JP2005325389A - Method for refining molten iron - Google Patents

Method for refining molten iron Download PDF

Info

Publication number
JP2005325389A
JP2005325389A JP2004143235A JP2004143235A JP2005325389A JP 2005325389 A JP2005325389 A JP 2005325389A JP 2004143235 A JP2004143235 A JP 2004143235A JP 2004143235 A JP2004143235 A JP 2004143235A JP 2005325389 A JP2005325389 A JP 2005325389A
Authority
JP
Japan
Prior art keywords
blowing
desiliconization
oxygen
dephosphorization
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143235A
Other languages
Japanese (ja)
Other versions
JP4025751B2 (en
Inventor
Kenichiro Miyamoto
健一郎 宮本
Mitsutaka Matsuo
充高 松尾
Yoji Idemoto
庸司 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004143235A priority Critical patent/JP4025751B2/en
Publication of JP2005325389A publication Critical patent/JP2005325389A/en
Application granted granted Critical
Publication of JP4025751B2 publication Critical patent/JP4025751B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining method by which desiliconization and dephosphorization blowing can be efficiently and stably performed when extra-low phosphorus molten steel is refined. <P>SOLUTION: The method for refining molten iron is characterized in that, when molten iron discharged from a blast furnace is subjected to desiliconization, dephosphorization and decarburization refining using a converter type vessel, oxygen blowing is performed in the condition that L/L<SB>0</SB>defined by the ratio between the depth L<SB>0</SB>(m) of a steel bath and the depth L (m) of a recess in the steel bath formed by a top-blown oxygen jet lies in the range of 0.5 to 0.9 in the period of the desiliconization blowing; after the completion of the desiliconization blowing period, dephosphorization blowing is performed in such a manner that either or both of the flow rate of the top-blown oxygen and a lance gap (the distance between the end of a lance and the molten metal surface) are controlled for blocking the top-blown oxygen by slag thereby preventing the direct contact of the top-blown oxygen with the molten iron; thereafter, the converter type vessel is tilted to perform slag exhaust treatment, and successively, the decarburization blowing is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は転炉型容器を用いて溶銑を脱珪及び脱燐精錬し,さらに脱炭処理する精錬方法に関するものである。   The present invention relates to a refining method in which hot metal is desiliconized and dephosphorized using a converter type vessel, and further decarburized.

溶銑の脱珪,脱燐処理方法としては,従来よりトーピードカーを用いてフラックスをインジェクションする方法(特許文献1)や,2基の転炉を用いて一方で脱燐を行い,他方で脱炭を行う方法(特許文献2)などがある。   As hot metal desiliconization and dephosphorization methods, conventionally, a flux injection method using a torpedo car (Patent Document 1), dephosphorization on one side using two converters, and decarburization on the other side are performed. There is a method (Patent Document 2) and the like.

しかしながら,これらの方法は,例えば特許文献1の方法では容器の容量制約から脱珪処理後に排滓を行う必要があることや,スロッピング回避のために吹き込む酸素やフラックスの供給速度が制約されるなど処理時間延長の問題があった。さらに,特許文献2に見られる方法においても,脱炭時間などの時間制約から脱珪,脱燐時間が限られるような場合には,極低燐鋼の溶製が困難であるなどの問題があった。   However, in these methods, for example, in the method of Patent Document 1, it is necessary to discharge after the desiliconization treatment due to the capacity limitation of the container, and the supply rate of oxygen and flux to be blown in order to avoid slopping is limited. There was a problem of extended processing time. Further, even in the method found in Patent Document 2, when the desiliconization and dephosphorization time is limited due to time restrictions such as decarburization time, there is a problem that it is difficult to melt ultra-low phosphorus steel. there were.

特開平5−5114号公報JP-A-5-5114 特開昭63−195210号公報Japanese Unexamined Patent Publication No. 63-195210

すなわち,特許文献1に示された方法の場合には,安定操業を行おうとする際には処理時間の延長が問題となり,また,特許文献2に示された方法では,極低燐鋼溶製の際には所定の精錬時間内に目的とする燐濃度への到達が困難であるといった問題があった。   That is, in the case of the method shown in Patent Document 1, extension of the processing time becomes a problem when stable operation is performed. In addition, in the method shown in Patent Document 2, an extremely low phosphorus steel solution is produced. In this case, there is a problem that it is difficult to reach the target phosphorus concentration within a predetermined refining time.

従って,本発明の目的とするところは,処理時間の延長を伴うことなく極低燐鋼の安定溶製を可能とすることにある。   Accordingly, an object of the present invention is to enable stable melting of ultra-low phosphorus steel without extending the processing time.

前記の従来技術の問題点を解決するために,転炉型容器を用いて溶銑を精錬する方法において,上吹き酸素をスラグにより遮断し,溶銑表面に接触しないように吹付けることにより,スラグ中の酸化鉄濃度を過剰に高めることなくスラグ/メタル界面の酸素ポテンシャル(活量)を高め,脱燐効率を大幅に向上する方法として、特開2002−322507号公報が開示されている。   In order to solve the problems of the prior art, in the method of refining hot metal using a converter type vessel, the top blowing oxygen is blocked by slag and sprayed so as not to contact the hot metal surface. Japanese Laid-Open Patent Publication No. 2002-322507 is disclosed as a method for increasing the oxygen potential (activity) at the slag / metal interface without excessively increasing the iron oxide concentration and greatly improving the dephosphorization efficiency.

本発明者らはさらに転炉型容器を用いての脱珪,脱燐について鋭意検討を行った結果,今回,脱珪期終了時のスラグの滓化を促進させることにより,スラグ/メタル界面の酸素ポテンシャルをより向上させることが可能であることを知見しえた。本発明はこの知見に基づきなされたものである。   As a result of intensive studies on desiliconization and dephosphorization using a converter-type vessel, the present inventors have recently promoted the slag hatching at the end of the desiliconization period, thereby improving the slag / metal interface. It was found that the oxygen potential could be further improved. The present invention has been made based on this finding.

その要旨とするところは,以下の通りである。
(1) 高炉より出銑された溶銑を、転炉型容器を用いて脱珪及び脱燐・脱炭精錬するに際し,脱珪吹錬期間の吹酸条件が,鋼浴深さL0(m)と上吹き酸素ジェットにより形成される鋼浴の凹み深さL(m)の比で定義されるL/L0が0.5〜0.9の範囲であって,次に,脱珪吹錬期間終了後に上吹き酸素がスラグにより遮断されて直接溶銑に接触しないように、上吹き酸素流量,ランスギャップ(ランス先端〜湯面間距離)のいずれか一方または双方を制御して脱燐吹錬を行った後,転炉型容器を傾動して排滓処理を行い,引き続き脱炭吹錬を行うことを特徴とする溶銑の精錬方法。
(2) 脱珪吹錬期間において、式(1)のR値を10以上30以下の範囲とすることを特徴とする(1)記載の溶銑の精錬方法。
R=W・[%Si]/So2 ・・・式(1)
So2:脱珪吹錬期間に要する酸素量(Nm3
W:装入溶銑量(ton)
[%Si]:脱珪処理前溶銑中Si濃度(質量%)
(3) 脱珪吹錬期間あるいは脱燐吹錬初期に、固体状の酸素化合物を添加することを特徴とする(1)または(2)記載の溶銑の精錬方法。
The gist is as follows.
(1) When hot metal discharged from the blast furnace is desiliconized and dephosphorized / decarburized using a converter vessel, the blowing acid condition during the desiliconization blowing period is the steel bath depth L 0 (m L / L 0 defined by the ratio of the depth L (m) of the steel bath formed by the top blown oxygen jet is in the range of 0.5 to 0.9, After the smelting period, dephosphorization blowing is controlled by controlling one or both of the top blowing oxygen flow rate and the lance gap (distance between the lance tip and the molten metal surface) so that the top blowing oxygen is blocked by the slag and does not directly contact the molten iron. A method of refining hot metal, characterized in that after smelting, the converter vessel is tilted to perform exhaust treatment, followed by decarburization blowing.
(2) The hot metal refining method according to (1), wherein the R value of the formula (1) is in the range of 10 to 30 during the desiliconization blowing process.
R = W · [% Si] / So 2 (1)
So 2 : Oxygen amount required for the desiliconization blowing period (Nm 3 )
W: amount of molten iron charged (ton)
[% Si]: Si concentration (mass%) in hot metal before desiliconization
(3) The method for refining hot metal as described in (1) or (2), wherein a solid oxygen compound is added during a desiliconization blowing period or an initial stage of dephosphorization blowing.

本発明により,極低燐溶鋼の溶製に際し,吹止燐濃度のバラツキが少なく安定した極低燐鋼の溶製が可能となる。   According to the present invention, when producing ultra-low phosphorus molten steel, stable ultra-low phosphorus steel can be produced with little variation in blown phosphorus concentration.

本発明は脱珪吹錬期間終了時のスラグ滓化を促進させることで,その後の脱燐吹錬期において上吹き酸素をスラグにより遮断し,溶銑表面に接触しないように吹付けることにより,スラグ中の酸化鉄濃度を過剰に高めることなく、スラグ/メタル界面の酸素ポテンシャルを高めることが可能であることに立脚している。   The present invention promotes slag hatching at the end of the desiliconization blowing slag, so that in the subsequent dephosphorization blowing slag, the blown oxygen is blocked by slag and sprayed so as not to contact the hot metal surface. It is based on the fact that the oxygen potential at the slag / metal interface can be increased without excessively increasing the iron oxide concentration therein.

一般に,高炉より出銑された溶銑を脱珪,脱燐処理を行う際,最初に脱珪反応が進行し,その後に脱燐反応が起こることが知られている。しかしながら,本発明者らは種々の実験を行うことにより,脱珪吹錬期間終了後の脱燐吹錬期において同様な遮断条件を達成しても,スラグの液相化(滓化)が悪い場合には、脱燐吹錬初期においてはスラグ中の酸素の透過が不十分である,すなわち十分な界面酸素ポテンシャル向上効果が得られないことを知見しえた。   In general, it is known that when the molten iron discharged from the blast furnace is subjected to desiliconization and dephosphorization, the desiliconization reaction proceeds first and then the dephosphorization reaction occurs. However, the present inventors have conducted various experiments, and even if the same blocking condition is achieved in the dephosphorization blowing period after the desiliconization blowing period, the slag is not liquified (hatch). In some cases, it was found that the permeation of oxygen in the slag was insufficient at the initial stage of dephosphorization, that is, a sufficient interface oxygen potential improvement effect could not be obtained.

そこで,本発明者らは脱燐吹錬期に高められた界面酸素ポテンシャルをより効率的に脱燐反応に寄与させる方法として,脱珪吹錬期間の酸素量を適正化させることにより、スラグの滓化が著しく促進でき、これによりその後の脱燐吹錬期において上吹き酸素をスラグにより遮断し,溶銑表面に接触しないように吹付けることにより,スラグ中の酸化鉄濃度を過剰に高めることなく、スラグ/メタル界面の酸素ポテンシャルを高めることが可能であることを見出した。   Therefore, as a method for more efficiently contributing to the dephosphorization reaction, the interfacial oxygen potential increased during the dephosphorization blowing period, the present inventors optimized the amount of oxygen during the desiliconization blowing period, Hatching can be promoted remarkably, so that in the subsequent dephosphorization blowing stage, the top blowing oxygen is shut off by slag and sprayed so as not to contact the hot metal surface without excessively increasing the iron oxide concentration in the slag. It was found that the oxygen potential at the slag / metal interface can be increased.

ここで、脱珪吹錬期間終了時のスラグ滓化を促進させるための条件としては、鋼浴深さ(L0)と上吹き酸素ジェットにより形成される鋼浴の凹み深さ(L)の比で定義されるL/L0が0.5〜0.9の範囲とすることが重要である。(図1を参照) Here, as conditions for promoting the slag hatching at the end of the desiliconization blowing process, the steel bath depth (L 0 ) and the depth of the steel bath dent (L) formed by the top-blown oxygen jet are It is important that L / L 0 defined by the ratio is in the range of 0.5 to 0.9. (See Figure 1)

この方法により、脱燐吹錬期での界面酸素ポテンシャルを有効に活用した後に,一旦排滓を行う(以降、中間排滓と記載することがある)ことで、その後に引き続き脱炭吹錬を行う際の、燐のインプット総量を抑制できるため、極低燐鋼の溶製が可能となる。ここで、中間排滓の排滓率(排滓量/炉内発生スラグ量×100)は高い方が、より燐濃度が低い溶鋼を溶製できるため好ましい。   With this method, after effectively utilizing the interfacial oxygen potential in the dephosphorization blowing process, once desulfurization is performed (hereinafter, sometimes referred to as intermediate desulfurization). Since the total amount of phosphorus input when performing can be suppressed, it is possible to produce extremely low phosphorus steel. Here, it is preferable that the waste rate of the intermediate waste (the amount of waste / the amount of slag generated in the furnace × 100) is high because molten steel having a lower phosphorus concentration can be produced.

尚、本発明では、脱珪吹錬期間とは処理前の溶銑中珪素を低下させることを目的として、吹錬開始から1分以上4分以下の時間にわたり、上吹き酸素ジェットが直接鋼浴に衝突するように酸素供給を行う吹錬形態の期間である。また、脱燐吹錬期間とは処理前の溶銑中燐の質量濃度に対して、目標とすべき燐の質量濃度以下にまで低下させるに十分な酸素量を,脱珪処理後の酸素ジェットがスラグにより遮断された吹錬形態にて酸素供給を行う期間である。ここで,溶銑中の珪素,燐の質量濃度は例えばカントバック分析などによる方法が例示できる。   In the present invention, the desiliconization blowing period is for the purpose of reducing the silicon in the hot metal before the treatment, and the top blown oxygen jet is directly applied to the steel bath over a period of 1 minute to 4 minutes from the start of blowing. It is the period of the blowing form which supplies oxygen so that it may collide. In addition, the dephosphorization blowing period is the amount of oxygen sufficient to reduce the mass concentration of phosphorus in the hot metal before treatment to below the mass concentration of phosphorus that should be targeted. This is a period during which oxygen is supplied in a blown form blocked by slag. Here, the mass concentration of silicon and phosphorus in the hot metal can be exemplified by a method based on cantback analysis, for example.

次に、脱珪吹錬期間の吹酸条件である、鋼浴深さL0(m)と、上吹き酸素ジェットにより形成される鋼浴の凹み深さL(m)については、公知の方法で求めることができ、特に限定するものではないが、例えば以下の方法が推奨される。 Next, the steel bath depth L 0 (m) and the dent depth L (m) of the steel bath formed by the top blowing oxygen jet, which are the blowing acid conditions during the desiliconization blowing process, are known methods. Although not particularly limited, for example, the following method is recommended.

まず、鋼浴深さL0(m)については、以下の式(2)により求めることができる。
0=W/ρM/(πD2/4)×1000 式(2)
ここで,
W:装入溶銑質量(kg)
ρM:溶銑の密度(=6900kg/m3
D:精錬容器の直径(m)
First, the steel bath depth L 0 (m) can be obtained by the following equation (2).
L 0 = W / ρ M / (πD 2/4) × 1000 formula (2)
here,
W: Mass of molten iron (kg)
ρ M : Hot metal density (= 6900 kg / m 3 )
D: Diameter of smelting vessel (m)

また、上吹き酸素ジェットにより形成される鋼浴の凹み深さL(m)については、以下の式(3)および式(4)により求めることができる。
L=Lh・exp(−0.78h/Lh) 式(3)
h=63・(Fo2/d)2/3 式(4)
ここで,
h:ランス〜湯面間距離(ランスギャップ:m)
h:h=0の時の凹み深さ(m)
Fo2:ノズル1本当たりの上吹き酸素流量(Nm3/h)
d:ランスノズルのスロート部直径(mm)
である。
Moreover, about the dent depth L (m) of the steel bath formed by a top blowing oxygen jet, it can obtain | require by the following formula | equation (3) and Formula (4).
L = L h · exp (−0.78 h / L h ) Formula (3)
L h = 63 · (Fo 2 / d) 2/3 formula (4)
here,
h: Distance between lance and hot water surface (lance gap: m)
L h : Depth depth when h = 0 (m)
Fo 2 : Upflow oxygen flow rate per nozzle (Nm 3 / h)
d: Throat diameter of lance nozzle (mm)
It is.

従って、上記のLおよびL0により、(L/L0)が計算される。 Therefore, (L / L 0 ) is calculated from the above L and L 0 .

ここで、L/L0が0.5未満の場合では,脱珪期間中の上吹きによるスラグの攪拌力が不十分となり,それに起因してスラグの滓化遅れが生じてしまい,逆にL/L0が0.9を超えるようなハードブローを行うと,脱炭反応が促進されてしまいスラグ中の酸化鉄濃度が低下して,結果として例え遮断条件が達成されたとしてもその後の脱燐処理時の酸素ポテンシャルを高めることが困難となってしまうためである。 Here, when L / L 0 is less than 0.5, the stirring force of the slag due to the top blowing during the desiliconization period becomes insufficient, resulting in a delay in hatching of the slag. If hard blow is performed such that / L 0 exceeds 0.9, the decarburization reaction is promoted and the iron oxide concentration in the slag is reduced. As a result, even if the blocking condition is achieved, This is because it becomes difficult to increase the oxygen potential during the phosphorus treatment.

また、脱燐吹錬期の吹酸条件である、上吹き酸素が直接溶銑に接触しないための具体的な条件としては,公知の方法で求めることができ、特に限定するものではないが、例えば以下の方法が推奨される。   In addition, the specific condition for preventing the top blowing oxygen from directly contacting the molten iron, which is the blowing acid condition during the dephosphorization blowing process, can be determined by a known method and is not particularly limited. The following methods are recommended.

下記式(5)、式(6)式で計算される酸素ジェットによるスラグ凹み深さLsがスラグ層厚みLs0未満となる条件(Ls<Ls0)とする。(図1を参照)
Ls=Lh’・exp(−0.78h/Lh’) 式(5)
h’=63・(ρS/ρM-1/3・(Fo2/d)2/3 式(6)
ここで,
ρS:スラグの嵩密度(=1500kg/m3
であり,スラグ層厚みLs0は以下の式(7)により計算される。
Ls0=Ws/ρS/(πD2/4)×1000 式(7)
ここで,
s:装入スラグ質量(kg)
である。
The conditions (Ls <Ls 0 ) are set so that the slag recess depth Ls by the oxygen jet calculated by the following formulas (5) and (6) is less than the slag layer thickness Ls 0 . (See Figure 1)
Ls = L h ′ · exp (−0.78 h / L h ′) Formula (5)
L h ′ = 63 · (ρ S / ρ M ) −1 / 3 · (Fo 2 / d) 2/3 formula (6)
here,
ρ S : Bulk density of slag (= 1500 kg / m 3 )
The slag layer thickness Ls 0 is calculated by the following equation (7).
Ls 0 = W s / ρ S / (πD 2/4) × 1000 formula (7)
here,
W s : charging slag mass (kg)
It is.

さらに,図2に示す通り、脱珪吹錬期間に要する酸素量So2(Nm3)と装入溶銑量W(ton),溶銑中Si濃度(質量%)([%Si])との関係において,R=W・[%Si]/So2のR値が10以上30以下の範囲とすることが望ましい。これは,R値が30を超える条件であると,脱珪吹錬期間に要する酸素量の不足に起因して、脱燐吹錬期においても溶銑中のSiが多く残存してしまい,所定の吹錬時間内において目標とする溶銑中燐濃度(質量%)([%P])の確保が困難となってしまうためである。またR値が10未満条件で上記吹錬を行うと,ハードブロー条件にて過剰な吹錬を行うことになり,脱珪吹錬期間末期には、もはや脱珪反応は起こらず脱炭反応が進行してしまうため,スラグ中の酸化鉄濃度が上がらず滓化の進行が遅れ,結果として脱燐吹錬期の酸素ポテンシャルの向上効果が得られないため、低燐鋼の溶製が困難となってしまうばかりか、中間排滓時におけるスラグの流動性の確保も困難となってしまい、中間排滓率の著しい低下を招くためである。 Furthermore, as shown in FIG. 2, the relationship between the amount of oxygen So 2 (Nm 3 ) required for the desiliconization blowing period, the amount of molten iron W (ton), and the Si concentration (% by mass) in hot metal ([% Si]) In this case, it is desirable that the R value of R = W · [% Si] / So 2 be in the range of 10 to 30. This is because the R value exceeds 30 because of the lack of oxygen required for the desiliconization blowing period, a large amount of Si remains in the molten iron even during the dephosphorization blowing period. This is because it becomes difficult to secure the target phosphorus concentration (mass%) ([% P]) in the hot metal within the blowing time. Moreover, if the above-mentioned blowing is performed under the condition that the R value is less than 10, excessive blowing is performed under the hard blow condition, and at the end of the desiliconization blowing period, the desiliconization reaction no longer occurs and the decarburization reaction occurs. As a result, the iron oxide concentration in the slag does not rise and the progress of hatching is delayed. As a result, the effect of improving the oxygen potential during the dephosphorization blowing process cannot be obtained. This is because it becomes difficult to secure the fluidity of the slag at the time of intermediate evacuation, and the intermediate evacuation rate is significantly reduced.

さらに好ましくは,脱珪吹錬期間、あるいは脱燐吹錬の初期(すなわち脱珪吹錬期間終了後)に、固体状の酸素化合物を添加することが望ましい。これは,脱珪吹錬期間が終了し脱燐吹錬期に移行した直後の滓化を早期に達成するとともに,スラグ中酸素ポテンシャルをより効率的に高めることが可能となるためである。固体状の酸素化合物としては、鉄鉱石やミルスケール等が例示できる。   More preferably, it is desirable to add a solid oxygen compound in the desiliconization blowing period or in the initial stage of the dephosphorization blowing process (that is, after the desiliconization blowing period). This is because it is possible to achieve hatching immediately after the desiliconization blowing period ends and shift to the dephosphorization blowing period, and to increase the oxygen potential in the slag more efficiently. Examples of the solid oxygen compound include iron ore and mill scale.

250トン転炉を用いて溶銑の脱珪,脱燐,脱炭の連続処理を実施した。処理前の溶銑条件としては炭素濃度4.1〜4.5質量%,珪素濃度:0.1〜0.5質量%,燐濃度:0.09〜0.12質量%であり,初期溶銑温度範囲は1250〜1330℃,脱珪・脱燐処理における上吹き吹酸速度としては、脱珪吹錬期間では35000〜4000Nm3/hrとした。吹錬際してはいずれもランスノズルスロート直径が58mmφのランスを用い,ランスギャップは1.5〜1.8mとし,この時のL/L0は0.6〜0.7であり、式(1)で示されるRの値は15〜20の範囲とした。次に、脱珪吹錬期間終了後にランスギャップを3.5mに調整し、さらに上吹き吹酸速度を15000Nm3/hrとして脱燐吹錬期間へ移行し、Ls/Ls0=0.7の条件とし、1.5トンの固体状酸素化合物として鉄鉱石を、吹酸速度を15000Nm3/hrに変更すると同時に添加した。 Continuous treatment of hot metal desiliconization, dephosphorization, and decarburization was performed using a 250-ton converter. The hot metal conditions before treatment were carbon concentration of 4.1 to 4.5% by mass, silicon concentration: 0.1 to 0.5% by mass, phosphorus concentration: 0.09 to 0.12% by mass, and initial hot metal temperature. The range was 1250 to 1330 ° C., and the top blowing acid rate in the desiliconization / phosphorus removal treatment was 35000 to 4000 Nm 3 / hr during the desiliconization blowing process. At the time of blowing, both lance nozzle throat diameter is 58mmφ lance, lance gap is 1.5 ~ 1.8m, L / L 0 at this time is 0.6 ~ 0.7, The value of R indicated by (1) was in the range of 15-20. Next, after completion of the desiliconization blowing period, the lance gap is adjusted to 3.5 m, and further, the upper blowing acid speed is set to 15000 Nm 3 / hr and the dephosphorization blowing period is started, and Ls / Ls 0 = 0.7 As a condition, iron ore was added as a solid oxygen compound of 1.5 tons at the same time as changing the blowing acid rate to 15000 Nm 3 / hr.

比較例の条件としては,脱珪吹錬期間の吹酸速度を35000Nm3/hr、ランスギャップを2.4mとすることで、L/L0=0.2とし,R=35の条件とした。また、固体状酸素化合物である鉄鉱石の添加は行わなかった。 The conditions of the comparative example were as follows: L / L 0 = 0.2 and R = 35 by setting the blowing acid rate during the desiliconization blowing period to 35000 Nm 3 / hr and the lance gap to 2.4 m. . In addition, iron ore, which is a solid oxygen compound, was not added.

脱燐吹錬期間における操業条件は鉄鉱石の添加の有無以外は同一とした。また、中間排滓後の脱炭吹錬における操業条件は、本発明,比較例とも同一であり,脱炭吹錬における上吹き吹酸速度は38000Nm3/h、ランスギャップ1.2mにて、L/L0=0.7の条件とした。 The operating conditions during the dephosphorization blowing period were the same except for the addition of iron ore. In addition, the operating conditions in the decarburization blowing after the intermediate waste are the same in the present invention and the comparative example, the top blowing acid speed in the decarburization blowing is 38000 Nm 3 / h, and the lance gap is 1.2 m. The condition was L / L 0 = 0.7.

表1に本発明による実施例と比較例それぞれ100チャージの平均の脱燐精錬後の溶銑中燐の質量濃度 ([%P]),中間排滓率(排滓量/炉内発生スラグ量×100)、及び脱炭後の到達燐の質量濃度を比較して示す。   Table 1 shows the mass concentration ([% P]) of phosphorus in hot metal after 100-charge average dephosphorization refining of each of the examples and comparative examples according to the present invention, the intermediate waste rate (the amount of waste / the amount of slag generated in the furnace × 100), and the mass concentration of reached phosphorus after decarburization is shown in comparison.

本発明により脱燐精錬後の燐濃度が低下し,中間排滓率も向上するため、脱炭処理後の到達燐濃度も低下していることが明らかである。   According to the present invention, the phosphorus concentration after dephosphorization is reduced and the intermediate rejection rate is improved, so that it is clear that the ultimate phosphorus concentration after decarburization treatment is also reduced.

Figure 2005325389
Figure 2005325389

溶銑脱燐,脱炭精錬時の転炉型容器内の噴流,スラグ,溶銑の状況を示す模式図。The schematic diagram which shows the condition of the jet, slag, and hot metal in a converter type container at the time of hot metal dephosphorization and decarburization refining. 脱珪吹錬時における指標R値と脱燐精錬後の到達燐濃度との関係を示す図。The figure which shows the relationship between the parameter | index R value at the time of desiliconization blowing, and the ultimate phosphorus density | concentration after dephosphorization.

Claims (3)

高炉より出銑された溶銑を、転炉型容器を用いて脱珪及び脱燐・脱炭精錬するに際し,脱珪吹錬期間の吹酸条件が,鋼浴深さL0(m)と上吹き酸素ジェットにより形成される鋼浴の凹み深さL(m)の比で定義されるL/L0が0.5〜0.9の範囲であって,次に,脱珪吹錬期間終了後に上吹き酸素がスラグにより遮断されて直接溶銑に接触しないように、上吹き酸素流量,ランスギャップ(ランス先端〜湯面間距離)のいずれか一方または双方を制御して脱燐吹錬を行った後,転炉型容器を傾動して排滓処理を行い,引き続き脱炭吹錬を行うことを特徴とする溶銑の精錬方法。 When hot metal discharged from the blast furnace is desiliconized and dephosphorized / decarburized using a converter-type vessel, the blowing acid conditions during the desiliconization blowing period are the same as the steel bath depth L 0 (m). L / L 0 defined by the ratio of the dent depth L (m) of the steel bath formed by the blown oxygen jet is in the range of 0.5 to 0.9, and then the end of the desiliconization blowing process Dephosphorization blowing is performed by controlling either one or both of the top blowing oxygen flow rate and the lance gap (distance between the lance tip and the molten metal surface) so that the top blowing oxygen is blocked by slag and does not directly contact the molten iron. After that, the refining method for hot metal is characterized in that after the converter type vessel is tilted, the waste metal treatment is performed and the decarburization blowing is subsequently performed. 脱珪吹錬期間において、式(1)のR値を10以上30以下の範囲とすることを特徴とする請求項1記載の溶銑の精錬方法。
R=W・[%Si]/So2 ・・・式(1)
So2:脱珪吹錬期間に要する酸素量(Nm3
W:装入溶銑量(ton)
[%Si]:脱珪処理前溶銑中Si濃度(質量%)
The hot metal refining method according to claim 1, wherein the R value of the formula (1) is in the range of 10 to 30 during the desiliconization blowing process.
R = W · [% Si] / So 2 (1)
So 2 : Oxygen amount required for desiliconization blowing (Nm 3 )
W: amount of molten iron charged (ton)
[% Si]: Si concentration (mass%) in hot metal before desiliconization
脱珪吹錬期間あるいは脱燐吹錬初期に、固体状の酸素化合物を添加することを特徴とする請求項1または2記載の溶銑の精錬方法。   The method for refining hot metal according to claim 1 or 2, wherein a solid oxygen compound is added during a desiliconization blowing period or an initial stage of dephosphorization blowing.
JP2004143235A 2004-05-13 2004-05-13 Hot metal refining method Active JP4025751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143235A JP4025751B2 (en) 2004-05-13 2004-05-13 Hot metal refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143235A JP4025751B2 (en) 2004-05-13 2004-05-13 Hot metal refining method

Publications (2)

Publication Number Publication Date
JP2005325389A true JP2005325389A (en) 2005-11-24
JP4025751B2 JP4025751B2 (en) 2007-12-26

Family

ID=35471956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143235A Active JP4025751B2 (en) 2004-05-13 2004-05-13 Hot metal refining method

Country Status (1)

Country Link
JP (1) JP4025751B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297694A (en) * 2006-05-08 2007-11-15 Nippon Steel Corp Method for treating steelmaking slag
JP2009052070A (en) * 2007-08-24 2009-03-12 Kobe Steel Ltd Method for dephosphorizing molten iron
JP7372546B2 (en) 2020-03-19 2023-11-01 日本製鉄株式会社 Melting furnace refining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297694A (en) * 2006-05-08 2007-11-15 Nippon Steel Corp Method for treating steelmaking slag
JP4616790B2 (en) * 2006-05-08 2011-01-19 新日本製鐵株式会社 Steelmaking slag treatment method
JP2009052070A (en) * 2007-08-24 2009-03-12 Kobe Steel Ltd Method for dephosphorizing molten iron
JP7372546B2 (en) 2020-03-19 2023-11-01 日本製鉄株式会社 Melting furnace refining method

Also Published As

Publication number Publication date
JP4025751B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JPH0770626A (en) Converter steel making method
JP4977870B2 (en) Steel making method
JP2018178260A (en) Converter steelmaking process
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP2008063610A (en) Method for producing molten steel
JP4025751B2 (en) Hot metal refining method
JPH11269524A (en) Pre-treatment of molten iron
JP4065225B2 (en) Dephosphorization method for hot metal
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP5286892B2 (en) Dephosphorization method of hot metal
JP4461495B2 (en) Dephosphorization method of hot metal
JPH08311519A (en) Steelmaking method using converter
JPH08104911A (en) Method for melting phosphorus-containing steel
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP3825733B2 (en) Hot metal refining method
JP4025713B2 (en) Dephosphorization method of hot metal
JP5506515B2 (en) Dephosphorization method
JP3668172B2 (en) Hot metal refining method
JPH0892618A (en) Prerefining method
JP3952846B2 (en) Method for producing low phosphorus hot metal
JP2009052070A (en) Method for dephosphorizing molten iron
JPH0860221A (en) Converter steelmaking method
JP2005226127A (en) Method for refining molten pig iron
JP4084527B2 (en) Converter blowing method
WO2020110392A1 (en) Steel production method and method for reducing slag basicity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R151 Written notification of patent or utility model registration

Ref document number: 4025751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350