JP6848780B2 - How to operate the converter - Google Patents

How to operate the converter Download PDF

Info

Publication number
JP6848780B2
JP6848780B2 JP2017180898A JP2017180898A JP6848780B2 JP 6848780 B2 JP6848780 B2 JP 6848780B2 JP 2017180898 A JP2017180898 A JP 2017180898A JP 2017180898 A JP2017180898 A JP 2017180898A JP 6848780 B2 JP6848780 B2 JP 6848780B2
Authority
JP
Japan
Prior art keywords
converter
hot metal
slag
furnace
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017180898A
Other languages
Japanese (ja)
Other versions
JP2019014958A (en
Inventor
憲治 中瀬
憲治 中瀬
拓之 池田
拓之 池田
厚知郎 江嶋
厚知郎 江嶋
真導 菊地
真導 菊地
透 松葉
透 松葉
中井 由枝
由枝 中井
菊池 直樹
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019014958A publication Critical patent/JP2019014958A/en
Application granted granted Critical
Publication of JP6848780B2 publication Critical patent/JP6848780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、溶銑の脱珪処理、脱燐処理、脱炭処理の各処理を行う転炉の操業方法に関し、詳しくは、3基の転炉を用いて溶銑の前記各処理を操業状況に応じて効率的に行う転炉の操業方法に関する。 The present invention relates to an operation method of a converter that performs each treatment of desiliconization treatment, dephosphorization treatment, and decarburization treatment of hot metal. Concerning how to operate a converter efficiently.

高炉で溶製される溶銑は、鋼製品の品質上から除去すべき不純物成分として、炭素(C)、燐(P)及び硫黄(S)を含有しており、また、珪素(Si)も含有しており、珪素も鋼製品によっては除去すべき不純物成分になる。これらの不純物成分のうちで、炭素、珪素及び燐は、酸素ガスによる酸化除去が可能であり、種々の酸化精錬方法で酸化除去されている。尚、硫黄は酸素ガスによる酸化除去が効率的でなく、通常、溶銑段階で別途還元反応による脱硫処理が行われている。 The hot metal melted in the blast furnace contains carbon (C), phosphorus (P) and sulfur (S) as impurity components to be removed from the viewpoint of the quality of steel products, and also contains silicon (Si). Silicon is also an impurity component to be removed depending on the steel product. Among these impurity components, carbon, silicon and phosphorus can be oxidatively removed by oxygen gas, and are oxidatively removed by various oxidative refining methods. It should be noted that sulfur is not efficiently oxidized and removed by oxygen gas, and usually, desulfurization treatment by a reduction reaction is separately performed at the hot metal stage.

一般的な酸化精錬方法は、従来から伝統的に行われている精錬方法であり、溶銑を転炉に装入し、1回の酸素吹錬で脱珪処理、脱燐処理、脱炭処理の全てを実施する精錬方法である(「普通転炉精錬方法」という)。「酸素吹錬」とは、上吹きランスから酸素ガスを転炉内の溶銑に吹き付けて行う精錬方法である。 The general oxidative refining method is a conventional refining method in which hot metal is charged into a converter and desiliconized, dephosphorized, and decarburized by one oxygen blowing. It is a refining method that carries out everything (referred to as "ordinary converter refining method"). "Oxygen blowing" is a refining method in which oxygen gas is blown from a top-blown lance to hot metal in a converter.

しかし、近年、製鋼スラグの発生量の低減、及び、溶鋼の品質向上のために、転炉での酸素吹錬の前に、転炉を使用して、予め溶銑に対して脱珪処理及び脱燐処理を施す精錬方法が採用されるようになった。転炉での酸素吹錬の前に溶銑に対して予め行う精錬を予備処理という。この予備処理方法も種々の方法が提案されている。 However, in recent years, in order to reduce the amount of steelmaking slag generated and improve the quality of molten steel, a converter is used to desiliconize and desiliconize the hot metal in advance before oxygen blowing in the converter. A refining method that applies phosphorus treatment has come to be adopted. Pre-treatment is the refining of hot metal before oxygen blowing in a converter. Various methods have been proposed for this pretreatment method.

特許文献1には、1基の転炉を用い、転炉内の溶銑を酸素吹錬によって脱珪処理し、次いで、転炉を傾動して脱珪処理で生成したスラグを排出(精錬の途中のスラグ排出を「中間排滓」という)し、その後、転炉内に残留させた溶銑を酸素吹錬によって脱燐処理する予備処理方法が提案されている。この場合、脱燐処理された溶銑は、別の転炉に装入されて脱炭処理が施される。 In Patent Document 1, one converter is used, the hot metal in the converter is desiliconized by oxygen blowing, and then the converter is tilted to discharge the slag produced by the desiliconization (during refining). A pretreatment method has been proposed in which the slag discharge is referred to as "intermediate discharge"), and then the hot metal remaining in the converter is dephosphorized by oxygen blowing. In this case, the dephosphorized hot metal is charged into another converter and decarburized.

特許文献2には、2基以上の転炉を用い、酸素吹錬によって転炉内の溶銑に脱珪処理及び脱燐処理を同時に施し、次いで、炉内の溶銑を当該転炉から出湯し、出湯した溶銑を別の転炉に装入し、酸素吹錬によって脱炭処理する転炉の操業方法が提案されている。尚、溶銑に脱珪処理及び脱燐処理を同時に施す処理を、「脱珪・脱燐処理」ともいう。 In Patent Document 2, two or more converters are used, and the hot metal in the converter is simultaneously desiliconized and dephosphorized by oxygen blowing, and then the hot metal in the furnace is discharged from the converter. A method of operating a converter in which hot metal is charged into another converter and decarburized by oxygen blowing has been proposed. The process of simultaneously performing the desiliconization treatment and the dephosphorization treatment on the hot metal is also referred to as "desiliconization / dephosphorization treatment".

また、特許文献3には、1基の転炉を用い、転炉内の溶銑を酸素吹錬によって脱珪・脱燐処理し、次いで、脱珪・脱燐処理で生成したスラグを排出(中間排滓)し、その後、転炉内に残留させた溶銑を酸素吹錬によって脱炭処理する精錬方法が提案されている。 Further, in Patent Document 3, one converter is used, the hot metal in the converter is desiliconized and dephosphorized by oxygen blowing, and then the slag produced by the desiliconization and dephosphorization is discharged (intermediate). A refining method has been proposed in which the hot metal left in the converter is decarburized by oxygen blowing.

このように、溶銑中の不純物成分を酸素吹錬によって除去する精錬方法として種々の方法が実施されており、各々の精錬方法において長所及び短所がある。 As described above, various refining methods have been carried out as refining methods for removing impurity components in hot metal by oxygen blowing, and each refining method has advantages and disadvantages.

即ち、伝統的に行われている普通転炉精錬方法は、処理時間が短く生産性が高いという長所があるが、CaO系媒溶剤の原単位が多いという短所がある。 That is, the traditional ordinary converter refining method has an advantage that the processing time is short and the productivity is high, but has a disadvantage that the basic unit of the CaO-based medium solvent is large.

特許文献1に提案される方法(脱珪処理→中間排滓→脱燐処理→出湯→脱炭処理)は、効率良く脱珪処理及び脱燐処理が行え、CaO系媒溶剤の原単位が少なく、スラグ発生量も少ないという優れた長所がある。しかし、溶鋼に仕上げるまでの処理時間が長く、生産性が低いという短所がある。 The method proposed in Patent Document 1 (desiliconization treatment → intermediate slag → dephosphorization treatment → hot water discharge → decarburization treatment) can efficiently perform desiliconization treatment and dephosphorization treatment, and the basic unit of CaO-based solvent is small. It has the excellent advantage that the amount of slag generated is small. However, it has the disadvantages that it takes a long time to finish the molten steel and the productivity is low.

特許文献3に提案される方法(脱珪・脱燐処理→中間排滓→脱炭処理)は、1回の溶銑装入で脱炭処理まで行うので、特許文献1に提案される方法に比べて処理時間が短くなり、且つ、CaO系媒溶剤の原単位は普通転炉精錬方法に比べて少なくなるという長所がある。しかし、中間排滓するものの炉内に燐濃度の高いスラグが残留し、脱炭処理時のスラグ組成の条件がベストではないので、特許文献1に提案される方法に比べて脱燐能力が低くなるという短所がある。 The method proposed in Patent Document 3 (desiliconization / dephosphorization treatment → intermediate slag → decarburization treatment) is performed up to decarburization treatment with one hot metal charge, and therefore is compared with the method proposed in Patent Document 1. Therefore, the treatment time is shortened, and the basic unit of the CaO-based medium solvent is smaller than that of the ordinary converter refining method. However, although the intermediate slag is discharged, slag having a high phosphorus concentration remains in the furnace, and the slag composition conditions at the time of decarburization treatment are not the best. Therefore, the dephosphorization ability is lower than that of the method proposed in Patent Document 1. There is a disadvantage that it becomes.

特許文献2に提案される方法(脱珪・脱燐処理→出湯→脱炭処理)は、特許文献1に提案される方法と特許文献3に提案される方法との中間の生産性及び脱燐能力となる。 The method proposed in Patent Document 2 (desiliconization / dephosphorization treatment → hot water discharge → decarburization treatment) has intermediate productivity and dephosphorization between the method proposed in Patent Document 1 and the method proposed in Patent Document 3. Become an ability.

つまり、酸素吹錬によって溶銑中の不純物成分を酸化除去する精錬方法は、処理時間を短くすると高品質な鋼を溶製できにくくなり、また逆に、高品質な溶鋼を安価に得ようとすると処理時間が長くなるという、相反する性格を備えている。そこで、複数の転炉を備えた転炉工場において、このような精錬方法を実施する際の効率的な転炉の操業方法がいくつか提案されている。 In other words, in the refining method that oxidatively removes impurity components in hot metal by oxygen blowing, it becomes difficult to melt high-quality steel if the processing time is shortened, and conversely, if high-quality molten steel is to be obtained at low cost. It has the contradictory characteristics of longer processing time. Therefore, in a converter factory equipped with a plurality of converters, some efficient converter operating methods for carrying out such a refining method have been proposed.

例えば、特許文献4には、3基の転炉を用いて溶銑から溶鋼を溶製するに際し、3基の転炉を、脱炭処理用の転炉、脱炭処理と脱珪・脱燐処理との兼用の転炉、脱珪・脱燐処理用の転炉の順で使用し、前記3基の転炉のいずれか一つが脱炭処理用の転炉として使用されているときは、他の一つは脱珪・脱燐処理用の転炉として使用し、残りの一つは脱炭処理と脱珪・脱燐処理との兼用の転炉として使用し、3基の転炉のいずれか一つが修理されているときは、他の二つの転炉を、主に、脱炭処理と脱珪・脱燐処理との兼用の転炉として使用する転炉の操業方法が提案されている。 For example, in Patent Document 4, when molten steel is melted from hot metal using three converters, the three converters are converted into a converter for decarburization treatment, decarburization treatment and desiliconization / dephosphorization treatment. When one of the above three converters is used as a converter for decarburization, the other is used in the order of the converter for both desiliconization and dephosphorization. One is used as a converter for desiliconization / dephosphorization treatment, and the other one is used as a converter for both decarburization treatment and desiliconization / dephosphorization treatment. When one of them is being repaired, a method of operating a converter that uses the other two converters mainly as a converter for both decarburization and desiliconization / dephosphorization has been proposed. ..

また、特許文献5には、3基の転炉を用いて溶銑から溶鋼を溶製するに際し、3基の転炉のうち2基の転炉は、脱珪・脱燐処理、中間排滓、脱炭処理を行う溶銑1回装入型精錬処理と、脱珪・脱燐処理の後、炉内の溶銑を転炉から一旦排出し、その後、脱珪・脱燐処理した溶銑を転炉に戻して脱炭処理を行う溶銑2回装入型精錬処理とを併用して行い、他の1基の転炉は、前記溶銑2回装入型精錬処理の脱珪・脱燐処理と脱炭処理とのいずれか或いは両方を行う、転炉の操業方法が提案されている。 Further, in Patent Document 5, when molten steel is melted from hot metal using three converters, two of the three converters are desiliconized / dephosphorized, and intermediate waste is discharged. After decarburization treatment, one-time charge-type refining treatment, and desiliconization / dephosphorization treatment, the hot metal in the furnace is temporarily discharged from the converter, and then the desiliconized / dephosphorized hot metal is put into the converter. It is performed in combination with the hot metal double charge type refining treatment that is returned and decarburized, and the other one converter is the desiliconization / dephosphorization treatment and decarburization of the hot metal double charge type refining treatment. A method of operating a converter that performs either or both of processing has been proposed.

特開平10−152714号公報Japanese Unexamined Patent Publication No. 10-152714 特開2002−363630号公報JP-A-2002-363630 特開2005−325389号公報Japanese Unexamined Patent Publication No. 2005-325389 特開2007−113029号公報Japanese Unexamined Patent Publication No. 2007-11302 特開2016−172905号公報Japanese Unexamined Patent Publication No. 2016-172905

転炉工場に求められる操業の遂行能力としては、生産性、溶鋼の品質、操業コスト、副産物(スラグ)発生量などが挙げられ、このうちのどれを優先するかで採用する精錬方法は変わる。 The operational capabilities required of a converter plant include productivity, molten steel quality, operating costs, and the amount of by-products (slag) generated, and the refining method to be adopted depends on which of these is prioritized.

これに対して、特許文献4は、3基の転炉で、特許文献2で提案される方法(脱珪・脱燐処理→出湯→脱炭処理)を効率的に行うことを提案するだけで、その他の精錬方法を組み合わせることは提案していない。即ち、生産性、溶鋼の品質、操業コスト、副産物発生量などの操業状況に応じた最適な精錬方法を適用しているとはいえない。 On the other hand, Patent Document 4 only proposes to efficiently perform the method (desiliconization / dephosphorization treatment → hot water discharge → decarburization treatment) proposed in Patent Document 2 with three converters. , We do not propose to combine other refining methods. That is, it cannot be said that the optimum refining method is applied according to the operating conditions such as productivity, quality of molten steel, operating cost, and amount of by-products generated.

同様に、特許文献5は、3基の転炉で、特許文献2で提案される方法(脱珪・脱燐処理→出湯→脱炭処理)と特許文献3で提案される方法(脱珪・脱燐処理→中間排滓→脱炭処理)とを組み合わせて行うことを提案しており、普通転炉精錬方法や特許文献1で提案される精錬方法を組み合わせることは提案していない。つまり、特許文献5も、生産性、溶鋼の品質、操業コスト、副産物発生量などの操業状況に応じた最適な精錬方法を適用しているとはいえない。 Similarly, Patent Document 5 describes the method proposed in Patent Document 2 (desiliconization / dephosphorization treatment → hot water → decarburization treatment) and the method proposed in Patent Document 3 (desiliconization / desiliconization treatment) using three converters. It is proposed to combine dephosphorization treatment → intermediate waste removal treatment → decarburization treatment), and it is not proposed to combine the ordinary converter refining method or the refining method proposed in Patent Document 1. That is, it cannot be said that Patent Document 5 also applies the optimum refining method according to the operating conditions such as productivity, quality of molten steel, operating cost, and amount of by-products generated.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、3基の転炉を用いて溶銑を精錬する際に、長所及び短所を併せ持つ種々の精錬方法を、操業状況(生産性、溶鋼の品質、操業コスト、副産物発生量)に応じて3基の転炉に対してどのように組み合わせるべきかについて、具体的な組み合わせ方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to use various refining methods (production) that have both advantages and disadvantages when refining hot metal using three converters. It is to provide a concrete combination method as to how to combine three converters according to the property, the quality of molten steel, the operation cost, and the amount of by-products generated.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]3基の転炉を用いて溶銑を精錬する転炉の操業方法であって、
下記の精錬方法1〜3の3種類の精錬方法のなかから、前記3基の転炉の各々で実施する精錬方法を選択することを特徴とする、転炉の操業方法。
精錬方法1;転炉内の溶銑を酸素吹錬により脱珪処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱燐処理し、脱燐処理後、溶銑を一旦取鍋に出湯し、出湯した溶銑を別の転炉に装入して酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。
精錬方法2;転炉内の溶銑を酸素吹錬により同時に脱珪処理及び脱燐処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。
精錬方法3;転炉内の溶銑を1回の酸素吹錬で脱珪処理、脱燐処理、脱炭処理の全てを実施し、酸素吹錬後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。
[2]前記3基の転炉のうち、2基の転炉で前記精錬方法1を、残りの1基の転炉で前記精錬方法3を実施することを特徴とする、上記[1]に記載の転炉の操業方法。
[3]前記3基の転炉のうち、2基の転炉で前記精錬方法1を、残りの1基の転炉で前記精錬方法2を実施することを特徴とする、上記[1]に記載の転炉の操業方法。
[4]前記3基の転炉の各々で前記精錬方法2を実施することを特徴とする、上記[1]に記載の転炉の操業方法。
[5]前記3基の転炉に対して合計3基以上の装入鍋及び合計3基以上の出湯用の取鍋を配置し、各々の転炉で溶銑及び溶鋼をハンドリングする際には、前記装入鍋及び前記出湯用の取鍋を各々の転炉で専用することを特徴とする、上記[1]ないし上記[4]のいずれか1項に記載の転炉の操業方法。
[6]前記3基の転炉に対して合計3基以上の排滓用のスラグポット及び合計3基以上の前記スラグポットを積載するための台車を配置し、各々の転炉からスラグを排出する際には、前記排滓用のスラグポット及び前記スラグポットを積載するための台車を各々の転炉で専用し、各々の転炉からの排出スラグを転炉毎に回収・貯蔵し、排出スラグの処理工程へ搬送することを特徴とする、上記[1]ないし上記[5]のいずれか1項に記載の転炉の操業方法。
The gist of the present invention for solving the above problems is as follows.
[1] A method of operating a converter that smelts hot metal using three converters.
A converter operating method, characterized in that a refining method to be carried out in each of the three converters is selected from the three types of refining methods of the following refining methods 1 to 3.
Smelting method 1; The hot metal in the converter is desiliconized by oxygen blowing, then the converter is tilted to discharge the slag in the furnace, and then the hot metal remaining in the converter is blown by oxygen. After dephosphorization and dephosphorization, the hot metal was once discharged into a ladle, and the hot metal was charged into another converter and decarburized by oxygen blowing. A refining method in which molten steel is discharged from a converter to a ladle.
Refining method 2; The hot metal in the converter is simultaneously desiliconized and dephosphorized by oxygen blowing, then the converter is tilted to discharge the slag in the converter, and then the hot metal remaining in the converter is left. Is decarburized by oxygen blowing, and after decarburization, the molten steel is smelted from a converter to a ladle.
Refining method 3; The hot metal in the converter is desiliconized, dephosphorized, and decarburized by one oxygen smelting, and after oxygen smelting, the molten steel is taken from the converter. A refining method for hot water.
[2] The refining method 1 is carried out in two of the three converters, and the refining method 3 is carried out in the remaining one converter, according to the above [1]. The operation method of the described converter.
[3] The smelting method 1 is carried out in two of the three converters, and the smelting method 2 is carried out in the remaining one converter, according to the above [1]. The operation method of the described converter.
[4] The method for operating a converter according to the above [1], wherein the refining method 2 is carried out in each of the three converters.
[5] When arranging a total of 3 or more charging pots and a total of 3 or more hot water ladle for the three converters, and handling hot metal and molten steel in each converter, The method for operating a converter according to any one of the above [1] to [4], wherein the charging pot and the hot water ladle are dedicated to each converter.
[6] A total of three or more slag pots for discharging and a trolley for loading a total of three or more of the slag pots are arranged for the three converters, and slag is discharged from each converter. When doing so, the slag pot for slag and the trolley for loading the slag pot are dedicated to each converter, and the slag discharged from each converter is collected, stored, and discharged for each converter. The method for operating a converter according to any one of the above [1] to [5], which comprises transporting the slag to a processing step.

本発明によれば、長所及び短所の異なる3種類の精錬方法を、操業状況(生産性、溶鋼の品質、操業コスト、副産物発生量)に応じて3基の転炉で適切に実施することができ、生産性、溶鋼の品質、操業コスト、副産物発生量などを所望する範囲に制御することが実現される。 According to the present invention, three types of refining methods having different advantages and disadvantages can be appropriately carried out in three converters according to the operating conditions (productivity, quality of molten steel, operating cost, amount of by-products generated). It is possible to control the productivity, the quality of molten steel, the operating cost, the amount of by-products generated, etc. within the desired range.

本発明で使用する転炉の概略断面図である。It is the schematic sectional drawing of the converter used in this invention. 本発明における精錬方法1を工程順に示す概略図である。It is the schematic which shows the refining method 1 in this invention in the order of a process. 本発明における精錬方法2を工程順に示す概略図である。It is the schematic which shows the refining method 2 in this invention in the order of a process. 本発明における精錬方法3を工程順に示す概略図である。It is the schematic which shows the refining method 3 in this invention in the order of a process. 操業パターン1における3基の転炉の操業形態を示す図である。It is a figure which shows the operation mode of three converters in operation pattern 1. FIG. 操業パターン2における3基の転炉の操業形態を示す図である。It is a figure which shows the operation mode of three converters in operation pattern 2. 操業パターン3における3基の転炉の操業形態を示す図である。It is a figure which shows the operation mode of three converters in operation pattern 3.

以下、本発明を具体的に説明する。先ず、本発明に係る転炉の操業方法で使用する転炉について説明する。 Hereinafter, the present invention will be specifically described. First, the converter used in the operating method of the converter according to the present invention will be described.

図1に、本発明に係る転炉の操業方法で使用する転炉の概略断面図を示す。本発明では、図1に示すような上底吹き可能な転炉1を用いる。上吹きは、転炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から、酸素源として酸素ガス8を溶銑5に向けて供給して行われる。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはアルゴンガスや窒素ガスなどの不活性ガスのみでもよく、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するものであればよい。 FIG. 1 shows a schematic cross-sectional view of a converter used in the operating method of the converter according to the present invention. In the present invention, a converter 1 capable of top-bottom blowing as shown in FIG. 1 is used. The top blowing is performed by supplying oxygen gas 8 as an oxygen source toward the hot metal 5 from the tip of the top blowing lance 2 via the top blowing lance 2 that can move up and down the inside of the converter 1. Here, the oxygen gas 8 is pure industrial oxygen. The bottom blowing is performed through the bottom blowing tuyere 3 provided at the bottom of the converter 1. The bottom-blown gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas, and by blowing into the hot metal, the stirring of the hot metal 5 is strengthened and the dissolution of the cold iron source is promoted. Anything that has the function of

転炉1には出湯口4が設けられており、炉内の溶湯(溶銑または溶鋼)を取鍋に出湯する際には、出湯口4が下側に位置するように転炉1を傾動させ、転炉炉口からスラグ6が排出されないようにしながら、出湯口4から炉内の溶湯を出湯する。一方、2つの精錬処理の途中(例えば、脱珪処理と脱燐処理との途中)で、炉内に溶銑を残留させた状態で炉内のスラグ6を排出(「中間排滓」という)する際には、出湯口4が上側に位置するように転炉1を傾動させ、転炉1の炉口から炉内のスラグ6を排出する。また、炉内の溶湯を出湯した後に炉内のスラグ6を排出する場合には、転炉1の炉口が下に位置するように転炉1を傾動させ、転炉1の炉口から炉内のスラグ6を排出する。 The converter 1 is provided with a hot water outlet 4, and when the molten metal (hot metal or molten steel) in the furnace is discharged into a ladle, the converter 1 is tilted so that the hot water outlet 4 is located on the lower side. , While preventing the slag 6 from being discharged from the converter furnace port, the molten metal in the furnace is discharged from the hot water outlet 4. On the other hand, in the middle of the two refining treatments (for example, in the middle of the desiliconization treatment and the dephosphorization treatment), the slag 6 in the furnace is discharged (referred to as "intermediate discharge") with the hot metal remaining in the furnace. At this time, the converter 1 is tilted so that the hot water outlet 4 is located on the upper side, and the slag 6 in the furnace is discharged from the furnace port of the converter 1. Further, when the slag 6 in the furnace is discharged after the molten metal in the furnace is discharged, the converter 1 is tilted so that the furnace mouth of the converter 1 is located below, and the furnace is tilted from the furnace mouth of the converter 1. The slag 6 inside is discharged.

このように構成される転炉を用いた酸素吹錬による溶銑の酸化精錬として、脱珪処理、脱燐処理、脱炭処理が行われており、転炉を用いて溶銑から溶鋼を溶製する方法は、[背景技術]の欄で記載したように、(1)伝統的に行われている普通転炉精錬方法、(2)特許文献1に提案される方法(脱珪処理→中間排滓→脱燐処理→出湯→脱炭処理)、(3)特許文献2に提案される方法(脱珪・脱燐処理→出湯→脱炭処理)、(4)特許文献3に提案される方法(脱珪・脱燐処理→中間排滓→脱炭処理)の4種類に大別される。ここで、「脱珪・脱燐処理」とは、酸素吹錬によって脱珪処理と脱燐処理とを同時に溶銑に施す精錬方法である。 Desiliconization, dephosphorization, and decarburization are performed as oxidative refining of hot metal by oxygen blowing using a converter configured in this way, and molten steel is melted from hot metal using a converter. As described in the [Background Technology] column, the methods are (1) a traditional converter refining method, and (2) a method proposed in Patent Document 1 (desiliconization treatment → intermediate waste removal). → Dephosphorization treatment → Hot water → Decarburization treatment), (3) Method proposed in Patent Document 2 (Desiliconization / dephosphorization treatment → Hot water → Decarburization treatment), (4) Method proposed in Patent Document 3 (4) It is roughly divided into four types: desiliconization / dephosphorization treatment → intermediate waste removal treatment → decarburization treatment). Here, the "desiliconization / dephosphorization treatment" is a refining method in which the desiliconization treatment and the dephosphorization treatment are simultaneously applied to the hot metal by oxygen blowing.

これらの4種類の精錬方法のなかで、最も脱燐能力が高く、効率良く脱燐処理が行え、燐濃度の低い溶鋼を溶製することができ、しかも、CaO系媒溶剤の原単位が少なく、スラグ発生量が少ないという長所を有する精錬方法は、特許文献1に提案される方法(脱珪処理→中間排滓→脱燐処理→出湯→脱炭処理)である。但し、この精錬方法は、生産性が低いという短所がある。本発明では、この精錬方法を「精錬方法1」とした。 Among these four types of refining methods, the dephosphorization ability is the highest, the dephosphorization treatment can be performed efficiently, molten steel with a low phosphorus concentration can be melted, and the basic unit of CaO-based solvent is small. The refining method having an advantage that the amount of slag generated is small is the method proposed in Patent Document 1 (desiliconization treatment → intermediate slag → dephosphorization treatment → hot water discharge → decarburization treatment). However, this refining method has a disadvantage of low productivity. In the present invention, this refining method is referred to as "refining method 1".

特許文献3に提案される方法(脱珪・脱燐処理→中間排滓→脱炭処理)は、転炉への1回の溶銑装入で脱炭処理まで行うので、溶銑を予備処理するにも拘らず、特許文献1に提案される方法や特許文献2に提案される方法に比べて処理時間が短くなり、生産性をそれほど落とすことなく、溶鋼の溶製が可能である。そこで、本発明では、この精錬方法を「精錬方法2」とした。 The method proposed in Patent Document 3 (desiliconization / dephosphorization treatment → intermediate effluent → decarburization treatment) is performed up to decarburization treatment by charging the hot metal once into the converter. Nevertheless, the processing time is shorter than that of the method proposed in Patent Document 1 and the method proposed in Patent Document 2, and molten steel can be melted without significantly reducing the productivity. Therefore, in the present invention, this refining method is referred to as "refining method 2".

また、これらの4種類の精錬方法のなかで、最も生産性に優れる精錬方法は、伝統的に行われている普通転炉精錬方法であり、本発明では、この精錬方法を「精錬方法3」とした。 Further, among these four types of refining methods, the most productive refining method is the traditional ordinary converter refining method, and in the present invention, this refining method is referred to as "refining method 3". And said.

即ち、本発明における精錬方法1〜3は、下記のとおりである。 That is, the refining methods 1 to 3 in the present invention are as follows.

精錬方法1;転炉内の溶銑を酸素吹錬により脱珪処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱燐処理し、脱燐処理後、溶銑を一旦取鍋に出湯し、出湯した溶銑を別の転炉に装入して酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。 Smelting method 1; The hot metal in the converter is desiliconized by oxygen blowing, then the converter is tilted to discharge the slag in the furnace, and then the hot metal remaining in the converter is blown by oxygen. After dephosphorization and dephosphorization, the hot metal was once discharged into a ladle, and the hot metal was charged into another converter and decarburized by oxygen blowing. A refining method in which molten steel is discharged from a converter to a ladle.

精錬方法2;転炉内の溶銑を酸素吹錬により同時に脱珪処理及び脱燐処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。 Refining method 2; The hot metal in the converter is simultaneously desiliconized and dephosphorized by oxygen blowing, then the converter is tilted to discharge the slag in the converter, and then the hot metal remaining in the converter is left. Is decarburized by oxygen blowing, and after decarburization, the molten steel is smelted from a converter to a ladle.

精錬方法3;転炉内の溶銑を1回の酸素吹錬で脱珪処理、脱燐処理、脱炭処理の全てを実施し、酸素吹錬後、溶製された溶鋼を転炉から取鍋に出湯する精錬方法。 Refining method 3; The hot metal in the converter is desiliconized, dephosphorized, and decarburized by one oxygen smelting, and after oxygen smelting, the molten steel is taken from the converter. A refining method for hot water.

以下、精錬方法1〜3の具体的な処理方法を図面に基づいて説明する。図2は、精錬方法1を工程順に示す概略図、図3は、精錬方法2を工程順に示す概略図、図4は、精錬方法3を工程順に示す概略図である。図2〜4において、符号7は冷鉄源、10はスクラップシュート、11は装入鍋、12は取鍋、13はスラグポットである。 Hereinafter, specific processing methods of the refining methods 1 to 3 will be described with reference to the drawings. FIG. 2 is a schematic view showing the refining method 1 in the order of steps, FIG. 3 is a schematic view showing the refining method 2 in the order of steps, and FIG. 4 is a schematic view showing the refining method 3 in the order of steps. In FIGS. 2 to 4, reference numeral 7 is a cold iron source, 10 is a scrap chute, 11 is a charging pot, 12 is a ladle, and 13 is a slag pot.

[精錬方法1]
精錬方法1では、図2に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。次いで、転炉1に、装入鍋11を介して、高炉から出銑され、必要に応じて脱硫処理の施された溶銑5を装入する。
[Refining method 1]
In the refining method 1, as shown in FIG. 2, the cold iron source 7 is charged into the converter 1 via the scrap chute 10. Charging the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, but in order to reduce the amount of carbon dioxide generated in the steelmaking process, the cold iron source 7 is charged into the converter 1. It is preferable to charge. Next, the hot metal 5 which has been taken out of the blast furnace and has been desulfurized is charged into the converter 1 via the charging pot 11.

その後、この転炉内の溶銑5に、上吹きランス2から酸素源として酸素ガス8を供給して脱珪処理を実施する。溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO;この反応を脱珪反応という)して脱珪処理が進行する。脱珪反応で生成したSiOは溶銑と分離して炉内にスラグを形成する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 After that, oxygen gas 8 is supplied as an oxygen source from the top-blown lance 2 to the hot metal 5 in the converter to carry out the desiliconization treatment. The silicon contained in the hot metal 5 reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ; this reaction is called a desiliconization reaction), and the desiliconization treatment proceeds. SiO 2 produced by the desiliconization reaction separates from the hot metal to form slag in the furnace. The hot metal oxidation temperature rises due to the heat of oxidation of silicon due to this desiliconization reaction, and the melting of the cold iron source 7 in the hot metal is promoted.

この脱珪処理前及び/または脱珪処理中に、生成するスラグの塩基度(塩基度=(質量%CaO)/(質量%SiO))を調整するために、CaO系媒溶剤を転炉1に添加する。具体的には、脱珪処理後のスラグの塩基度が0.5〜1.5の範囲内となるように、CaO系媒溶剤を転炉1に添加する。 In order to adjust the basicity (basicity = (mass% CaO) / (mass% SiO 2 )) of the slag produced before and / or during the desiliconization treatment, a CaO-based medium solvent is used in a converter. Add to 1. Specifically, the CaO-based medium solvent is added to the converter 1 so that the basicity of the slag after the desiliconization treatment is within the range of 0.5 to 1.5.

本発明においては、脱珪処理におけるCaO系媒溶剤として、脱珪処理の後工程の脱燐処理で生成するスラグ(脱燐処理で生成するスラグを「脱燐スラグ」と称す)を再利用する。脱燐スラグ中のCaO分がCaO源として活用される。脱燐スラグ以外のCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。 In the present invention, the slag produced by the dephosphorization treatment in the subsequent step of the desiliconization treatment (the slag produced by the dephosphorylation treatment is referred to as "dephosphorization slag") is reused as the CaO-based medium solvent in the desiliconization treatment. .. The CaO content in the dephosphorized slag is utilized as a CaO source. As the CaO-based medium solvent other than the dephosphorized slag, quicklime, dolomite, calcium carbonate and the like can be used.

脱珪処理のあとに、転炉1を傾動させて、脱珪処理で発生したスラグの少なくとも一部を転炉1の炉口からスラグポット13に排出する(中間排滓)。脱珪処理で発生したSiOを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱珪処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。 After the desiliconization treatment, the converter 1 is tilted to discharge at least a part of the slag generated in the desiliconization treatment from the furnace mouth of the converter 1 into the slag pot 13 (intermediate discharge). In order to discharge SiO 2 generated in the desiliconization treatment to the outside of the furnace as much as possible, the discharge rate (slag rate (mass%) = (discharge slag mass) × 100 / (slag mass in the furnace at the end of the desiliconization treatment)) ) Is preferably 50% by mass or more.

中間排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱珪処理後の溶銑にCaO系媒溶剤及び酸素源として酸素ガス8を供給して、脱珪処理後の溶銑に対して脱燐処理を実施する。溶銑に含有される燐と酸素源中の酸素とが反応(2P+5O→P;この反応を脱燐反応という)し、この脱燐反応によって溶銑に含有される燐は酸化されて燐酸化物(P)となり、この燐酸化物が、CaO系媒溶剤の滓化によって形成され、脱燐精錬剤として機能するスラグに3CaO・Pなる安定形態の化合物として取り込まれ、溶銑の脱燐処理が進行する。 After the intermediate discharge, the converter 1 is returned to the upright position with the furnace opening facing upward, and the CaO-based medium solvent and oxygen gas 8 as an oxygen source are supplied to the hot metal after the desiliconization treatment remaining in the converter. Then, the hot metal after the desiliconization treatment is subjected to the dephosphorization treatment. Hot metal and oxygen in the phosphorus and oxygen source contained the reaction; and (2P + 5O → P 2 O 5 as dephosphorization reaction the reaction), the phosphorus contained in molten pig iron by the dephosphorization reaction is oxidized phosphorus oxide (P 2 O 5 ), this phosphor oxide is formed by slagging of a CaO-based medium solvent, and is incorporated into a slag that functions as a dephosphorification smelting agent as a stable form compound of 3 CaO · P 2 O 5 to form a hot metal. Dephosphorization progresses.

脱燐処理においては、炉内のスラグの塩基度を1.5〜3.5の範囲に調整する。スラグの塩基度が高いほどスラグの燐化合物(3CaO・P)の吸収能が高くなり、脱燐反応が促進されるので、スラグの塩基度を1.5以上に制御する。一方、スラグの塩基度が3.5を超えると、滓化性が悪くなり、脱燐反応が遅くなるので、脱燐処理時のスラグの塩基度は3.5以下に制御する。脱燐処理時のCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウム、転炉スラグ(脱炭処理時に発生する転炉スラグ)などが使用できる。 In the dephosphorization treatment, the basicity of the slag in the furnace is adjusted in the range of 1.5 to 3.5. The higher the basicity of slag slag phosphorus compound (3CaO · P 2 O 5) absorption capacity of increases, since the dephosphorization reaction is accelerated, and controls the basicity of the slag to 1.5 or more. On the other hand, if the basicity of the slag exceeds 3.5, the slagging property deteriorates and the dephosphorization reaction becomes slow, so the basicity of the slag during the dephosphorization treatment is controlled to 3.5 or less. As the CaO-based medium solvent during the dephosphorization treatment, quicklime, dolomite, calcium carbonate, converter slag (converter slag generated during the decarburization treatment) and the like can be used.

この脱燐処理において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。 The oxygen source used in this dephosphorization treatment is mainly oxygen gas 8 from the top-blown lance 2 as in the desiliconization treatment, but iron oxide may be partially used.

脱燐反応が進行して溶銑の燐濃度が所定の値に低下したなら、脱燐処理を終了する。その後の脱炭処理によって溶製される溶鋼の燐濃度を安定して低下するためには、脱燐処理後の溶銑の燐濃度が0.040質量%以下になるまで、脱燐処理を行うことが好ましい。 When the dephosphorization reaction proceeds and the phosphorus concentration in the hot metal drops to a predetermined value, the dephosphorization treatment is terminated. In order to stably reduce the phosphorus concentration of the molten steel melted by the subsequent decarburization treatment, the dephosphorization treatment should be performed until the phosphorus concentration of the hot metal after the dephosphorization treatment becomes 0.040% by mass or less. Is preferable.

この脱燐処理のあとに、転炉1を傾動させて、出湯口4から炉内の溶銑を取鍋12に出湯する。炉内のスラグは排出せず、次チャージの溶銑5の脱珪処理時のCaO系媒溶剤として再利用する。 After this dephosphorization treatment, the converter 1 is tilted to take the hot metal in the furnace from the hot water outlet 4 and discharge the hot water into the pan 12. The slag in the furnace is not discharged and is reused as a CaO-based medium solvent during the desiliconization treatment of the hot metal 5 of the next charge.

取鍋12に出湯した溶銑を、図2に示すように、別の転炉1Aに装入し、炉内にCaO系媒溶剤及び酸素源として酸素ガス8を供給して、脱燐処理された溶銑に対して脱炭処理を実施する。溶銑に含有される炭素と供給される酸素源中の酸素とが反応(C+O→CO;この反応を脱炭反応という)し、この脱炭反応によって溶銑に含有される炭素は酸化されてCOガスとなり、このCOガスが系外に排出されて溶銑の脱炭処理が進行する。 As shown in FIG. 2, the hot metal discharged from the ladle 12 was charged into another converter 1A, and oxygen gas 8 was supplied into the furnace as a CaO-based medium solvent and an oxygen source to perform dephosphorization treatment. Decarburize the hot metal. The carbon contained in the hot metal reacts with the oxygen in the supplied oxygen source (C + O → CO; this reaction is called a decarburization reaction), and the carbon contained in the hot metal is oxidized by this decarburization reaction to produce CO gas. Then, this CO gas is discharged to the outside of the system, and the decarburization treatment of the hot metal proceeds.

脱炭処理においては、炉内のスラグの塩基度を2.5〜5.0に調整する。これは、脱炭処理では、脱燐処理よりも更に低い濃度まで脱燐する必要があり、そのためには、塩基度の下限値を脱燐処理よりも高める必要があるからである。一方、塩基度を5.0超えとしても、脱燐効果は飽和し、添加したCaO系媒溶剤が無駄になる。尚、脱炭処理では酸素ガス8の供給流量が脱燐処理よりも多く、溶銑の攪拌力が強く、且つ、溶湯温度が脱燐処理時よりも高いので、塩基度が5.0以下であれば、スラグは十分に滓化する。 In the decarburization process, the basicity of the slag in the furnace is adjusted to 2.5 to 5.0. This is because the decarburization treatment needs to dephosphorize to a lower concentration than the dephosphorization treatment, and for that purpose, the lower limit of the basicity needs to be higher than that of the dephosphorization treatment. On the other hand, even if the basicity exceeds 5.0, the dephosphorization effect is saturated and the added CaO-based medium solvent is wasted. In the decarburization treatment, the supply flow rate of the oxygen gas 8 is larger than that in the dephosphorization treatment, the stirring power of the hot metal is strong, and the molten metal temperature is higher than that in the dephosphorization treatment. For example, the slag is sufficiently slag.

脱炭処理で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱炭処理時のCaO系媒溶剤として使用することができる。 As the CaO-based medium solvent used in the decarburization treatment, quicklime, dolomite, calcium carbonate and the like can be used. However, the present invention is not limited to these, and those containing 50% by mass or more of CaO and, if necessary, other components such as fluorine and alumina can also be used as a CaO-based medium solvent during the decarburization treatment. ..

脱炭反応が進行して溶製された溶鋼の炭素濃度が所定の値に低下したなら、脱炭処理を終了する。脱炭処理後、転炉1Aを出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼を出湯口4を介して取鍋12に出湯する。 When the decarburization reaction proceeds and the carbon concentration of the molten steel that has been melted drops to a predetermined value, the decarburization treatment is terminated. After the decarburization treatment, the converter 1A is tilted to the side where the hot water outlet 4 is installed, and the molten steel in the molten converter is discharged to the ladle 12 through the hot water outlet 4.

[精錬方法2]
精錬方法2では、図3に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。次いで、転炉1に、装入鍋11を介して、高炉から出銑され、必要に応じて脱硫処理の施された溶銑5を装入する。
[Refining method 2]
In the refining method 2, as shown in FIG. 3, the cold iron source 7 is charged into the converter 1 via the scrap chute 10. Charging the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, but in order to reduce the amount of carbon dioxide generated in the steelmaking process, the cold iron source 7 is charged into the converter 1. It is preferable to charge. Next, the hot metal 5 which has been taken out of the blast furnace and has been desulfurized is charged into the converter 1 via the charging pot 11.

その後、この転炉内の溶銑5に、CaO系媒溶剤及び酸素源として酸素ガス8を供給して脱珪・脱燐処理を実施する。転炉内の溶銑5に酸素ガス8を供給することで、先ず、溶銑5に含有される珪素と酸素源中の酸素との反応(Si+2O→SiO)により、脱珪反応が起こり、溶銑5の珪素濃度が低下する。溶銑5の珪素濃度が或る程度低下すると、溶銑5に含有される燐と酸素源中の酸素との反応(2P+5O→P)が起こり、溶銑中の燐は燐酸化物(P)となる。この燐酸化物が、CaO系媒溶剤の滓化によって形成されるスラグに3CaO・Pなる化合物として取り込まれ、脱燐反応が進行する。脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 After that, oxygen gas 8 is supplied as a CaO-based medium solvent and an oxygen source to the hot metal 5 in the converter to carry out desiliconization / dephosphorization treatment. By supplying the oxygen gas 8 to the hot metal 5 in the converter, first, the desiliconization reaction occurs by the reaction (Si + 2O → SiO 2) between the silicon contained in the hot metal 5 and the oxygen in the oxygen source, and the hot metal 5 Silicon concentration decreases. When the silicon concentration of the hot metal 5 decreases to some extent, the reaction between the phosphorus contained in the hot metal 5 and the oxygen in the oxygen source (2P + 5O → P 2 O 5 ) occurs, and the phosphorus in the hot metal is phosphoric acid (P 2 O). 5 ). This phosphoric acid is incorporated into the slag formed by the slag of the CaO-based medium solvent as a compound of 3CaO · P 2 O 5 , and the dephosphorization reaction proceeds. The hot metal temperature rises due to the heat of oxidation of silicon due to the desiliconization reaction, and the melting of the cold iron source 7 in the hot metal is promoted.

この脱珪・脱燐処理前及び/または脱珪・脱燐処理中に、生成するスラグの塩基度を調整するために、CaO系媒溶剤を転炉1に添加する。具体的には、脱珪・脱燐処理後のスラグの塩基度が1.5〜3.5の範囲内となるように、CaO系媒溶剤を転炉1に添加する。スラグの塩基度が高いほどスラグの燐化合物(3CaO・P)の吸収能が高くなり脱燐反応が促進されるので、スラグの塩基度を1.5以上に制御する。一方、スラグの塩基度が3.5を超えると、滓化性が悪くなり、脱燐反応が遅くなるので、脱珪・脱燐処理時のスラグの塩基度は3.5以下に制御する。 A CaO-based medium solvent is added to the converter 1 in order to adjust the basicity of the slag produced before and / or during the desiliconization / dephosphorization treatment. Specifically, the CaO-based medium solvent is added to the converter 1 so that the basicity of the slag after the desiliconization / dephosphorization treatment is within the range of 1.5 to 3.5. Since higher slag basicity slag phosphorus compound (3CaO · P 2 O 5) of the absorption capacity is high dephosphorization reaction is accelerated, and controls the basicity of the slag to 1.5 or more. On the other hand, if the basicity of the slag exceeds 3.5, the slagging property deteriorates and the dephosphorization reaction slows down. Therefore, the basicity of the slag during the desiliconization / dephosphorization treatment is controlled to 3.5 or less.

本発明においては、脱珪・脱燐処理におけるCaO系媒溶剤として、脱珪・脱燐処理の後工程の脱炭処理で生成するスラグ(脱炭処理で生成するスラグを「脱炭スラグ」と称す)を再利用する。脱炭スラグ中のCaO分がCaO源として活用される。脱炭スラグ以外のCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。 In the present invention, as a CaO-based medium solvent in the desiliconization / dephosphorization treatment, slag produced in the decarburization treatment in the subsequent step of the desiliconization / dephosphorization treatment (slag produced in the decarburization treatment is referred to as "decarburization slag"). Reuse). The CaO content in the decarburized slag is utilized as a CaO source. As the CaO-based medium solvent other than decarburized slag, quicklime, dolomite, calcium carbonate and the like can be used.

この脱珪・脱燐処理において使用する酸素源は、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。 The oxygen source used in this desiliconization / dephosphorization treatment is mainly oxygen gas 8 from the top-blown lance 2, but iron oxide may be partially used.

脱燐反応が進行して溶銑の燐濃度が所定の値に低下したなら、脱珪・脱燐処理を終了する。その後の脱炭処理によって溶製される溶鋼の燐濃度を安定して低下するためには、脱珪・脱燐処理後の溶銑の燐濃度が0.040質量%以下になるまで、脱珪・脱燐処理を行うことが好ましい。 When the dephosphorization reaction proceeds and the phosphorus concentration in the hot metal drops to a predetermined value, the desiliconization / dephosphorization treatment is completed. In order to stably reduce the phosphorus concentration of the molten steel melted by the subsequent decarburization treatment, desiliconization is performed until the phosphorus concentration of the hot metal after the desiliconization / dephosphorization treatment is 0.040% by mass or less. It is preferable to perform dephosphorization treatment.

脱珪・脱燐処理のあとに、転炉1を傾動させて、脱珪・脱燐処理で発生したスラグの少なくとも一部を転炉1の炉口からスラグポット13に排出する(中間排滓)。脱珪・脱燐処理で発生したSiO及びPを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱珪・脱燐処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。 After the desiliconization / dephosphorization treatment, the converter 1 is tilted to discharge at least a part of the slag generated in the desiliconization / dephosphorization treatment from the furnace opening of the converter 1 to the slag pot 13 (intermediate discharge). ). In order to discharge SiO 2 and P 2 O 5 generated by the desiliconization / dephosphorization treatment to the outside of the furnace as much as possible, the effluent rate (disposal rate (mass%) = (emission slag mass) × 100 / (desiliconization / desiliconization / The mass of slag in the furnace at the end of the dephosphorization treatment)) is preferably 50% by mass or more.

中間排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱珪・脱燐処理後の溶銑にCaO系媒溶剤及び酸素源として酸素ガス8を供給して、脱珪・脱燐処理後の溶銑に対して脱炭処理を実施する。溶銑に含有される炭素は供給される酸素源中の酸素に酸化されてCOガスとなり、このCOガスが系外に排出されて溶銑の脱炭処理が進行する。 After the intermediate discharge, the converter 1 was returned to the upright position with the furnace opening facing upward, and the hot metal after the desiliconization and dephosphorization treatments remaining in the converter was used as a CaO-based medium solvent and oxygen gas 8 as an oxygen source. Is supplied to perform decarburization treatment on the hot metal after desiliconization and dephosphorization treatment. The carbon contained in the hot metal is oxidized by the oxygen in the supplied oxygen source to become CO gas, and this CO gas is discharged to the outside of the system to proceed with the decarburization treatment of the hot metal.

脱炭処理においては、炉内のスラグの塩基度は2.5〜5.0に調整する。これは、脱炭処理では、脱珪・脱燐処理よりも更に低い濃度まで脱燐する必要があり、そのためには、塩基度の下限値を脱珪・脱燐処理よりも高める必要があるからである。一方、塩基度を5.0超えとしても、脱燐効果は飽和し、添加したCaO系媒溶剤が無駄になる。脱炭処理では酸素ガス8の供給流量が脱珪・脱燐処理よりも多く、溶銑の攪拌力が強く、且つ、溶湯温度が脱珪・脱燐処理時よりも高いので、塩基度が5.0以下であれば、スラグは十分に滓化する。 In the decarburization process, the basicity of the slag in the furnace is adjusted to 2.5 to 5.0. This is because the decarburization treatment requires dephosphorization to a lower concentration than the desiliconization / dephosphorization treatment, and for that purpose, the lower limit of basicity needs to be higher than that of the desiliconization / dephosphorization treatment. Is. On the other hand, even if the basicity exceeds 5.0, the dephosphorization effect is saturated and the added CaO-based medium solvent is wasted. In the decarburization treatment, the supply flow rate of the oxygen gas 8 is larger than that in the desiliconization / dephosphorization treatment, the stirring power of the hot metal is strong, and the molten metal temperature is higher than that in the desiliconization / dephosphorization treatment. If it is 0 or less, the slag is sufficiently slag.

脱炭処理で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱炭処理時のCaO系媒溶剤として使用することができる。 As the CaO-based medium solvent used in the decarburization treatment, quicklime, dolomite, calcium carbonate and the like can be used. However, the present invention is not limited to these, and those containing 50% by mass or more of CaO and, if necessary, other components such as fluorine and alumina can also be used as a CaO-based medium solvent during the decarburization treatment. ..

脱炭反応が進行して溶製された溶鋼の炭素濃度が所定の値に低下したなら、脱炭処理を終了する。脱炭処理後、転炉1を出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼を出湯口4を介して取鍋12に出湯する。炉内のスラグは排出せず、次チャージの溶銑5の脱珪・脱燐処理時のCaO系媒溶剤として再利用する。 When the decarburization reaction proceeds and the carbon concentration of the molten steel that has been melted drops to a predetermined value, the decarburization treatment is terminated. After the decarburization treatment, the converter 1 is tilted to the side where the hot water outlet 4 is installed, and the molten steel in the molten converter is discharged to the ladle 12 through the hot water outlet 4. The slag in the furnace is not discharged and is reused as a CaO-based medium solvent during the desiliconization / dephosphorization treatment of the hot metal 5 of the next charge.

[精錬方法3]
精錬方法3は、伝統的に行われている普通転炉精錬方法である。精錬方法3では、図4に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。次いで、転炉1に、装入鍋11を介して、高炉から出銑され、必要に応じて脱硫処理の施された溶銑5を装入する。
[Refining method 3]
The refining method 3 is a traditional converter refining method. In the refining method 3, as shown in FIG. 4, the cold iron source 7 is charged into the converter 1 via the scrap chute 10. Charging the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, but in order to reduce the amount of carbon dioxide generated in the steelmaking process, the cold iron source 7 is charged into the converter 1. It is preferable to charge. Next, the hot metal 5 which has been taken out of the blast furnace and has been desulfurized is charged into the converter 1 via the charging pot 11.

その後、この転炉内の溶銑5に、CaO系媒溶剤及び酸素源として酸素ガス8を供給し、転炉内の溶銑5に対して、1回の酸素吹錬で脱珪処理、脱燐処理、脱炭処理の全てを実施する。転炉内の溶銑5に酸素ガス8を供給すると、先ず、溶銑5に含有される珪素と酸素源中の酸素とが反応して脱珪反応(Si+2O→SiO)が起こり、溶銑5の珪素濃度が低下する。この脱珪反応とほぼ同時に、脱炭反応(C+O→CO)が起こり、溶銑5の炭素濃度が低下する。 After that, oxygen gas 8 is supplied to the hot metal 5 in the converter as a CaO-based medium solvent and an oxygen source, and the hot metal 5 in the converter is desiliconized and dephosphorized by one oxygen blowing. , Carry out all decarburization treatment. When the oxygen gas 8 is supplied to the hot metal 5 in the converter, first, the silicon contained in the hot metal 5 reacts with the oxygen in the oxygen source to cause a desiliconization reaction (Si + 2O → SiO 2 ), and the silicon of the hot metal 5 is silicon. The concentration decreases. Almost at the same time as this desiliconization reaction, a decarburization reaction (C + O → CO) occurs, and the carbon concentration of the hot metal 5 decreases.

そして、溶銑5の珪素濃度が或る程度低下すると、溶銑5に含有される燐と酸素源中の酸素との反応(2P+5O→P)が起こり、溶銑中の燐は燐酸化物(P)となる。この燐酸化物が、CaO系媒溶剤の滓化によって形成されるスラグに3CaO・Pなる化合物として取り込まれ、脱燐反応が進行する。珪素の酸化熱及び炭素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 When the silicon concentration in the molten iron 5 is reduced to some extent, a reaction occurs with oxygen in the phosphorus and oxygen source contained in the hot metal 5 (2P + 5O → P 2 O 5), phosphorous in the molten iron is phosphorus oxide (P 2 O 5 ). This phosphoric acid is incorporated into the slag formed by the slag of the CaO-based medium solvent as a compound of 3CaO · P 2 O 5 , and the dephosphorization reaction proceeds. The hot metal oxidation temperature rises due to the heat of oxidation of silicon and the heat of oxidation of carbon, and the melting of the cold iron source 7 in the hot metal is promoted.

この酸素吹錬においては、炉内のスラグの塩基度は3.0〜5.0に調整する。これは、1回の酸素吹錬で所定の燐濃度まで脱燐する必要があり、そのためには、塩基度の下限値を3.0以上に高める必要がある。一方、塩基度を5.0超えとしても、脱燐効果は飽和し、添加したCaO系媒溶剤が無駄になる。 In this oxygen blowing, the basicity of the slag in the furnace is adjusted to 3.0 to 5.0. For this, it is necessary to dephosphorize to a predetermined phosphorus concentration by one oxygen blowing, and for that purpose, it is necessary to raise the lower limit of basicity to 3.0 or more. On the other hand, even if the basicity exceeds 5.0, the dephosphorization effect is saturated and the added CaO-based medium solvent is wasted.

この酸素吹錬で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、CaO系媒溶剤として使用することができる。 As the CaO-based medium solvent used in this oxygen blowing, quicklime, dolomite, calcium carbonate and the like can be used. However, the solvent is not limited to these, and those containing 50% by mass or more of CaO and, if necessary, other components such as fluorine and alumina can also be used as the CaO-based medium solvent.

脱炭反応が進行して溶製された溶鋼の炭素濃度が所定の値に低下したなら、酸素吹錬を終了する。酸素吹錬後、転炉1を出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼を出湯口4を介して取鍋12に出湯する。出湯後、転炉1の炉口が下に位置するように転炉1を傾動させ、転炉1の炉口から炉内のスラグを排出する。 When the decarburization reaction proceeds and the carbon concentration of the molten steel that has been melted drops to a predetermined value, oxygen blowing is terminated. After oxygen blowing, the converter 1 is tilted to the side where the hot water outlet 4 is installed, and the molten steel in the molten converter is discharged to the ladle 12 through the hot water outlet 4. After the hot water is discharged, the converter 1 is tilted so that the furnace opening of the converter 1 is located below, and the slag in the furnace is discharged from the furnace opening of the converter 1.

本発明は、3基の転炉を用いて溶銑を精錬して溶鋼を溶製する際に、操業状況に応じて、つまり、生産性、溶製される溶鋼の品質、操業コスト、スラグ発生量などのうちのどれを優先するかに基づき、各々長所及び短所が異なる上記精錬方法1〜3のなかの1種または2種以上を選択し、3基の各々の転炉で実施する。 According to the present invention, when refining hot metal using three converters to melt molten steel, it depends on the operating conditions, that is, productivity, quality of molten steel to be molten, operating cost, and amount of slag generated. Based on which of the above is prioritized, one or more of the above refining methods 1 to 3 having different advantages and disadvantages are selected and carried out in each of the three converters.

例えば、生産性が高いことを優先する場合には、3基の転炉のうち、2基の転炉で前記精錬方法1を実施し、残りの1基の転炉で前記精錬方法3を実施することが好ましい。 For example, when giving priority to high productivity, the refining method 1 is carried out in two converters among the three converters, and the refining method 3 is carried out in the remaining one converter. It is preferable to do so.

溶銑の予備処理比率が高く且つ溶製される溶鋼の燐濃度が低いことを優先する場合には、3基の転炉のうち、2基の転炉で前記精錬方法1を実施し、残りの1基の転炉で前記精錬方法2を実施することが好ましい。 If priority is given to a high pretreatment ratio of hot metal and a low phosphorus concentration of the molten steel to be melted, the refining method 1 is carried out in two of the three converters, and the remaining ones. It is preferable to carry out the refining method 2 in one converter.

生産性が高く且つ予備処理比率が高いことを優先する場合には、3基の転炉の各々で前記精錬方法2を実施することが好ましい。 When priority is given to high productivity and high pretreatment ratio, it is preferable to carry out the refining method 2 in each of the three converters.

精錬方法1及び精錬方法2を実施する場合、各々の転炉が、例えば精錬方法1の脱珪処理−中間排滓−脱燐処理と、脱炭処理とを、交互に行うなどのように、複数種類の精錬方法を実施すると、精錬方法の入れ替わり時には、前チャージの残スラグ及び残鋼の影響により、具体的には、前チャージからの燐成分の汚染(コンタミネイション)の影響により、効率的な処理ができなくなる。したがって、本発明を実施する際は、精錬方法1及び精錬方法2を実施する場合には、各々の転炉は単一種類の精錬方法のみを実施することが好ましい。 When the refining method 1 and the refining method 2 are carried out, each converter alternately performs the desiliconization treatment-intermediate slag-dephosphorization treatment and the decarburization treatment of the refining method 1, for example. When multiple types of refining methods are implemented, when the refining methods are replaced, it is efficient due to the influence of the residual slag and residual steel of the precharge, specifically, the effect of contamination of the phosphorus component from the precharge. Processing becomes impossible. Therefore, when carrying out the present invention, when the refining method 1 and the refining method 2 are carried out, it is preferable that each converter carries out only a single type of refining method.

また、一つの転炉において精錬方法を1種類に固定しても、操業で使用する装入鍋、出湯用の取鍋、排滓用のスラグポットを、精錬方法の異なる複数の転炉で混用した場合にも上記のような前チャージからの燐成分の汚染が生じるおそれがある。したがって、各々の転炉で使用する装入鍋、出湯用の取鍋、排滓用のスラグポットを、各々の転炉で専用とすることが好ましい。各々の転炉で専用化することで、前チャージからの汚染が少なくなり、汚染の少ない転炉操業が実現可能である。排滓用のスラグポットを各転炉で専用する場合には、排滓用のスラグポットを積載する台車も各転炉に専用配置することが必要である。 In addition, even if the refining method is fixed to one type in one converter, the charging pot, hot water ladle, and slag pot used in the operation are mixed in multiple converters with different refining methods. Even in this case, the phosphorus component may be contaminated from the precharge as described above. Therefore, it is preferable that the charging pot, the hot water ladle, and the slag pot used in each converter are dedicated to each converter. By dedicating each converter, pollution from the pre-charge is reduced, and it is possible to realize converter operation with less pollution. When the slag pot for slag is dedicated to each converter, it is necessary to arrange the trolley for loading the slag pot for slag in each converter.

即ち、本発明を実施する際は、3基の転炉に対して合計3基以上の装入鍋及び合計3基以上の出湯用の取鍋を配置し、各々の転炉で溶銑及び溶鋼をハンドリングする際には、前記装入鍋及び前記出湯用の取鍋を各々の転炉で専用することが好ましい。 That is, when carrying out the present invention, a total of 3 or more charging pots and a total of 3 or more hot water ladle are arranged for 3 converters, and hot metal and molten steel are used in each converter. When handling, it is preferable to dedicate the charging pot and the hot water ladle in each converter.

また、本発明を実施する際は、3基の転炉に対して合計3基以上の排滓用のスラグポット及び合計3基以上の前記スラグポットを積載するための台車を配置し、各々の転炉からスラグを排出する際には、前記排滓用のスラグポット及び前記スラグポットを積載するための台車を各々の転炉で専用し、各々の転炉からの排出スラグを転炉毎に回収・貯蔵し、排出スラグの処理工程(スラグの再利用など)へ搬送することが好ましい。 Further, when carrying out the present invention, a total of three or more slag pots for discharging and a total of three or more slag pots for loading the slag pots are arranged in three converters, and each of them is arranged. When discharging slag from a converter, the slag pot for discharging the slag and the trolley for loading the slag pot are dedicated to each converter, and the slag discharged from each converter is discharged for each converter. It is preferable to collect and store the slag and transport it to a process for treating discharged slag (reuse of slag, etc.).

以上説明したように、本発明によれば、長所及び短所の異なる3種類の精錬方法を、操業状況(生産性、溶鋼の品質、操業コスト、副産物発生量)に応じて3基の転炉で適切に実施することができ、生産性、溶鋼の品質、操業コスト、副産物発生量などを所望する範囲に制御することが実現される。 As described above, according to the present invention, three types of refining methods having different advantages and disadvantages can be carried out in three converters according to the operating conditions (productivity, molten steel quality, operating cost, by-product generation amount). It can be carried out appropriately, and productivity, quality of molten steel, operating cost, amount of by-products generated, etc. can be controlled within a desired range.

炉容量が300トンの3基の転炉を用いて、操業状況(生産性、溶鋼の品質、操業コスト、副産物発生量)に応じて3種類の操業パターンで本発明を実施した。 Using three converters with a furnace capacity of 300 tons, the present invention was carried out in three types of operation patterns according to the operation conditions (productivity, quality of molten steel, operation cost, amount of by-products generated).

操業パターン1は、生産性を優先し、3基の転炉のうち、2基の転炉で精錬方法1を実施し、残りの1基の転炉で精錬方法3を実施した。 In the operation pattern 1, priority was given to productivity, and the refining method 1 was carried out in two converters out of the three converters, and the refining method 3 was carried out in the remaining one converter.

操業パターン2は、溶銑の予備処理比率が高く且つ溶製される溶鋼の燐濃度が低いことを優先し、3基の転炉のうち、2基の転炉で精錬方法1を実施し、残りの1基の転炉で精錬方法2を実施した。 In the operation pattern 2, priority is given to a high pretreatment ratio of hot metal and a low phosphorus concentration of the molten steel to be melted, and the refining method 1 is carried out in two of the three converters, and the rest. The refining method 2 was carried out in one of the converters.

操業パターン3は、生産性が高く且つ予備処理比率が高いことを優先し、3基の転炉の各々で精錬方法2を実施した。 In the operation pattern 3, priority was given to high productivity and high pretreatment ratio, and the refining method 2 was carried out in each of the three converters.

各々の操業パターンで少なくとも1日間以上を継続して操業し、その期間の生産性、予備処理比率、CaO系媒溶剤の原単位、スラグ発生量を比較した。CaO系媒溶剤としては生石灰(CaO)を使用した。 Each operation pattern was continuously operated for at least one day, and the productivity, pretreatment ratio, basic unit of CaO-based medium solvent, and slag generation amount during that period were compared. Quicklime (CaO) was used as the CaO-based medium solvent.

図5に、操業パターン1における3基の転炉(A〜C炉)の操業形態を示し、図6に、操業パターン2における3基の転炉(A〜C炉)の操業形態を示し、図7に、操業パターン3における3基の転炉(A〜C炉)の操業形態を示す。 FIG. 5 shows the operation mode of the three converters (A to C furnaces) in the operation pattern 1, and FIG. 6 shows the operation mode of the three converters (A to C furnaces) in the operation pattern 2. FIG. 7 shows the operation mode of the three converters (A to C furnaces) in the operation pattern 3.

図5〜7において、「DSi−DP」は、精錬方法1の「脱珪処理−中間排滓−脱燐処理−出湯」を表し、「レス脱炭」は、精錬方法1の「脱炭処理−出湯」を表し、「普通精錬」は、精錬方法3の「普通転炉精錬方法」を表し、「DSiP−DC」は、精錬方法2の「脱珪・脱燐処理−中間排滓−脱炭処理−出湯」を表している。 In FIGS. 5 to 7, "DSi-DP" represents "desiliconization treatment-intermediate discharge-dephosphorization treatment-hot water discharge" of the refining method 1, and "less decarburization" is the "decarburization treatment" of the refining method 1. -Represents "hot water", "ordinary refining" represents the "ordinary converter refining method" of refining method 3, and "DSiP-DC" represents "desiliconization / dephosphorization treatment-intermediate discharge-depletion" of refining method 2. It stands for "charcoal treatment-hot water".

図5〜7に示すように、操業パターン1では、延べ120分で6チャージ分の溶鋼が溶製されており、1チャージあたりの所要時間は20.0分となり、操業パターン2では、延べ120分で4.5チャージ分の溶鋼が溶製されており、1チャージあたりの所要時間は26.7分となり、また、操業パターン3では、延べ120分で6チャージ分の溶鋼が溶製されており、1チャージあたりの所要時間は20.0分となった。 As shown in FIGS. 5 to 7, in the operation pattern 1, 6 charges of molten steel are melted in a total of 120 minutes, and the time required per charge is 20.0 minutes. In the operation pattern 2, a total of 120 minutes. The molten steel for 4.5 charges is melted in minutes, and the time required for each charge is 26.7 minutes. In operation pattern 3, the molten steel for 6 charges is melted in a total of 120 minutes. The time required per charge was 20.0 minutes.

尚、図6で、前チャージの「DSiP−DC」と次チャージの「DSiP−DC」との間に非操業時間が設定されているが、これは、「DSi−DP」及び「レス脱炭」と「DSiP−DC」とで処理時間が異なり、溶銑を転炉に装入するタイミングが「DSi−DP」及び「レス脱炭」と「DSiP−DC」とで重なることが発生し、且つ、溶銑を各転炉に装入する装入鍋を搬送するクレーンが1基であり、そのために、溶銑を転炉に装入するタイミングが重なる際は、溶銑の装入タイミングを調整する必要があることによる。 In FIG. 6, the non-operating time is set between the pre-charged “DSiP-DC” and the next charge “DSiP-DC”, which are “DSi-DP” and “less decarburization”. The processing time differs between "DSi-DP" and "DSiP-DC", and the timing of charging the hot metal into the converter may overlap between "DSi-DP" and "less decarburization" and "DSiP-DC". , There is one crane that transports the charging pot that charges the hot metal into each converter. Therefore, when the timing of charging the hot metal into the converter overlaps, it is necessary to adjust the charging timing of the hot metal. It depends on what it is.

表1に、操業パターン1〜3における生産性、予備処理比率、CaO系媒溶剤の原単位及びスラグ発生量の調査結果を示す。尚、表1に示すCaO系媒溶剤の原単位指数及びスラグ発生量指数は、全チャージを精錬方法3で実施した場合を基準値(=1.0)として指数化した値である。 Table 1 shows the survey results of productivity, pretreatment ratio, basic unit of CaO-based solvent, and slag generation amount in operation patterns 1 to 3. The basic unit index and the slag generation amount index of the CaO-based medium solvent shown in Table 1 are indexed values with the case where the total charge is carried out by the refining method 3 as a reference value (= 1.0).

Figure 0006848780
Figure 0006848780

表1に示すように、操業パターン1は生産性に優れるものの、予備処理比率が50%であり、CaO系媒溶剤の使用量が増加した。操業パターン2は、生産性が低下したものの、CaO系媒溶剤の使用量が少なく、スラグ発生量が低減した。操業パターン3は、生産性に優れ、且つ、予備処理比率を100%にすることができた。 As shown in Table 1, although the operation pattern 1 was excellent in productivity, the pretreatment ratio was 50%, and the amount of CaO-based medium solvent used increased. In the operation pattern 2, although the productivity was lowered, the amount of CaO-based solvent used was small and the amount of slag generated was reduced. The operation pattern 3 was excellent in productivity, and the pretreatment ratio could be set to 100%.

炉容量が300トンの3基の転炉を有する転炉工場において、各々の転炉が複数種類の精錬方法を実施する特許文献5に提案される操業パターンの場合を従来例として、この従来例と、本発明の精錬方法1つまり各々の転炉は単一種類の精錬方法のみを実施する場合とで、CaO系媒溶剤の原単位指数及びスラグ発生量指数を比較・調査した。調査結果を表2に示す。尚、表2に示すCaO系媒溶剤の原単位指数及びスラグ発生量指数は、従来例(特許文献5に提案される操業パターン)の場合を基準値(=1.0)として指数化した値である。 In a converter factory having three converters having a furnace capacity of 300 tons, the case of the operation pattern proposed in Patent Document 5 in which each converter implements a plurality of types of refining methods is a conventional example. And the refining method 1 of the present invention, that is, the case where only one type of refining method is carried out in each converter, the basic unit index and the slag generation amount index of the CaO-based medium solvent were compared and investigated. The survey results are shown in Table 2. The basic unit index and the slag generation amount index of the CaO-based medium solvent shown in Table 2 are indexed values using the case of the conventional example (operation pattern proposed in Patent Document 5) as a reference value (= 1.0). Is.

Figure 0006848780
Figure 0006848780

従来例では、一つの転炉において複数の精錬方法を実施しており、精錬方法の入れ替わり時は前チャージの残スラグ及び残鋼の影響により、効率的な処理ができないために、CaO系媒溶剤の原単位及びスラグ発生量が増加するという課題があった。これに対して、本発明の精錬方法1では、炉毎の精錬方法を1種類に固定するので、前チャージからの汚染(コンタミネイション)が減少し、CaO系媒溶剤の原単位及びスラグ発生量を削減することができた。 In the conventional example, a plurality of refining methods are carried out in one converter, and when the refining methods are replaced, efficient treatment cannot be performed due to the influence of the residual slag and the residual steel of the precharge. There was a problem that the basic unit and the amount of slag generated increased. On the other hand, in the refining method 1 of the present invention, since the refining method for each furnace is fixed to one type, contamination from the precharge is reduced, and the basic unit of the CaO-based solvent and the amount of slag generated are reduced. Was able to be reduced.

具体的には、表2に示すように、精錬方法1を実施することで、CaO系媒溶剤及びスラグ発生量を、従来例に比較して30%以上削減することが可能になる良好な結果が得られた。 Specifically, as shown in Table 2, by carrying out the refining method 1, the amount of CaO-based solvent and slag generated can be reduced by 30% or more as compared with the conventional example, which is a good result. was gotten.

また、一つの転炉において精錬方法を1種類に固定しても、操業で使用する装入鍋、出湯用の取鍋、排滓用のスラグポットを、精錬方法の異なる複数の転炉で混用した場合にも上記のような前チャージからの汚染が生じる。そこで、本実施例では、一つの転炉で行う精錬方法の種類を一つに固定し、且つ、操業で使用する装入鍋、出湯用の取鍋、排滓用のスラグポット、排滓用のスラグポットを積載する台車を、各々の転炉で専用とした。各々の転炉からの排出スラグを転炉毎に回収・貯蔵し、排出スラグの処理工程へ搬送した。 In addition, even if the refining method is fixed to one type in one converter, the charging pot, hot water ladle, and slag pot used in the operation are mixed in multiple converters with different refining methods. Even if this happens, contamination from the pre-charge as described above will occur. Therefore, in this embodiment, the types of refining methods performed in one converter are fixed to one, and the charging pot used in the operation, the hot water ladle, the slag pot for draining, and the draining pot are used. The trolley for loading the slag pots was dedicated to each converter. The discharged slag from each converter was collected and stored for each converter and transported to the discharge slag processing process.

操業で使用する装入鍋及び出湯用の取鍋を各々の転炉で専用化することで、専用化しない場合のCaO系媒溶剤の原単位指数及びスラグ発生量指数をそれぞれ1.00とすると、それぞれ0.98に低減すること、つまり、専用化しない場合に比較して、CaO系媒溶剤の原単位指数及びスラグ発生量指数をそれぞれ2%低下することができた。また、排滓用のスラグポット及び排滓用のスラグポットを積載する台車を各々の転炉で専用化することで、専用化しない場合のCaO系媒溶剤の原単位指数及びスラグ発生量指数をそれぞれ1.00とすると、それぞれ0.96に低減すること、つまり、専用化しない場合に比較して、CaO系媒溶剤の原単位指数及びスラグ発生量指数をそれぞれ4%低下することができた。 By dedicating the charging pot and hot water ladle used in the operation in each converter, the basic unit index and slag generation amount index of the CaO-based solvent when not dedicated are set to 1.00, respectively. , That is, the basic unit index and the slag generation amount index of the CaO-based medium solvent could be reduced by 2%, respectively, as compared with the case where they were not dedicated. In addition, by dedicating the slag pot for slag and the trolley for loading the slag pot for slag in each converter, the basic unit index and slag generation amount index of the CaO-based solvent when not dedicated can be obtained. When each is set to 1.00, it can be reduced to 0.96, that is, the basic unit index and the slag generation amount index of the CaO-based medium solvent can be reduced by 4%, respectively, as compared with the case where they are not dedicated. ..

即ち、装入鍋、出湯用の取鍋、排滓用のスラグポット、排滓用のスラグポットを積載する台車を各々の転炉で専用化することで、前チャージからの汚染が最も少なくなり、汚染の少ない転炉操業が実現可能であった。 That is, by dedicating a trolley for loading a charging pot, a hot water ladle, a slag pot for discharging, and a slag pot for discharging in each converter, contamination from the front charge is minimized. It was possible to operate a converter with less pollution.

1 転炉
2 上吹きランス
3 底吹き羽口
4 出湯口
5 溶銑
6 スラグ
7 冷鉄源
8 酸素ガス
9 底吹きガス
10 スクラップシュート
11 装入鍋
12 取鍋
13 スラグポット
1 converter 2 top blown lance 3 bottom blown tuyere 4 hot water outlet 5 hot metal 6 slag 7 cold iron source 8 oxygen gas 9 bottom blown gas 10 scrap chute 11 loading pot 12 ladle 13 slag pot

Claims (3)

3基の転炉を用いて溶銑を精錬する転炉の操業方法であって、
前記3基の転炉をA炉、B炉、C炉と定義し、
A炉では、転炉内の溶銑を酸素吹錬により脱珪処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱燐処理し、脱燐処理後、溶銑を取鍋に出湯する精錬を行い、
B炉では、A炉から出湯された溶銑を転炉内に装入して酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬を行い、
C炉では、転炉内の溶銑を1回の酸素吹錬で脱珪処理、脱燐処理、脱炭処理の全てを実施し、酸素吹錬後、溶製された溶鋼を転炉から取鍋に出湯する精錬を行い、
且つ、各々の転炉は、単一種類の精錬方法のみを実施することを特徴とする、転炉の操業方法。
It is a method of operating a converter that smelts hot metal using three converters.
The three converters are defined as A furnace, B furnace, and C furnace.
In the A furnace, the hot metal in the converter is desiliconized by oxygen blowing, then the converter is tilted to discharge the slag in the furnace, and then the hot metal remaining in the converter is blown by oxygen. Dephosphorization treatment, after dephosphorization treatment, smelting to take hot metal and put it in a pot,
In the B furnace, the hot metal discharged from the A furnace is charged into the converter and decarburized by oxygen blowing, and after the decarburization treatment, the molten steel is smelted from the converter to the ladle. Do,
In the C furnace, the hot metal in the converter is desiliconized, dephosphorized, and decarburized in a single oxygen blow, and after oxygen blowing, the molten steel is taken from the converter. There line the refining to be tapping into,
Moreover, each converter is a method of operating a converter, characterized in that only a single type of refining method is carried out.
3基の転炉を用いて溶銑を精錬する転炉の操業方法であって、
前記3基の転炉をA炉、B炉、C炉と定義し、
A炉では、転炉内の溶銑を酸素吹錬により脱珪処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱燐処理し、脱燐処理後、溶銑を取鍋に出湯する精錬を行い、
B炉では、A炉から出湯された溶銑を転炉内に装入して酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬を行い、
C炉では、転炉内の溶銑を酸素吹錬により同時に脱珪処理及び脱燐処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬を行い、
且つ、各々の転炉は、単一種類の精錬方法のみを実施することを特徴とする、転炉の操業方法。
It is a method of operating a converter that smelts hot metal using three converters.
The three converters are defined as A furnace, B furnace, and C furnace.
In the A furnace, the hot metal in the converter is desiliconized by oxygen blowing, then the converter is tilted to discharge the slag in the furnace, and then the hot metal remaining in the converter is blown by oxygen. Dephosphorization treatment, after dephosphorization treatment, smelting to take hot metal and put it in a pot,
In the B furnace, the hot metal discharged from the A furnace is charged into the converter and decarburized by oxygen blowing, and after the decarburization treatment, the molten steel is smelted from the converter to the ladle. Do,
In the C furnace, the hot metal in the converter is simultaneously desiliconized and dephosphorized by oxygen blowing, then the converter is tilted to discharge the slag in the converter, and then the hot metal remaining in the converter is left. was decarburization by oxygen blowing, have line refining of tapping into a ladle after the decarburization, molten steel is melted from the converter,
Moreover, each converter is a method of operating a converter, characterized in that only a single type of refining method is carried out.
3基の転炉を用いて溶銑を精錬する転炉の操業方法であって、
前記3基の転炉をA炉、B炉、C炉と定義し、
前記A炉、B炉、C炉の各々で、転炉内の溶銑を酸素吹錬により同時に脱珪処理及び脱燐処理し、次いで、転炉を傾動して炉内のスラグを排出し、その後、転炉内に残留させた溶銑を酸素吹錬により脱炭処理し、脱炭処理後、溶製された溶鋼を転炉から取鍋に出湯する精錬を行い、
且つ、各々の転炉は、単一種類の精錬方法のみを実施することを特徴とする、転炉の操業方法。
It is a method of operating a converter that smelts hot metal using three converters.
The three converters are defined as A furnace, B furnace, and C furnace.
In each of the A, B, and C furnaces, the hot metal in the converter is simultaneously desiliconized and dephosphorized by oxygen blowing, and then the converter is tilted to discharge the slag in the furnace, and then. the hot metal was allowed to remain on the rolling furnace and decarburization by oxygen blowing, have line refining of tapping into a ladle after the decarburization, molten steel is melted from the converter,
Moreover, each converter is a method of operating a converter, characterized in that only a single type of refining method is carried out.
JP2017180898A 2017-07-06 2017-09-21 How to operate the converter Active JP6848780B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017132466 2017-07-06
JP2017132466 2017-07-06

Publications (2)

Publication Number Publication Date
JP2019014958A JP2019014958A (en) 2019-01-31
JP6848780B2 true JP6848780B2 (en) 2021-03-24

Family

ID=65356893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180898A Active JP6848780B2 (en) 2017-07-06 2017-09-21 How to operate the converter

Country Status (1)

Country Link
JP (1) JP6848780B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468713A (en) * 1977-11-11 1979-06-02 Nippon Steel Corp Steel making process reducing discharge of slag and enhancing characteristics of the same
JP2002194415A (en) * 2000-12-27 2002-07-10 Sumitomo Metal Ind Ltd Steelmaking method with converter and operating method for dephosphorization
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron
JP4555764B2 (en) * 2005-10-18 2010-10-06 新日本製鐵株式会社 Converter refining method
JP2007277665A (en) * 2006-04-10 2007-10-25 Tokyo Yogyo Co Ltd Method for desiliconizing molten pig iron and apparatus for desiliconizing molten pig iron
BR112015016963B1 (en) * 2013-01-18 2019-07-16 Jfe Steel Corporation CONVERTER STEEL MANUFACTURING METHOD
JP6172194B2 (en) * 2014-07-23 2017-08-02 Jfeスチール株式会社 Hot metal pretreatment method
JP6492820B2 (en) * 2015-03-17 2019-04-03 新日鐵住金株式会社 Converter operation method
JP2017002331A (en) * 2015-06-04 2017-01-05 株式会社神戸製鋼所 Method for supplying solid oxygen source in dephosphorization treatment of molten iron

Also Published As

Publication number Publication date
JP2019014958A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5671801B2 (en) Converter refining method
JP2021195558A (en) Producing method of ultra-low phosphorus steel
JPH0770626A (en) Converter steel making method
JP5983492B2 (en) Hot metal pretreatment method
JP2018178260A (en) Converter steelmaking process
JP6665884B2 (en) Converter steelmaking method
JP5967139B2 (en) Hot metal pretreatment method
JP6848780B2 (en) How to operate the converter
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP5870584B2 (en) Hot metal dephosphorization method
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP3486886B2 (en) Steelmaking method using two or more converters
JP2607329B2 (en) Hot metal dephosphorization method
JP4981248B2 (en) Hot metal processing method
JP3486887B2 (en) Steelmaking method using multiple converters
JP2002256325A (en) Method for pretreating molten iron having little amount of slag by using converter type vessel
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH11193414A (en) Steel manufacturing method using a plurality of converters
JPH0353014A (en) Smelting method for extremely low-sulfur steel
JPH10306305A (en) Steelmaking method using two or more sets of converters
JP2005325389A (en) Method for refining molten iron
JP2022160777A (en) Smelting method of low phosphorus steel
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201201

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250