JP6468083B2 - Converter discharge method - Google Patents

Converter discharge method Download PDF

Info

Publication number
JP6468083B2
JP6468083B2 JP2015118241A JP2015118241A JP6468083B2 JP 6468083 B2 JP6468083 B2 JP 6468083B2 JP 2015118241 A JP2015118241 A JP 2015118241A JP 2015118241 A JP2015118241 A JP 2015118241A JP 6468083 B2 JP6468083 B2 JP 6468083B2
Authority
JP
Japan
Prior art keywords
slag
converter
dephosphorization
furnace
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015118241A
Other languages
Japanese (ja)
Other versions
JP2017002362A (en
Inventor
玲洋 松澤
玲洋 松澤
憲一郎 内藤
憲一郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015118241A priority Critical patent/JP6468083B2/en
Publication of JP2017002362A publication Critical patent/JP2017002362A/en
Application granted granted Critical
Publication of JP6468083B2 publication Critical patent/JP6468083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は転炉の排滓方法に関する。   The present invention relates to a converter discharge method.

鉄鋼材料において不純物のPは加工性や靭性を低下させる有害元素である。鉄鋼製造プロセスにおいて高炉などで製造された溶銑にはPが多量に含まれているため、精錬プロセスにおいて脱燐処理が行われ、鋼材品質を満たすのに必要なレベルまでP濃度を低減している。鋼材に要求される品質レベルの厳格化に対応するため、脱燐効率向上の技術開発がこれまで盛んに行われてきた。   In steel materials, the impurity P is a harmful element that reduces workability and toughness. Since the hot metal produced in a blast furnace or the like in the steel production process contains a large amount of P, dephosphorization is performed in the refining process, and the P concentration is reduced to a level necessary to satisfy the steel quality. . In order to cope with the stricter quality level required for steel materials, technological development for improving the dephosphorization efficiency has been actively conducted so far.

溶鉄中Pの脱燐反応は例えば下記の式(1)で表わされる。下線は溶鉄中の成分であることを示す。すなわち、FeOを含むスラグを形成し溶鉄中のPをスラグへ酸化除去する。P25は分解しやすいためスラグにはCaOを投入してP25を安定化し、溶鉄中へPが戻ること(復燐)を抑制している。この反応は発熱反応のため、温度が低い方が脱燐は進行しやすくなる。
+5FeO+3CaO=3CaO・P25+5Fe (1)
The dephosphorization reaction of P in molten iron is represented by, for example, the following formula (1). The underline indicates that it is a component in molten iron. That is, slag containing FeO is formed, and P in the molten iron is oxidized and removed to slag. Since P 2 O 5 is easily decomposed, CaO is added to the slag to stabilize P 2 O 5 and to prevent P from returning to the molten iron (rebound). Since this reaction is exothermic, the lower the temperature, the easier the dephosphorization proceeds.
2 P + 5FeO + 3CaO = 3CaO · P 2 O 5 + 5Fe (1)

精錬プロセスにおいては、脱燐反応効率を向上させるため脱炭前に溶銑を脱燐する予備脱燐が広く行われており、その方式は混銑車(トーピードカー)や溶銑鍋などの溶銑輸送容器を使用する方式と、転炉を使用する方式に大別される。後者の転炉方式は前者の混銑車・溶銑鍋方式よりも容器の内容積が大きいため溶銑およびスラグの強撹拌が可能であり、処理時間を短くすることができる。さらに、高速で酸素を供給できるためスラグのFeO濃度を高めやすく、式(1)の反応が促進されて精錬用生石灰を少なくできる、という利点もあり、近年は転炉方式が主流である。   In the refining process, preliminary dephosphorization of dephosphorizing hot metal before decarburization is widely performed to improve the dephosphorization reaction efficiency, and the method uses a hot metal transport container such as a kneaded car (torpedo car) or hot metal ladle. And a system that uses a converter. Since the latter converter system has a larger internal volume than the former kneading wheel / hot metal ladle system, the hot metal and slag can be strongly stirred, and the processing time can be shortened. Furthermore, since oxygen can be supplied at a high speed, it is easy to increase the FeO concentration of the slag, and there is an advantage that the reaction of formula (1) is promoted and the lime for smelting can be reduced.

転炉方式の溶銑脱燐方法としては、非特許文献1において2基の転炉をそれぞれ脱燐、脱炭の専用炉として用いる方法(以降、脱燐−脱炭分離方式と表記)が開示されている。また、非特許文献2においては脱燐吹錬後に転炉を傾動させて脱燐スラグのみを炉口から排出し(以降、中間排滓と表記)、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う方法(以降、脱燐−脱炭連続方式と表記)が開示されている。脱燐−脱炭連続方式は脱燐吹錬後に溶銑を排出および装入する工程がないため転炉の非稼動時間が短く且つ溶銑の移し替えに伴う放熱ロスがないことや、脱炭吹錬後のスラグを炉内に残して次の脱燐吹錬の造滓剤として再利用できること、などの利点がある。   As a converter-type hot metal dephosphorization method, Non-Patent Document 1 discloses a method of using two converters as dedicated furnaces for dephosphorization and decarburization (hereinafter referred to as dephosphorization-decarburization separation system). ing. In Non-Patent Document 2, after dephosphorization blowing, the converter is tilted to discharge only dephosphorization slag from the furnace port (hereinafter referred to as intermediate waste), and after the converter is returned to the vertical position, it is continuously removed. A method for performing charcoal blowing (hereinafter referred to as a dephosphorization-decarburization continuous method) is disclosed. In the dephosphorization-decarburization continuous method, there is no process for discharging and charging the hot metal after dephosphorization, so the non-operation time of the converter is short and there is no heat loss due to the transfer of hot metal. There is an advantage that the later slag is left in the furnace and can be reused as the next dephosphorizing blowing agent.

脱燐−脱炭連続方式の中間排滓で排出されず炉内に残留した脱燐スラグは次の脱炭吹錬に持ち越されるが、脱炭反応に伴う温度上昇により式(1)の反応が左辺側へ進行しやすくなり、スラグから溶銑へ復燐が生じる。このため脱炭吹錬では式(1)の反応を右辺側へ進行させるべくCaOを追加投入するが、残留脱燐スラグが多いほど復燐量も多くなるため、CaOも多量に投入しなければならなくなる。したがって中間排滓では効率的にスラグを排出して残留スラグを可能な限り低減することが望ましく、そのための排滓方法が開示されている。   The dephosphorization slag that remains in the furnace without being discharged by the intermediate desulfurization of the dephosphorization-decarburization system is carried over to the next decarburization blowing. It becomes easier to travel to the left side, and rebound from slag to hot metal occurs. For this reason, in decarburization blowing, additional CaO is added to advance the reaction of formula (1) to the right side. However, the more dephosphorization slag, the greater the amount of dephosphorization, so a larger amount of CaO must be added. No longer. Therefore, in the intermediate waste, it is desirable to efficiently discharge the slag and reduce the residual slag as much as possible, and a waste disposal method for that purpose is disclosed.

例えば特許文献1ではトーピードカーや溶銑鍋の排滓方法として利用されているドラッガーによりスラグを掻き出す方法、特許文献2では炉腹に設けた複数個の羽口からガスを吹き込んでスラグを波立たせて排出する方法、特許文献3では電磁力を利用してスラグを選択的に排出する方法が開示されている。また特許文献4では排滓前に鉄鉱石やミルスケールを添加してスラグの泡立ち(フォーミング)を促進する方法、特許文献5ではスラグの塩基度(CaO/SiO2)およびAl23濃度を所定の範囲に調整し、フォーミングしやすいスラグ性状にして排滓する方法が開示されている。このように、脱燐−脱炭連続方式の中間排滓方法としては、何らかの外力を加えてスラグを強制的に排出する方法と、排滓前に炉内でスラグをフォーミングさせて体積を増やす方法の2つに大別される。 For example, in Patent Document 1, a method of scraping slag with a dragger used as a method for discharging a torpedo car or a hot metal ladle, and in Patent Document 2, a gas is blown from a plurality of tuyere provided on the furnace belly to discharge the slag. Patent Document 3 discloses a method for selectively discharging slag using electromagnetic force. In Patent Document 4, iron ore or a mill scale is added before evacuation to promote foaming of slag. In Patent Document 5, the basicity (CaO / SiO 2 ) and Al 2 O 3 concentration of slag are set. There is disclosed a method of adjusting to a predetermined range and forming a slug property that is easy to form and rejecting. As described above, as the intermediate dephosphorization-decarburization intermediate method, the method of forcibly discharging slag by applying some external force and the method of increasing the volume by forming slag in the furnace before discharging It is roughly divided into two.

特開昭59−13009公報JP 59-13009 特開平4−72007号公報Japanese Patent Laid-Open No. 4-72007 特開平05−247514号公報JP 05-247514 A 特開平4−350109号公報JP-A-4-350109 特開2004−323959号公報JP 2004-323959 A

鉄と鋼、第76年(1990)第11号、第1817〜1822頁Iron and steel, 76 (1990) No. 11, pp. 1817-1822 鉄と鋼、第87年(2001)第1号、第21〜28頁Iron and Steel, 87th (2001) No. 1, pp. 21-28

しかしながら、特許文献1の方法では転炉の容量を考えると設備が大きくなりすぎるため現実的とは言えない。特許文献2の方法では炉腹に羽口を設置するため転炉の改造が必要であり、さらに吹錬中の羽口閉塞防止用にガスを常時吹き込むためコストが増大する等の問題がある。特許文献3の方法では設備投資コストがかかり、さらに高温かつ振動の激しい環境下であるため長期的な使用が難しい等の問題がある。   However, the method of Patent Document 1 is not practical because the facility becomes too large considering the capacity of the converter. In the method of Patent Document 2, the tuyeres are installed on the furnace bell, so that the converter needs to be remodeled, and further, gas is constantly blown to prevent the tuyere clogging during blowing, resulting in increased costs. In the method of Patent Document 3, there is a problem that capital investment costs are incurred, and that it is difficult to use for a long time because it is in an environment of high temperature and vibration.

また、特許文献4、5のようにスラグをフォーミングさせる方法においては、一旦フォーミングしたスラグが排滓中に鎮静して排滓効率が低下してしまうため、多量のスラグを安定的に排出することは容易ではなかった。   Moreover, in the method of forming slag as in Patent Documents 4 and 5, since the slag once formed is calmed during evacuation and the evacuation efficiency is lowered, a large amount of slag is stably discharged. Was not easy.

本発明はかかる事情を鑑みてなされたもので、転炉において溶銑の脱燐吹錬を行った後、転炉を傾動させて炉口からスラグを排滓する際に、高い排滓率が得られる排滓方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and after performing dephosphorization blowing of hot metal in a converter, when the converter is tilted and slag is discharged from the furnace port, a high discharge rate is obtained. It is an object to provide a method of exclusion.

前記目的に沿う本発明に係る転炉の排滓方法は、脱燐処理後に溶銑を転炉内に残したまま、上吹きランスからの送酸により炉内のスラグをフォーミングさせ、送酸を止めた後に転炉を傾動して炉口から排出する転炉排滓方法において、スラグがCaO/SiO2=0.8〜1.2、Al23=2〜10%の組成を有し、且つ温度が1300〜1400℃であり、排滓途中で一旦転炉の傾動角を排滓時より小さくし、続いて、銑鉄を式(2)を満たす量だけ炉内のスラグへ投入し、スラグを再びフォーミングさせた後に転炉を傾動して排滓を行うことを特徴とする、転炉排滓方法である。

Figure 0006468083
The converter discharge method according to the present invention, which meets the above-mentioned object, forms the slag in the furnace by feeding the acid from the top blowing lance while leaving the molten iron in the converter after the dephosphorization treatment, and stops the feeding of oxygen. In the converter discharge method in which the converter is tilted and discharged from the furnace port, the slag has a composition of CaO / SiO 2 = 0.8 to 1.2, Al 2 O 3 = 2 to 10%, In addition, the temperature is 1300 to 1400 ° C., and the tilt angle of the converter is once made smaller during the discharge, and then the pig iron is charged into the slag in the furnace in an amount satisfying the formula (2). This is a converter evacuation method characterized in that the converter is tilted and then evacuated by tilting the converter.
Figure 0006468083

本発明によれば、転炉の排滓方法において、一旦鎮静したスラグを再びフォーミングさせることができ、排滓率を従来技術よりも増加させることができる。これにより脱炭吹錬へ持ち越すスラグ中のPを低減することができ、CaOの追加投入量を削減できる。   According to the present invention, in the converter evacuation method, slag once sedated can be formed again, and the evacuation rate can be increased as compared with the prior art. Thereby, P in the slag carried over to decarburization blowing can be reduced, and the additional input amount of CaO can be reduced.

フォーミング高さとスラグCaO/SiO2の関係を示す図It shows a forming height and slag CaO / SiO 2 relation フォーミング高さとスラグAl23濃度の関係を示す図Diagram showing the relationship between forming height and slag Al 2 O 3 concentration フォーミング高さと温度の関係を示す図Diagram showing the relationship between forming height and temperature

以下に、本発明の実施の形態について詳細に説明する。転炉における脱燐吹錬では、高速で酸素ジェットを溶銑表面に吹き付けることで溶銑中のPを酸化し、スラグへP25として除去している。溶銑にはFe以外にC、Si、Mnも含まれることから、これらの元素も酸化され、COは排ガスとなり、SiO2、MnO、FeOはスラグ相を形成する。また、P25を安定化させるためにCaOが投入される。さらに、転炉内壁には通常MgO系の耐火物が張られている。したがってスラグ組成はCaO−SiO2−FeO−MgO−MnO−P25の多成分系となる。 Hereinafter, embodiments of the present invention will be described in detail. In dephosphorization blowing in a converter, oxygen in the hot metal is oxidized by blowing an oxygen jet onto the hot metal surface at a high speed and removed to the slag as P 2 O 5 . Since the hot metal contains C, Si, and Mn in addition to Fe, these elements are also oxidized, CO becomes exhaust gas, and SiO 2 , MnO, and FeO form a slag phase. In addition, CaO is added to stabilize P 2 O 5 . Further, an MgO-based refractory is usually stretched on the converter inner wall. Therefore, the slag composition is a multicomponent system of CaO—SiO 2 —FeO—MgO—MnO—P 2 O 5 .

溶銑とスラグの界面では、溶銑中のCとスラグ中のFeOが反応して式(3)の反応によりCOガス(気泡)が発生する。
+FeO=CO(g)+Fe (3)
At the interface between the hot metal and the slag, C in the hot metal and FeO in the slag react to generate CO gas (bubbles) by the reaction of the formula (3).
C + FeO = CO (g) + Fe (3)

また、溶銑の一部は吹き付けられた酸素ジェットにより引きちぎられて粒鉄となるが、この粒鉄はCを含んでいるため、粒鉄とスラグの界面からもCOガスが発生する。このようにして発生した気泡がスラグ内に滞留するとフォーミングが起こり、スラグが膨張する。この状態で転炉を傾動すれば炉口より効率的にスラグを排出することができる。しかし、転炉を傾動するには送酸を停止してランスを引き上げる必要があるため、溶銑とスラグの界面へのFeOの供給や粒鉄の生成が停止する。このため、排滓初期にはCO気泡発生が継続していても、次第に溶銑−スラグ界面近傍のFeO濃度の低下、粒鉄中のC濃度の低下、粒鉄の沈降が起こり、CO気泡の発生は弱くなってフォーミングが次第に鎮静してしまう。この結果、排滓中期以降は排滓速度を維持することが容易ではない。   Further, a part of the hot metal is torn off by the sprayed oxygen jet to become granular iron. Since this granular iron contains C, CO gas is also generated from the interface between the granular iron and slag. When the bubbles generated in this manner stay in the slag, forming occurs and the slag expands. If the converter is tilted in this state, slag can be discharged efficiently from the furnace port. However, in order to tilt the converter, it is necessary to stop the acid supply and raise the lance, so that the supply of FeO to the interface between the hot metal and the slag and the generation of granular iron are stopped. For this reason, even if CO bubble generation continues in the initial stage of evacuation, the FeO concentration in the vicinity of the hot metal-slag interface gradually decreases, the C concentration in the granular iron decreases, and the precipitation of the granular iron occurs. Becomes weak and the forming gradually subsides. As a result, it is not easy to maintain the elimination speed after the middle stage of elimination.

一旦排滓した後に転炉を垂直に戻し、再び吹錬を行えばスラグをフォーミングさせて排滓することはできるが、時間がかかるため生産性が大幅に低下してしまう。   If the converter is returned to the vertical position after evacuation and blown again, slag can be formed and evacuated. However, it takes time, and productivity is greatly reduced.

そこで本発明者らは生産性を大幅に低下させることなくスラグを再びフォーミングさせる手段を鋭意研究し、排滓後に銑鉄を外部から投入すれば再吹錬をせずともスラグを再びフォーミングさせることができ、排滓率を増加できることを見出した。ここで言う「銑鉄」とは、例えば高炉粒銑や型銑が挙げられる。溶銑温度(1250〜1450℃)で完全溶融するために、融点の観点から銑鉄のC濃度は3〜4.5質量%であることが好ましい。また、銑鉄の粒度は2〜20mmが好適である。2mm未満の銑鉄はスラグ内部に侵入しにくく、内部からCO気泡を発生させることが難しい。一方、20mm超の銑鉄はスラグ内部へ速く沈降し、溶融前に湯溜まりに到達してしまってCO気泡の発生に寄与しにくくなる。2〜20mmの比率は80質量%以上であれば、本発明の効果を十分に発揮することができる。   Therefore, the present inventors diligently researched a means for forming slag again without significantly reducing productivity, and if the pig iron is input from the outside after dredging, the slag can be formed again without reblowing. And found that the rejection rate can be increased. As used herein, “pig iron” includes, for example, blast furnace granule and mold iron. In order to achieve complete melting at the hot metal temperature (1250 to 1450 ° C.), the C concentration of pig iron is preferably 3 to 4.5% by mass from the viewpoint of the melting point. Moreover, 2-20 mm is suitable for the particle size of pig iron. Pig iron of less than 2 mm does not easily enter the slag, and it is difficult to generate CO bubbles from the inside. On the other hand, pig iron exceeding 20 mm quickly settles into the slag and reaches the hot water pool before melting, making it difficult to contribute to the generation of CO bubbles. When the ratio of 2 to 20 mm is 80% by mass or more, the effect of the present invention can be sufficiently exhibited.

前記のC濃度および粒度を有する銑鉄を排滓中にスラグ上方より投入すれば、スラグ内部で速やかに溶融し、銑鉄に含まれるCがスラグ中のFeOと反応して式(3)の反応によりCO気泡を発生し、スラグをフォーミングさせることができる。   If pig iron having the above-mentioned C concentration and particle size is thrown into the slag from above the slag, it quickly melts inside the slag, and C contained in the pig iron reacts with FeO in the slag to react by the reaction of formula (3) CO bubbles can be generated and slag can be formed.

投入方法としては、例えばスクラップシュートを使用すれば良いが、炉口からの排滓が終了した後に炉体を一旦垂直に戻し、炉上のホッパーから銑鉄を投入しても良い。この場合も銑鉄は速やかに溶融してCO気泡を発生してスラグは再びフォーミングするため、炉体を傾動すればスラグを排出することができる。この方法でも再吹錬を行う必要はなく、生産性の大幅な低下は回避できる。   As a charging method, for example, a scrap chute may be used, but after the discharge from the furnace port is completed, the furnace body may be once returned to a vertical position, and pig iron may be charged from a hopper on the furnace. In this case as well, pig iron quickly melts to generate CO bubbles and the slag forms again. Therefore, if the furnace body is tilted, the slag can be discharged. This method also does not require re-blowing, and a significant reduction in productivity can be avoided.

なお、排滓中にスラグ上方から銑鉄を投入する方法も考えられるが、投入した銑鉄が流されてしまい、CO気泡を発生する前に炉外へ排出される恐れが非常に高い。したがって投入した銑鉄が再フォーミングに寄与することは難しい。むしろ、排出されたスラグを受ける排滓鍋内において銑鉄がCO気泡を発生し、スラグをフォーミングさせて排滓鍋からスラグが溢出し、周辺機器を損傷する原因になる恐れがある。したがって、排滓中に銑鉄を投入する方法は好ましくない。   Although a method of throwing pig iron from above the slag can be considered during the dredging, the thrown pig iron is washed away, and there is a very high possibility that it will be discharged out of the furnace before generating CO bubbles. Therefore, it is difficult for the injected pig iron to contribute to reforming. Rather, pig iron may generate CO bubbles in the waste pan that receives the discharged slag, forming slag and overflowing the slag from the waste pan, which may cause damage to peripheral equipment. Therefore, the method of throwing pig iron into the waste is not preferable.

フォーミングに適したスラグの組成および温度を明確にするため、本発明者らは小型炉において実験を行った。すなわち、鉄坩堝内で溶解したスラグへ2〜3mmの粒状の銑鉄を投入し、フォーミングしたスラグへ鉄棒を浸漬させ、その付着高さからスラグ高さの経時変化を測定し、銑鉄投入前のスラグ高さと、銑鉄投入後の最大スラグ高さの差をフォーミング高さとした。その結果を図1〜3に示す。フォーミング高さが高いほど、フォーミングが好適である。図1より、スラグの塩基度(CaO/SiO2)は0.8〜1.2が好適であることが分かった。また図2に示すように、Al23を添加するとフォーミング挙動が変化し、2〜10%の組成が好適であることが分かった。さらに図3に示すように、温度は1300〜1400℃が好適であることが分かった。したがって、これらの条件を満たす組成および温度のスラグとすれば、本発明の効果を享受することができる。 In order to clarify the composition and temperature of slag suitable for forming, the inventors conducted experiments in a small furnace. That is, put 2 to 3 mm of granular pig iron into the slag melted in the iron crucible, immerse the iron rod in the formed slag, measure the change over time of the slag height from the adhesion height, and slag before throwing the pig iron The difference between the height and the maximum slag height after the introduction of pig iron was taken as the forming height. The results are shown in FIGS. The higher the forming height, the better the forming. From FIG. 1, it was found that the basicity (CaO / SiO 2 ) of slag is preferably 0.8 to 1.2. Further, as shown in FIG. 2, the forming behavior changes The addition of Al 2 O 3, it was found that 2-10% of the composition is preferred. Furthermore, as shown in FIG. 3, it turned out that 1300-1400 degreeC is suitable for temperature. Therefore, if the composition and temperature slag satisfy these conditions, the effects of the present invention can be enjoyed.

スラグのフォーミング高さはスラグ内部からのガス発生速度と気泡がスラグ内部に滞留する時間で決まり、ガス発生速度が高いほど、あるいは気泡の滞留時間が長いほどフォーミング高さは大きくなる。発明者らによる実験データの解析によれば、スラグの塩基度が高くなるとスラグ粘度が低下するためスラグの流動性が良好となり、FeOの移動が速くなってガス発生速度が増加するが、一方で気泡はスラグ内部に滞留しにくくなる。このため、フォーミングに適した塩基度の範囲が存在し、塩基度が0.8未満ではガス発生速度が低、1.2超では気泡の滞留時間が低となるためフォーミング性が低下する。   The forming height of the slag is determined by the gas generation speed from the inside of the slag and the time during which the bubbles stay in the slag. The higher the gas generation speed or the longer the bubble staying time, the larger the forming height. According to the analysis of experimental data by the inventors, when the basicity of the slag increases, the slag viscosity decreases, so the flowability of the slag improves, the movement of FeO increases and the gas generation rate increases. Air bubbles are less likely to stay inside the slag. For this reason, there exists a range of basicity suitable for forming, and when the basicity is less than 0.8, the gas generation rate is low, and when it exceeds 1.2, the residence time of bubbles is low, so the forming property is lowered.

Al23濃度や温度についても同様である。Al23濃度が高くなるとスラグ粘度が増加する。このため、Al23濃度が2%未満では気泡の滞留時間が低、10%超ではガス発生速度が低となりフォーミング性が低下する。また温度が高くなるとスラグ粘度は低下するため、1300℃未満ではガス発生速度が低、1400℃超では気泡の滞留時間が低となってフォーミング性が低下する。 The same applies to the Al 2 O 3 concentration and temperature. As the Al 2 O 3 concentration increases, the slag viscosity increases. For this reason, when the Al 2 O 3 concentration is less than 2%, the bubble residence time is low, and when it exceeds 10%, the gas generation rate is low and the forming property is lowered. Further, since the slag viscosity decreases as the temperature increases, the gas generation rate is low below 1300 ° C., and the retention time of bubbles is low above 1400 ° C., resulting in a decrease in forming properties.

次に、排滓に適したフォーミング高さの観点から、粒鉄の投入量を検討した。効率的に排滓するために、溶銑の静止浴面から炉口までの距離(フリーボード)の半分以上にスラグをフォーミングさせられる分の粒鉄量が必要である。ただし、粒鉄を過剰に投入すると必要以上にガスが急速に発生してスラグが周囲に激しく飛散し、非常に危険な状態となる。このような過剰フォーミングが発生した場合は、ガス発生が落ち着くまで追加の排滓を開始できないため、排滓時間が長くなり生産性が低下してしまう。したがって粒鉄投入量には適正範囲が存在する。   Next, the amount of granular iron input was examined from the viewpoint of forming height suitable for evacuation. In order to discharge efficiently, the amount of granular iron is required to form slag to more than half of the distance (free board) from the hot bath stationary bath surface to the furnace port. However, if excessive grain iron is added, gas will be generated more rapidly than necessary, and the slag will be violently scattered around, making it extremely dangerous. When such excessive forming occurs, additional waste cannot be started until the gas generation has settled, so the waste time becomes longer and productivity is lowered. Therefore, there is an appropriate range for the input amount of granular iron.

CO気泡の発生量が同じ場合、転炉の断面積が大きい方がフォーミング高さは小さくなる。したがって、粒鉄投入量は転炉のフリーボードや断面積に依存する。このような観点で粒鉄の投入量を検討し、式(2)の範囲が好適であることを見出した。式(2)の粒鉄投入量は、本発明におけるスラグ組成および温度の範囲内において、炉内のスラグを排滓に適した高さまでフォーミングさせるのに必要なCOガス発生量に対応する。

Figure 0006468083
When the amount of generated CO bubbles is the same, the forming height decreases as the cross-sectional area of the converter increases. Therefore, the amount of granular iron input depends on the free board and cross-sectional area of the converter. From this point of view, the amount of granular iron was examined, and the range of the formula (2) was found to be suitable. The amount of granular iron input in the formula (2) corresponds to the amount of CO gas generated necessary to form the slag in the furnace to a height suitable for waste within the range of the slag composition and temperature in the present invention.
Figure 0006468083

炉内のスラグへ外部から適切な量の銑鉄を投入することにより、一旦鎮静したスラグを再びフォーミングさせることができ、排滓量を増加させることができる。   By putting an appropriate amount of pig iron from the outside into the slag in the furnace, the slag once calmed can be formed again, and the amount of slag can be increased.

以上説明したように、本発明に係る転炉の排滓方法は、脱燐処理後に溶銑を転炉内に残したまま、上吹きランスからの送酸により炉内のスラグをフォーミングさせ、送酸を止めた後に転炉を傾動して炉口から排出する転炉排滓方法において、スラグがCaO/SiO2=0.8〜1.2、Al23=2〜10%の組成を有し、且つ温度が1300〜1400℃であり、排滓途中で一旦転炉の傾動角を排滓時より小さくし、続いて、銑鉄を式(2)を満たす量だけ炉内のスラグへ投入し、スラグを再びフォーミングさせた後に転炉を傾動して排滓を行うことを特徴とする。 As described above, in the converter discharge method according to the present invention, after the dephosphorization process, the molten iron is left in the converter, the slag in the furnace is formed by the supply of oxygen from the top blowing lance, and the acid supply In the converter discharge method in which the converter is tilted and discharged from the furnace port after the slag is stopped, the slag has a composition of CaO / SiO 2 = 0.8 to 1.2 and Al 2 O 3 = 2 to 10%. In addition, the temperature is 1300 to 1400 ° C., and the tilt angle of the converter is once made smaller during the discharge, and then the pig iron is charged into the slag in the furnace in an amount satisfying the formula (2). After the slag is formed again, the converter is tilted and discharged.

ここで、上記上吹きランスからの送酸による炉内のスラグのフォーミングについては、通常に行われる脱燐精錬で用いられる送酸を行うことにより、実現することができる。また、溶製する鋼が、特別に低燐化を狙う品種ではない通常の品種であれば、脱燐精錬終了時のスラグ組成としてCaO/SiO2=0.8〜1.2となるように精錬材を添加して精錬を行えばよい。排滓時のスラグ温度を1300〜1400℃とする点についても、精錬前後の熱収支を計算し、脱燐精錬終了時の溶鉄温度が当該温度範囲となるように鉄鉱石などの冷却材を投入することにより実現することができる。 Here, the slag forming in the furnace due to the acid sent from the upper blowing lance can be realized by carrying out the acid feeding used in the dephosphorization refining performed normally. In addition, if the steel to be melted is a normal cultivar that is not specially aimed at low phosphorus reduction, the slag composition at the end of dephosphorization will be CaO / SiO 2 = 0.8 to 1.2. Refining may be performed by adding a refining material. Regarding the point of setting the slag temperature at 1300 to 1400 ° C at the time of slagging, calculate the heat balance before and after refining, and introduce coolant such as iron ore so that the molten iron temperature at the end of dephosphorization refining will be in the temperature range This can be realized.

脱燐精錬終了時のスラグ中Al23含有量は2%前後である。従って、精錬に用いる原料や精錬材の組成から脱燐精錬終了時のAl23の含有量が確実に2%以上となると予測できるときはAl23源を添加する必要はないが、スラグ中Al23含有量が2%未満となる可能性がある場合はAl23源を添加する。Al23源は脱燐吹錬中に投入すれば良く、例えば二次精錬スラグを用いればよい。転炉に装入する溶銑のSi濃度と、脱燐吹錬中に投入する精錬材の量および組成から脱燐スラグの量と組成を推定し、予め分析しておいたAl23源のAl23濃度を用いれば、脱燐スラグのAl23濃度を2〜10質量%とするAl23源の投入量を決定することができる。 The content of Al 2 O 3 in the slag at the end of dephosphorization is around 2%. Therefore, it is not necessary to add an Al 2 O 3 source when it can be predicted that the content of Al 2 O 3 at the end of dephosphorization will be 2% or more from the composition of raw materials and smelting materials used for refining, When there is a possibility that the Al 2 O 3 content in the slag is less than 2%, an Al 2 O 3 source is added. The Al 2 O 3 source may be input during dephosphorization blowing, for example, secondary refining slag may be used. And Si concentration of the molten iron to be charged into the converter, the amount and composition of the refining material to be introduced into the dephosphorization blowing estimate the composition and amount of dephosphorization slag, of Al 2 O 3 source previously analyzed If the Al 2 O 3 concentration is used, it is possible to determine the input amount of the Al 2 O 3 source in which the dephosphorization slag has an Al 2 O 3 concentration of 2 to 10% by mass.

以下に表1を基にして本発明の実施例を具体的に説明する。精錬に用いた転炉の形状は、溶銑表面と炉口の距離は8m、転炉の炉底から溶銑の静止面までの高さは2.3m、転炉の水平方向の最大断面積は33.2m2であった。 Examples of the present invention will be specifically described below based on Table 1. The shape of the converter used for refining is that the distance between the hot metal surface and the furnace port is 8 m, the height from the bottom of the converter to the hot metal stationary surface is 2.3 m, and the maximum horizontal cross-sectional area of the converter is 33 .2 m 2 .

転炉へ溶銑を装入して脱燐吹錬を行い、スラグをフォーミングさせた。脱燐精錬時に転炉に装入する生石灰などの精錬材添加量を調整して、脱燐精錬終了時の転炉内スラグが表1に示す値となるように調整した。また脱燐精錬中に必要に応じて二次精錬スラグを添加し、スラグ中Al23含有量を調整した。 Hot metal was charged into the converter and dephosphorized and blown to form slag. The amount of refining material such as quick lime charged into the converter during dephosphorization refining was adjusted so that the slag in the converter at the end of dephosphorization refining was adjusted to the value shown in Table 1. Further, secondary refining slag was added during dephosphorization refining as necessary to adjust the content of Al 2 O 3 in the slag.

脱燐精錬終了時の溶銑温度を表1に示す温度となるように調整した。脱燐精錬終了後に、送酸を停止して転炉を傾動し、スラグを炉口から炉下の排滓鍋へ排出開始した。その後排滓の途中で、転炉の傾動角を排滓時より小さくして排滓を中断し、スクラップシュートから銑鉄(C濃度:4.3質量%)を炉内に投入した。そして再び転炉を傾動して追加の排滓を行った。   The hot metal temperature at the end of dephosphorization was adjusted to the temperature shown in Table 1. After the dephosphorization and refining, the acid feeding was stopped, the converter was tilted, and slag was started to be discharged from the furnace port to the bottom ladle. Thereafter, in the middle of evacuation, the tilt angle of the converter was made smaller than that at the time of evacuation, and evacuation was interrupted, and pig iron (C concentration: 4.3 mass%) was put into the furnace from a scrap chute. Then, the converter was tilted again and additional evacuation was performed.

排出したスラグは冷却後に重量を測定し、式(4)により排滓率を評価した。

Figure 0006468083
なお、炉内スラグの重量は、生石灰などの投入した精錬材の重量と、採取したスラグの成分値から物質収支を計算して求めた。 The weight of the discharged slag was measured after cooling, and the rejection rate was evaluated by equation (4).
Figure 0006468083
The weight of the slag in the furnace was obtained by calculating the mass balance from the weight of the smelted material such as quick lime and the component value of the collected slag.

本発明は、低燐鋼ではない一般鋼の溶製を対象としており、高い脱燐性能は要求されないので、排滓率の目標を55%以上に設定した。   The present invention is intended for melting general steel that is not low phosphorous steel, and high dephosphorization performance is not required. Therefore, the target of the rejection rate is set to 55% or more.

表1に処理の結果を示す。表中の下線は、本発明の範囲外となる部分を表す。実施例1〜8は発明例であり、いずれも処理条件が本発明の範囲内であったため、排滓率は55%以上となった。   Table 1 shows the results of the processing. The underline in the table represents a part that is outside the scope of the present invention. Examples 1 to 8 are invention examples, and the treatment conditions were within the scope of the present invention, so the rejection rate was 55% or more.

一方、実施例9〜17は比較例であり、実施例9では銑鉄投入による再フォーミングを行わなかった結果、排滓率は50%にとどまった。実施例10〜11はスラグのCaO/SiO2、実施例12〜13はスラグのAl23濃度、実施例14〜15はスラグの温度が本発明の範囲外であったため排滓率は55%未満となった。実施例16では粒鉄量が本発明の下限を下回ったため再フォーミングが弱く、排滓率は55%未満となった。実施例17では銑鉄量が本発明の上限を超過したため再フォーミングが激しく、転炉を傾動するまで待ち時間が発生した。その結果、排滓率は高位であったものの排滓時間が大幅に増加した。 On the other hand, Examples 9 to 17 are comparative examples. In Example 9, as a result of not performing re-forming by introducing pig iron, the rejection rate was only 50%. Examples 10-11 were CaO / SiO 2 of slag, Examples 12-13 were Al 2 O 3 concentrations of slag, and Examples 14-15 were slag temperatures outside the scope of the present invention, so the rejection rate was 55 %. In Example 16, since the amount of granular iron fell below the lower limit of the present invention, reforming was weak and the rejection rate was less than 55%. In Example 17, since the amount of pig iron exceeded the upper limit of the present invention, reforming was intense, and a waiting time occurred until the converter was tilted. As a result, although the rejection rate was high, the rejection time increased significantly.

Figure 0006468083
Figure 0006468083

Claims (1)

脱燐処理後に溶鉄を転炉内に残したまま、上吹きランスからの送酸により炉内のスラグをフォーミングさせ、送酸を止めた後に転炉を傾動して炉口から排出する転炉排滓方法において、スラグがCaO/SiO2=0.8〜1.2、Al23=2〜10%の組成を有し、且つ温度が1300〜1400℃であり、排滓途中で一旦転炉の傾動角を排滓時より小さくし、続いて、銑鉄を式(2)を満たす量だけ炉内のスラグへ投入し、スラグを再びフォーミングさせた後に転炉を傾動して排滓を行うことを特徴とする、転炉排滓方法。
Figure 0006468083
After the dephosphorization process, the molten iron remains in the converter, the slag in the furnace is formed by sending acid from the top blowing lance, and after stopping the feeding, the converter is tilted and discharged from the furnace port. In the dredging method, the slag has a composition of CaO / SiO 2 = 0.8 to 1.2, Al 2 O 3 = 2 to 10%, and the temperature is 1300 to 1400 ° C. Make the tilt angle of the furnace smaller than that at the time of evacuation, and then throw pig iron into the slag in the furnace in an amount that satisfies the formula (2). After forming the slag again, the converter is tilted to perform slagging. A method for rejecting a converter.
Figure 0006468083
JP2015118241A 2015-06-11 2015-06-11 Converter discharge method Active JP6468083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118241A JP6468083B2 (en) 2015-06-11 2015-06-11 Converter discharge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118241A JP6468083B2 (en) 2015-06-11 2015-06-11 Converter discharge method

Publications (2)

Publication Number Publication Date
JP2017002362A JP2017002362A (en) 2017-01-05
JP6468083B2 true JP6468083B2 (en) 2019-02-13

Family

ID=57753304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118241A Active JP6468083B2 (en) 2015-06-11 2015-06-11 Converter discharge method

Country Status (1)

Country Link
JP (1) JP6468083B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279721A (en) * 1992-04-03 1993-10-26 Nippon Steel Corp Method for removing slag in converter
JP2004323959A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp Method for removing slag in converter
JP2007077483A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Steelmaking method in converter

Also Published As

Publication number Publication date
JP2017002362A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP6945055B2 (en) Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel
JP6421634B2 (en) Manufacturing method of molten steel
JP6816777B2 (en) Slag forming suppression method and converter refining method
TWI685577B (en) Smelting method of high manganese steel
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP5967139B2 (en) Hot metal pretreatment method
JP4894325B2 (en) Hot metal dephosphorization method
JP2018024898A (en) Dephosphorization method of molten pig iron excellent in dephosphorization efficiency and iron content yield
JP6468084B2 (en) Converter discharge method
JP2019194350A (en) Recycling method of converter slag
JP6037933B2 (en) Hot metal dephosphorization method with high iron yield
JP6468083B2 (en) Converter discharge method
JP3885499B2 (en) Converter steelmaking method
JP2018188730A (en) Converter steelmaking process
JP5983900B1 (en) Hot metal pretreatment method
JP6405876B2 (en) Hot metal refining method
JP5286892B2 (en) Dephosphorization method of hot metal
JP6500476B2 (en) How to smelt molten metal
JP5332769B2 (en) How to use electric furnace slag
JP5289907B2 (en) Method of charging iron oxide source to suppress slag forming
WO2022154024A1 (en) Converter refining method
JP5404269B2 (en) Dephosphorization method
JP7243185B2 (en) Hot slag recycling method
JP5506515B2 (en) Dephosphorization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R151 Written notification of patent or utility model registration

Ref document number: 6468083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350