JP2004323959A - Method for removing slag in converter - Google Patents

Method for removing slag in converter Download PDF

Info

Publication number
JP2004323959A
JP2004323959A JP2003124295A JP2003124295A JP2004323959A JP 2004323959 A JP2004323959 A JP 2004323959A JP 2003124295 A JP2003124295 A JP 2003124295A JP 2003124295 A JP2003124295 A JP 2003124295A JP 2004323959 A JP2004323959 A JP 2004323959A
Authority
JP
Japan
Prior art keywords
slag
converter
dephosphorization
waste
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003124295A
Other languages
Japanese (ja)
Inventor
Kenichiro Naito
憲一郎 内藤
Tetsuya Nakamura
哲也 中村
Yuichi Hirokawa
雄一 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003124295A priority Critical patent/JP2004323959A/en
Publication of JP2004323959A publication Critical patent/JP2004323959A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing slag which leaves only a small amount of slag in a converter while restraining the flow-out of molten iron when pre-dephosphorization of the molten iron is performed with the converter and only the slag is removed by tilting the converter in a state the molten iron is remaining in the converter after performing the dephosphorizing treatment. <P>SOLUTION: When the pre-dephosphorizing treatment of molten iron is performed with the converter and only the slag is removed by tilting the converter in the state the molten iron is remaining in the converter after performing the dephosphorizing treatment, the slag is removed by adjusting the slag composition so that (CaO)/(SiO<SB>2</SB>)≥1.0 and (Al<SB>2</SB>O<SB>3</SB>)=2 to 10 mass%. As the Al<SB>2</SB>O<SB>3</SB>source used in the adjustment into the slag composition, the slag produced in a steelmaking secondary refining process is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は転炉の排滓法に関する。
【0002】
【従来の技術】
鉄鋼精錬において、脱りん反応効率を向上させるため、脱りん・脱炭を分割し、脱炭前の溶銑に脱りん処理を施す溶銑予備脱りん処理が広く行われている。溶銑予備脱りん処理の方式は、トーピードカー、鍋などの溶銑輸送容器を使用する方式と、転炉を使用する方式に大別されるが、転炉を使用する方式は、転炉の特徴を最大限活用したものであり、1)容器の内容積が大きく、フォーミング(=スラグの泡立ち現象)やスロッピング(=スラグや溶鉄が容器から横溢する現象)による操業障害等の問題が少ない、2)気体酸素を高速で送酸できるため、高速脱りん処理が可能である、3)酸素供給量が多いため、低塩基度での脱りん処理が可能であり、精錬用生石灰の削減やスラグの有効利用上問題となるフリーCaOの低減が可能である、4)上記理由により、脱りん処理前の事前脱珪処理が不要であり、脱珪と脱りんを同時に実施できる、5)固体酸素(=酸化鉄等)の使用量が少ないため熱裕度が高く、スクラップ比の向上が可能である、6)転炉容器内で前チャージの脱炭スラグを脱りん用造滓剤として熱間で再使用することが容易である、等の利点がある。さらに、遊休転炉や現有転炉を活用できる場合は、新たな設備投資額が少なく、省資源、省エネルギーの面からも優位性の高い方式である。
【0003】
転炉を使用した溶銑予備脱りん処理方式の中でも、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させて脱りんスラグのみを排滓し、その後に同一転炉で脱炭吹錬を実施する方式(例えば、特許文献1参照)、2基以上の転炉をそれぞれ、脱りん、脱炭の専用炉として用いる方式(例えば、特許文献2参照)等があるが、前者の方式は後者に比べて、1)脱りん処理後に出銑、装入する工程がないため、転炉の非稼動時間が短い、2)溶銑の移し替え工程がないため、移し替えによる放熱ロスがない、3)脱炭スラグを炉内に残して、脱りん用造滓剤として使用することが容易である、などの利点がある。
【0004】
一方で、前者の方式では溶銑を転炉内に残したまま、転炉を横転させて脱りんスラグを排滓するため、溶銑の流出を抑制しつつ、スラグのみを高効率で排滓することが難しく、排滓されずに炉内に残留したスラグから脱炭吹錬時に復りんが生じるという問題がある。そこで、効率的な排滓法として、下記のように種々の提案がなされている。
【0005】
まず、炉腹および炉底に設けた複数個の羽口からガスを吹き込んでスラグを炉口側に移動させて排滓する方法(例えば、特許文献1参照)、酸化性ガスを吹き込んでスラグフォーミングを促進して排滓する方法(例えば、特許文献3参照)が提案されているが、これらの方法では、炉腹に羽口を設置するため転炉の改造が必要であること、耐火物溶損が進行した転炉では内容積の変化によりスラグ位置が変化し、羽口の位置が最適な位置から外れてくること、吹錬中の羽口閉塞を防止するために常時ガスを吹き込む必要があり、本来不要なガスコストが増大する等の問題がある。
【0006】
また、電磁力を利用してスラグのみを選択的に排滓する方法(例えば、特許文献4参照)が提案されているが、設備投資コストがかかること、また、高温かつ振動の激しい劣悪な環境下で整備コストが増大する等の問題がある。
【0007】
さらに、溶銑の位置を電気的導通や光ファイバーで検出し、排滓に最適な転炉傾動位置を決定して排滓する方法(例えば、特許文献5、特許文献6参照)が提案されているが、これらの方法では溶銑の位置を検出し、最適な転炉傾動位置を決定することはできるが、排滓を促進するには不十分である。
【0008】
その他、トーピードカーや鍋の排滓方法として利用されている排滓板によりスラグを掻き出す方法(例えば、特許文献7参照)等を転炉に適用することも考えられるが、転炉の容量を考えると、設備が大きくなりすぎ現実的とは言えない。
【0009】
【特許文献1】
特許第2582692号明細書
【特許文献2】
特許第1761646号明細書
【特許文献3】
特開平05−279721号公報
【特許文献4】
特開平05−247514公報
【特許文献5】
特開平05−288479公報
【特許文献6】
特開平06−235016公報
【特許文献7】
特開昭59−13009公報
【0010】
【発明が解決しようとする課題】
転炉にて溶銑の予備脱りんを行い、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させてスラグを排滓する際に、溶銑の流出を抑制しつつ、残留スラグの量が少ない排滓方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は転炉にて溶銑の予備脱りんを行い、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させて排滓する際に、スラグのフォーミングを促進してスラグの嵩体積を増加させることにより、溶銑の流出を抑制しつつ、排滓を促進するものであり、その手段としてスラグ物性を制御するために、スラグ組成を適正な範囲とすることである。
【0012】
すなわち、本発明の要旨は以下の通りである。
【0013】
1)転炉にて溶銑の予備脱りん処理を行い、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させてスラグを排滓する際に、スラグ組成が(1)、(2)式の範囲となるようにスラグ組成を調整して排滓することを特徴とする転炉排滓法。
【0014】
(CaO)/(SiO)≧1.0 (1)
(Al)=2〜10 (2)
ここで、(CaO)、(SiO)、(Al)はそれぞれスラグ中のCaO、SiO、Al濃度(mass%)を表す。
【0015】
2)前項1記載のスラグ組成に調整する際に使用するAl源として、製鋼二次精錬工程にて発生するスラグを用いることを特徴とする転炉排滓法。
【0016】
【発明の実施の形態】
本発明の実施の形態を下記に説明する。
【0017】
スラグのフォーミングはスラグ相中にガスが滞留することにより生じ、フォーミング高さはスラグ中のガス滞留量によって決定される。すなわち、スラグ中のガスの上昇速度、気泡の破裂速度がともに小さく、また、脱炭等で発生するガスの発生速度が大きい場合はガスの滞留量が増加し、フォーミング高さが増加する。スラグ中のガスの上昇速度は、スラグ物性である粘度や密度およびスラグ中の気泡径によって、気泡の破裂速度は、スラグ物性である表面張力によって、決定される。従って、スラグ組成を変更し、スラグ物性を適正な範囲とすることで、フォーミングを制御することが可能となると考えられる。
【0018】
そこで、本発明者らは、フォーミング高さを排滓に適正な範囲に制御することを目的として、スラグ組成と物性およびフォーミング高さの関係を検討した。図1に小型炉での実験結果に基づいて推定したスラグ組成とフォーミング高さの関係を示すが、実機転炉ではフォーミング高さが4〜8mの時に排滓が最も促進されることが経験的にわかっており、従って、スラグ組成が(CaO)/(SiO)≧1.0、(Al)=2〜10mass%の範囲で排滓が最も促進されることがわかった。また、スラグ組成がこの範囲外であると、フォーミング高さが低すぎて排滓が効率良く行えないか、もしくは、脱りん処理中に過剰なフォーミングやスロッピングが生じ、操業障害を引き起こすため、望ましくない。また、(CaO)/(SiO)が低すぎる場合は、スラグの脱りん能にも悪影響を及ぼす。
【0019】
一方、スラグ物性は温度の影響も受けるが、通常の予備脱りん処理の温度域(=1250〜1400℃)では、上記のスラグ組成が最も適切であることもわかった。
【0020】
スラグ組成の調整方法としては、脱りんに必要な塩基度とスラグ量を確保するため、溶銑中のSi量や前チャージ脱炭スラグの残留量等に応じて、適宜、生石灰や珪石等の造滓剤を投入し、さらに脱りん処理終了数分前にAl源を投入する。さらに、Al源として製鋼二次精錬工程にて発生するスラグを用いれば、製鋼工程副産物の有効活用が可能となる。
【0021】
【実施例】
本発明の排滓方法による脱りん試験について説明する。
【0022】
試験は370t転炉において実施した。スクラップおよび溶銑を装入した後、溶銑中のSi量等に応じて、所定の塩基度およびスラグ量となるように生石灰や珪石等の造滓剤を投入して溶銑の予備脱りん処理を行い、さらに脱りん処理終了の1〜3分前に、所定のAl濃度となるようにAl源として造塊滓を投入して、スラグ組成を調整した。脱りん処理後に測温とサンプリングを行い、転炉を横転させて、約5分間かけて炉口からスラグを排滓した。尚、脱りん処理後の温度は1300〜1350℃の範囲であった。その後、転炉を直立させ、造滓剤を所定量投入して脱炭吹錬を行った。
【0023】
排滓については、予備脱りんおよび脱炭吹錬前後の溶鉄中とスラグ中のりんのバランスおよびCaOのバランスから(3)、(4)式に基づいて脱りん処理後に炉内に残留したスラグの量を計算し、(5)式で定義した排滓率で評価した。
【0024】
1000×[P]+Wr,1×(P)=1000×[P] +Ws,2×(P) (3)
s,2={Wr,1×(CaO)+ICaO,2×100}/(CaO) (4)
η={(Ws,1−Wr,1)×100}/Ws,1 (5)
ここで、
s,1、Ws,2:それぞれ、脱りんおよび脱炭処理後のスラグ量(kg/t−steel)
r,1:排滓後炉内残留スラグ量(kg/t−steel)
CaO,2:脱炭処理中のCaO投入量(kg/t−steel)
[P]、[P]:それぞれ、脱りんおよび脱炭処理後の溶鉄中りん濃度(mass%)
(P)、(P):それぞれ、脱りんおよび脱炭処理後のスラグ中りん濃度(mass%)
(CaO)、(CaO):それぞれ、脱りんおよび脱炭処理後のスラグ中CaO濃度(mass%)
η:排滓率(%)。
【0025】
表1に試験水準および試験結果を示す。水準1は従来のスラグ組成による比較例、水準2〜4はスラグ組成を本願特許記載の範囲とした発明例、水準5、6は本願特許記載の範囲外で(Al)が過剰な比較例、水準7は本願特許記載の範囲外で(CaO)/(SiO)が低い比較となっている。
【0026】
【表1】

Figure 2004323959
【0027】
表1に示すように、従来のスラグ組成(水準1)では排滓率が45%であるのに対し、本発明の範囲のスラグ組成(水準2〜4)では、70%以上の排滓率が得られ、排滓性が大幅に向上している。さらに、スラグの脱りん能の指標となる(CaO)/(SiO)がほぼ等しい水準1〜3を比較すると、排滓が良好であった水準2、3では脱炭吹錬後のりん濃度(=[P])が低位となった。また、本発明の範囲を逸脱するスラグ組成(水準5〜7)では、いずれも脱りん処理中に過剰なフォーミングやスロッピングが生じており、さらに、その鎮静に時間を要したため、排滓に十分な角度まで転炉が横転できずに、排滓率が低下した。
【0028】
【発明の効果】
転炉にて溶銑の予備脱りんを行い、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させてスラグを排滓する際に、溶銑の流出を抑制しつつ、残留スラグの量が少ない排滓が可能となり、脱炭吹錬時における仕上げ脱りん処理のための生石灰等の造滓剤が削減されるとともに、造滓剤の投入による温度降下が減少した。さらに、排滓率の変動による吹止時の溶鋼中りん濃度の変動が減少し、低位で安定する。
【図面の簡単な説明】
【図1】スラグ組成とフォーミング高さの関係を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for discharging waste from a converter.
[0002]
[Prior art]
BACKGROUND ART In iron and steel refining, in order to improve dephosphorization reaction efficiency, preliminary hot metal dephosphorization in which dephosphorization and decarburization are divided and hot metal before decarburization is dephosphorized is widely performed. The method of preliminarily dephosphorizing hot metal is broadly classified into a method using a hot metal transport container such as a torpedo car and a pan, and a method using a converter. 1) The container has a large internal volume, and there are few problems such as operation failure due to forming (= slag foaming phenomenon) and slopping (= slag or molten iron overflowing from the container), 2) High-speed dephosphorization treatment is possible because gas oxygen can be sent at a high speed. 3) Dephosphorization treatment with low basicity is possible because of a large amount of oxygen supply, and reduction of quicklime for refining and effective use of slag. It is possible to reduce free CaO, which is a problem in use. 4) For the above-mentioned reason, it is not necessary to perform a preliminary desiliconization treatment before the dephosphorization treatment, and desiliconization and dephosphorization can be performed simultaneously. 5) Solid oxygen (= Iron oxide, etc.) 6) It is easy to re-use the pre-charged decarburized slag as a dephosphorizing slag in a converter vessel, and it is easy to hot reuse in the converter vessel. There are advantages. Furthermore, if the idle converter or the existing converter can be used, the amount of new capital investment is small, and the method is highly advantageous in terms of resource saving and energy saving.
[0003]
Among the pre-phosphorus dephosphorization treatment methods using a converter, the converter is rolled over to remove only the dephosphorized slag while leaving the hot metal in the converter after the dephosphorization treatment, and then removed in the same converter. There is a method of performing coal blowing (for example, see Patent Document 1), and a method of using two or more converters as dedicated furnaces for dephosphorization and decarburization (for example, see Patent Document 2). Compared to the latter, 1) there is no tapping / charging process after dephosphorization, so the non-operating time of the converter is short, and 2) there is no hot metal transfer process. And 3) it is easy to leave the decarburized slag in the furnace and use it as a dephosphorizing slag agent.
[0004]
On the other hand, in the former method, since the converter is rolled over and the dephosphorized slag is discharged while leaving the hot metal in the converter, the outflow of the hot metal is suppressed, and only the slag is discharged with high efficiency. However, there is a problem that slag remaining in the furnace without slag is rephosphorized during decarburization blowing. Therefore, various proposals have been made as follows as an efficient waste disposal method.
[0005]
First, a method in which gas is blown from a plurality of tuyeres provided on the furnace belly and the furnace bottom to move slag to the furnace port side and discharge the waste (for example, see Patent Document 1), slag forming by blowing an oxidizing gas (For example, see Patent Document 3) has been proposed. However, in these methods, it is necessary to remodel the converter to install tuyeres on the belly of the furnace, In the converter where the loss has progressed, the slag position changes due to the change in the internal volume, the tuyere position deviates from the optimal position, and it is necessary to constantly blow gas to prevent tuyere clogging during blowing. There is a problem that the cost of gas that is originally unnecessary increases.
[0006]
Further, a method of selectively discharging only slag using electromagnetic force (for example, see Patent Document 4) has been proposed. However, capital investment costs are high, and a high temperature and severe environment with severe vibration are proposed. There is a problem such as an increase in maintenance costs below.
[0007]
Further, a method has been proposed in which the position of the hot metal is detected by electrical conduction or an optical fiber to determine the optimum tilting position of the converter for the waste and to discharge the waste (for example, see Patent Documents 5 and 6). Although these methods can detect the position of the hot metal and determine the optimum tilting position of the converter, they are insufficient for promoting the waste.
[0008]
In addition, it is conceivable to apply a method of scraping slag by a waste plate used as a method of discharging torpedo cars or pans (for example, see Patent Document 7) to the converter, but considering the capacity of the converter, However, the facilities are too large to be realistic.
[0009]
[Patent Document 1]
Patent No. 2582692 [Patent Document 2]
Patent No. 1761646 [Patent Document 3]
JP 05-279721 A [Patent Document 4]
JP 05-247514 A [Patent Document 5]
Japanese Patent Application Laid-Open No. 05-288479 [Patent Document 6]
JP 06-235016 A [Patent Document 7]
JP-A-59-130909
[Problems to be solved by the invention]
Preliminary dephosphorization of the hot metal in the converter, and while the hot metal remains in the converter after the dephosphorization treatment, when the converter is rolled over and the slag is discharged, while controlling the outflow of the hot metal, It is an object of the present invention to provide a waste disposal method having a small amount of waste.
[0011]
[Means for Solving the Problems]
The present invention performs preliminary dephosphorization of hot metal in a converter, and promotes slag forming by promoting slag forming when the converter is rolled over and discharged while leaving the hot metal in the converter after the dephosphorization treatment. By increasing the bulk volume, the discharge of the hot metal is suppressed and the waste is promoted, and as a means for controlling the slag physical properties, the slag composition is adjusted to an appropriate range.
[0012]
That is, the gist of the present invention is as follows.
[0013]
1) Preliminary dephosphorization of hot metal is performed in a converter, and after the dephosphorization process, while leaving the hot metal in the converter, the converter is turned over to discharge slag, and the slag composition is (1). A converter waste method comprising adjusting the slag composition so as to fall within the range of the expression (2) and discharging the waste.
[0014]
(CaO) / (SiO 2 ) ≧ 1.0 (1)
(Al 2 O 3 ) = 2 to 10 (2)
Here, (CaO), (SiO 2 ), and (Al 2 O 3 ) represent CaO, SiO 2 , and Al 2 O 3 concentrations (mass%) in the slag, respectively.
[0015]
2) A converter slag method characterized by using slag generated in a steelmaking secondary refining process as an Al 2 O 3 source used when adjusting the slag composition according to the above item 1.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below.
[0017]
The slag forming is caused by the gas staying in the slag phase, and the forming height is determined by the amount of gas staying in the slag. That is, when the rising speed of the gas in the slag and the bursting speed of the bubbles are both low, and when the generation speed of the gas generated by decarburization or the like is high, the amount of retained gas increases and the forming height increases. The rate at which the gas in the slag rises is determined by the viscosity and density of the slag and the bubble diameter in the slag, and the burst rate of the bubbles is determined by the surface tension of the slag. Therefore, it is considered that forming can be controlled by changing the slag composition and setting the slag physical properties in an appropriate range.
[0018]
Then, the present inventors examined the relationship between the slag composition, the physical properties, and the forming height for the purpose of controlling the forming height to an appropriate range for waste. FIG. 1 shows the relationship between the slag composition and the forming height estimated based on the experimental results in a small furnace, and it is empirical that in the actual converter, the waste is most promoted when the forming height is 4 to 8 m. Therefore, it was found that the waste was most promoted when the slag composition was in the range of (CaO) / (SiO 2 ) ≧ 1.0 and (Al 2 O 3 ) = 2 to 10 mass%. Also, if the slag composition is out of this range, the forming height is too low to perform the waste efficiently, or excessive forming or slopping occurs during the dephosphorization treatment, thereby causing an operation failure, Not desirable. When (CaO) / (SiO 2 ) is too low, the slag dephosphorizing ability is adversely affected.
[0019]
On the other hand, the slag physical properties are also affected by the temperature, but it was also found that the above-mentioned slag composition was most appropriate in the temperature range (= 1250 to 1400 ° C.) of the normal preliminary dephosphorization treatment.
[0020]
As a method of adjusting the slag composition, in order to secure the basicity and the amount of slag necessary for dephosphorization, the production of quicklime or silica stone is appropriately performed according to the amount of Si in the hot metal and the residual amount of the pre-charged decarburized slag. A slag is charged and an Al 2 O 3 source is charged several minutes before the end of the dephosphorization treatment. Furthermore, the use of the slag generated in the steelmaking secondary refining step as Al 2 O 3 source, it is possible to effectively utilize the steelmaking byproducts.
[0021]
【Example】
The dephosphorization test by the waste disposal method of the present invention will be described.
[0022]
The test was performed in a 370t converter. After charging the scrap and hot metal, according to the amount of Si in the hot metal, etc., a slag-making agent such as quicklime or silica is charged so as to have a predetermined basicity and a slag amount, and the hot metal is preliminarily dephosphorized. Further, 1 to 3 minutes before the end of the dephosphorization treatment, slag composition was added as a source of Al 2 O 3 to adjust the slag composition so as to have a predetermined Al 2 O 3 concentration. After the dephosphorization treatment, temperature measurement and sampling were performed, the converter was turned over, and slag was discharged from the furnace port for about 5 minutes. The temperature after the dephosphorization treatment was in the range of 1300 to 1350 ° C. Thereafter, the converter was set upright, a predetermined amount of a slag-making agent was charged, and decarburization blowing was performed.
[0023]
Regarding the slag, the slag remaining in the furnace after the dephosphorization treatment based on the equations (3) and (4) based on the phosphorus balance in the molten iron and slag before and after the preliminary dephosphorization and decarburization blowing and the balance of CaO. Was calculated and evaluated by the waste rate defined by the equation (5).
[0024]
1000 × [P] 1 + Wr, 1 × (P) 1 = 1000 × [P] 2 + Ws , 2 × (P) 2 (3)
W s, 2 = {W r, 1 × (CaO) 1 + I CaO, 2 × 100} / (CaO) 2 (4)
η = {(Ws , 1− Wr , 1 ) × 100} / Ws , 1 (5)
here,
W s, 1 , W s, 2 : Slag amount after dephosphorization and decarburization treatment (kg / t-steel), respectively
W r, 1 : Amount of slag remaining in the furnace after waste (kg / t-steel)
I CaO, 2 : CaO input during decarburization treatment (kg / t-steel)
[P] 1 , [P] 2 : phosphorus concentration in molten iron after dephosphorization and decarburization treatment (mass%), respectively
(P) 1 , (P) 2 : phosphorus concentration in slag after dephosphorization and decarburization treatment, respectively (mass%)
(CaO) 1 , (CaO) 2 : CaO concentration (mass%) in slag after dephosphorization and decarburization treatment, respectively
η: Waste rate (%).
[0025]
Table 1 shows the test levels and test results. Level 1 is a comparative example based on the conventional slag composition, Levels 2 to 4 are invention examples in which the slag composition is in the range described in the present patent, and Levels 5 and 6 are outside the range described in the present patent and have excessive (Al 2 O 3 ). Comparative Example, Level 7 is a comparison in which (CaO) / (SiO 2 ) is low outside the range described in the patent of the present application.
[0026]
[Table 1]
Figure 2004323959
[0027]
As shown in Table 1, the waste rate is 45% in the conventional slag composition (level 1), whereas the waste rate in the range of the present invention (levels 2 to 4) is 70% or more. Is obtained, and the waste property is greatly improved. Furthermore, comparing levels 1 to 3 in which (CaO) / (SiO 2 ), which are indicators of the dephosphorizing ability of slag, are almost equal, the levels of phosphorus after decarburization blowing were found in levels 2 and 3 where the waste was good. (= [P]) was low. In addition, in any slag composition (levels 5 to 7) that deviates from the scope of the present invention, excessive forming and slopping occurred during the dephosphorization treatment, and furthermore, it took time to calm down the slag. The converter could not roll over to a sufficient angle, and the waste rate decreased.
[0028]
【The invention's effect】
Preliminary dephosphorization of the hot metal in the converter, and while the hot metal remains in the converter after the dephosphorization treatment, when the converter is rolled over and the slag is discharged, while controlling the outflow of the hot metal, The amount of slag is reduced, the amount of slag-forming agent such as quicklime used for finishing dephosphorization during decarburization blowing is reduced, and the temperature drop due to the introduction of the slag-forming agent is reduced. Further, the fluctuation of the phosphorus concentration in the molten steel at the time of blow-off due to the fluctuation of the waste rate is reduced, and is stabilized at a low level.
[Brief description of the drawings]
FIG. 1 is a view showing a relationship between a slag composition and a forming height.

Claims (2)

転炉にて溶銑の予備脱りん処理を行い、脱りん処理後に溶銑を転炉内に残したまま、転炉を横転させてスラグを排滓する際に、スラグ組成が(1)、(2)式の範囲となるようにスラグ組成を調整して排滓することを特徴とする転炉排滓法。
(CaO)/(SiO)≧1.0 (1)
(Al)=2〜10 (2)
ここで、(CaO)、(SiO)、(Al)はそれぞれスラグ中のCaO、SiO、Al濃度(mass%)を表す。
When the hot metal is preliminarily dephosphorized in the converter and the hot metal is left in the converter after the dephosphorization, the converter is overturned to discharge the slag, and the slag composition is (1), (2). A converter waste method comprising adjusting the slag composition so as to fall within the range of the expression (1) and discharging the waste.
(CaO) / (SiO 2 ) ≧ 1.0 (1)
(Al 2 O 3 ) = 2 to 10 (2)
Here, (CaO), (SiO 2 ), and (Al 2 O 3 ) represent CaO, SiO 2 , and Al 2 O 3 concentrations (mass%) in the slag, respectively.
請求項1記載のスラグ組成に調整する際に使用するAl源として、製鋼二次精錬工程にて発生するスラグを用いることを特徴とする転炉排滓法。As Al 2 O 3 source used in adjusting the slag composition of claim 1 wherein, BOF Haikasu method which comprises using a slag generated in the steelmaking secondary refining process.
JP2003124295A 2003-04-28 2003-04-28 Method for removing slag in converter Withdrawn JP2004323959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124295A JP2004323959A (en) 2003-04-28 2003-04-28 Method for removing slag in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124295A JP2004323959A (en) 2003-04-28 2003-04-28 Method for removing slag in converter

Publications (1)

Publication Number Publication Date
JP2004323959A true JP2004323959A (en) 2004-11-18

Family

ID=33501935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124295A Withdrawn JP2004323959A (en) 2003-04-28 2003-04-28 Method for removing slag in converter

Country Status (1)

Country Link
JP (1) JP2004323959A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145228A1 (en) * 2008-05-27 2009-12-03 新日本製鐵株式会社 Slag foaming killing material, and slag foaming killing method
JP2017002362A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method
JP2017002363A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method
CN113195746A (en) * 2018-12-17 2021-07-30 日本制铁株式会社 Method and device for estimating residual slag amount in furnace
JP7568922B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method
JP7568923B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145228A1 (en) * 2008-05-27 2009-12-03 新日本製鐵株式会社 Slag foaming killing material, and slag foaming killing method
JP2009287050A (en) * 2008-05-27 2009-12-10 Nippon Steel Corp Killing material for slag-foaming, and killing method therefor
JP4580435B2 (en) * 2008-05-27 2010-11-10 新日本製鐵株式会社 Forming sedative material for slag pan and sedation method
KR101234483B1 (en) 2008-05-27 2013-02-18 신닛테츠스미킨 카부시키카이샤 Slag foaming killing material, and slag foaming killing method
JP2017002362A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method
JP2017002363A (en) * 2015-06-11 2017-01-05 新日鐵住金株式会社 Converter slag removing method
CN113195746A (en) * 2018-12-17 2021-07-30 日本制铁株式会社 Method and device for estimating residual slag amount in furnace
CN113195746B (en) * 2018-12-17 2023-10-20 日本制铁株式会社 Method and device for estimating residual slag quantity in furnace
JP7568922B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method
JP7568923B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method

Similar Documents

Publication Publication Date Title
JP4907411B2 (en) Slag sedation method
JP5671801B2 (en) Converter refining method
WO1995001458A1 (en) Steel manufacturing method using converter
JP2018178260A (en) Converter steelmaking process
JPH0770626A (en) Converter steel making method
JPH10152714A (en) Method for refining molten iron
JP2004323959A (en) Method for removing slag in converter
KR20070059747A (en) Method for refining molten steel in converter
JP6468084B2 (en) Converter discharge method
JP5967139B2 (en) Hot metal pretreatment method
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP2011184753A (en) Method for desiliconizing molten iron
JP5983900B1 (en) Hot metal pretreatment method
JP6835233B2 (en) Slag forming suppression method and converter refining method
JP5602047B2 (en) Dephosphorization method of hot metal in a chaotic car
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP5286892B2 (en) Dephosphorization method of hot metal
JP7508022B2 (en) Refining Method
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
WO2022154024A1 (en) Converter refining method
JP4025713B2 (en) Dephosphorization method of hot metal
JP5979017B2 (en) Hot metal refining method
JP3668172B2 (en) Hot metal refining method
JP2009052070A (en) Method for dephosphorizing molten iron
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704