then treated with silicon. In the pretreatment converter, in addition to the desilicon (Si), some delineation (P) treatment may be performed. In an embodiment, the molten iron produced in the blast furnace may be unloaded into a topedo car, and the molten iron may be repaired in a ladle in the topedo car to charge the molten iron into the pretreatment converter.
고로 조업 중, 풍구를 통하여 노내로 유입된 바람이, 장입물을 균일하게 통과하지 못하고 편류를 일으키며 고로 노정까지 일시에 도달하는 취발 현상 등이 발생하는 경우, 고로 노황의 불안정으로 인해 용선의 성분 및 용선 온도가 비정상적으로 생산된다. 이때 상기 용선 중 실리콘(Si) 및 유황(S) 함량이 높아지며, 온도는 급격히 낮아지게 된다.During the operation of the blast furnace, if the wind flowing into the furnace through the tuyere does not pass through the charges uniformly, it causes drift and reaches the top of the blast furnace. Melting temperature is abnormally produced. At this time, the content of silicon (Si) and sulfur (S) in the molten iron is increased, the temperature is sharply lowered.
한 구체예에서 상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%, 유황(S): 0.03~0.2 중량%를 포함하며, 온도가 1,250℃ 이하이다. 상기 실리콘 함량이 0.6 중량% 미만인 경우 예비처리 전로에 장입시 산소와 실리콘 사이의 반응이 용이하게 이루어지지 않아 용선 온도 상승 효과가 저하되며, 8 중량%를 초과하는 경우, 정련시 슬로핑 현상이 발생할 수 있으며, 제조되는 용강의 품질이 저하될 수 있다. 상기 유황의 함량이 0.2 중량%를 초과하는 경우, 제조되는 용강의 품질이 저하될 수 있다. 예를 들면 상기 출선된 용선은 실리콘(Si): 2~8 중량%, 유황(S): 0.03~0.11 중량%를 포함하며, 온도가 1,150℃~1,250℃일 수 있다. 다른 예를 들면 상기 출선된 용선은 실리콘(Si): 4~8 중량%, 유황(S): 0.03~0.11 중량%를 포함하며, 온도가 1,150℃~1,250℃일 수 있다.In one embodiment, the molten iron repaired on the ladle includes silicon (Si): 0.6-8.0 wt%, sulfur (S): 0.03-0.2 wt%, and the temperature is 1,250 ° C or less. When the silicon content is less than 0.6% by weight, the reaction between oxygen and silicon is not easily performed when charged into the pretreatment converter, and the effect of increasing the molten iron temperature is lowered. When the silicon content is more than 8% by weight, slipping occurs during refining. The quality of molten steel to be manufactured may be degraded. When the content of sulfur exceeds 0.2% by weight, the quality of molten steel to be produced may be reduced. For example, the drawn molten iron may include 2 to 8 wt% of silicon (Si) and 0.03 to 0.11 wt% of sulfur (S), and may have a temperature of 1,150 ° C. to 1,250 ° C. For example, the drawn molten iron may include 4 to 8 wt% of silicon (Si) and 0.03 to 0.11 wt% of sulfur (S), and may have a temperature of 1,150 ° C. to 1,250 ° C.
본 발명에 따른 실리콘 및 유황 함량을 포함하는 저온 용선을 적용시, 탈황공정을 수행한 다음 탈실리콘 공정을 수행하는 경우, 낮은 용선 온도로 인하여 탈황 반응이 발생하지 않으며, 탈황 작업중 설비 내 지금(地金) 부착량이 증가하여 KR 설비 내 구비된 임펠러(Impeller) 등의 설비 부하 및 손상을 유발하게 된다. 또한 탈황 작업 후에 용선이 래들 내 응고되어, 내화물 보수 등의 유지 보수 비용이 증가하는 문제점이 있다. 반면 본 발명의 용선 정련시 탈실리콘 공정을 우선 수행하는 경우, 산소 취입시 고실리콘과 발열 반응이 발생하여, 용선의 온도를 용이하게 상승시킬 수 있다.When applying the low temperature molten iron containing the silicon and sulfur content according to the present invention, if the desulfurization process and then the desilicon process, the desulfurization reaction does not occur due to the low molten iron temperature, and now in the facility during the desulfurization operation As the amount of gold adhesion increases, it causes the load and damage of equipment such as impeller installed in KR equipment. In addition, the molten iron is solidified in the ladle after the desulfurization operation, there is a problem that the maintenance cost, such as refractory repair increases. On the other hand, when the desilicon process is first performed during the molten iron refining of the present invention, exothermic reaction occurs with high silicon during oxygen injection, thereby easily increasing the temperature of the molten iron.
본 발명의 한 구체예에서 상기 고로 내부의 용선이 수선되는 래들은, 기 정련 공정시 잔류하여 응고된 용선을 포함할 수 있다. 이러한 잔류 응고된 용선을 포함하는 경우, 용선 재활용 효과가 우수하여, 경제성이 우수할 수 있다.In an embodiment of the present invention, the ladle in which the molten iron inside the blast furnace is repaired may include molten iron remaining and solidified during the refining process. When the residual solidified molten iron is included, the molten iron recycling effect is excellent, it may be excellent in economic efficiency.
상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 부원료를 투입하지 않을 수 있다. 예를 들면, 상기 예비처리 전로에 용선 취련시, 부원료 및 냉각제를 미투입할 수 있다. 상기 예비처리 전로에 부원료 및 냉각제를 투입시, 산소 취입시 용선 온도 상승의 효과가 저하될 수 있다. 또한 상기 예비처리 전로에서, 스크랩(Scrap)으로 인한 용선온도 하락을 방지하는 목적으로 스크랩(Scrap)은 장입하지 않을 수 있다.During the de-silicon (Si) treatment, it is possible not to add a subsidiary material to the pretreatment converter. For example, when molten iron is blown to the pretreatment converter, subsidiary materials and a coolant may not be added. When the subsidiary material and the coolant are added to the pretreatment converter, the effect of increasing the molten iron temperature during oxygen injection may be reduced. Also, in the pretreatment converter, scrap may not be charged for the purpose of preventing a drop in the molten iron temperature due to scrap.
한 구체예에서 상기 용선 취련시, 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며, 45% 초과 100% 시점까지는, 송산 유량: 15,000~20,000N㎥/h 조건으로 취련할 수 있다. 상기 송산 유량 조건에서, 취련이 용이하게 이루어질 수 있다.In one embodiment, the molten iron is blown under a condition of flow rate: 25,000 to 30,000 Nm3 / h until the time of more than 0 to 45% of the total blowdown time, and the flow rate of flow: 15,000 until the time of more than 45% to 100% It can be blown under the condition of 20,000 Nm 3 / h. In the delivery flow rate conditions, blowing can be easily made.
도 2는 본 발명의 탈실리콘 처리를 위한 예비처리 전로를 나타낸 것이다. 상기 도 2를 참조하면, 상기 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 예비처리 전로(20)에 장입된 용선(M)의 최상면(탕면)을 기준으로 산소 랜스(10)의 높이(H)를 2,000~2,500mm로 설정할 수 있고, 45% 초과 100% 시점까지 산소 랜스 높이를 1,800~2,300mm로 설정하여 취련할 수 있다. 상기 조건에서, 취련이 용이하게 이루어질 수 있다.Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention. Referring to FIG. 2, the height of the oxygen lance 10 based on the uppermost surface (hot water surface) of the molten iron M charged in the pretreatment converter 20 until the time of more than 0 and 45% or less with respect to the total blowing operation time. (H) can be set to 2,000 ~ 2,500mm, and it can be blown by setting the oxygen lance height to 1,800 ~ 2,300mm up to 45% and 100%. In the above conditions, blowing can be easily performed.
한 구체예에서 상기 용선 취련시, 산소 취입량: 10~20N㎥/t-s 조건으로 취련할 수 있다. 여기서, 't-s' 는 용강 1톤에 대한 단위일 수 있다. 상기 산소 취입량에서 용선 중 실리콘 및 탄소 등 성분과의 산화반응에 의한 발열반응이 용이하게 발생하여, 용선 온도가 상승할 수 있다.In one embodiment, the molten iron blown, it can be blown under the oxygen blowing amount: 10 ~ 20Nm3 / t-s conditions. Here, 't-s' may be a unit for one ton of molten steel. The exothermic reaction by the oxidation reaction with components such as silicon and carbon in the molten iron in the oxygen injection amount can easily occur, the molten iron temperature can increase.
한 구체예에서, 상기 예비처리 전로에서의 산소 취입량은 상기 장입된 용선의 실리콘(Si) 함량에서, 상기 탈실리콘 처리시 목표로 하는 실리콘(Si) 함량의 차이만큼의 계산량과, 상기 래들에 수선된 용선 온도에서 탈실리콘 처리 이후 출탕 온도 상승량 차이를 계산하여 도출될 수 있다.In one embodiment, the amount of oxygen blown in the pretreatment converter is calculated by the difference between the silicon (Si) content of the charged molten iron, the difference of the target silicon (Si) content in the desilicon treatment, and the ladle It can be derived by calculating the difference in tapping temperature rise after desilicon treatment at the repaired molten iron temperature.
상기 산소를 취입시, 예비처리 전로 정련 작업시 용선 중 실리콘 및 탄소 등 성분과의 산화반응에 의한 발열반응에 의하여 용선 온도는 상승한다.When the oxygen is blown, the molten iron temperature rises due to an exothermic reaction by oxidation reaction with components such as silicon and carbon in the molten iron during the pretreatment before refining.
한 구체예에서 상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.5~5 중량% 감소되며, 상기 탈실리콘 처리된 용선의 온도는 1,400~1,600℃일 수 있다. 상기 온도에서, 후술할 탈황 처리가 용이하게 이루어질 수 있다.In one embodiment, the silicon (Si) content of the desiliconized molten iron is reduced by 0.5 to 5% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter, The temperature may be 1,400-1,600 ° C. At this temperature, the desulfurization treatment to be described later may be easily performed.
한 구체예에서 상기 탈실리콘 처리된 용선은 실리콘(Si): 0.1~3.5 중량%, 황 0.03~0.11 중량% 이며, 온도는 1,400~1,600℃일 수 있다. 상기 조건에서 용선 온도 상승에 의해 래들 내 교반력이 향상되며, 탈황 설비에 용선 장입시 임펠러 등의 설비 부하 및 손상을 방지하며, 탈황능이 양호한 용선을 탈탄 전로에 공급하는 것이 가능하다.In one embodiment, the desilicon-treated molten iron is silicon (Si): 0.1 to 3.5% by weight, sulfur 0.03 to 0.11% by weight, and the temperature may be 1,400 to 1,600 ° C. Under the above conditions, the agitation force in the ladle is improved by increasing the molten iron temperature, and it is possible to prevent equipment load and damage such as impeller when charging molten iron into the desulfurization facility, and supply molten iron having good desulfurization ability to the decarburization converter.
한 구체예에서 상기 용선이 수선되는 래들에는, 기 용선의 정련 후 래들에 남아서 응고된 용선이 포함될 수 있다. 한 구체예에서 상기 응고된 용선은, 상기 탈실리콘(Si) 처리를 마친 이후, 전술한 고실리콘과 발열 반응에 의하여 온도가 상승된 용선에 의해 용이하게 용해될 수 있다.In an embodiment, the ladle in which the molten iron is repaired may include a molten iron remaining in the ladle after refining the molten iron. In one embodiment, the solidified molten iron may be easily dissolved by the molten iron whose temperature is increased by the exothermic reaction with the high silicon after the desilicon (Si) treatment.
(S20) 탈황 단계(S20) Desulfurization Step
상기 단계는 상기 탈실리콘 처리된 용선을 탈황 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하는 단계이다. 상기 탈황 설비는 일 예로서, KR(Kanvara reactor) 설비일 수 있다. 일 실시 예에서, 상기 용선의 탈황처리는, 상기 KR 설비에서 진행될 수 있다. 예를 들면 상기 탈황 처리는 용선이 장입된 KR 설비에 탈황제를 투입하고, 임펠러로 기계적 교반을 하여 유황(S)을 슬래그 중으로 부상하며, 상기 슬래그를 제거하여 이루어질 수 있다. 한 구체예에서 탈황제는 생석회 및 형석을 포함할 수 있다. 한 구체예에서 상기 용선에 함유된 황과 생석회는 하기 화학식 1과 같은 반응에 의해 이루어질 수 있다. The step is a step of moving the desilicon-treated molten iron to a desulfurization facility, by adding a desulfurization agent to desulfurization (S). The desulfurization facility may be, for example, a Kanvara reactor (KR) facility. In one embodiment, the desulfurization treatment of the molten iron may be carried out in the KR facility. For example, the desulfurization treatment may be performed by adding a desulfurizing agent to a KR facility in which molten iron is loaded, and mechanically stirring with an impeller to lift sulfur S into the slag and to remove the slag. In one embodiment the desulfurization agent may comprise quicklime and fluorspar. In one embodiment, sulfur and quicklime contained in the molten iron may be made by a reaction such as the following Chemical Formula 1.
[화학식 1][Formula 1]
CaO + S → CaS + OCaO + S → CaS + O
한 구체예에서 상기 탈황제는 생석회(CaO): 10~16kg/t-s 및 형석(CaF2): 0.5~1.3kg/t-s의 투입량으로 투입할 수 있다. 상기 조건의 탈황제를 적용시, 탈황 처리가 용이하게 이루어질 수 있다.In one embodiment, the desulfurization agent may be added at a dose of quicklime (CaO): 10-16 kg / ts and fluorspar (CaF 2 ): 0.5-1.3 kg / ts. When applying the desulfurization agent of the above conditions, the desulfurization treatment can be easily made.
한 구체예에서 상기 KR(Kanvara Reactor) 에서 먼저 스키머(Skimmer) 장치를 이용하여 래들(Ladle) 내 용선 상부에 부상되어 있는 슬래그(Slag) 배재 작업을 실시할 수 있다. 이는 탈황작업 조건을 만족하기 위해 예비처리 전로에서 정련작업시 반응한 이산화규소(SiO2)등 산화성 슬래그(Slag)를 제거하기 위한 목적이다.In one embodiment, the slag excretion work that floats on the upper part of the molten iron in the ladle may be performed by using a skimmer device in the KR (Kanvara Reactor). This is to remove oxidative slag such as silicon dioxide (SiO 2 ) reacted during refining operation in the pretreatment converter to satisfy the desulfurization operation conditions.
한 구체예에서 임펠러(Impeller)를 하강하여 용선 교반을 시작 한 후 탈황제를 투입하여 실시할 수 있다. 탈황 처리 완료 후, 측온 설비에 프로브(Probe)를 장 착하여 온도 측정 및 샘플링을 실시할 수 있다.In one embodiment, the impeller (Impeller) can be carried out by adding a desulfurizing agent after starting the molten iron stirring by lowering. After the desulfurization treatment is completed, a temperature probe and probe can be installed in the temperature measurement system.
한 구체예에서 상기 탈황 처리 후, 다음 공정인 탈탄 전로에서의 복황을 방지할 목적으로 스키머(Skimmer) 장치를 이용하여 상기 래들(Ladle) 내 용선 상부에 부상되어 있는 슬래그(Slag)를 한 번 더 배재할 수 있다.In one embodiment, after the desulfurization treatment, a slag floating above the molten iron in the ladle is once again by using a skimmer apparatus for the purpose of preventing abdominal sulfur in the decarburization converter, which is the next process. Can be excluded.
한 구체예에서 상기 탈황 처리 시간은 18~25분/히트(Ht)으로 작업할 수 있다. 상기 히트는 단위 조업을 의미할 수 있다. 상기 조건에서 충분한 탈황 처리 시간을 확보할 수 있다.In one embodiment the desulfurization treatment time can be operated at 18-25 minutes / heat (Ht). The hit may mean unit operation. Under these conditions, sufficient desulfurization treatment time can be ensured.
한 구체예에서 상기 탈황 처리된 용선은 실리콘(Si): 0.1~3.5 중량%, 황 0.001~0.01 중량% 이며, 온도는 1,300~1,580℃일 수 있다. 상기 조건에서 탈탄 처리를 용이하게 수행할 수 있다.In one embodiment, the desulfurized molten iron is silicon (Si): 0.1 to 3.5% by weight, sulfur is 0.001 to 0.01% by weight, and the temperature may be 1,300 to 1,580 ° C. The decarburization process can be easily performed under the above conditions.
(S30) 탈탄 단계(S30) decarburization step
상기 단계는 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계이다. 상기 탈탄은 통상적인 방법으로 수행될 수 있다.In the step, the desulfurized molten iron is charged into a decarburization converter and subjected to decarburization (C). The decarburization may be carried out in a conventional manner.
상기 탈탄 처리 후, 통상적인 2차 정련 과정을 거쳐 용강 내의 미세 성분 조절 후, 연속주조 공정이 이루어질 수 있다.After the decarburization treatment, after adjusting the fine components in the molten steel through a conventional secondary refining process, a continuous casting process can be made.
본 발명에 따른 용선 처리 방법(Reversed Converter Process, RCP)을 적용시, 기존 제강이 불가능하여 냉선, 주물선 또는 사처리를 실시해야만 했던 고실리콘(Si) 및 고유황(S)의 저온 용선이 정련가능하며, 래들에 응고되어 있는 용선을 용이하게 용해시킬 수 있고, 전로 취련시 슬로핑(Slopping) 현상을 방지하여 환경 오염을 방지하며, 조업 안정성이 우수하고, 용선 온도를 안정적으로 상승시킬 수 있으며, 정련시 설비의 부하 및 손상을 방지할 수 있고, 용선 취련시 부원료 배재 등 조업 비용을 절감하는 효과가 우수하여 경제성이 우수할 수 있다.When applying the reversed converter process (RCP) according to the present invention, the low-temperature molten iron of high silicon (Si) and high sulfur (S), which had to be subjected to cold wire, foundry or sand treatment because existing steelmaking was impossible. It is possible to dissolve the molten iron solidified in the ladle easily, to prevent the environmental pollution by preventing the slipping phenomenon when the converter is blown, the operation stability is excellent, and the molten iron temperature can be raised stably. In the case of refining, the load and damage of the equipment can be prevented, and the cost of reducing the operation cost such as the exclusion of subsidiary materials during the molten iron can be excellent economically.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
도 3a와 같은 용선 정련 공정을 수행하였다. 구체적으로, S100 단계에서, 실리콘(Si): 3 중량%, 유황(S): 0.035 중량%를 포함하며, 용선온도: 1,208℃인, 고로에서 출선된 용선을 래들에 수선하였다. 이때 상기 용선의 수선량은 상기 래들에 부착된 응고 용선(기 정련시에 잔류하여 응고된 용선)량 25 톤을 제외한 295 톤을 수선하였다. S110 단계에서, 예비처리 전로에 상기 용선을 장입하고, 스크랩(Scrap) 및 부원료, 냉각제를 투입하지 않고, 산소 랜스를 이용하여 산소를 4,742 N㎥로 취입하여, 용선 중 실리콘(Si) 및 탄소(C) 등과의 산화반응(SiO2 및 CO 발생)에 의한 발열반응으로 용선온도를 상승하여 탈실리콘 처리를 수행하였다. The molten iron refining process as shown in FIG. 3a was performed. Specifically, in step S100, silicon (Si): 3% by weight, sulfur (S): 0.035% by weight, molten iron from the blast furnace, molten iron temperature: 1,208 ℃ was repaired to the ladle. At this time, the amount of repair of the molten iron was repaired 295 tons except for 25 tons of solidification molten iron (coated molten iron remaining during the refining) attached to the ladle. In step S110, the molten iron is charged into the pretreatment converter, and the oxygen is blown into 4,742 Nm3 using an oxygen lance without adding scrap, secondary materials, and coolant, and silicon (Si) and carbon ( C) desilicon treatment was carried out by raising the molten iron temperature by an exothermic reaction by oxidation reaction with SiO 2 and CO.
이때, 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 송산 유량: 27,500N㎥/h 조건으로 취련하며, 45% 초과 100% 시점까지는, 송산 유량: 17,500N㎥/h 조건으로 취련하였다. 또한, 상기 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 용강 면 기준으로 산소 랜스 높이를 2,300mm로 설정하였으며, 45% 초과 100% 시점까지 산소 랜스 높이를 2,000mm로 설정하였다. At this time, it was blown under the conditions of a delivery flow rate: 27,500 Nm <3> / h with respect to the time of more than 0% and less than 45% of the total blowdown working time, and it was blown under the conditions of a delivery flow rate: 17,500Nm <3> / h until more than 45% of 100% of time. In addition, the oxygen lance height was set to 2,300 mm based on the molten steel surface, and the oxygen lance height was set to 2,000 mm until the time point exceeding 45% with respect to the total blowing time.
상기 탈실리콘 처리된 용선은, 실리콘(Si): 2 중량% 및 유황(S): 0.032 중량%를 포함하며, 용선온도: 1,455℃ 이었다. 상기 래들의 응고 용선은 25톤이 있었으나, 전부 용해되어 래들내 용선량은 총 320톤으로 되었다.The desilicon-treated molten iron included silicon (Si): 2 wt% and sulfur (S): 0.032 wt%, and the molten iron temperature was 1,455 ° C. There were 25 tons of coagulated molten iron in the ladle, but all were dissolved and the total amount of molten iron in the ladle was 320 tons.
S120 단계에서, 상기 탈실리콘 처리된 용선을 탈황 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하였다. 상기 용선의 탈황 처리전 온도는 1,402℃ 이었으며, 상기 탈황제로 생석회 4.7톤 및 형석 199Kg을 투입하고, 임펠러 회전하여 탈황처리하였다. 상기 임펠러(Impeller) 회전시간은 24분/Ht 소요되었으며, 상기 탈황 처리된 용선은 온도: 1,389℃, 실리콘(Si): 2 중량% 및 유황(S): 0.001 중량%를 포함하였다. 이후, S130 단계에서, 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하였다.In step S120, the desilicon-treated molten iron was moved to a desulfurization facility, and a desulfurization agent was added to desulfurization (S). The temperature before the desulfurization treatment of the molten iron was 1,402 ° C, 4.7 tons of quicklime and 199 Kg of fluorite was added as the desulfurizing agent, and desulfurization treatment by rotating the impeller. The impeller rotation time was 24 minutes / Ht, the desulfurized molten iron included a temperature: 1,389 ℃, silicon (Si): 2% by weight and sulfur (S): 0.001% by weight. Thereafter, in step S130, the desulfurized molten iron was charged to a decarburization converter and decarburized (C).
제강공장 내 공정과 성분 및 온도변화에 대해 정리하면 하기와 같다.The process, composition and temperature change in the steel mill are summarized as follows.
공정은 수선, 예비처리전로, KR 및 탈탄전로로 진행되었으며 성분은 용선 실리콘(Si): 3 중량%에서 2 중량%, 유황(S): 0.035 중량%에서 0.01 중량%, 용선온도: 1,208℃에서 1,389℃로 변화되었다.The process proceeded to repair, pretreatment furnace, KR and decarburization furnace, with components: molten silicon (Si): 3 wt% to 2 wt%, sulfur (S): 0.035 wt% to 0.01 wt%, molten iron temperature: 1,208 The temperature was changed from 1,389 ° C. to 1.
실시예 2Example 2
실리콘(Si): 2.4 중량% 및 유황(S): 0.104 중량%를 포함하며, 용선온도: 1,194℃인 고로에서 출선된 용선을 래들에 수선하였다. 이때 상기 용선의 수선량은 상기 래들에 부착된 응고 용선(기 정련시에 잔류하여 응고된 용선)량 44 톤을 제외한 276 톤을 수선하였다. 예비처리 전로에 상기 용선을 장입하고, 스크랩(Scrap) 및 부원료, 냉각제를 투입하지 않고, 산소 랜스를 이용하여 산소를 3,319 N㎥로 취입하여, 용선 중 실리콘(Si) 및 탄소(C) 등과의 산화반응(SiO2 및 CO 발생)에 의한 발열반응으로 용선온도를 상승하여 탈실리콘 처리를 수행하였다. The molten iron drawn from the blast furnace which contained 2.4 weight% of silicon (Si) and 0.104 weight% of sulfur (S) and molten iron temperature of 1,194 degreeC was repaired to a ladle. At this time, the amount of repair of the molten iron was repaired 276 tons except for 44 tons of the solidification molten iron (coated molten iron remaining during the refining) attached to the ladle. The molten iron was charged into the pretreatment converter, and the oxygen was blown to 3,319 Nm3 using an oxygen lance without adding scrap, subsidiary materials, and coolant, and the molten iron was mixed with silicon (Si), carbon (C), etc. Desilicon treatment was performed by increasing the molten iron temperature by an exothermic reaction by oxidation reaction (SiO 2 and CO generation).
이때, 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 송산 유량: 27,500N㎥/h 조건으로 취련하며, 45% 초과 100% 시점까지는, 송산 유량: 17,500N㎥/h 조건으로 취련하였다. 또한, 상기 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 용선 면 기준으로 산소 랜스 높이를 2,300mm로 설정하였으며, 45% 초과 100% 시점까지 산소 랜스 높이를 2,000mm로 설정하였다. At this time, it was blown under the conditions of a delivery flow rate: 27,500 Nm <3> / h with respect to the time of more than 0% and less than 45% of the total blowdown working time, and it was blown under the conditions of a delivery flow rate: 17,500Nm <3> / h until more than 45% of 100% of time. In addition, the oxygen lance height was set to 2,300 mm based on the molten iron surface, and the oxygen lance height was set to 2,000 mm until the time point of more than 45% with respect to the total blowing time.
상기 탈실리콘 처리된 용선은, 실리콘(Si): 1.2 중량% 및 유황(S): 0.094 중량%를 포함하며, 용선온도: 1,439℃ 이었다. 상기 래들의 응고 용선은 25톤이 있었으나, 전부 용해되어 래들내 용선량은 총 320톤으로 되었다. 이렇게 출탕된 용선을 KR(Kanvara Reactor) 공정 처리전 온도는 1,317℃로 실시예 1 대비 용선 지금량이 증가함에 따라, 온도 하락 수치가 증가함을 알 수 있었다.The desilicon-treated molten iron included silicon (Si): 1.2 wt% and sulfur (S): 0.094 wt%, and the molten iron temperature was 1,439 ° C. There were 25 tons of coagulated molten iron in the ladle, but all were dissolved and the total amount of molten iron in the ladle was 320 tons. Thus, the molten molten iron was found to be 1,317 ° C. before the KR (Kanvara Reactor) process, and the amount of molten iron increased as the amount of molten iron compared to Example 1 increased.
상기 탈실리콘 처리된 용선을 KR(Kanvara reactor) 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하였다. 상기 용선의 탈황 처리전 온도는 1,317℃ 이었으며, 상기 탈황제로 생석회 3.1톤 및 형석 232Kg을 투입하고, 임펠러 회전하여 탈황처리하였다. 상기 임펠러(Impeller) 회전시간은 19분/Ht 소요되었으며, 상기 탈황 처리된 용선은 온도: 1,303℃, 실리콘(Si): 1.2 중량% 및 유황(S): 0.007 중량%를 포함하였다. 이후, 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하였다.The desilicon-treated molten iron was moved to a KR (Kanvara reactor) facility, and desulfurization (S) was added by adding a desulfurization agent. The temperature before the desulfurization treatment of the molten iron was 1,317 ° C, 3.1 tonnes of quicklime and fluorite was added to the desulfurizing agent, and desulfurization was performed by rotating the impeller. The impeller rotation time was 19 minutes / Ht, the desulfurized molten iron included a temperature: 1,303 ℃, silicon (Si): 1.2% by weight and sulfur (S): 0.007% by weight. Thereafter, the desulfurized molten iron was charged into a decarburization converter and subjected to decarburization (C).
제강공장 내 공정과 성분 및 온도변화에 대해 정리하면 하기와 같다.The process, composition and temperature change in the steel mill are summarized as follows.
공정은 수선, 예비처리전로, KR 및 탈탄전로로 진행되었으며 성분은 용선 실리콘(Si): 2.4 중량%에서 1.2 중량%, 유황(S): 0.104 중량%에서 0.007 중량%, 용선온도: 1,194℃에서 1,303℃로 변화되었다.The process proceeded to repair, pretreatment furnace, KR and decarburization furnace, with components: molten silicon (Si): 2.4 wt% to 1.2 wt%, sulfur (S): 0.104 wt% to 0.007 wt%, molten iron temperature: 1,194 It was changed from 1 ° C to 1,303 ° C.
비교예Comparative example
도 3b에서와 같은 용선 정련 공정을 수행하였다. 구체적으로, S200 단계에서, 용선을 래들에 수선하고, S210 단계에서, 상기 용선을 탈황 설비로 이동하여 탈황 공정을 수행한 다음, S220 단계에서 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하며, S230 단계에서 탈탄 전로에서 탈탄 처리를 진행하였다. 이때, 상기 실시예 1과 대비하여, 상기 탈황 공정 및 탈실리콘 공정의 순서만 바뀌었을 뿐, 비교예의 세부적인 공정은 상기 실시예 1과 동일한 공정으로 용선을 정련하였다. The molten iron refining process as in FIG. 3b was performed. Specifically, in step S200, the molten iron is repaired in the ladle, and in step S210, the molten iron is moved to a desulfurization facility to perform a desulfurization process, and then charged in a pretreatment converter in step S220, and the molten iron is blown by blowing oxygen. Then, desilicon treatment (Si), and decarburization in the decarburization converter in step S230. In this case, in contrast to Example 1, only the order of the desulfurization process and the silicon removal process was changed, the detailed process of the comparative example was refined molten iron in the same process as in Example 1.
그 결과, 낮은 용선 온도로 인하여 탈황 처리가 이루어지지 않았으며, 특히 탈황 작업 중 KR 설비 내부에 지금(地金) 부착량이 증가하여, 임펠러의 설비에 부하가 발생하였다. 또한 저온 용선을 적용한 결과 탈황 작업 후, 래들 내 용선이 응고되어, 내화물 보수가 불가피 하였다.As a result, the desulfurization treatment was not performed due to the low molten iron temperature, and in particular, during the desulfurization operation, the amount of deposit now increased in the KR plant, causing a load on the plant of the impeller. In addition, as a result of applying low temperature molten iron, the molten iron in the ladle solidified after the desulfurization operation, and refractory repair was inevitable.
도 4는 본 발명에 따른 실시예 1~2의 용선 정련 과정에 따른 용선의 실리콘 함량 변화를 나타낸 그래프이다. 도 5는 본 발명에 따른 실시예 1~2의 용선 정련 과정에 따른 용선의 유황 함량 변화를 나타낸 그래프이다. 도 6은 본 발명에 따른 실시예 1~2의 용선 정련 과정에 따른 용선 온도 변화를 나타낸 그래프이다.4 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention. 5 is a graph showing the sulfur content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention. 6 is a graph showing the molten iron temperature change according to the molten iron refining process of Examples 1 to 2 according to the present invention.
상기 도 4 내지 도 6의 결과를 참조하면, 본 발명의 실시예 1~2의 용선은, 기존 제강이 불가능하여 냉선, 주물선 또는 사처리를 실시해야만 했던 실리콘(Si) 및 고유황(S)의 저온 용선을 적용하여도 정상적인 탈탄 공정이 이루어져, 용선 정련이 가능하였으며, 조업 안정성이 우수하고, 용선 온도를 안정적으로 상승시킬 수 있으며, 정련시 설비의 부하 및 손상을 방지할 수 있음을 알 수 있었다.Referring to the results of FIGS. 4 to 6, the molten iron of Examples 1 to 2 of the present invention, silicon (Si) and high sulfur (S), which were previously impossible to be steel-making, had to be subjected to cold wire, casting line, or sand treatment. It can be seen that normal decarburization process is possible even if low temperature molten iron is applied, so that molten iron refining is possible, operation stability is excellent, molten iron temperature can be raised stably, and the load and damage of equipment can be prevented during refining. there was.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (7)

  1. 고로에서 출선된 용선을 래들에 수선하여 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계;Repairing the molten iron taken out from the blast furnace in the ladle and charging the molten iron in a pretreatment converter, blowing the molten iron by blowing oxygen, and then treating with silicon to remove silicon;
    상기 탈실리콘 처리된 용선을 탈황 설비로 이동하고, 탈황제를 투입하여 탈황(S) 처리하는 단계; 및 Moving the desilicon treated molten iron to a desulfurization facility, and adding a desulfurization agent to desulfurization (S); And
    상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함하며,And charging the desulfurized molten iron into a decarburization converter to perform decarburization (C).
    상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%, 유황(S): 0.03~0.2 중량%를 포함하며, 온도가 1,250℃ 이하인 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron repaired to the ladle comprises silicon (Si): 0.6 to 8.0% by weight, sulfur (S): 0.03 to 0.2% by weight, the molten iron in the converter, characterized in that the temperature is 1,250 ℃ or less.
  2. 제1항에 있어서,The method of claim 1,
    상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 부원료를 투입하지 않는 것을 특징으로 하는 전로에서의 용선 정련 방법.The method of refining molten iron in the converter characterized in that during the de-silicon (Si) treatment, no subsidiary materials are added to the pretreatment converter.
  3. 제1항에 있어서,The method of claim 1,
    상기 용선 취련시, 전체 취련 작업 시간에 대하여 0 초과 45% 이하 시점까지는, 용강 면 기준으로 산소 랜스 높이: 2,000~2,500mm에서, 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며,When the molten iron is blown, the molten steel is blown at an oxygen lance height of 2,000 to 2500 mm based on the molten steel surface at a supply flow rate of 25,000 to 30,000 Nm3 / h until the time of more than 0 to 45% of the total blowing time.
    45% 초과 100% 시점까지 산소 랜스 높이: 1,800~2,300mm에서 송산 유량: 15,000~20,000N㎥/h 조건으로 취련하고,Oxygen lance height: from 1,800 to 2,300mm until 45% and up to 100%, blown under conditions of 15,000 ~ 20,000Nm3 / h
    상기 용선 취련시, 산소 취입량: 10~20N㎥/t-s 조건으로 취련하는 것을 특징으로 하는 전로에서의 용선 정련 방법.When the molten iron is blown, the molten iron in the converter, characterized in that the blown under the conditions of 10 to 20 Nm 3 / t-s.
  4. 제1항에 있어서,The method of claim 1,
    상기 용선이 수선되는 래들에는, 기 용선의 정련 후 응고된 용선이 포함되며,The ladle in which the molten iron is repaired includes a molten iron that has solidified after refining the molten iron,
    상기 응고된 용선은, 상기 탈실리콘(Si) 처리를 마친 이후 용해되는 것을 특징으로 하는 전로에서의 용선 정련 방법.The solidified molten iron, the molten iron refining method of the converter characterized in that the melt after finishing the de-silicon (Si) treatment.
  5. 제1항에 있어서,The method of claim 1,
    상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.5~5 중량% 감소되며, The silicon (Si) content of the desilicon-treated molten iron is reduced by 0.5 to 5% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter.
    상기 탈실리콘 처리된 용선의 온도는 1,400~1,600℃인 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron refining method of the converter characterized in that the temperature of the desilicon-treated molten iron is 1,400 ~ 1,600 ℃.
  6. 제1항에 있어서,The method of claim 1,
    상기 탈황제는 생석회(CaO): 10~16kg/t-s 및 형석(CaF2): 0.5~1.3kg/t-s의 투입량으로 투입하는 것을 특징으로 하는 전로에서의 용선 정련 방법.The desulfurizing agent refining molten iron (CaO): 10 ~ 16kg / ts and fluorspar (CaF 2 ): molten iron refining method in the converter characterized in that the input amount of 0.5 ~ 1.3kg / ts.
  7. 제1항에 있어서,The method of claim 1,
    상기 탈황 처리된 용선은, 실리콘(Si): 0.1~3.5 중량%, 유황(S): 0.001~0.01 중량%를 포함하며, 온도가 1,300~1,580℃인 것을 특징으로 하는 전로에서의 용선 정련 방법.The desulfurized molten iron, silicon (Si): 0.1 to 3.5% by weight, sulfur (S): 0.001 to 0.01% by weight, molten iron refining method in a converter characterized in that the temperature is 1,300 ~ 1,580 ℃.
PCT/KR2017/007874 2016-07-22 2017-07-21 Method for refining molten metal in converter WO2018016909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160093280 2016-07-22
KR10-2016-0093280 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016909A1 true WO2018016909A1 (en) 2018-01-25

Family

ID=60992236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007874 WO2018016909A1 (en) 2016-07-22 2017-07-21 Method for refining molten metal in converter

Country Status (1)

Country Link
WO (1) WO2018016909A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442573A (en) * 2019-09-02 2021-03-05 江苏集萃冶金技术研究院有限公司 Molten iron pretreatment method for realizing desiliconization, dephosphorization and desulfurization in same container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047206A (en) * 1999-11-18 2001-06-15 이구택 A Method For Refining Using High Si Contained Hot Metal
JP2003113410A (en) * 2001-10-04 2003-04-18 Nippon Steel Corp Method for smelting molten pig iron
JP2008184684A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method of desulfurizing molten pig iron
KR20120074377A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Method for pre-treating pig iron and method for treating pig iron
JP2016079462A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Method for refining hot pig iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047206A (en) * 1999-11-18 2001-06-15 이구택 A Method For Refining Using High Si Contained Hot Metal
JP2003113410A (en) * 2001-10-04 2003-04-18 Nippon Steel Corp Method for smelting molten pig iron
JP2008184684A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method of desulfurizing molten pig iron
KR20120074377A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Method for pre-treating pig iron and method for treating pig iron
JP2016079462A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Method for refining hot pig iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442573A (en) * 2019-09-02 2021-03-05 江苏集萃冶金技术研究院有限公司 Molten iron pretreatment method for realizing desiliconization, dephosphorization and desulfurization in same container

Similar Documents

Publication Publication Date Title
CN108842020B (en) Desulfurization method for molten iron pretreatment
JP2582692B2 (en) Converter steelmaking method
WO2018016909A1 (en) Method for refining molten metal in converter
WO2014068933A1 (en) Hot metal refining method
CN113564381A (en) Synergistic copper smelting method and building material
CN112322822A (en) Converter single slag smelting method for low-silicon high-phosphorus molten iron
WO2016018050A1 (en) Slag ball, and molten iron dephosphorizing method and converter blow-refining method using same
KR101206950B1 (en) Method for Pre-Treating Pig Iron and Method for Treating Pig Iron
WO2018038508A1 (en) Method for refining hot metal in convertor
US3022157A (en) Method for continuous hearth refining of steel and beneficiation of ores of ferro alloys
JP3915341B2 (en) Hot phosphorus dephosphorization method
WO2018048161A1 (en) Method for manufacturing steel
JP3790414B2 (en) Hot metal refining method
CN111635973A (en) Method for removing titanium from molten iron of converter
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP6468084B2 (en) Converter discharge method
KR100423447B1 (en) A method for manufacturing steel using returned molten steel
CN115558735B (en) Smelting method of pure iron
JP3684445B2 (en) Manufacturing method of high purity high Ni steel
JP6468083B2 (en) Converter discharge method
JPH0967608A (en) Production of stainless steel
JP2842248B2 (en) Hot metal desulfurization method
KR950013281B1 (en) Deposphorization of ingot steel
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831381

Country of ref document: EP

Kind code of ref document: A1