JPH08104911A - Method for melting phosphorus-containing steel - Google Patents

Method for melting phosphorus-containing steel

Info

Publication number
JPH08104911A
JPH08104911A JP26091994A JP26091994A JPH08104911A JP H08104911 A JPH08104911 A JP H08104911A JP 26091994 A JP26091994 A JP 26091994A JP 26091994 A JP26091994 A JP 26091994A JP H08104911 A JPH08104911 A JP H08104911A
Authority
JP
Japan
Prior art keywords
blowing
phosphorus
slag
blown
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26091994A
Other languages
Japanese (ja)
Inventor
Kazuhiro Horii
和弘 堀井
Sumiichi Kuroki
純市 黒木
Masanori Kumakura
政宣 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26091994A priority Critical patent/JPH08104911A/en
Publication of JPH08104911A publication Critical patent/JPH08104911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To improve the yield of phosphorus concn. at the time of stopping the blowing of a converter and to reduce the consumption of FeP ferro alloy by using desulfurized molten iron in a specific condition and blowing a reducing agent into slag produced in a furnace, at the time of adjusting the component of molten steel containing a specific condition of the phosphorus in a top (bottom) blowing converter. CONSTITUTION: Desulfurizing treatment is applied by blowing lime powder and soda ash powder at a ratio of 2-2.5:1 from an outher pipe while adding gaseous oxygen at 0.056-0.090Nm<3> /min.tom from an inner pipe throuth a lance nozzle immersed in the molten iron in a molten iron ladle. Thereafter, at the time of melting the phosphorus-containing steel having 0.03-0.10% phosphorus concn. in the molten steel in the top-blowing or the top-bottom combined blowing converter by using the molten iron after removing the desulfurized slag, the reducing material is blown into the slag produced in the furnace. The above range advantageous to the desulfurizing efficiency is adopted for the ratio of the lime powder and the soda ash powder in the desulfurizing treatment and in this case, at the time of executing the lower limit of the gaseous oxygen blowing rate, the producing rate of graphite becomes zero, but at the time of exceeding the upper limit thereof, de-Si quantity is increased and the heat source in the converter at the following process is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉から出銑された溶
銑の脱硫処理に際し、脱硫効率が悪化しない範囲で軽脱
珪処理を行い、その後溶銑鍋にて酸素ガスを付加しつつ
脱硫処理を行うことにより、転炉副材コスト削減を可能
とした脱硫処理溶銑にて含燐鋼を溶製するに際し、転炉
で生成したスラグ中に還元剤を吹き込むことにより、溶
鋼からスラグ中に酸化除去された燐を強制的に溶鋼中に
還元し、合金鉄コストを削減する含燐鋼の製造方法に関
する。
The present invention relates to a desulfurization treatment of hot metal tapped from a blast furnace, in which a desulfurization treatment is carried out within a range where the desulfurization efficiency is not deteriorated, and then a desulfurization treatment is carried out by adding oxygen gas in a hot metal ladle. By performing the above, when melting phosphorus-containing steel with desulfurized hot metal that enables cost reduction of converter secondary materials, the reducing agent is blown into the slag generated in the converter to oxidize the molten steel into slag. The present invention relates to a method for producing phosphorus-containing steel in which the removed phosphorus is forcibly reduced into molten steel and the alloy iron cost is reduced.

【0002】[0002]

【従来の技術】従来、含燐鋼製造方法においては、溶銑
を転炉内に装入し、吹錬終了時点の溶鋼中〔P〕濃度を
推定し、その推定結果をもとに目標〔P〕濃度に対する
不足分を含燐合金鉄(以下FeP合金鉄と記す)で調整
している。この従来の製造方法は、高価なFeP合金鉄
を使用するという点で製造コスト上昇を引き起こしてい
た。
2. Description of the Related Art Conventionally, in a phosphorus-containing steel manufacturing method, molten iron is charged into a converter, the [P] concentration in molten steel at the end of blowing is estimated, and the target [P] The deficiency with respect to the concentration is adjusted with phosphorus-containing alloy iron (hereinafter referred to as FeP alloy iron). This conventional manufacturing method causes an increase in manufacturing cost in that expensive FeP alloy iron is used.

【0003】[0003]

【発明が解決しようとする課題】上吹きまたは上底吹転
炉において溶鋼中の〔P〕が0.03%〜0.1%の含
燐鋼溶鋼を成分調整するのに際し、溶銑を転炉内に装入
し、吹錬終了時点の溶鋼中〔P〕濃度を推定し、その推
定結果をもとに目標〔P〕濃度にたいする不足分を含P
合金鉄で調整する含燐鋼の溶製方法において、吹錬終了
時の〔P〕濃度(以下吹止〔P〕と記す)歩留りを向上
させ、製造コストを削減することを目的とする。
When adjusting the composition of phosphorus-containing steel molten steel with [P] in the molten steel of 0.03% to 0.1% in a top-blown or top-bottom blow converter, the molten pig iron is converted into a converter. It is charged into the tank and the molten steel [P] concentration at the end of blowing is estimated. Based on the estimation result, the target [P] concentration including the deficiency is included.
An object of the present invention is to improve the [P] concentration (hereinafter referred to as blow stop [P]) yield at the end of blowing in a smelting method of phosphorus-containing steel adjusted by ferroalloy and reduce the manufacturing cost.

【0004】[0004]

【課題を解決するための手段】本発明は前記の問題点を
解決するためになされたものであり、その手段は、 、溶銑鍋内に収容された溶銑内にランスノズルを浸漬
し、そのランスノズルを介して、内管より0.056〜
0.090Nm3 /min・tonの酸素ガスを付加し
つつ、外管より生石灰粉とソーダ灰粉を2〜2.5:1
の割合で吹き込んで脱硫処理を施し、その後に脱硫滓を
排滓した溶銑を用い、上吹きまたは上底吹転炉において
溶鋼中の〔P〕濃度が0.03〜0.10%の含燐鋼を
溶製するに際し、炉内生成スラグ中に還元材を吹き込む
ことを特徴とする含燐鋼の溶製方法、および
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The means is to immerse a lance nozzle in the hot metal contained in the hot metal ladle, 0.056 ~ from the inner tube through the nozzle
While adding 0.090 Nm 3 / min · ton oxygen gas, quicklime powder and soda ash powder are added from the outer tube to 2 to 2.5: 1.
Of the phosphorus content of 0.03 to 0.10% in the molten steel in the top-blown or top-bottom converter using the hot metal from which desulfurization slag was discharged. When melting steel, a method for melting phosphorus-containing steel, characterized in that a reducing material is blown into the slag produced in the furnace, and

【0005】、Si含有量を0.20%〜0.30%
の溶銑内にランスノズルを浸漬し、そのランスノズルを
介して、内管より0.056〜0.090Nm3 /mi
n・tonの酸素ガスを付加しつつ、外管より生石灰粉
とソーダ灰粉を2〜2.5:1の割合で吹き込んで脱硫
処理を施し、その後に脱硫滓を排滓した溶銑を用い、上
吹きまたは上底吹転炉において溶鋼中の〔P〕濃度が
0.03〜0.10%の含燐鋼を溶製するに際し、炉内
生成スラグ中に還元材を吹き込むことを特徴とする含燐
鋼の溶製方法、並びに
, Si content of 0.20% to 0.30%
The lance nozzle is immersed in the hot metal of No. 5 , and 0.056 to 0.090 Nm 3 / mi is introduced from the inner pipe through the lance nozzle.
While adding n · ton oxygen gas, quick lime powder and soda ash powder were blown from the outer tube at a ratio of 2 to 2.5: 1 to perform desulfurization treatment, and then the hot metal from which the desulfurization slag was discharged was used. When a phosphorus-containing steel having a [P] concentration of 0.03 to 0.10% in molten steel is melted in a top-blown or bottom-blown converter, a reducing material is blown into the slag generated in the furnace. Method for melting phosphorus-containing steel, and

【0006】、上記またはの炉内生成スラグ中に
吹き込む還元材が、最大粒子径5mmを超えない、コー
クス、珪素合金鉄またはアルミであることを特徴とする
含燐鋼の溶製方法、および 、上記またはの炉内生成スラグ中に吹き込む還元
材の吹き込み開始タイミングとして、吹錬終了予定時刻
から5分以内とすることを特徴とする含燐鋼の溶製方
法、および 、上記またはの炉内生成スラグ中に吹き込む還元
材の吹き込み終了タイミングを吹錬終了後とすることを
特徴とする含燐鋼の溶製方法にある。
The method for producing phosphorus-containing steel characterized in that the reducing agent blown into the slag produced in the furnace is coke, silicon alloy iron or aluminum whose maximum particle diameter is not more than 5 mm, and The method for injecting phosphorus-containing steel, characterized in that the start timing of the reducing agent blown into the in-furnace slag produced in the above or is within 5 minutes from the scheduled blowing end time, and the in-reactor production described above. According to another aspect of the present invention, there is provided a smelting method for phosphorus-containing steel, characterized in that the timing of ending the blowing of the reducing material blown into the slag is after the end of blowing.

【0007】[0007]

【作用】本発明は、脱硫処理中のグラファイトの飛散防
止および溶銑鍋での脱硫処理によるトーピードカーのク
リーニング操業、更に軽脱珪処理による転炉副材コスト
削減を可能とした溶銑処理方法によって処理された溶銑
を用い、含燐鋼の製造において高価なFeP合金鉄の使
用量を削減し、製造コストの削減を図ることを目的とす
るもので、高炉から出銑された溶銑の脱硫処理に際して
は図1に示すように、脱硫効果が悪化しない溶銑中Si
含有量0.20%〜0.30%の範囲までトーピードカ
ーにて軽脱珪処理を行い、その後に軽脱珪処理した溶銑
を溶銑鍋内に払い出しを行い、溶銑鍋内に収容された溶
銑内にランスノズルを浸漬させ、そのランスノズルを介
して、内管より0.056〜0.090Nm3 /min
・tonの酸素ガスを付加しつつ、外管より生石灰粉と
ソーダ灰粉を2〜2.5:1の割合で吹き込むことによ
り、軽脱珪処理時および脱硫処理時の酸素ガスの付加で
スラグ中の析出グラファイトを燃焼除去させ、脱硫処理
中のグラファイトの飛散を防止しつつ脱硫処理を行う。
The present invention is processed by a hot metal treatment method capable of preventing graphite from scattering during desulfurization, cleaning the torpedo car by desulfurization in a hot metal ladle, and reducing the cost of converter submaterials by light desiliconization. It is intended to reduce the amount of expensive FeP alloy iron used in the production of phosphorus-containing steel by using the hot metal and to reduce the production cost. When desulfurizing the hot metal tapped from the blast furnace, As shown in 1, Si in hot metal does not deteriorate the desulfurization effect.
Light desiliconization treatment was performed with a torpedo car to a content range of 0.20% to 0.30%, and then the light desiliconized treatment hot metal was dispensed into the hot metal ladle, inside the hot metal contained in the hot metal ladle. The lance nozzle is immersed in the lance nozzle, and 0.056 to 0.090 Nm 3 / min from the inner tube through the lance nozzle.
-By adding ton's oxygen gas and blowing quicklime powder and soda ash powder from the outer tube at a ratio of 2 to 2.5: 1, slag can be added by oxygen gas during light desiliconization treatment and desulfurization treatment. The precipitated graphite inside is burned and removed, and desulfurization treatment is performed while preventing the graphite from scattering during the desulfurization treatment.

【0008】この場合の脱硫処理に於ける生石灰粉とソ
ーダ灰粉の割合については、図2に示すように脱硫効率
で評価すると2〜2.5:1とする方が有利な結果が認
められるのでこの値を採用する。更に、この場合の酸素
ガス量については、図3に示すように酸素ガス量0.0
56Nm3 /min・tonを越えるとグラファイト発
生率は0%となるが酸素ガス量0.090Nm3 /mi
n・tonを越えると、一方では脱硫処理中の脱Si量
が増大し、次工程の転炉での熱源が低下するため、脱硫
処理に於ける酸素ガス量は0.056〜0.090Nm
3 /min・tonとする。
As for the ratio of quicklime powder and soda ash powder in the desulfurization treatment in this case, when the desulfurization efficiency is evaluated as shown in FIG. So this value is adopted. Furthermore, regarding the oxygen gas amount in this case, as shown in FIG.
When it exceeds 56 Nm 3 / min · ton, the graphite generation rate becomes 0%, but the oxygen gas amount is 0.090 Nm 3 / mi.
If it exceeds n · ton, on the other hand, the amount of Si removed during the desulfurization process increases and the heat source in the converter in the next step decreases, so the amount of oxygen gas in the desulfurization process is 0.056 to 0.090 Nm.
3 / min · ton.

【0009】また、トーピードカーで軽脱珪処理を行
い、溶銑鍋にて脱硫処理を行うことにより、トーピード
カーにクリーニング操業が可能となり、生産性を向上さ
せる効果も有する。更に脱硫脱珪処理を行うことによ
り、転炉での塩基度調整用の生石灰を低減し、転炉副材
コストを低減させることができる。本発明では、このよ
うな予備処理を行った溶銑を用いて含燐鋼の溶製を行う
ものである。
Further, by performing light desiliconization treatment in a torpedo car and desulfurization treatment in a hot metal ladle, a cleaning operation can be performed on the torpedo car, which also has an effect of improving productivity. Further, by performing desulfurization and desiliconization treatment, quick lime for adjusting the basicity in the converter can be reduced, and the converter auxiliary material cost can be reduced. In the present invention, the phosphorus-containing steel is melted using the hot metal that has been subjected to such a pretreatment.

【0010】ここで転炉での溶鋼吹錬時の〔P〕歩留り
は下記(1)式で表すことができる。すなわち、
Here, the [P] yield at the time of molten steel blowing in the converter can be expressed by the following equation (1). That is,

【0011】[0011]

【数1】 [Equation 1]

【0012】[0012]

【数2】 [Equation 2]

【0013】ここで、SV :転炉生成スラグ
量(kg/t) (P)/[P]:スラグ−溶鋼間のP分配比 (%CaO) :スラグ中のCaO濃度(%) (%T.Fe):スラグ中鉄分濃度(%) EPT :吹止温度(℃) A,B,C :正の定数、
Here, SV: amount of slag produced by converter (kg / t) (P) / [P]: P distribution ratio between slag and molten steel (% CaO): CaO concentration in slag (%) (% T) .Fe): Iron content concentration (%) in slag EPT: Blown-out temperature (° C) A, B, C: Positive constant,

【0014】したがって、本発明者らは、吹止〔P〕歩
留り向上のためには、上記(1)(2)式より生成スラ
グ量低減、(%CaO)低下、(%T.Fe)低下、吹
止温度上昇が効果的であることに着目し、実操業におけ
る各条件の最適化について検討、実験を実施した結果、
上記条件のなかで、スラグ酸化度低減および生成スラグ
量低減が有効であり、スラグ中CaO濃度と吹止温度に
ついては、転炉工程での変動自由度が小さく、吹止
[P]歩留り向上への効果は殆どないことが判明した。
Therefore, the inventors of the present invention use the above formulas (1) and (2) to reduce the amount of generated slag, decrease (% CaO), and decrease (% T.Fe) in order to improve the blow stop [P] yield. Focusing on the fact that the blow-off temperature rise is effective, we examined the optimization of each condition in actual operation, and conducted an experiment,
Under the above conditions, it is effective to reduce the degree of slag oxidation and the amount of generated slag, and the CaO concentration in the slag and the blow-off temperature have a small degree of freedom in the converter process, which improves blow-off [P] yield. It turned out that there is almost no effect of.

【0015】すなわち、スラグ中CaO濃度を低下させ
ることにより、スロッピング発生頻度急増、転炉耐火物
溶損速度上昇等の操業異常が発生し、工業生産方法とし
ては実行不可能であることが確認された。また、吹止温
度については二次精錬工程、鋳造工程、成分系から決ま
る溶鋼凝固温度等の転炉以外の他要因によって決定され
ることが多く、転炉工程のみの要因で設定値を高くする
ことは冷却材コスト上昇、転炉耐火物溶損が大幅に進行
することから、製造コスト上昇を引き起こす原因とな
る。
That is, it was confirmed that by decreasing the CaO concentration in the slag, an abnormal operation such as a rapid increase in sloping occurrence frequency and an increase in the meltdown rate of the refractory material of the converter occurred, which is not feasible as an industrial production method. Was done. In addition, the blow-off temperature is often determined by other factors than the converter such as secondary refining process, casting process, molten steel solidification temperature determined by the component system, and the set value is increased only by the converter process. This causes an increase in the cost of the coolant and a significant increase in the melting loss of the refractory in the converter, which causes an increase in the manufacturing cost.

【0016】還元剤吹き込みタイミングとしては、スラ
グ酸化度を低減することによるスラグ中(P)の還元効
率向上という点で適正なタイミングが存在する。転炉炉
内スラグの酸化度は、転炉での脱炭酸素効率が低下する
につれて上昇する。例えば、上底吹転炉では一般的に、
溶鋼中〔C〕濃度が約0.2〜0.4%以下となると脱
炭酸素効率が低下し、脱炭に寄与しない余剰に供給され
た酸素によりスラグの酸化度が上昇する。したがって、
脱炭最盛期での還元剤吹き込みを実施しても、末期の脱
炭酸素効率低下に伴うスラグ再酸化により〔P〕歩留り
向上効果は得られない。
The reducing agent blowing timing has proper timing in terms of improving the reduction efficiency in the slag (P) by reducing the slag oxidation degree. The degree of oxidation of the slag in the converter increases as the efficiency of decarboxylation in the converter decreases. For example, in bottom-blown converters,
When the concentration of [C] in the molten steel is about 0.2 to 0.4% or less, the decarboxylation efficiency decreases, and the excess oxygen that does not contribute to decarburization increases the degree of oxidation of slag. Therefore,
Even if the reducing agent is blown at the peak of decarburization, the [P] yield improvement effect cannot be obtained due to the slag reoxidation accompanying the decrease in decarboxylation efficiency in the final stage.

【0017】本発明は、スラグ酸化度上昇のメカニズム
を考慮し、吹錬末期の脱炭酸素効率が低下することによ
りスラグ酸化度の上昇中または上昇後のスラグに還元剤
を吹き込み、スラグ酸化度低減を図るものである。した
がって、吹き込み開始タイミングとしては脱炭酸素効率
が100%近傍から急激に低下開始する時点(以下CB
点と記す)以降が適正である。CB点は上述したように
上底吹転炉では、溶鋼中〔C〕濃度が約0.2〜0.4
%であることから、吹き込み開始時点としては溶鋼中
〔C〕濃度が約0.2〜0.4%以下の時点を設定する
ことが必要である。
In the present invention, in consideration of the mechanism of increasing the degree of slag oxidation, the reducing agent is blown into the slag during or after the increase in the degree of slag oxidation due to the decrease in decarboxylation efficiency at the end of blowing, and the degree of slag oxidation is increased. It is intended to reduce. Therefore, as the blowing start timing, the point at which the decarboxylation efficiency begins to drop sharply from around 100% (hereinafter CB
The following is appropriate. As described above, the CB point is such that the [C] concentration in the molten steel is about 0.2 to 0.4 in the upper-bottom blow converter.
%, It is necessary to set a time when the [C] concentration in the molten steel is about 0.2 to 0.4% or less as the start time of blowing.

【0018】本発明者らは、かかる知見をもとにし、実
際の操業における〔C〕濃度推定精度および粉体吹き込
み所要時間を調査の結果、吹錬終了予定時刻より5分以
内前から還元剤の吹き込みを開始することが必要である
ことを見いだした。吹き込み開始時間は吹錬終了時刻に
近ければ近いほど燐歩留り向上効果が大きくなるため、
適用に際しては吹錬時間、吹き込み速度能力に応じて適
当な時点を選択することが望ましい。吹き込み開始時刻
を吹錬終了後とした場合には、燐歩留り向上効果は最も
大きく亨受することが可能となる。
Based on such knowledge, the inventors of the present invention investigated the accuracy of [C] concentration estimation and the time required for powder injection in the actual operation, and as a result, the reducing agent was added within 5 minutes before the scheduled blowing end time. Found that it was necessary to start blowing. The closer the blowing start time is to the blowing end time, the greater the phosphorus yield improving effect, so
Upon application, it is desirable to select an appropriate time point according to the blowing time and blowing speed capability. When the blowing start time is after the end of blowing, the phosphorus yield improving effect can be received most greatly.

【0019】更に還元剤吹き込み終了タイミングとして
は、吹錬終了後とすることが望ましい。吹錬中に吹き込
みを終了した場合は、吹き込み終了後もスラグへの余剰
酸素が継続して供給されることとなり、結果的に還元剤
により一度低減したスラグ酸化度が、余剰酸素による再
酸化により再び上昇し、燐歩留り低下を引き起こすた
め、還元剤吹き込み効果を充分亨受することができな
い。また、溶銑中〔Si〕含有量を0.2〜0.3%に
低減することにより、転炉炉内生成スラグ量を低減し、
P歩留りの向上が可能となる。
Further, it is desirable that the end of blowing the reducing agent is after the end of blowing. When blowing is completed during blowing, excess oxygen is continuously supplied to the slag even after the completion of blowing, and as a result, the degree of slag oxidation once reduced by the reducing agent is reduced by reoxidation due to excess oxygen. Since it rises again and causes a decrease in phosphorus yield, the effect of blowing the reducing agent cannot be fully received. Further, by reducing the [Si] content in the hot metal to 0.2 to 0.3%, the amount of slag generated in the converter furnace is reduced,
It is possible to improve the P yield.

【0020】供給する還元剤としては、コークス、シリ
コン合金鉄(フェロシリコン)、またはAlのいずれで
もよい。還元反応速度は、還元剤の粒子径に依存する。
即ち、図4は粉コークス最大粒子径と吹止〔P〕の関係
を示したもので、図から明らかなように、粒子径が大き
くなるにつれて反応速度が低下する。実操業で転炉処理
時間の延長なしに反応を完了させるためには、還元剤の
最大粒子径が5mm以下であることが必要である。5m
mをこえた粒子径では、反応界面積が不足し、処理時間
延長または〔P〕歩留り向上効果が充分に得られない。
The reducing agent to be supplied may be coke, silicon alloy iron (ferrosilicon), or Al. The reduction reaction rate depends on the particle size of the reducing agent.
That is, FIG. 4 shows the relationship between the maximum particle size of powder coke and blow stop [P]. As is clear from the figure, the reaction rate decreases as the particle size increases. In actual operation, in order to complete the reaction without extending the converter processing time, the maximum particle size of the reducing agent needs to be 5 mm or less. 5m
If the particle size exceeds m, the reaction interfacial area is insufficient and the effect of extending the processing time or improving the [P] yield cannot be sufficiently obtained.

【0021】図5に吹き込みコークス量と吹止Pの関係
を示した。このときの前提条件は、還元材の吹き込み開
始タイミングを、吹錬終了予定時刻の0〜3分前とし、
溶銑〔Si〕は0.35〜0.50%の範囲で、吹止め
〔C〕は0.045〜0.060%の範囲であった。図
から明らかなように、コークス吹き込み量が増加するに
つれて吹止〔P〕が上昇する。実操業での吹き込み量
は、次工程との時間的余裕、吹き込み設備能力(タンク
容量、吹き込み速度)により、適当な量を選択すること
が望ましい。還元剤の吹き込みは、出鋼孔、炉体腹部
等、スラグ中に還元剤の到達が可能な位置から実施する
ことが望ましい。
FIG. 5 shows the relationship between the blown coke amount and the blow stop P. The precondition for this is that the reducing agent blowing start timing is 0 to 3 minutes before the scheduled blowing end time,
The hot metal [Si] was in the range of 0.35 to 0.50%, and the blow stop [C] was in the range of 0.045 to 0.060%. As is clear from the figure, the blow stop [P] rises as the coke blowing amount increases. It is desirable to select an appropriate blowing amount in the actual operation depending on the time margin with the next process and the blowing facility capacity (tank capacity, blowing speed). It is desirable to inject the reducing agent from a position where the reducing agent can reach the slag, such as a tap hole and the abdomen of the furnace body.

【0022】[0022]

【実施例】以下、本発明により含燐鋼を溶製した具体例
を説明する。本発明にしたがって、表1の溶製方法によ
り含燐鋼を溶製した。本発明の溶製方法を実施すること
により、吹止の〔P〕歩留りが約20%〜38%上昇
し、吹止〔P〕値が従来の0.016%が0.030%
〜0.059%と飛躍的に上昇した。その結果、従来は
〔P〕調整用として2.96kg/t投入していたFe
P合金鉄量が0〜2.07kg/t投入まで減少可能と
なり、コスト削減効果が極めて大きい。
EXAMPLES Hereinafter, specific examples in which the phosphorus-containing steel is produced by the present invention will be described. According to the present invention, phosphorus-containing steel was melted by the melting method shown in Table 1. By carrying out the melting method of the present invention, the [P] yield of blow stop is increased by about 20% to 38%, and the blow stop [P] value is 0.030% compared with the conventional 0.016%.
It rose dramatically by ~ 0.059%. As a result, Fe which has been conventionally fed at 2.96 kg / t for [P] adjustment
The amount of P alloy iron can be reduced from 0 to 2.07 kg / t, and the cost reduction effect is extremely large.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の含燐鋼溶製方法によれば、転炉
吹止時の〔P〕歩留りが向上し、従来出鋼中または出鋼
完了後、二次精錬工程で投入していたFeP合金鉄投入
量を削減でき、製造コスト低減効果が大きい。
EFFECTS OF THE INVENTION According to the phosphorus-containing steel smelting method of the present invention, the [P] yield at the time of blowing out of the converter is improved, and it is used in the secondary refining step during or after the conventional tapping. In addition, the FeP alloy iron input amount can be reduced, and the manufacturing cost can be effectively reduced.

【0025】また、出鋼直後にFeP合金鉄を投入する
場合は、溶製およびスラグの含有酸素量が大きくかつ偏
差が大きいため、投入したFeP合金鉄による〔P〕添
加歩留りが不安定であり、成分を規格範囲に的中させる
ためにFeP合金鉄投入後に溶鋼成分分析を実施して確
認および成分再調整を行うのが通常である。本発明の含
P鋼溶製方法は、転炉吹止時の〔P〕歩留りが向上し
て、FeP合金鉄投入量を削減することによる成分偏差
低減に加えて、スラグ中に還元剤を吹き込んでいるた
め、スラグ中の酸素含有量が低位に安定化しており、F
eP合金鉄を投入した際の溶鋼への歩留りが安定化す
る。これらの〔P〕歩留り偏差低減が可能となるため、
〔P〕制御性が向上し、合金添加後の成分確認が不要と
なり、分析試料採取用プローブコスト削減および分析待
ちによる溶鋼温度低下が低減し、吹止温度低減が可能と
なるなど、工業的効果は大きい。
When FeP alloy iron is added immediately after tapping, the oxygen content in the melt and slag is large and the deviation is large, so that the [P] addition yield due to the introduced FeP alloy iron is unstable. In order to bring the components into the specified range, it is usual to carry out molten steel component analysis after the introduction of FeP alloy iron to confirm and readjust the components. The P-containing steel smelting method of the present invention improves the [P] yield at the time of blowing off the converter, reduces the component deviation by reducing the FeP alloy iron input amount, and blows a reducing agent into the slag. Therefore, the oxygen content in the slag is stabilized at a low level, and F
The yield of molten steel when eP alloy iron is added is stabilized. Since it becomes possible to reduce these [P] yield deviations,
[P] Industrial effect such as improved controllability, no need to confirm components after alloy addition, cost reduction of probe for analysis sample collection, decrease of molten steel temperature due to waiting for analysis, reduction of blowout temperature, etc. Is big.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱S処理前の溶銑Siと脱S効率の関係を示す
FIG. 1 is a diagram showing the relationship between hot metal Si before S removal treatment and S removal efficiency.

【図2】脱S剤原単位と脱S効率の関係であり、生石灰
粉とソーダ灰粉の割合別の脱S率を示す図
FIG. 2 is a diagram showing a relationship between a basic unit of a S-removing agent and a S-removing efficiency, showing a S-removing rate for each ratio of quicklime powder and soda ash powder.

【図3】脱S処理時の酸素ガス量とグラファイト発生率
および脱S処理中の脱Si量の関係を示す図
FIG. 3 is a diagram showing the relationship between the oxygen gas amount during the de-S treatment, the graphite generation rate, and the de-Si amount during the de-S treatment.

【図4】粉コークス最大粒子径と吹止〔P〕の関係を示
す図
FIG. 4 is a diagram showing the relationship between the maximum particle size of powder coke and blow stop [P].

【図5】粉コークス吹き込み量と吹止〔P〕の関係を示
す図
FIG. 5 is a diagram showing the relationship between the amount of powder coke blown and the blow stop [P].

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶銑鍋内に収容された溶銑中にランスノ
ズルを浸漬し、そのランスノズルを介して、内管より
0.056〜0.090Nm3 /min・tonの酸素
ガスを付加しつつ、外管より生石灰粉とソーダ灰粉を2
〜2.5:1の割合で吹き込んで脱硫処理を施し、その
後に脱硫滓を排滓した溶銑を用い、上吹きまたは上底吹
転炉において溶鋼中の〔P〕濃度が0.03〜0.10
%の含燐鋼を溶製するに際し、炉内生成スラグ中に還元
材を吹き込むことを特徴とする含燐鋼の溶製方法。
1. A lance nozzle is immersed in the hot metal contained in a hot metal ladle, and 0.056 to 0.090 Nm 3 / min · ton of oxygen gas is added from the inner tube through the lance nozzle. , 2 quicklime powder and soda ash powder from the outer tube
˜2.5: 1 blown in to perform desulfurization treatment, and then using hot metal from which desulfurization slag is discharged, the [P] concentration in the molten steel is 0.03 to 0 in a top-blown or top-bottom converter. .10
% Of phosphorus-containing steel is melted, a reducing material is blown into the slag produced in the furnace.
【請求項2】 Si含有量を0.20%〜0.30%の
溶銑中にランスノズルを浸漬し、そのランスノズルを介
して、内管より0.056〜0.090Nm3 /min
・tonの酸素ガスを付加しつつ、外管より生石灰粉と
ソーダ灰粉を2〜2.5:1の割合で吹き込んで脱硫処
理を施し、その後に脱硫滓を排滓した溶銑を用い、上吹
きまたは上底吹転炉において溶鋼中の〔P〕濃度が0.
03〜0.10%の含燐鋼を溶製するに際し、炉内生成
スラグ中に還元材を吹き込むことを特徴とする含燐鋼の
溶製方法。
2. A lance nozzle is immersed in hot metal having a Si content of 0.20% to 0.30%, and 0.056 to 0.090 Nm 3 / min from the inner pipe through the lance nozzle.
・ While adding ton's oxygen gas, quick lime powder and soda ash powder were blown from the outer tube at a ratio of 2 to 2.5: 1 for desulfurization treatment, and then the hot metal from which the desulfurization slag was discharged was used. [P] concentration in molten steel in a blowing or top-bottom converter is 0.
A method for smelting phosphorus-containing steel, which comprises blowing a reducing agent into the slag produced in the furnace when smelting 03-0.10% phosphorus-containing steel.
【請求項3】 炉内生成スラグ中に吹き込む還元材が、
最大粒子径5mmを超えない、コークス、珪素、珪素合
金鉄またはアルミであることを特徴とする請求項1また
は請求項2記載の含燐鋼の溶製方法。
3. The reducing agent blown into the slag produced in the furnace,
The method for smelting phosphorus-containing steel according to claim 1 or 2, which is coke, silicon, silicon alloy iron or aluminum having a maximum particle diameter of not more than 5 mm.
【請求項4】 炉内生成スラグ中に吹き込む還元材の吹
き込み開始タイミングを、吹錬終了予定時刻から5分以
内とすることを特徴とする請求項1または請求項2記載
の含燐鋼の溶製方法。
4. The melting of the phosphorus-containing steel according to claim 1 or 2, wherein the start timing of blowing the reducing material blown into the slag produced in the furnace is within 5 minutes from the scheduled blowing end time. Manufacturing method.
【請求項5】 炉内生成スラグ中に吹き込む還元材の吹
き込み終了タイミングを吹錬終了後とすることを特徴と
する請求項1または請求項2記載の含燐鋼の溶製方法。
5. The method for smelting phosphorus-containing steel according to claim 1 or 2, wherein the end timing of blowing the reducing material blown into the slag generated in the furnace is after the end of blowing.
JP26091994A 1994-10-03 1994-10-03 Method for melting phosphorus-containing steel Pending JPH08104911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26091994A JPH08104911A (en) 1994-10-03 1994-10-03 Method for melting phosphorus-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26091994A JPH08104911A (en) 1994-10-03 1994-10-03 Method for melting phosphorus-containing steel

Publications (1)

Publication Number Publication Date
JPH08104911A true JPH08104911A (en) 1996-04-23

Family

ID=17354585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26091994A Pending JPH08104911A (en) 1994-10-03 1994-10-03 Method for melting phosphorus-containing steel

Country Status (1)

Country Link
JP (1) JPH08104911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254839A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Melting method of high phosphorus steel
KR100862032B1 (en) * 2002-06-21 2008-10-07 주식회사 포스코 Method for desulfurization of molten steel having slag of high oxygen potential
KR100885118B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 Converter working method of phosphorous added low carbon steel using ladle slag
KR101412570B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Refining method of high strength steel
JP2014159629A (en) * 2013-01-22 2014-09-04 Jfe Steel Corp Preliminary treatment method of molten iron by converter
CN104178594A (en) * 2014-08-11 2014-12-03 攀钢集团成都钢钒有限公司 Single vanadium extraction and steelmaking method by converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862032B1 (en) * 2002-06-21 2008-10-07 주식회사 포스코 Method for desulfurization of molten steel having slag of high oxygen potential
KR100885118B1 (en) * 2002-11-14 2009-02-20 주식회사 포스코 Converter working method of phosphorous added low carbon steel using ladle slag
JP2007254839A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Melting method of high phosphorus steel
KR101412570B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Refining method of high strength steel
JP2014159629A (en) * 2013-01-22 2014-09-04 Jfe Steel Corp Preliminary treatment method of molten iron by converter
CN104178594A (en) * 2014-08-11 2014-12-03 攀钢集团成都钢钒有限公司 Single vanadium extraction and steelmaking method by converter
CN104178594B (en) * 2014-08-11 2016-01-20 攀钢集团成都钢钒有限公司 A kind of method of converter simply connected vanadium extraction steel-making

Similar Documents

Publication Publication Date Title
JP4487812B2 (en) Method for producing low phosphorus hot metal
JPH08104911A (en) Method for melting phosphorus-containing steel
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP4894325B2 (en) Hot metal dephosphorization method
JP2008063610A (en) Method for producing molten steel
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP3002593B2 (en) Melting method of ultra low carbon steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP2653301B2 (en) Reusing method of low P converter slag
JP4461495B2 (en) Dephosphorization method of hot metal
US4525209A (en) Process for producing low P chromium-containing steel
JP2000109924A (en) Method for melting extra-low sulfur steel
JP2004277830A (en) Steelmaking method in converter
JPH08311519A (en) Steelmaking method using converter
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP7302749B2 (en) Molten iron dephosphorization method
WO2024106086A1 (en) Method for smelting steel
JPH0892618A (en) Prerefining method
JPH08176638A (en) Refining of stainless steel
JP4084527B2 (en) Converter blowing method
WO2020110392A1 (en) Steel production method and method for reducing slag basicity
JPH0841516A (en) Pre-refining method
JPH06108137A (en) Method for melting low sulfur steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722