JP2018188730A - Converter steelmaking process - Google Patents

Converter steelmaking process Download PDF

Info

Publication number
JP2018188730A
JP2018188730A JP2018078913A JP2018078913A JP2018188730A JP 2018188730 A JP2018188730 A JP 2018188730A JP 2018078913 A JP2018078913 A JP 2018078913A JP 2018078913 A JP2018078913 A JP 2018078913A JP 2018188730 A JP2018188730 A JP 2018188730A
Authority
JP
Japan
Prior art keywords
converter
hot metal
slag
dephosphorization
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018078913A
Other languages
Japanese (ja)
Other versions
JP6665884B2 (en
Inventor
菊池 直樹
Naoki Kikuchi
直樹 菊池
憲治 中瀬
Kenji Nakase
憲治 中瀬
洋晴 井戸
Hiroharu Ido
洋晴 井戸
錦織 正規
Masanori Nishigori
正規 錦織
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018188730A publication Critical patent/JP2018188730A/en
Application granted granted Critical
Publication of JP6665884B2 publication Critical patent/JP6665884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the phosphor concentration in molten steel to be smelted and to simultaneously improve the productivity and dissolution efficiency of the cold iron source in a converter steelmaking method for smelting molten steel from hot metal using one converter.SOLUTION: The converter steelmaking method according to the present invention comprises: a first process of charging hot metal into a converter; a second process of supplying a CaO-based solvent to the converter for hot metal desiliconization in the converter; a third process of discharging at least a part of slag generated in the second process from the converter; a fourth process of supplying a CaO-based solvent to the converter and dephosphorization of the hot metal left in the converter; a fifth process of discharging at least a part of slag generated in the fourth process from the converter; and a sixth process of supplying a CaO-based solvent to the converter to decarbonize the hot metal left in the converter. A subsequent first process of the next charge is carried out in the state where the slag generated in the sixth process is left in the converter. The slag generated in the sixth step is re-used as the CaO-based solvent for the desiliconization treatment in the next charge.SELECTED DRAWING: Figure 2

Description

本発明は、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法に関する。   The present invention relates to a converter steelmaking method in which hot metal charged in a converter is subjected to oxygen blowing to produce molten steel from the hot metal.

製鋼スラグの発生量の低減、及び、溶鋼の品質向上のために、転炉で脱炭精錬する前に、溶銑に対して脱珪処理、脱燐処理、脱硫処理の予備処理が行われている。そのうちで転炉を用いた溶銑の脱燐処理では、酸素ガス供給流量(「送酸速度」ともいう)を大きくすることができ、高速処理が可能である。一方、溶鋼の生産量を増加する場合は、本来、脱炭精錬に使用する転炉を用いて予備処理を行うので、転炉を用いた溶銑の脱燐処理は困難となる。   In order to reduce the amount of steelmaking slag and improve the quality of the molten steel, pretreatment of desiliconization, dephosphorization, and desulfurization is performed on the hot metal before decarburizing and refining in the converter. . Among them, in the hot metal dephosphorization treatment using a converter, the oxygen gas supply flow rate (also referred to as “acid feed rate”) can be increased, and high-speed treatment is possible. On the other hand, when increasing the production amount of molten steel, since the preliminary treatment is originally performed using the converter used for decarburization refining, the dephosphorization treatment of the hot metal using the converter becomes difficult.

また、製鋼工程における炭酸ガスの発生量低減のためには、鉄源として冷鉄源を配合して溶銑比率を低下することが有効である。転炉設備はスクラップシュートなどを用いて多量の冷鉄源の投入が可能であるが、冷鉄源を溶解するための熱補償が転炉での精錬で必要となる。   In order to reduce the amount of carbon dioxide generated in the steel making process, it is effective to mix a cold iron source as an iron source to reduce the hot metal ratio. The converter equipment can use a scrap chute or the like to input a large amount of cold iron source, but heat compensation for melting the cold iron source is required for refining in the converter.

溶銑の脱燐処理は送酸しながら生石灰などのCaO系媒溶剤を添加して行うが、溶銑中の炭素も酸化除去され、その結果、溶銑の潜熱が低下する。したがって、転炉での脱炭精錬で高価なFe−Si合金などの発熱材の添加を行わない前提では、溶銑に対して脱燐処理を実施せずに冷鉄源の溶解を促進するか、脱燐処理の実施かの選択を行う必要がある。   The hot metal dephosphorization treatment is performed by adding a CaO-based solvent such as quicklime while feeding the acid, but the carbon in the hot metal is also oxidized and removed, resulting in a decrease in the latent heat of the hot metal. Therefore, on the premise of not adding an exothermic material such as an expensive Fe-Si alloy in decarburization refining in a converter, promote melting of a cold iron source without performing dephosphorization treatment on hot metal, It is necessary to select whether to carry out dephosphorization treatment.

従来、転炉での溶銑脱燐と冷鉄源の溶解とを合理的に両立させる目的で、特許文献1及び特許文献2には、脱珪・脱燐処理及び脱炭精錬を、脱珪・脱燐処理で生成したスラグを排滓する排滓工程を挟んで1つの転炉で連続して行う転炉製鋼方法が提案されている。この精錬方法では脱珪・脱燐処理後に転炉を傾動させて排滓し、引き続き脱炭精錬を実施し、脱炭精錬後のスラグは炉内に残留させて次のチャージの溶銑を装入し、次のチャージの脱珪・脱燐処理を開始している。   Conventionally, Patent Document 1 and Patent Document 2 describe desiliconization / dephosphorization treatment and decarburization refining in order to rationalize both hot metal dephosphorization in a converter and melting of a cold iron source. There has been proposed a converter steelmaking method that is continuously performed in one converter with an exhausting step of exhausting slag generated by the dephosphorization process. In this refining method, after desiliconization and dephosphorization, the converter is tilted and exhausted, and then decarburization refining is carried out, and the slag after decarburization refining remains in the furnace and the molten iron of the next charge is charged. Then, desiliconization / dephosphorization processing for the next charge has started.

一方、特許文献3、特許文献4、特許文献5、特許文献6には、転炉を用いた溶銑の予備処理において、前半の脱珪処理後に転炉を傾動させて脱珪処理で生成したスラグを排滓し、引き続き、転炉内に残留させた脱珪処理後の溶銑及びスラグに対してCaO系媒溶剤を添加するとともに酸素ガスを吹錬して溶銑の脱燐処理を行う、溶銑の予備処理方法が提案されている。尚、炉内のスラグを一旦排出し、新たなスラグを炉内に形成する、特許文献1〜6で開示される精錬方法を、「ダブルスラグ法」とも称している。   On the other hand, in Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6, in the hot metal pretreatment using the converter, the slag produced by the desiliconization process by tilting the converter after the first half of the desiliconization process. Next, the CaO-based solvent is added to the hot metal and the slag after the desiliconization process left in the converter, and the dephosphorization process of the hot metal is performed by blowing oxygen gas. Pre-processing methods have been proposed. Note that the refining method disclosed in Patent Documents 1 to 6, in which slag in the furnace is once discharged and new slag is formed in the furnace is also referred to as “double slag method”.

また、特許文献7には、転炉製鋼工程における冷鉄源溶解の効率向上を目的として、転炉内に冷鉄源と溶銑を装入する第1工程と、酸素ガスを吹込んで脱珪処理及び脱炭精錬を行う第2工程と、次いで酸素ガスの吹込みを停止して転炉内に比表面積0.5〜11.0m/tonの冷鉄源を装入する第3工程と、次いで転炉内に生石灰を装入した後に酸素ガスを吹込んで脱炭精錬と同時に脱燐処理を行ない、更に、出鋼する第4工程と、を有する精錬方法が提案されている。つまり、1回の転炉精錬で、冷鉄源を転炉内に2回装入する技術が提案されている。 Patent Document 7 discloses a first step of charging a cold iron source and hot metal into the converter for the purpose of improving the efficiency of melting the cold iron source in the converter steelmaking process, and desiliconization treatment by blowing oxygen gas into the converter. And a second step of performing decarburization refining, and then a third step of stopping the blowing of oxygen gas and charging a cold iron source having a specific surface area of 0.5 to 11.0 m 2 / ton into the converter, Next, a refining method has been proposed which includes a fourth step in which quick lime is charged into the converter and oxygen gas is blown into the converter to perform decarburization refining and dephosphorization at the same time, and further, steel is removed. That is, a technique has been proposed in which a cold iron source is charged twice into the converter by one converter refining.

特開2000−328123号公報JP 2000-328123 A 特開2001−192720号公報JP 2001-192720 A 特開2013−189714号公報JP 2013-189714 A 国際公開第2013/012039号International Publication No. 2013/012039 特開2013−231237号公報JP 2013-231237 A 特開2013−227664号公報JP 2013-227664 A 特開2013−133484号公報JP 2013-133484 A

しかしながら、上記従来技術には以下の問題がある。   However, the above prior art has the following problems.

即ち、特許文献1、2に開示される、転炉製鋼方法にダブルスラグ法を適用した、脱珪・脱燐処理→排滓工程→脱炭精錬の場合には、前半の脱珪・脱燐処理の段階で溶銑の燐濃度が十分に低下せず、且つ、排滓を完全に行うことはできないために、後半の脱炭精錬では溶製される溶鋼の低燐化が困難であるという問題がある。   That is, in the case of desiliconization / dephosphorization treatment → exhaust process → decarburization refining in which double slag method is applied to the converter steelmaking method disclosed in Patent Documents 1 and 2, the first half of desiliconization / dephosphorization The problem is that the phosphorus concentration of the molten steel is difficult to reduce in the latter half of the decarburization refining because the phosphorus concentration of the hot metal is not sufficiently reduced at the treatment stage and exhaustion cannot be performed completely. There is.

一方、特許文献3〜6に開示される、溶銑予備処理にダブルスラグ法を適用した、脱珪処理→排滓→脱燐処理の場合には、脱燐処理後の溶銑の燐濃度を低くすることができ、且つ、脱炭精錬は別の転炉で行うために、溶製される溶鋼の低燐化が可能であるが、2基の転炉を用いるために生産性が低いという問題がある。   On the other hand, in the case of desiliconization → exhaust → dephosphorization, in which the double slag method is applied to the hot metal pretreatment disclosed in Patent Documents 3 to 6, the phosphorus concentration in the hot metal after dephosphorization is lowered. In addition, since decarburization and refining is performed in a separate converter, it is possible to reduce the phosphatization of molten steel. However, since two converters are used, there is a problem that productivity is low. is there.

特許文献7に開示される、冷鉄源を転炉内に2回装入する技術では、2回目の冷鉄源装入時に炉内に脱珪処理で生成した低塩基度で高粘性のスラグが存在するので、装入した冷鉄源が炉内のスラグでコーテイングされた状態となり、精錬中の溶解効率が低下するという問題がある。   According to the technology disclosed in Patent Document 7 in which a cold iron source is charged twice in a converter, a low basicity and high viscosity slag generated by desiliconization in the furnace when the cold iron source is charged for the second time. Therefore, there is a problem that the charged cold iron source is coated with the slag in the furnace and the melting efficiency during refining is lowered.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、1基の転炉を用い、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法において、溶製される溶鋼の燐濃度を低くすることができると同時に、転炉の生産性及び冷鉄源の溶解効率を高めることのできる転炉製鋼方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to use a single converter, perform oxygen blowing on the hot metal charged in the converter, and smelt the molten steel from the hot metal. In the converter steelmaking method, the phosphorus concentration of the molten steel to be melted can be lowered, and at the same time, the converter steelmaking method capable of increasing the productivity of the converter and the melting efficiency of the cold iron source is provided. is there.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、転炉内に溶銑を装入する第1工程と、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、からなり、第6工程で発生したスラグを転炉内に残留させた状態で次のチャージの第1工程を行って、第6工程で発生したスラグを次のチャージの脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
[2]第3工程で排滓するスラグと第5工程で排滓するスラグとを、同一のスラグ保持容器に排滓する、上記[1]に記載の転炉製鋼方法。
[3]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、冷鉄源を転炉内へ装入する、上記[1]または上記[2]に記載の転炉製鋼方法。
[4]第1工程で転炉内に溶銑を装入する前に冷鉄源を転炉内に装入し、更に、第3工程の後及び/または第5工程の後に、転炉内に冷鉄源を装入する、上記[1]または上記[2]に記載の転炉製鋼方法。
[5]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量は、いずれの期間も、転炉に装入する総鉄源の10質量%以下とする、上記[3]または上記[4]に記載の転炉製鋼方法。
The gist of the present invention for solving the above problems is as follows.
[1] A converter steelmaking method in which hot metal is refined from a hot metal in one converter and a molten steel is produced from the hot metal, the first step of charging the hot metal into the converter, and a CaO-based medium in the converter. A second step of supplying a solvent, and agitating the hot metal in the converter with the bottom blowing gas, supplying oxygen gas from the top blowing lance to the hot metal, and desiliconizing the hot metal in the converter; A third step of tilting and discharging at least a part of the slag generated in the second step from the converter; returning the converter to an upright position; supplying a CaO-based solvent to the converter; A fourth step of dephosphorizing the hot metal remaining in the converter by supplying oxygen gas from the top blowing lance to the hot metal while stirring the hot metal in the bottom blowing gas; and fourth tilting the converter again. A fifth step of discharging at least a part of the slag generated in the process from the converter, and returning the converter to an upright position, Supplying an O-based solvent and stirring the hot metal in the converter with the bottom blowing gas while supplying oxygen gas from the top blowing lance to the hot metal to decarburize and refine the hot metal remaining in the converter The first step of the next charge is performed with the slag generated in the sixth step remaining in the converter, and the slag generated in the sixth step is desiliconized by the next charge. A converter steelmaking method for reuse as a CaO-based solvent.
[2] The converter steelmaking method according to [1], wherein the slag discharged in the third step and the slag discharged in the fifth step are discharged into the same slag holding container.
[3] Before the molten iron is charged into the converter in the first step, after the third step, and at least one of the periods after the fifth step, the cold iron source is loaded into the converter. The converter steelmaking method according to [1] or [2] above.
[4] Before the molten iron is charged into the converter in the first step, the cold iron source is charged into the converter, and further, after the third step and / or after the fifth step, into the converter. The converter steelmaking method according to [1] or [2] above, wherein a cold iron source is charged.
[5] Before the molten iron is charged into the converter in the first step, after the third step, and after the fifth step, the amount of cold iron source charged in each period The converter steelmaking method according to the above [3] or [4], wherein the total iron source to be charged is 10 mass% or less.

本発明によれば、1基の転炉で溶銑から溶鋼を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成させるので、溶銑に含有されていた燐の炉外への排出が促進され、脱炭精錬後の溶鋼の燐濃度を安定して低くすることが実現される。また、脱炭精錬で生成する脱炭スラグを炉内に残留させて、次のチャージの脱珪処理にCaO源として再利用するので、系外に排出されるスラグは脱珪スラグ及び脱燐スラグだけとなり、スラグの排出量が軽減されるのみならず、前のチャージの脱炭スラグの有する熱量及び鉄分を次のチャージの脱珪処理において回収することができ、回収した熱量によって冷鉄源の溶解が促進され、また、回収した鉄分によって鉄歩留まりが向上する。更に、本発明では、1基の転炉を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉の生産性の低下が抑制される。   According to the present invention, in a converter steelmaking method in which molten steel is melted from hot metal in a single converter, desiliconization treatment, dephosphorization treatment and decarburization refining are performed separately, and desiliconization treatment and dephosphorization are performed. After the treatment, each slag is discharged and slag is formed three times in the furnace, which promotes the discharge of phosphorus contained in the hot metal to the outside of the furnace and stabilizes the phosphorus concentration in the molten steel after decarburization refining. Can be realized. In addition, decarburization slag generated by decarburization refining is left in the furnace and reused as the CaO source for the next charge desiliconization treatment, so the slag discharged outside the system is desiliconized slag and dephosphorized slag. The amount of heat and iron content of the decarburized slag from the previous charge can be recovered in the desiliconization process of the next charge. Dissolution is promoted, and the iron yield is improved by the recovered iron. Furthermore, in the present invention, since a single converter is used to refine the molten metal in the furnace without discharging it outside the furnace, a reduction in the productivity of the converter is suppressed.

また、本発明においては、冷鉄源を複数回に分けて添加可能であり、冷鉄源の溶解が促進され、炭酸ガス発生量の軽減に寄与する。   In the present invention, the cold iron source can be added in a plurality of times, the dissolution of the cold iron source is promoted, and the carbon dioxide generation amount is reduced.

本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図である。It is a schematic sectional drawing of the converter used when implementing the converter steelmaking method which concerns on this invention. 本発明に係る転炉製鋼方法を工程順に示す概略図である。It is the schematic which shows the converter steelmaking method which concerns on this invention in process order.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図であり、図2は、本発明に係る転炉製鋼方法を工程順に示す概略図である。尚、図1は、図2−(C)の第2工程の脱珪処理を示す図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a converter used when the converter steelmaking method according to the present invention is carried out, and FIG. 2 is a schematic diagram showing the converter steelmaking method according to the present invention in the order of steps. In addition, FIG. 1 is a figure which shows the desiliconization process of the 2nd process of FIG. 2- (C).

本発明に係る転炉製鋼方法では、図1に示すような上底吹き可能な転炉1を用いる。上吹きは、転炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から酸素源として酸素含有ガスを溶銑5に向けて供給して行われる。酸素含有ガスとしては、酸素ガス、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスを使用することができる。図1では、酸素含有ガスとして酸素ガス8を使用した例を示している。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはアルゴンガスや窒素ガスなどの不活性ガスのみでもよく、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するものであればよい。   In the converter steelmaking method according to the present invention, a converter 1 capable of blowing an upper bottom as shown in FIG. 1 is used. The top blowing is performed by supplying an oxygen-containing gas toward the hot metal 5 as an oxygen source from the tip of the top blowing lance 2 via the top blowing lance 2 that can move up and down in the converter 1. As the oxygen-containing gas, oxygen gas, oxygen-enriched air, air, or a mixed gas of oxygen gas and inert gas can be used. FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas. Here, the oxygen gas 8 is industrial pure oxygen. The bottom blowing is performed through a bottom blowing tuyere 3 provided at the bottom of the converter 1. The bottom blowing gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas. By blowing into the hot metal, the stirring of the hot metal 5 is strengthened to promote the melting of the cold iron source. It is sufficient if it has a function to perform.

本発明においては、溶銑5の精錬に1基の転炉1を使用し、溶銑予備処理のうちの脱珪処理、脱燐処理を実施し、且つ、脱珪処理後及び脱燐処理後に排滓を実施し、更に、脱燐処理を施した溶銑に対して脱炭精錬を実施して、溶銑から溶鋼を溶製する。   In the present invention, one converter 1 is used for refining the hot metal 5, the desiliconization treatment and the dephosphorization treatment of the hot metal preliminary treatment are performed, and the waste after the desiliconization treatment and after the dephosphorization treatment is performed. Further, decarburization refining is performed on the hot metal that has been subjected to the dephosphorization treatment, and molten steel is produced from the hot metal.

本発明に係る転炉製鋼方法では、図2−(A)に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。本発明では、転炉1で行われた前チャージの脱炭精錬で生成したスラグ(「脱炭スラグ」という)を転炉内に残留させることを必須としており、したがって、脱炭スラグが残留する転炉1の内部に冷鉄源7を装入することになるが、図2−(A)は、定期修理後などの操業が開始された1チャージ目の状態(前チャージの脱炭スラグが存在しない状態)を示している。   In the converter steelmaking method according to the present invention, a cold iron source 7 is charged into the converter 1 via a scrap chute 10 as shown in FIG. In the present invention, it is essential that the slag produced by the decarburization and refining of the pre-charge performed in the converter 1 (referred to as “decarburized slag”) remains in the converter, and therefore the decarburized slag remains. Although the cold iron source 7 will be charged into the converter 1, FIG. 2- (A) shows the state of the first charge when the operation such as after the periodic repair is started (the decharged slag of the previous charge is It indicates a state that does not exist.

尚、冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。   Although charging the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, the converter 1 of the cold iron source 7 is used to reduce the amount of carbon dioxide generated in the steelmaking process. It is preferable to perform charging.

次いで、図2−(B)に示すように、転炉1に、装入鍋11を介して高炉から出銑され、必要に応じて脱硫処理の施された溶銑5(以下、「高炉溶銑5」と記す)を装入する(第1工程)。   Next, as shown in FIG. 2-(B), the hot metal 5 (hereinafter referred to as “blast furnace hot metal 5”, which is discharged from the blast furnace through the charging pot 11 and subjected to desulfurization treatment as required, is converted into the converter 1. ”) (First step).

その後、この転炉内の高炉溶銑5に、酸素源として酸素ガス8を供給して、図2−(C)に示すように、脱珪処理を実施する(第2工程)。高炉溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 Thereafter, oxygen gas 8 is supplied as an oxygen source to the blast furnace hot metal 5 in the converter, and desiliconization processing is performed as shown in FIG. 2- (C) (second step). Silicon contained in the blast furnace hot metal 5 reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ), and desiliconization proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the dissolution of the cold iron source 7 in the hot metal is promoted.

本発明では、この転炉1で行われた前チャージの脱炭精錬で生成した脱炭スラグをCaO源として転炉内に残留させており、脱珪反応によって生成するSiOは、炉内の前チャージの脱炭スラグと反応してスラグ6が生成される。脱珪処理において生成するスラグ6は「脱珪スラグ」とも呼ばれるので、以下、脱珪処理で生成するスラグ6を「脱珪スラグ6」と記す。 In the present invention, the decarburized slag generated by the precharge decarburization refining performed in the converter 1 is left in the converter as a CaO source, and the SiO 2 generated by the desiliconization reaction is generated in the furnace. The slag 6 is produced by reacting with the pre-charged decarburized slag. Since the slag 6 generated in the desiliconization process is also referred to as “desiliconization slag”, the slag 6 generated in the desiliconization process is hereinafter referred to as “desiliconization slag 6”.

脱珪処理においては、脱珪スラグ6の塩基度([質量%CaO]/[質量%SiO])(以下、単に「塩基度」とのみ表示することもある)を0.5以上、好ましくは0.8以上に保持する。脱珪スラグ6の塩基度を0.5以上に制御する理由は、脱珪スラグ6の塩基度が0.5未満になると、脱珪処理中に、前チャージの脱炭スラグに含有されていた3CaO・Pなる燐酸化物が分解し、分解した燐が高炉溶銑5に戻り(この現象を「復燐」という)、脱珪処理後の溶銑14の燐濃度が脱珪処理前よりも高くなることが起こるからである。脱珪スラグ6の塩基度が高くなるほど復燐は起こらず、したがって、脱珪スラグ6の塩基度を0.8以上にすることが好ましい。 In the desiliconization treatment, the basicity ([mass% CaO] / [mass% SiO 2 ]) (hereinafter sometimes simply referred to as “basicity”) of the desiliconization slag 6 is 0.5 or more, preferably Is kept above 0.8. The reason for controlling the basicity of the desiliconized slag 6 to 0.5 or more is that when the basicity of the desiliconized slag 6 is less than 0.5, it was contained in the decarburized slag of the pre-charge during the desiliconization process. The phosphorous oxide 3CaO · P 2 O 5 is decomposed, and the decomposed phosphorus returns to the blast furnace hot metal 5 (this phenomenon is referred to as “rebound phosphorus”), and the phosphorus concentration in the hot metal 14 after the desiliconization treatment is higher than that before the desiliconization treatment. Because it happens to be high. As the basicity of the desiliconized slag 6 increases, dephosphorization does not occur. Therefore, the basicity of the desiliconized slag 6 is preferably set to 0.8 or more.

脱珪処理で生成するSiOによって炉内に残留する前チャージの脱炭スラグは希釈され、炉内に生成する脱珪スラグ6の塩基度は徐々に低下していくが、残留させた前チャージの脱炭スラグの塩基度は2.5〜5.0と高塩基度であるので、通常は、炉内に生成する脱珪スラグ6の塩基度は0.5以上に確保される。 The precharged decarburized slag remaining in the furnace is diluted with SiO 2 produced by the desiliconization treatment, and the basicity of the desiliconized slag 6 produced in the furnace is gradually lowered, but the precharge remaining Since the basicity of the decarburized slag is as high as 2.5 to 5.0, the basicity of the desiliconized slag 6 produced in the furnace is normally secured to 0.5 or more.

但し、定期修理後などの操業が開始された1チャージ目の場合は、炉内に前チャージの脱炭スラグは残留せず、したがって、脱珪スラグ6の塩基度を0.5以上に調整することが必要である。また、前チャージの脱炭スラグを残留させた場合も、脱珪スラグ6の塩基度を0.5以上に調整しなければならない場合も起こり得る。   However, in the case of the first charge after the start of operations such as after periodic repairs, the pre-charged decarburized slag does not remain in the furnace, so the basicity of the desiliconized slag 6 is adjusted to 0.5 or more. It is necessary. Further, even when the pre-charged decarburized slag remains, there may be a case where the basicity of the desiliconized slag 6 must be adjusted to 0.5 or more.

このように、脱珪スラグ6の塩基度を0.5以上に調整する場合には、脱珪処理前及び/または脱珪処理中にCaO系媒溶剤を転炉1に添加する。CaO系媒溶剤の添加量は過剰に多くする必要はなく、脱珪スラグ6の塩基度の上限を1.5程度とすればよい。   Thus, when adjusting the basicity of the desiliconization slag 6 to 0.5 or more, a CaO-based solvent is added to the converter 1 before and / or during the desiliconization process. The addition amount of the CaO-based solvent need not be excessively increased, and the upper limit of the basicity of the desiliconized slag 6 may be about 1.5.

脱珪処理におけるCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。また、脱炭スラグを冷却して固化させ、固化した脱炭スラグを破砕し、または、破砕せず、塊状または粉体状の脱炭スラグをCaO系媒溶剤として使用することもできる。   As the CaO-based solvent in the desiliconization treatment, quick lime, dolomite, calcium carbonate and the like can be used. In addition, the decarburized slag can be cooled and solidified, and the solidified decarburized slag can be crushed or can be used as a CaO-based solvent without crushed or in bulk or powder.

脱珪処理のための酸素源としては、上吹きランス2からの酸素ガス8のみでもよく、また、酸素ガス8に酸化鉄(図示せず)を併用してもよい。短時間で行われる脱珪処理中に目標とする塩基度の脱珪スラグ6を形成させるためには、CaO系媒溶剤の滓化を促進させる機能を有する酸化鉄を使用することが効果的であるが、本発明では、CaO系媒溶剤として、溶融状態の脱炭スラグを使用するので、酸素ガス8のみを用いて脱珪処理を行っても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。更に、精錬容器として、強攪拌が可能な転炉1を使用するので、酸素ガス8のみを用いても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。   As an oxygen source for the silicon removal treatment, only the oxygen gas 8 from the top blowing lance 2 may be used, or iron oxide (not shown) may be used in combination with the oxygen gas 8. In order to form the desiliconized slag 6 having a target basicity during the desiliconization process performed in a short time, it is effective to use iron oxide having a function of promoting the hatching of the CaO-based solvent. However, in the present invention, since decarburized slag in a molten state is used as the CaO-based solvent, even if desiliconization treatment is performed using only the oxygen gas 8, a sufficiently targeted basic desiliconized slag. 6 can be formed. Furthermore, since the converter 1 capable of strong stirring is used as the refining vessel, the desiliconized slag 6 having a sufficiently basic basicity can be formed even if only the oxygen gas 8 is used.

この脱珪処理のあとに、図2−(D)に示すように、転炉1を傾動させて、排滓工程を設け、脱珪処理で発生した、SiOを大量に含む脱珪スラグ6の少なくとも一部を転炉1の炉口からスラグ保持容器に(図示せず)に排出する(第3工程)。 After this desiliconization treatment, as shown in FIG. 2- (D), the converter 1 is tilted to provide an exhausting step, and the desiliconization slag 6 containing a large amount of SiO 2 generated by the desiliconization treatment. Is discharged from the furnace port of the converter 1 to a slag holding container (not shown) (third step).

脱珪処理で発生したSiOを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱珪処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。50質量%以上の排滓率を確保するために、脱珪スラグ6の塩基度を0.5〜1.1の範囲に調整し、且つ、脱珪スラグ6の温度を1280℃以上に調整することが好ましい。 In order to discharge SiO 2 generated by the desiliconization process to the outside of the furnace as much as possible, the rejection rate (rejection rate (mass%) = (discharge slag mass) x 100 / (in-furnace slag mass at the end of desiliconization process)) ) Is preferably 50% by mass or more. In order to ensure a rejection rate of 50% by mass or more, the basicity of the desiliconized slag 6 is adjusted to a range of 0.5 to 1.1, and the temperature of the desiliconized slag 6 is adjusted to 1280 ° C. or higher. It is preferable.

脱珪スラグ6の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱珪処理後の溶銑14(以下、「脱珪溶銑14」と記す)にCaO系媒溶剤及び酸素源を供給して、図2−(E)に示すように、脱珪溶銑14に対して脱燐処理を実施する(第4工程)。脱燐処理において生成するスラグは「脱燐スラグ」とも呼ばれるので、以下、脱燐処理で生成するスラグ12を「脱燐スラグ12」と記す。   After the desiliconization slag 6 is discharged, the converter 1 is returned to an upright position with the furnace port facing upward, and the desiliconized hot metal 14 (hereinafter referred to as “desiliconized hot metal 14”) left in the converter. 2), a dephosphorization treatment is performed on the desiliconized hot metal 14 as shown in FIG. 2- (E) (fourth step). Since the slag generated in the dephosphorization process is also referred to as “dephosphorization slag”, the slag 12 generated in the dephosphorization process is hereinafter referred to as “dephosphorization slag 12”.

脱燐処理においては、炉内の脱燐スラグ12の塩基度は1.5〜3.5の範囲に調整する。脱燐スラグ12の塩基度が高いほど燐酸化物(3CaO・Pなる)の吸収能が高くなって脱燐反応が促進されるので、脱燐反応を促進するために、脱燐スラグ12の塩基度を1.5以上に制御する。一方、脱燐スラグ12の塩基度が3.5を超えると、脱燐スラグ12の滓化性が悪くなり、脱燐反応が遅くなるので、脱燐スラグ12の塩基度を3.5以下に制御する。 In the dephosphorization treatment, the basicity of the dephosphorization slag 12 in the furnace is adjusted to a range of 1.5 to 3.5. The higher the basicity of the dephosphorization slag 12, the higher the absorption capacity of the phosphor oxide (3CaO · P 2 O 5 ), and the dephosphorization reaction is promoted. Therefore, in order to promote the dephosphorization reaction, the dephosphorization slag 12 The basicity is controlled to 1.5 or more. On the other hand, if the basicity of the dephosphorized slag 12 exceeds 3.5, the hatchability of the dephosphorized slag 12 is deteriorated and the dephosphorization reaction is slowed, so the basicity of the dephosphorized slag 12 is set to 3.5 or less. Control.

脱燐処理で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが挙げられる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱燐処理時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。   Examples of the CaO-based solvent used in the dephosphorization treatment include quick lime, dolomite, and calcium carbonate. However, it is not limited to these, What contains 50 mass% or more of CaO, and also contains other components, such as a fluorine and an alumina as needed, can be used as a CaO type | system | group solvent solvent at the time of a dephosphorization process. . As a method for adding the CaO-based medium solvent, granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged through an upper blowing lance 2 or the like.

この脱燐処理工程において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。   The oxygen source used in this dephosphorization process is mainly composed of the oxygen gas 8 from the top blowing lance 2 as in the desiliconization process, but a part of iron oxide may be used.

脱珪溶銑14に含有される燐は供給される酸素源中の酸素に酸化されて燐酸化物(P)となり、この燐酸化物が、CaO系媒溶剤の滓化によって形成され、脱燐精錬剤として機能する脱燐スラグ12に3CaO・Pなる安定形態の化合物として取り込まれ、脱珪溶銑14の脱燐反応が進行する。脱燐反応が進行して脱珪溶銑14の燐濃度が所定の値に低下したなら、脱燐処理を終了する。 Phosphorus contained in the desiliconized hot metal 14 is oxidized to oxygen in the supplied oxygen source to become phosphorus oxide (P 2 O 5 ), which is formed by the incubation of the CaO-based solvent, and dephosphorized. The dephosphorization slag 12 functioning as a refining agent is incorporated as a stable compound of 3CaO · P 2 O 5 , and the dephosphorization reaction of the desiliconized hot metal 14 proceeds. When the dephosphorization reaction proceeds and the phosphorus concentration in the desiliconized molten iron 14 is lowered to a predetermined value, the dephosphorization process is terminated.

後工程の脱炭精錬によって溶製される溶鋼の燐濃度を安定して低下するためには、脱燐処理後の溶銑15(以下、「脱燐溶銑15」と記す)の燐濃度が0.040質量%以下になるまで、脱燐処理を行うことが好ましい。   In order to stably lower the phosphorus concentration of the molten steel produced by the decarburization and refining in the subsequent process, the phosphorus concentration of the hot metal 15 after the dephosphorization treatment (hereinafter referred to as “dephosphorized hot metal 15”) is set to 0. It is preferable to perform a dephosphorization process until it becomes 040 mass% or less.

この脱燐処理のあとに、図2−(F)に示すように、転炉1を再度傾動させて、排滓工程を設け、脱燐処理で発生した、3CaO・Pを含有する脱燐スラグ12の少なくとも一部を転炉1の炉口からスラグ保持容器(図示せず)に排出する(第5工程)。 After this dephosphorization treatment, as shown in FIG. 2 (F), the converter 1 is tilted again to provide an exhausting step, and contains 3CaO · P 2 O 5 generated by the dephosphorization treatment. At least a part of the dephosphorization slag 12 is discharged from the furnace port of the converter 1 to a slag holding container (not shown) (fifth step).

その際に、第3工程で脱珪スラグ6が排出され、脱珪スラグ6を収納したスラグ保持容器に、脱燐スラグ12を排出することが好ましい。脱珪スラグ6と脱燐スラグ12とを同じスラグ保持容器で回収することで、転炉工場内の物流が簡素化され、効率的な操業を行うことが可能となる。   At that time, it is preferable that the desiliconized slag 6 is discharged in the third step, and the dephosphorized slag 12 is discharged into a slag holding container containing the desiliconized slag 6. By recovering the desiliconized slag 6 and the dephosphorized slag 12 in the same slag holding container, the logistics in the converter plant is simplified and efficient operation can be performed.

脱燐処理で発生した3CaO・Pを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱燐処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。 In order to discharge 3CaO · P 2 O 5 generated in the dephosphorization process outside the furnace as much as possible, the rejection rate (rejection rate (mass%) = (discharge slag mass) × 100 / (furnace at the end of dephosphorization process) The inner slag mass)) is preferably 50% by mass or more.

脱燐スラグ12の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱燐処理後の脱燐溶銑15にCaO系媒溶剤及び酸素源を供給して、図2−(G)に示すように、脱燐溶銑15に対して脱炭精錬を実施する(第6工程)。   After the dephosphorization slag 12 is discharged, the converter 1 is returned to the upright position with the furnace port facing upward, and the dephosphorization molten iron 15 remaining in the converter is added to the CaO-based solvent and oxygen source. As shown in FIG. 2 (G), decarburization refining is performed on the dephosphorized molten iron 15 (sixth step).

脱炭精錬においては、炉内のスラグ13の塩基度は2.5〜5.0に調整する。これは、脱炭精錬では、脱燐処理で得られた脱燐溶銑15を脱燐処理よりも更に低い濃度まで脱燐する必要があり、そのためには、塩基度の下限値を脱燐処理よりも高める必要があるからである。一方、脱炭精錬は、脱燐処理に比較して上吹き酸素ガス流量が多く、溶湯の攪拌が強いので、塩基度が5.0以下であれば炉内のスラグ13は十分に滓化する。脱炭精錬において生成するスラグは「脱炭スラグ」とも呼ばれるので、以下、脱炭精錬で生成するスラグ13を「脱炭スラグ13」と記す。   In decarburization refining, the basicity of the slag 13 in the furnace is adjusted to 2.5 to 5.0. This is because in decarburization refining, it is necessary to dephosphorize the dephosphorized hot metal 15 obtained by the dephosphorization treatment to a lower concentration than that of the dephosphorization treatment. It is also necessary to increase it. On the other hand, decarburization refining has a higher flow rate of oxygen gas blown than dephosphorization and strong stirring of the molten metal, so if the basicity is 5.0 or less, the slag 13 in the furnace will sufficiently hatch. . Since the slag generated in the decarburization refining is also referred to as “decarburization slag”, the slag 13 generated in the decarburization refining is hereinafter referred to as “decarburization slag 13”.

脱炭精錬で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱炭精錬時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。また、脱炭精錬において使用する酸素源は、上吹きランス2からの酸素ガス8を主体とする。   As the CaO-based solvent used for decarburization refining, quick lime, dolomite, calcium carbonate and the like can be used. However, it is not limited to these, What contains 50 mass% or more of CaO, and also contains other components, such as a fluorine and an alumina as needed, can be used as a CaO type | system | group solvent at the time of decarburization refining. . As a method for adding the CaO-based medium solvent, granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged through an upper blowing lance 2 or the like. Further, the oxygen source used in the decarburization refining mainly includes oxygen gas 8 from the top blowing lance 2.

脱炭精錬後、図2−(H)に示すように、転炉1を出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼16を出湯口4を介して取鍋などの溶鋼保持容器(図示せず)に出鋼する。   After decarburization refining, as shown in FIG. 2 (H), the converter 1 is tilted to the side where the outlet 4 is installed, and the molten steel 16 in the molten converter is passed through the outlet 4. Steel is discharged into a molten steel holding container (not shown) such as a ladle.

溶鋼16の出鋼後、炉内の脱炭スラグ13を排出せずに残留させ、図2−(A)に示すように冷鉄源7を転炉1に装入し、更に、図2−(B)に示すように高炉溶銑5を転炉1に装入し、次のチャージの脱珪処理を開始する。炉内に残留させた脱炭スラグ13は次のチャージの脱珪処理においてCaO源として有効活用される。脱炭スラグ13の一部を排滓処理すると、その排滓時間の分だけ、処理時間が長くなり、転炉1の生産性が低下するので、これを避けるために、脱炭スラグ13の排滓処理は行わないことが好ましい。つまり、炉内の脱炭スラグ13の全量を残留させることが好ましい。   After the molten steel 16 is discharged, the decarburized slag 13 in the furnace is left without being discharged, and the cold iron source 7 is charged into the converter 1 as shown in FIG. As shown in (B), the blast furnace hot metal 5 is charged into the converter 1 and the next charge desiliconization process is started. The decarburized slag 13 left in the furnace is effectively used as a CaO source in the next charge desiliconization process. When a part of the decarburized slag 13 is exhausted, the processing time is increased by the amount of the exhaust time, and the productivity of the converter 1 is reduced. To avoid this, the exhaust of the decarburized slag 13 is reduced. It is preferable not to perform the soot treatment. That is, it is preferable to leave the entire amount of the decarburized slag 13 in the furnace.

本発明に係る転炉製鋼方法において、生産性の向上及び炭酸ガスの排出量削減のために、冷鉄源7を可能な限り多く装入することが好ましい。この観点から、第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、転炉内へ冷鉄源を装入することが好ましい。特に、前述したように、第1工程での、高炉溶銑5を転炉1に装入する前に転炉1に冷鉄源7を装入し、更に、脱珪処理(第2工程)で生成した脱珪スラグ6を排滓する第3工程の後、及び/または、脱燐処理(第4工程)で生成した脱燐スラグ12を排滓する第5工程の後に、転炉内に冷鉄源7を装入することがより好ましい。転炉内への冷鉄源の装入量は、冷鉄源の未溶解を抑制する観点から、いずれの期間も、転炉に装入する総鉄源の10質量%以下とすることが好ましい。冷鉄源7の総装入量が同じ場合も、冷鉄源7を分散して装入することで、冷鉄源7の溶解が促進される。ここで、総鉄源とは、当該チャージにおいて転炉内へ装入される溶銑の質量及び冷鉄源の質量の和である。   In the converter steelmaking method according to the present invention, it is preferable to charge as many cold iron sources 7 as possible in order to improve productivity and reduce carbon dioxide emission. From this point of view, before the molten iron is charged into the converter in the first step, after the third step, at least one of the periods after the fifth step, the cold iron source is supplied into the converter. It is preferable to charge. In particular, as described above, the cold iron source 7 is charged into the converter 1 before the blast furnace hot metal 5 is charged into the converter 1 in the first process, and further, in the desiliconization process (second process). After the third step of discharging the generated desiliconized slag 6 and / or after the fifth step of discharging the dephosphorized slag 12 generated in the dephosphorization process (fourth step), cooling is performed in the converter. More preferably, the iron source 7 is charged. The charging amount of the cold iron source into the converter is preferably 10% by mass or less of the total iron source charged into the converter in any period from the viewpoint of suppressing undissolution of the cold iron source. . Even when the total charging amount of the cold iron source 7 is the same, melting the cold iron source 7 is promoted by dispersing and charging the cold iron source 7. Here, the total iron source is the sum of the mass of the hot metal charged into the converter and the mass of the cold iron source in the charge.

また、冷鉄源7の装入量を多くする場合には、冷鉄源7の溶解に高炉溶銑5が含有する珪素の燃焼熱を利用することが好ましい。したがって、その場合には、高炉鋳床での脱珪処理は行わないことが望ましい。   Moreover, when increasing the charging amount of the cold iron source 7, it is preferable to use the combustion heat of silicon contained in the blast furnace hot metal 5 for melting the cold iron source 7. Therefore, in that case, it is desirable not to perform the desiliconization process in the blast furnace casting floor.

以上説明したように、本発明によれば、1基の転炉1で高炉溶銑5から溶鋼16を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成(トリプルスラグ法)させるので、高炉溶銑5に含有されていた燐の炉外への排出が促進され、転炉製鋼方法にダブルスラグ法を適用した場合に問題であった、脱炭精錬後の溶鋼16の低燐化を安定して実現することが可能となる。また、脱炭精錬で生成する脱炭スラグ13を炉内に残留させて、次のチャージの脱珪処理にCaO源として再利用するので、系外に排出されるスラグは脱珪スラグ6及び脱燐スラグ12だけとなり、スラグの排出量が軽減されるのみならず、前のチャージの脱炭スラグ13の有する熱量及び鉄分を次のチャージの脱珪処理において回収することができ、回収した熱量によって冷鉄源7の溶解が促進され、また、回収した鉄分によって鉄歩留まりが向上する。更に、本発明では、1基の転炉1を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉1の生産性の低下が抑制される。   As described above, according to the present invention, the desiliconization process, the dephosphorization process, and the decarburization refining are separately performed in the converter steelmaking method in which the molten steel 16 is melted from the blast furnace hot metal 5 in one converter 1. In addition, after the desiliconization process and the dephosphorization process, the waste is exhausted and the slag is formed three times in the furnace (triple slag method), so that the phosphorus contained in the blast furnace hot metal 5 is discharged to the outside of the furnace. Emission is promoted, and it becomes possible to stably realize low phosphorusization of the molten steel 16 after decarburization refining, which was a problem when the double slag method is applied to the converter steelmaking method. In addition, the decarburized slag 13 generated by decarburization refining is left in the furnace and reused as the CaO source for the next charge desiliconization treatment. It becomes only phosphorus slag 12 and not only the discharge amount of slag is reduced, but also the amount of heat and iron content of the decarburization slag 13 of the previous charge can be recovered in the desiliconization process of the next charge, and depending on the amount of recovered heat The melting of the cold iron source 7 is promoted, and the iron yield is improved by the recovered iron content. Furthermore, in this invention, since the molten metal in a furnace is refined using one converter 1 without discharging | emitting outside a furnace, the fall of the productivity of the converter 1 is suppressed.

図1に示すような容量300トンの転炉を用いて本発明に係る転炉製鋼方法を実施した(本発明例1)。また、比較のために、排滓を脱燐処理後の1回のみとする、脱燐処理後に脱燐溶銑を出湯し、別の転炉に装入して脱炭精錬を行う、または、脱炭スラグを再利用しない試験操業(比較例1〜3)も実施した。   The converter steelmaking method according to the present invention was carried out using a converter having a capacity of 300 tons as shown in FIG. 1 (Invention Example 1). In addition, for comparison purposes, the waste will be discharged only once after the dephosphorization treatment. After the dephosphorization treatment, the dephosphorization molten iron is poured out and charged into another converter for decarburization or refining. The test operation (Comparative Examples 1-3) which does not reuse charcoal slag was also implemented.

表1に、本発明例1及び比較例1〜3における、転炉を用いた脱珪処理、脱燐処理、脱炭精錬での上吹き酸素ガス及び攪拌用の底吹き窒素ガスの供給条件、吹錬時間、精錬する溶銑の質量を示す。   In Table 1, the supply conditions of the top blown oxygen gas and the bottom blown nitrogen gas for stirring in the desiliconization treatment using the converter, the dephosphorization treatment, and the decarburization refining in Invention Example 1 and Comparative Examples 1 to 3, Blowing time indicates the mass of hot metal to be refined.

Figure 2018188730
Figure 2018188730

また、表2に本発明例1及び比較例1〜3の試験条件を示す。表2に示すように、本発明例1及び比較例1〜3では冷鉄源を装入しないで試験した。   Table 2 shows the test conditions of Example 1 of the present invention and Comparative Examples 1 to 3. As shown in Table 2, the present invention example 1 and comparative examples 1 to 3 were tested without charging a cold iron source.

Figure 2018188730
Figure 2018188730

比較例1は、脱珪・脱燐処理→排滓→脱炭精錬のダブルスラグ法、比較例2は、脱珪処理→排滓→脱燐処理→出湯→別の転炉に再装入→脱炭精錬のダブルスラグ法、比較例3は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であるが、脱炭スラグの再利用を行わない条件である。本発明例1は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であり、且つ、脱炭スラグを排滓することなく転炉内に残留させて次のチャージの溶銑を装入し、残留させた脱炭スラグを次のチャージの脱珪処理で再利用した。また、本発明例1では、脱珪スラグと脱燐スラグとを同一のスラグ保持容器に排滓した。   Comparative Example 1 is a double slag method of desiliconization / dephosphorization → waste removal → decarburization refining, and Comparative Example 2 is desiliconization → waste → dephosphorization → tapping → recharging to another converter → The double slag method of decarburization refining, Comparative Example 3 is a triple slag method of desiliconization treatment → exhaust → dephosphorization → exhaust → decarburization refining, but is a condition in which decarburization slag is not reused . Invention Example 1 is a triple slag method of desiliconization treatment → exhaust → dephosphorization → exhaust → decarburization refining, and the decarburization slag is left in the converter without being exhausted. Charged hot metal was charged and the remaining decarburized slag was reused in the next charge desiliconization process. Further, in Invention Example 1, the desiliconized slag and the dephosphorized slag were discharged into the same slag holding container.

本発明例1及び比較例1〜3における冶金特性、生産性、CaO系媒溶剤原単位を表3に示す。表3は、各試験とも20チャージの平均値であり、表3の総処理時間は、精錬開始の溶銑装入から最終の脱炭精錬終了、出鋼、排滓までの時間である。   Table 3 shows metallurgical properties, productivity, and CaO-based solvent basic units in Invention Example 1 and Comparative Examples 1 to 3. Table 3 shows the average value of 20 charges in each test, and the total processing time in Table 3 is the time from the hot metal charging at the start of refining to the end of the final decarburization refining, steel output, and exhausting.

Figure 2018188730
Figure 2018188730

比較例1は、脱珪・脱燐処理後の排滓のみであり、したがって、総処理時間が短い。しかしながら、脱珪・脱燐処理後の排滓時点の溶銑中燐濃度が高く(0.055質量%)、また、排滓率が60質量%であったため、脱炭精錬中に炉内に残留する燐量が多く、脱炭精錬後の溶鋼の燐濃度が高かった(0.012質量%)。   Comparative Example 1 is only the waste after desiliconization / dephosphorization treatment, and therefore the total treatment time is short. However, since the phosphorus concentration in the hot metal after the desiliconization and dephosphorization treatment was high (0.055% by mass) and the rejection rate was 60% by mass, it remained in the furnace during decarburization and refining. The amount of phosphorus to be carried out was large, and the phosphorus concentration of the molten steel after decarburization refining was high (0.012% by mass).

比較例2は、脱珪処理後の排滓に加え、脱燐処理後に出湯して排滓し、脱燐溶銑を別の転炉に再度装入するので、総処理時間が長いという問題があった。しかし、脱燐処理によって脱燐溶銑は低燐化されており、且つ、脱燐スラグがほぼ完全に炉外に除去されるため、脱炭精錬後の溶鋼の燐濃度は低かった。   In Comparative Example 2, in addition to the waste after the desiliconization treatment, the hot water is discharged after the dephosphorization treatment, and the dephosphorization molten iron is charged again into another converter. Therefore, the total treatment time is long. It was. However, the dephosphorization of the dephosphorized hot metal was made low by the dephosphorization treatment, and the dephosphorization slag was almost completely removed outside the furnace, so that the phosphorus concentration in the molten steel after decarburization refining was low.

比較例3は、トリプルスラグ法であり、比較例1に比べて総処理時間は長いが、出湯・再装入を行う比較例2に対しては総処理時間が短い。また、脱燐溶銑は低燐化されており、脱燐スラグがほぼ完全に炉外に除去される比較例2と比べると脱燐スラグの除去率は低いものの、脱炭精錬後の溶鋼の低濃化が実現されていた。但し、スラグを再利用していないので、生石灰原単位は28kg/溶鋼−tと高位であった。   Comparative Example 3 is a triple slag method, and the total processing time is longer than that of Comparative Example 1, but the total processing time is shorter than that of Comparative Example 2 in which tapping and recharging is performed. Moreover, the dephosphorization hot metal is low-phosphorus, and although the removal rate of dephosphorization slag is low compared with Comparative Example 2 in which dephosphorization slag is almost completely removed outside the furnace, the molten steel after decarburization refining is low. Concentration was realized. However, since the slag was not reused, the quicklime basic unit was as high as 28 kg / molten steel-t.

比較例1〜3に対して、本発明例1では、比較例3と同等の冶金特性であり、脱炭スラグを脱珪処理へ再利用しているので、生石灰原単位は25kg/溶鋼−tと低位であった。また、脱炭スラグを排滓しないので、その分、比較例3よりも総処理時間が短縮した。   Compared with Comparative Examples 1 to 3, the present invention example 1 has the same metallurgical characteristics as Comparative Example 3, and the decarburized slag is reused for the desiliconization treatment, so the quick lime unit is 25 kg / molten steel-t. And low. Moreover, since the decarburized slag was not discharged, the total processing time was shortened by that amount compared with Comparative Example 3.

次に、冷鉄源の転炉への装入時期及び装入量を変化させて冷鉄源の溶解状況を比較する試験を行った(本発明例2〜8)。   Next, the test which compares the melt | dissolution condition of a cold iron source by changing the charging time and charging amount of a cold iron source to the converter was done (invention examples 2-8).

精錬方法は、本発明例1と同一であり、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法で、且つ、脱炭スラグを脱珪処理へ再利用した。本発明例2〜8で、冷鉄源の装入量は、転炉に装入する総鉄源の25質量%の一定とした。つまり、総鉄源を300トンとし、1チャージあたり225トンの高炉溶銑に対して、1チャージあたり75トンの冷鉄源を装入した。75トンの冷鉄源のうちで、60質量%分の45トンの冷鉄源は、厚さ10mm以上の重量屑を切断したものを使用し、残りの40質量%分の30トンは、厚さ10mm未満の軽量屑を使用した。本発明例2〜8における冷鉄源の装入条件を表4に示す。   The refining method was the same as Example 1 of the present invention, and was a triple slag method of desiliconization treatment → removal → dephosphorization treatment → removal → decarburization refining, and the decarburization slag was reused for desiliconization treatment. In Invention Examples 2 to 8, the amount of the cold iron source charged was constant at 25% by mass of the total iron source charged in the converter. In other words, the total iron source was 300 tons, and 75 tons of cold iron source was charged per charge for 225 tons of blast furnace hot metal per charge. Of the 75 tons of cold iron source, 45 tons of cold iron source for 60% by mass is obtained by cutting waste scraps having a thickness of 10 mm or more, and the remaining 30 tons for 40% by mass is thick. A lightweight scrap having a thickness of less than 10 mm was used. Table 4 shows charging conditions of the cold iron source in Examples 2 to 8 of the present invention.

Figure 2018188730
Figure 2018188730

表4に示すように、総鉄源の合計25質量%分の冷鉄源を溶解するにあたり、本発明例2では、高炉溶銑の装入前に5質量%(軽量屑=15トン)、脱珪スラグの排滓後に10質量%(軽量屑=15トン、重量屑=15トン)、脱燐スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   As shown in Table 4, in melting the cold iron source for a total of 25% by mass of the total iron source, in Example 2 of the present invention, 5% by mass (lightweight scrap = 15 tons) 10% by mass (lightweight waste = 15 tons, heavy waste = 15 tons) after discharging silica slag, and 10% by weight (heavy waste = 30 tons) cold iron source in the converter after discharging dephosphorization slag. I entered.

本発明例3では、高炉溶銑の装入前に、75トンの全ての冷鉄源を転炉内に装入し、本発明例4では、高炉溶銑の装入前に15質量%(軽量屑=30トン、重量屑=15トン)、脱珪スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   In Invention Example 3, 75 tons of all cold iron sources were charged into the converter before charging the blast furnace hot metal. In Invention Example 4, 15% by mass (lightweight scrap) was charged before charging the blast furnace hot metal. = 30 tons, heavy waste = 15 tons), 10% by mass (heavy waste = 30 tons) of cold iron source was charged into the converter after the desiliconization slag was discharged.

本発明例5では、高炉溶銑の装入前に10質量%(軽量屑=15トン、重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例6では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)、脱燐スラグの排滓後に5質量%(軽量屑=15トン)の冷鉄源を転炉内に装入した。   In Example 5 of the present invention, 10% by mass (lightweight waste = 15 tons, heavy waste = 15 tons) before charging the blast furnace hot metal, and 15% by weight (lightweight waste = 15 tons, heavy waste = 30 tons) of cold iron source was charged into the converter. In Example 6 of the present invention, 5% by mass (weight waste = 15 tons) before charging the blast furnace hot metal, and 15% by mass after desiliconization slag was discharged. (Lightweight waste = 15 tons, heavy waste = 30 tons) After discharge of dephosphorization slag, 5 mass% (lightweight waste = 15 tons) of cold iron source was charged into the converter.

本発明例7では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例8では、高炉溶銑の装入前に15質量%(軽量屑=15トン、重量屑=30トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に5質量%(重量屑=15トン)の冷鉄源を転炉内に装入した。   In Example 7 of the present invention, 5% by mass (heavy scrap = 15 tons) before charging the blast furnace hot metal, 5% by mass (lightweight scrap = 15 tons) after discharging the desiliconized slag, and 15% after discharging the dephosphorized slag. A cold iron source of mass% (lightweight scrap = 15 tons, heavy scrap = 30 tons) was charged into the converter, and in Example 8 of the present invention, 15 mass% (lightweight scrap = 15 tons) before charging the blast furnace hot metal. , Heavy waste = 30 tons), 5 mass% (lightweight waste = 15 tons) after removal of desiliconized slag, and 5 mass% (heavy waste = 15 tons) cold iron source after removal of dephosphorization slag I was charged inside.

本発明例3では、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に転炉を傾動させた際に、炉底に未溶解の冷鉄源が確認された。また、脱炭精錬後の出鋼後に、炉内に残留させた脱炭スラグに混じって未溶解の冷鉄源が確認された。   In Invention Example 3, an undissolved cold iron source was confirmed at the bottom of the furnace when the converter was tilted at the time of discharge after desiliconization and at the time of discharge after dephosphorization. In addition, after steel removal after decarburization refining, an undissolved cold iron source was confirmed by mixing with decarburized slag left in the furnace.

本発明例4及び本発明例5では、本発明例3と同様に、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に未溶解の冷鉄源が一部炉底に観察された。また、脱炭精錬後の出鋼後に、炉内に残留させたスラグに混じって少量の未溶解の冷鉄源が観察された。   In Invention Example 4 and Invention Example 5, as in Invention Example 3, a part of the undissolved cold iron source is present at the bottom of the furnace at the time of discharge after the desiliconization process and at the time of discharge after the dephosphorization process. Observed. In addition, after steel removal after decarburization refining, a small amount of undissolved cold iron source was observed mixed with slag left in the furnace.

本発明例6〜本発明例8では、本発明例4及び本発明例5に比較して、冷鉄源の残留量は少ないものの、炉底や脱炭精錬後の出鋼後に炉内に残留させたスラグに混じって未溶解の冷鉄源が僅かに確認された。   In Invention Example 6 to Invention Example 8, compared with Invention Example 4 and Invention Example 5, although the residual amount of the cold iron source is small, it remains in the furnace after the bottom of the furnace or after steel removal after decarburization refining. A slight amount of undissolved cold iron mixed with the slag was confirmed.

これに対して、本発明例2においては、脱珪処理の排滓時、脱燐処理後の排滓時、及び、脱炭精錬後の出鋼後に炉内に残留させた脱炭スラグに未溶解の冷鉄源は確認されなかった。   On the other hand, in Example 2 of the present invention, the decarburization slag left in the furnace at the time of exhaustion after the desiliconization process, at the time of exhaustion after the dephosphorization process, and after steel removal after the decarburization refining is not No source of dissolved cold iron was identified.

このように、同一量の冷鉄源を装入する場合でも、冷鉄源の装入時期を分散させることで、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が軽減されることがわかった。また、冷鉄源を分散させる場合でも、各工程、即ち、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後において、総鉄源の10質量%を超える量の冷鉄源を装入すると、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が発生する。したがって、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後に転炉内に装入する冷鉄源の量は、いずれの期間も、総鉄源の10質量%以下に制御することが好ましいことが確認できた。尚、冷鉄源の溶解挙動の比較を行った本発明例2〜本発明例8における脱珪反応、脱燐反応及び脱炭反応の冶金特性は本発明例1と同様であった。   In this way, even when the same amount of cold iron source is charged, by dispersing the charging time of the cold iron source, the cold iron by adhering the undissolved cold iron source to the furnace bottom or mixing with the slag It was found that undissolved source was reduced. Even when the cold iron source is dispersed, the amount exceeding 10% by mass of the total iron source in each step, that is, after the hot metal charging, after the desiliconization treatment, and after the dephosphorization treatment. When the cold iron source is charged, the undissolved cold iron source adheres to the furnace bottom and the cold iron source is not melted by mixing with the slag. Therefore, the amount of the cold iron source charged into the converter before the hot metal charging, after the desiliconization treatment, and after the dephosphorization treatment is 10% by mass of the total iron source in any period. It was confirmed that the following control is preferable. In addition, the metallurgical characteristics of the desiliconization reaction, the dephosphorization reaction, and the decarburization reaction in Invention Example 2 to Invention Example 8 where the dissolution behaviors of the cold iron sources were compared were the same as in Invention Example 1.

1 転炉
2 上吹きランス
3 底吹き羽口
4 出湯口
5 高炉溶銑
6 脱珪スラグ
7 冷鉄源
8 酸素ガス
9 底吹きガス
10 スクラップシュート
11 装入鍋
12 脱燐スラグ
13 脱炭スラグ
14 脱珪溶銑
15 脱燐溶銑
16 溶鋼
DESCRIPTION OF SYMBOLS 1 Converter 2 Top blowing lance 3 Bottom blowing tuyere 4 Outlet 5 Blast furnace hot metal 6 Desiliconization slag 7 Cold iron source 8 Oxygen gas 9 Bottom blowing gas 10 Scrap chute 11 Charging pan 12 Dephosphorization slag 13 Decarburization slag 14 Desorption Silica hot metal 15 Dephosphorized hot metal 16 Molten steel

Claims (5)

1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、
転炉内に溶銑を装入する第1工程と、
転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、
転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、
転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、
からなり、
第6工程で発生したスラグを転炉内に残留させた状態で次のチャージの第1工程を行って、第6工程で発生したスラグを次のチャージの脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
A converter steelmaking method in which hot metal is refined in one converter to produce molten steel from hot metal,
A first step of charging hot metal into the converter;
First, a CaO-based solvent is supplied into the converter, and the hot metal in the converter is desiliconized by supplying oxygen gas from the top blowing lance to the hot metal while stirring the hot metal in the converter with the bottom blowing gas. Two steps,
A third step of tilting the converter and discharging at least part of the slag generated in the second step from the converter;
Return the converter to the upright position, supply CaO-based solvent into the converter, and supply oxygen gas to the hot metal from the top blowing lance while stirring the hot metal in the converter with the bottom blowing gas. A fourth step of dephosphorizing the hot metal remaining in
A fifth step of tilting the converter again and discharging at least part of the slag generated in the fourth step from the converter;
Return the converter to the upright position, supply CaO-based solvent into the converter, and supply oxygen gas to the hot metal from the top blowing lance while stirring the hot metal in the converter with the bottom blowing gas. A sixth step of decarburizing and refining the hot metal remaining in
Consists of
The first step of the next charge is performed with the slag generated in the sixth step remaining in the converter, and the slag generated in the sixth step is reused as a CaO-based solvent by the desiliconization treatment of the next charge. Converter steelmaking method to be used.
第3工程で排滓するスラグと第5工程で排滓するスラグとを、同一のスラグ保持容器に排滓する、請求項1に記載の転炉製鋼方法。   The converter steelmaking method according to claim 1, wherein the slag discharged in the third step and the slag discharged in the fifth step are discharged into the same slag holding container. 第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、冷鉄源を転炉内へ装入する、請求項1または請求項2に記載の転炉製鋼方法。   Before charging the hot metal into the converter in the first step, after the third step, at least one of the periods after the fifth step, the cold iron source is charged into the converter. The converter steelmaking method according to claim 1 or 2. 第1工程での転炉内に溶銑を装入する前に冷鉄源を転炉内に装入し、更に、第3工程の後及び/または第5工程の後に、転炉内に冷鉄源を装入する、請求項1または請求項2に記載の転炉製鋼方法。   Before the molten iron is charged into the converter in the first step, the cold iron source is charged into the converter, and after the third step and / or after the fifth step, the cold iron is put into the converter. The converter steelmaking method according to claim 1 or 2, wherein a source is charged. 第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量は、いずれの期間も、転炉に装入する総鉄源の10質量%以下とする、請求項3または請求項4に記載の転炉製鋼方法。   Before charging the hot metal into the converter in the first step, after the third step, and after the fifth step, the amount of cold iron source charged in each period is charged into the converter in any period. The converter steelmaking method according to claim 3 or 4, wherein the total iron source is 10 mass% or less.
JP2018078913A 2017-04-27 2018-04-17 Converter steelmaking method Active JP6665884B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088047 2017-04-27
JP2017088047 2017-04-27

Publications (2)

Publication Number Publication Date
JP2018188730A true JP2018188730A (en) 2018-11-29
JP6665884B2 JP6665884B2 (en) 2020-03-13

Family

ID=64479527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078913A Active JP6665884B2 (en) 2017-04-27 2018-04-17 Converter steelmaking method

Country Status (1)

Country Link
JP (1) JP6665884B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062305A (en) 2018-04-24 2020-06-03 닛폰세이테츠 가부시키가이샤 How to charter charter
WO2022163202A1 (en) * 2021-01-26 2022-08-04 Jfeスチール株式会社 Converter steel making method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734113A (en) * 1993-07-20 1995-02-03 Nippon Steel Corp Converter refining method
JP2000328123A (en) * 1999-05-12 2000-11-28 Nippon Steel Corp Converter refining method for adjusting silicon charging quality
JP2007039766A (en) * 2005-08-04 2007-02-15 Kobe Steel Ltd Method for operating converter equipment
JP2015218338A (en) * 2014-05-14 2015-12-07 Jfeスチール株式会社 Molten iron refining method by converter type refining furnace
JP2016029206A (en) * 2014-07-23 2016-03-03 Jfeスチール株式会社 Pre-treatment method of molten iron
JP2016180161A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Method for refining copper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734113A (en) * 1993-07-20 1995-02-03 Nippon Steel Corp Converter refining method
JP2000328123A (en) * 1999-05-12 2000-11-28 Nippon Steel Corp Converter refining method for adjusting silicon charging quality
JP2007039766A (en) * 2005-08-04 2007-02-15 Kobe Steel Ltd Method for operating converter equipment
JP2015218338A (en) * 2014-05-14 2015-12-07 Jfeスチール株式会社 Molten iron refining method by converter type refining furnace
JP2016029206A (en) * 2014-07-23 2016-03-03 Jfeスチール株式会社 Pre-treatment method of molten iron
JP2016180161A (en) * 2015-03-25 2016-10-13 Jfeスチール株式会社 Method for refining copper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062305A (en) 2018-04-24 2020-06-03 닛폰세이테츠 가부시키가이샤 How to charter charter
WO2022163202A1 (en) * 2021-01-26 2022-08-04 Jfeスチール株式会社 Converter steel making method
JPWO2022163202A1 (en) * 2021-01-26 2022-08-04
JP7248195B2 (en) 2021-01-26 2023-03-29 Jfeスチール株式会社 Converter steelmaking method
EP4261289A4 (en) * 2021-01-26 2024-04-17 JFE Steel Corporation Converter steel making method

Also Published As

Publication number Publication date
JP6665884B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5408369B2 (en) Hot metal pretreatment method
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP2007051350A (en) Method for producing low sulfur steel
JP6693536B2 (en) Converter steelmaking method
JP5807720B2 (en) Hot metal refining method
JP5170348B2 (en) Hot metal desiliconization and phosphorus removal methods
JP2018188730A (en) Converter steelmaking process
JP5408379B2 (en) Hot metal pretreatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP5967139B2 (en) Hot metal pretreatment method
JP2013227664A (en) Molten iron preliminary treatment method
JP4894325B2 (en) Hot metal dephosphorization method
TW201900897A (en) Smelting method of high manganese steel
JP5272378B2 (en) Hot metal dephosphorization method
JP3790414B2 (en) Hot metal refining method
JP2006265623A (en) Method for pre-treating molten iron
JP4957018B2 (en) Method for refining molten steel
JPH07179920A (en) Production of molten steel
JP7248195B2 (en) Converter steelmaking method
RU2820427C1 (en) Liquid iron refining method
JP6848780B2 (en) How to operate the converter
JP2007009237A (en) Method for producing low phosphorus molten iron
JP2003193121A (en) Method for refining molten iron

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250