JP2008063610A - Method for producing molten steel - Google Patents
Method for producing molten steel Download PDFInfo
- Publication number
- JP2008063610A JP2008063610A JP2006241585A JP2006241585A JP2008063610A JP 2008063610 A JP2008063610 A JP 2008063610A JP 2006241585 A JP2006241585 A JP 2006241585A JP 2006241585 A JP2006241585 A JP 2006241585A JP 2008063610 A JP2008063610 A JP 2008063610A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- converter
- molten steel
- hot metal
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、転炉を用いて脱Si脱P予備処理と脱C精錬を同一転炉にて実施し、その後アーク加熱手段を具備した取鍋精錬装置にて脱S処理を行う精錬方法に関するものである。 The present invention relates to a refining method in which de-Si de-P pretreatment and de-C refining are performed in the same converter using a converter, and thereafter de-S treatment is performed in a ladle refining apparatus equipped with arc heating means. It is.
高炉で製造される溶銑はSi,P,Sなど不純物を多く含み、鋼材製品を製造するに際しては転炉、RHなどの精錬工程を経由することで、不純物を除去し清浄化することが一般的な製鉄プロセスとして確立されている。最近は溶銑段階で不純物を除去する溶銑予備処理法の導入が進み、転炉での脱C吹錬前にトーピードカーや転炉において脱Si、脱P、脱S処理することが一般化されてきている。 Hot metal produced in a blast furnace contains a large amount of impurities such as Si, P, and S, and when manufacturing steel products, it is common to remove impurities and purify them through refining processes such as converters and RH. Established as a steelmaking process. Recently, the introduction of a hot metal pretreatment method for removing impurities in the hot metal stage has progressed, and it has become common to perform Si removal, P removal, and S treatment in torpedo cars and converters before de-C blowing in the converter. Yes.
特にPについては、温度レベルの低い溶銑段階での脱Pが効率的であることから、溶銑予備処理工程にて先行脱Pすることが一般的に行われるようになった。この場合、精錬容器はトーピードカー方式、取鍋方式、あるいは脱炭を行う炉とは別の転炉を使用する方式等があり、いずれもCaO、酸化鉄等のフラックスを上方添加あるいはインジェクション方式にて投入し、ガスバブリング攪拌あるいは酸素の上吹を併用して実施されている。 In particular, with regard to P, since de-P in the hot metal stage at a low temperature level is efficient, prior de-P is generally performed in the hot metal pretreatment process. In this case, the smelting vessel has a torpedo car method, a ladle method, or a method that uses a converter different from the furnace that performs decarburization, and any of them uses a flux of CaO, iron oxide or the like added upward or by an injection method. It is carried out with gas bubbling stirring or oxygen top blowing.
例えば、特許文献1に示される「溶銑の脱燐・脱硫方法」では、溶銑予備処理炉で酸素上吹を行いつつCaO系フラックスをキャリヤガスと共に溶銑中へ吹き込んで処理後スラグ塩基度が2.0以上、酸化鉄含有量が15%以下となる様に溶銑脱燐を行い、その後上吹酸素を停止してスラグの強制除滓を行うことなく脱硫材を吹き込んで脱硫処理することを特徴とする溶銑脱燐・脱硫方法が開示されている。
For example, in the “method of dephosphorization / desulfurization of hot metal” disclosed in
さらに特許文献2に示される「製鋼方法」では上底吹転炉を2基利用し、一方を脱燐炉、他方を脱炭炉とし、溶銑を脱燐炉に注入し溶銑脱燐処理後得られた脱燐溶銑を脱炭炉に注銑して脱炭精錬を行う製鋼方法が開示されている。
Furthermore, in the “steel making method” disclosed in
特許文献3に示される「転炉精錬方法」では、従来指向して来た脱珪脱燐炉と脱炭炉とを分割した精錬プロセスから、同一転炉にて脱珪、脱燐精錬を行った後、一旦精錬を中断してスラグを排出する中間排滓工程をもうけ、排滓終了後脱炭精錬を連続的に行う製鋼方法が開示されている。 In the “converter refining method” disclosed in Patent Document 3, desiliconization and dephosphorization refining are carried out in the same converter from a refining process in which the conventional desiliconization dephosphorization furnace and decarburization furnace are divided. After that, a steelmaking method is disclosed in which refining is temporarily interrupted to provide an intermediate waste removal step for discharging slag, and decarburization refining is continuously performed after the completion of waste removal.
また、特許文献4には、取鍋電極加熱装置(LF)により、溶鋼段階で脱S処理する技術が開示されている。 Patent Document 4 discloses a technique for removing S at the molten steel stage using a ladle electrode heating device (LF).
以上のように、溶銑に含まれるSi,P,Sの不純物を除去して清浄化する多くの技術が開発され、実機化されて来たが、溶銑予備処理によって溶銑温度が低下し熱裕度が不足する、或いは特に脱P能力が十分に安定しないなどの課題があり、溶銑から溶鋼を製造する一貫工程において最適なものとなっていない。 As described above, many techniques for removing and purifying impurities of Si, P, and S contained in the hot metal have been developed and put into practical use. There is a problem that the P removal capacity is insufficient or the de-P removal ability is not sufficiently stable, and it is not optimal in an integrated process for producing molten steel from hot metal.
転炉における脱炭工程の効率化、生産性向上を図るため、また、Si、Pは温度レベルが低い方が脱Si脱P効率が良いことから、脱Si、脱P、脱Sの各処理は、転炉での脱炭処理前の溶銑段階で行われるのが一般的である。 In order to increase the efficiency and productivity of the decarburization process in the converter, Si and P have better de-Si de-P efficiency when the temperature level is lower, so each process of de-Si, de-P and de-S Is generally carried out in the hot metal stage before decarburization treatment in the converter.
通常、溶銑脱S処理では、特許文献1に記載されているとおり、酸素を使用せず、また、加熱しないために、処理時間に伴って溶銑温度が低下する。
Usually, in hot metal removal S treatment, as described in
脱P処理を精錬容器としてトーピードカー方式、取鍋方式、または転炉方式で行うと、低P化の工程能力だけ見ると比較的低い到達P含有レベルを達成することはできるものの、トーピードカー方式、取鍋方式では処理時間が長く転炉に溶銑を装入するまでの温度低下が大きく、特許文献2で開示された転炉方式でも処理後の溶銑払出し、別転炉への再装入による温度低下が避けられない。
If the P removal treatment is performed as a refining vessel using the torpedo car method, ladle method, or converter method, a relatively low reached P content level can be achieved by looking at the process capability of low P, but the torpedo car method, In the pan method, the processing time is long and the temperature drop until the molten iron is charged into the converter is large. Even in the converter method disclosed in
このように、溶銑予備処理での脱S、脱P炉と脱C炉とを分割した精錬での脱Pは、溶銑温度の低下をもたらし、さらに脱P処理に伴い、溶銑中のSi,C濃度が低下し、次工程での脱C精錬時の熱裕度低下を引き起こす。脱C精錬工程の熱裕度不足は、冷鉄源の使用制限、FeSiなどの昇熱材の使用、溶鋼中Cの吹き下げ、鉄の酸化ロスなど、精錬制御のばらつき、コスト悪化、スラグ量の増大、二次精錬RH工程でのAl昇熱増などの悪影響を引き起こす。特に冷鉄源の使用制限が必要な場合は、溶銑使用量が増大するため生産障害につながることから、熱裕度確保のため溶銑予備処理適用比率低減を余儀無くされ、転炉の生産性への影響と、P、S成分工程能力影響も発生する。 As described above, de-S in the hot metal pretreatment, de-P in the refining in which the de-P furnace and the de-C furnace are divided results in a decrease in the hot metal temperature, and further, Si, C in the hot metal is accompanied by the de-P process. The concentration decreases, causing a reduction in heat tolerance during de-C refining in the next process. The lack of heat tolerance in the de-C refining process is due to restrictions on the use of cold iron sources, the use of heating materials such as FeSi, blowing down C in molten steel, iron oxidation loss, etc., refining control variations, cost deterioration, slag amount Adverse effects such as an increase in Al and an increase in Al heating in the secondary refining RH process. Especially when it is necessary to limit the use of cold iron sources, the amount of hot metal used will increase, leading to production failures. Therefore, to ensure heat tolerance, it will be necessary to reduce the application ratio of hot metal pretreatment, leading to converter productivity. And P and S component process capability effects also occur.
一方、特許文献3に開示された同一転炉にて脱Si、脱P、排滓、脱Cを連続的に行う方法においては、熱裕度の改善は図られるものの、脱P後のスラグ排出を十分に安定して行うことが困難であることから脱P工程能力の観点から課題がある。 On the other hand, in the method of continuously performing de-Si, de-P, waste and de-C in the same converter disclosed in Patent Document 3, although the heat tolerance is improved, slag discharge after de-P Since it is difficult to carry out the process sufficiently stably, there is a problem from the viewpoint of the P removal capability.
また、いずれのプロセスについても特殊鋼など特に合金鉄の添加量が多くて転炉の吹止温度の高い場合、P工程能力に支障が発生し、低P化が困難となる。 Further, in any process, when the amount of addition of special steel such as special steel is particularly large and the blowing temperature of the converter is high, the P process capability is hindered, and it is difficult to reduce P.
尚、特許文献4には、転炉で脱C処理した後の溶鋼段階での脱S処理技術が開示されているが、一次精錬(溶銑予備処理および脱C処理)との効果的な連係については何ら開示していない。 In addition, although patent document 4 discloses the de-S treatment technique in the molten steel stage after de-C treatment in the converter, it is effective linkage with primary refining (hot metal preliminary treatment and de-C treatment). Does not disclose anything.
本発明は以上の実情を鑑み、従来の溶銑での分割精錬プロセスにより達成された脱P、脱S工程能力を維持しつつ、大幅な熱裕度の向上をもたらし冷鉄源の多量使用を可能とする、溶銑から溶鋼を製造する一貫工程において最適な精錬方法を提供することを目的とするものである。 In view of the above circumstances, the present invention maintains a de-P and de-S process capability achieved by the conventional refining process with hot metal, and greatly improves heat tolerance and allows a large amount of cold iron source to be used. An object of the present invention is to provide an optimum refining method in an integrated process for producing molten steel from hot metal.
本発明は、上記課題を解決するため、高炉から出銑された溶銑から連続鋳造に供する溶鋼に精錬する際、脱Si、脱P、脱Sの各処理を他の処理工程と効果的に連続化、或いは集約化することを基本的特徴とするものであり、要旨は以下のとおりである。
[1]溶銑から連続鋳造に供する溶鋼を製造する方法であって、高炉から出銑された溶銑をそのまま転炉に装入し、以降の精錬については、脱Si脱P処理を行った後、排滓を行い、その後同一転炉で、引き続き脱C処理を行い、溶鋼を取鍋に出鋼してアーク加熱取鍋精錬装置で昇温を施し、脱Si脱Pは、前記転炉に装入した一連の工程の中でのみ行い、脱S処理は、前記アーク加熱取鍋精錬装置でのみ行うことを特徴とする溶鋼の製造方法。
[2]溶銑から連続鋳造に供する溶鋼を製造する方法であって、下記の(1)〜(5)の一連の工程を順に行うことを特徴とする上記[1]記載の溶鋼の製造方法。
(1)溶銑を転炉に装入し、該装入した溶銑に脱Si処理および脱P処理を施す工程
(2)上記(1)の工程で生成したスラグのみを排出し、溶銑を転炉内に残留させる工程
(3)転炉内に残留させた溶銑に脱C処理を施し、吹き止め温度の上限を制限して吹き止め溶鋼中P濃度を上記(1)の工程終了時の溶銑中P濃度以下に抑制し、取鍋に出鋼する工程
(4)出鋼中または出鋼後の溶鋼に、Alを添加して脱酸処理を施す工程
(5)Alを添加して脱酸処理を施した溶鋼に、アーク加熱取鍋精錬装置により、昇温を施すと共に、脱S処理を施す工程
[3]溶銑から連続鋳造に供する溶鋼を製造する方法であって、下記の(1)〜(6)の一連の工程を順に行うことを特徴とする上記[1]記載の溶鋼の製造方法。
(1)溶銑を転炉に装入し、該装入した溶銑に脱Si処理および脱P処理を施す工程
(2)上記(1)の工程で生成したスラグのみを排出し、溶銑を転炉内に残留させる工程
(3)転炉内に残留した溶銑に脱C処理を施し、吹き止め温度の上限を制限して吹き止め溶鋼中P濃度を上記(1)の工程終了時の溶銑中P濃度以下に抑制し、取鍋に出鋼する工程
(4)出鋼中または出鋼後の溶鋼に、Alを添加して脱酸処理を施す工程
(5)Alを添加して脱酸処理を施した溶鋼に、アーク加熱取鍋精錬装置により、昇温を施すと共に、脱S処理を施す工程
(6)昇温および脱S処理した溶鋼に真空脱ガス処理を施す工程
[4]脱C処理の吹き止め%Cを0.07%以上および吹き止め温度を1660℃以下とすることを特徴とする上記[1]乃至[3]のいずれかに記載の溶鋼の製造方法。
[5]上記(4)の工程と(5)の工程の間に、溶鋼上のスラグを排出する工程を介在させることを特徴とする上記[2]乃至[4]のいずれかに記載の溶鋼の製造方法。
[6]真空脱ガス処理では、Al添加による昇熱を行わないことを特徴とする上記[2]記載の溶鋼の製造方法。
[7]高炉から出銑された溶銑を、そのまま転炉に装入することに代えて、脱Si、脱P、脱Sの各処理の内、いずれか一つ以上を行ってから転炉に装入することを特徴とする上記[1]乃至[6]のいずれかに記載の溶鋼の製造方法。
In order to solve the above-mentioned problems, the present invention effectively removes Si, DeP, and DeS treatments from other treatment steps when refining molten steel supplied from a blast furnace into molten steel for continuous casting. It is a basic feature to be integrated or integrated, and the gist is as follows.
[1] A method for producing molten steel to be subjected to continuous casting from molten iron, in which molten iron discharged from a blast furnace is charged as it is into a converter, and for subsequent refining, after de-Si removal P treatment, After that, the steel was removed from the same converter, and then the molten steel was removed from the ladle and heated by an arc heating ladle refining device. A method for producing molten steel, which is carried out only in a series of entered steps, and the de-S treatment is carried out only by the arc heating ladle refining apparatus.
[2] A method for producing molten steel to be subjected to continuous casting from hot metal, wherein the following steps (1) to (5) are sequentially performed.
(1) The hot metal is charged into the converter, and the molten iron is subjected to de-Si treatment and de-P treatment (2) Only the slag generated in the step (1) is discharged, and the hot metal is converted into the converter (3) The hot metal left in the converter is subjected to de-C treatment, the upper limit of the blowing temperature is limited, and the P concentration in the blowing steel is changed to the hot metal at the end of the step (1). The process of suppressing the P concentration to below the level and putting the steel in the ladle (4) The process of adding Al to the molten steel during or after the steel output and performing the deoxidation process (5) Adding the Al to the deoxidation process Step 3 is a method of producing a molten steel to be subjected to continuous casting from a hot metal while performing a temperature rise and a de-S treatment with an arc heating ladle refining device, and the following (1) to (1) to The series of steps (6) are performed in order, and the method for producing molten steel according to the above [1].
(1) The hot metal is charged into the converter, and the molten iron is subjected to de-Si treatment and de-P treatment (2) Only the slag generated in the step (1) is discharged, and the hot metal is converted into the converter (3) The hot metal remaining in the converter is subjected to de-C treatment, the upper limit of the blowing temperature is limited, and the P concentration in the blowing steel is changed to P in the hot metal at the end of the step (1). The step of suppressing the concentration to below the level and removing the steel in the ladle (4) The step of adding Al to the molten steel during or after the outgoing steel and performing the deoxidation treatment (5) Adding the Al to the deoxidation treatment A step of heating the applied molten steel with an arc heating ladle refining device and performing a de-S treatment (6) A step of subjecting the molten steel subjected to the temperature rise and de-S treatment to vacuum degassing [4] De-C treatment [1] to [1] or Method for producing a molten steel according to any one of the 3].
[5] The molten steel according to any one of [2] to [4], wherein a step of discharging slag on the molten steel is interposed between the steps (4) and (5). Manufacturing method.
[6] The method for producing molten steel according to the above [2], wherein the vacuum degassing treatment does not perform heating by addition of Al.
[7] Instead of charging the molten iron discharged from the blast furnace into the converter as it is, after performing any one or more of de-Si, de-P, and de-S treatments, The method for producing molten steel according to any one of the above [1] to [6], wherein charging is performed.
本発明によれば、従来熱ロスが大きく適用に制約のあった溶銑予備処理工程を合理化することが可能となり、従来並みの脱P、脱S工程能力を維持しつつ熱裕度の大幅な向上によるスクラップなどの冷鉄源の使用拡大を可能とすることで溶銑使用量を削減でき、さらに転炉でのC吹き下げの抑制、RHでのAl昇熱回避が可能で溶鋼清浄度など品質の大幅な改善なども期待でき非常に有用な発明である。 According to the present invention, it is possible to rationalize the hot metal pretreatment process with a large heat loss, which has been limited in application, and greatly improve the heat tolerance while maintaining the conventional P and S process capability. The amount of hot metal used can be reduced by expanding the use of cold iron sources such as scrap, and the quality of the molten steel can be reduced by suppressing the C blowdown in the converter and avoiding the increase of Al heat in the RH. It is a very useful invention that can be expected to greatly improve.
溶銑の脱Si、脱P、脱S処理は、鋼材の清浄度向上に効果をもたらすものの、一方で溶銑温度の低下などの熱ロスを伴うため、冷鉄源の使用量制約などが発生し、生産量が必要な場合は、溶銑予備処理の適用を低減せざるを得ず、低P、低S化工程能力の低下、スラグボリュームの増大などの問題が発生する。 Although the hot metal de-Si, de-P, and de-S treatments have an effect on improving the cleanliness of the steel material, on the other hand, there is a heat loss such as a decrease in the hot metal temperature, so there are restrictions on the amount of cold iron used, When the production amount is necessary, the application of hot metal pretreatment must be reduced, and problems such as low P, low S process capability reduction, and slag volume increase occur.
熱裕度改善対策として、溶銑脱Si、脱P工程を脱C工程と同一の転炉に集約する方法も提案されているものの、脱P後のスラグを常に安定して十分に除去することが困難であり、低P化との両立は困難である。 As a measure to improve heat tolerance, a method of consolidating the hot metal de-Si and de-P processes into the same converter as the de-C process has also been proposed, but it is always possible to remove slag after de-P stably and sufficiently. It is difficult, and it is difficult to achieve both low P.
本発明者らは、脱C処理と同一の転炉を利用した溶銑脱Si、脱P処理工程能力を分割精錬プロセス並に維持しつつ、課題である溶銑の熱裕度を改善するべく開発に当たった。 The present inventors have developed to improve the heat tolerance of hot metal, which is a problem, while maintaining the hot metal removal Si and de-P treatment process capability using the same converter as the de-C treatment as well as the split refining process. I got it.
本発明者らは、冶金原理に基づき、溶湯温度の低減が脱P反応促進に有効であること、また脱S反応は溶湯温度の高い、溶鋼段階で行うことが有利であることに注目した。すなわち、一次精錬工程での脱C工程においても吹止温度を低温とし、二次精錬で昇温しつつ脱S処理を高温で行うことを検討した。 The present inventors have noted that, based on the metallurgical principle, reduction of the molten metal temperature is effective for promoting the de-P reaction, and the de-S reaction is advantageously performed at the molten steel stage where the molten metal temperature is high. That is, in the de-C process in the primary refining process, it was examined that the blowing temperature was lowered and the de-S treatment was performed at a high temperature while the temperature was raised in the secondary refining process.
同一転炉にて脱Si、脱P、排滓、脱Cを連続的に行う方法において、従来、高い吹き止め温度で脱C処理を終了すると、温度の上昇に伴って、転炉内に残留した脱Pスラグから溶鋼へPが移動し、脱C処理中に溶鋼中Pが上昇する現象が見られた。これに対し、本発明においては、出鋼後にアーク加熱取鍋精錬装置で溶鋼を昇温し、それに伴って脱C処理後の吹き止め温度を低下することとした。脱C吹錬後の吹き止め温度の上限を制限し、通常より20℃〜40℃低減することにより、脱P後の排滓が十分でなくても、脱C吹錬前に添加した造滓材によるスラグへのP還元効率が向上し、排滓前の溶湯P量を維持、乃至は低減できる。その結果本発明は、脱C吹錬前にトーピードカーまたは別の転炉を利用して脱P処理する分割精錬並の脱P工程能力を維持できる。また、吹き止め温度を低下した分だけ、溶鋼製造における熱裕度が向上する。 In a method of continuously performing de-Si, de-P, waste, and de-C in the same converter, conventionally, when de-C treatment is completed at a high blowing temperature, it remains in the converter as the temperature rises. A phenomenon was observed in which P moved from the de-P slag thus obtained to the molten steel, and P in the molten steel increased during the de-C treatment. On the other hand, in the present invention, the temperature of the molten steel is raised by an arc heating ladle refining device after the steel is discharged, and the blowing temperature after the de-C treatment is lowered accordingly. By limiting the upper limit of the blow-off temperature after de-C blowing and reducing it by 20 to 40 ° C. than usual, even if the desulfurization after de-P is not enough, the ironmaking added before de-C blowing The efficiency of P reduction to slag by the material is improved, and the amount of molten P before waste can be maintained or reduced. As a result, the present invention can maintain the same de-P process capability as the split refining process using the torpedo car or another converter before de-C blowing. Moreover, the heat tolerance in molten steel manufacture improves by the part which reduced the blow-off temperature.
従来、脱C工程でのP上昇防止、及び熱源確保を目的として、脱C吹錬時の溶鋼中Cの吹き下げが行われていた。本発明においては、脱C処理後温度を低下したことにより、脱C工程でPの上昇がなくなるので、P上昇防止のための溶鋼中Cの吹き下げを行う必要がない。また、熱裕度が向上し、熱源確保のための脱C吹錬時の溶鋼中Cの吹き下げを行う必要もなくなる。溶鋼中Cの吹き下げは溶鋼中の酸素濃度の上昇をもたらし、脱酸処理によるアルミナ介在物の増加などの問題につながることから、転炉でのC吹き下げは極力抑制することが効果的である。 Conventionally, C in molten steel was blown down during de-C blowing for the purpose of preventing P increase in the de-C process and securing a heat source. In the present invention, since the increase in P is eliminated in the de-C process by lowering the temperature after de-C treatment, there is no need to blow down C in the molten steel to prevent P increase. Moreover, heat tolerance improves and it becomes unnecessary to blow down C in the molten steel at the time of de-C blowing for securing a heat source. Blowing down C in the molten steel increases the oxygen concentration in the molten steel and leads to problems such as an increase in alumina inclusions due to deoxidation treatment. Therefore, it is effective to suppress C blowing down in the converter as much as possible. is there.
脱C吹錬後の溶鋼温度の上限を制限するには、溶銑を転炉に装入するときに装入する冷鉄源量を増加させることなどにより達成できる。 Limiting the upper limit of the molten steel temperature after de-C blowing can be achieved by increasing the amount of cold iron source charged when the molten iron is charged into the converter.
次に転炉出鋼後の二次精錬工程では、低減した溶鋼温度の昇温が必要となるが、Alと気体酸素の酸化反応熱を利用する昇温方法ではアルミナ介在物の生成を増大させ溶鋼の清浄度低下につながることから、LFなどのアーク加熱装置を使った昇温を組み合わせる必要がある。LF処理では溶融スラグの電気抵抗加熱を行うことから、スラグ組成を高塩基度、低酸化度に制御することで極めて容易に短時間で脱S処理を行うことができ、溶銑脱S処理以上の脱S工程能力が確保される。 Next, in the secondary refining process after the converter steel, it is necessary to raise the temperature of the molten steel, but the temperature raising method using the oxidation reaction heat of Al and gaseous oxygen increases the production of alumina inclusions. Since this leads to a reduction in the cleanliness of the molten steel, it is necessary to combine the temperature rise using an arc heating device such as LF. In LF treatment, electric resistance heating of molten slag is carried out, so de-S treatment can be performed very easily in a short time by controlling the slag composition to a high basicity and low oxidation degree. De-S process capability is secured.
本発明は、脱S処理をアーク加熱取鍋精錬装置で行うこととし、転炉装入前の溶銑では脱S処理を行わない。従来は、溶銑脱S処理によって溶銑温度が低下していたが、溶銑脱S処理を行わないこととしたので、転炉装入時の溶銑温度を上昇することができ、この点でも溶鋼の製造における熱裕度を向上させることができた。即ち、転炉装入溶銑温度の上昇と脱C処理後吹き止め温度低下の両面から、溶鋼の製造における熱裕度の向上を実現することができた。 In the present invention, the de-S treatment is performed by the arc heating ladle refining apparatus, and the de-S treatment is not performed in the hot metal before charging the converter. Conventionally, the hot metal temperature was lowered by the hot metal removal S treatment, but since the hot metal removal S treatment was not performed, the hot metal temperature at the time of charging the converter could be increased. The heat tolerance in can be improved. That is, it was possible to improve the heat tolerance in the production of molten steel from both the rise of the molten iron temperature in the converter and the lowering of the blowing temperature after the de-C treatment.
ところでLFでの脱S処理に先立ち、溶鋼中の溶存酸素はAlを添加し脱酸処理を行うことで効果的な脱S処理を行うことができる。脱酸による不可避的に発生するアルミナ介在物については他の介在物と共にLF処理中に浮上分離され、清浄化が図られる。 By the way, prior to the de-S treatment with LF, the dissolved oxygen in the molten steel can be subjected to an effective de-S treatment by adding Al and performing a deoxidation treatment. Alumina inclusions inevitably generated by deoxidation are floated and separated during the LF treatment together with other inclusions to be cleaned.
LFでの精錬効率をさらに高めるためにはLF処理前に除滓を行うことが有効である。
さらにLF処理後の温度を高めに制御することで次工程でRH処理を行う場合は、RHでのAl昇熱を行わないで処理が可能となり、アルミナ生成による介在物品質の悪化を回避できる。
In order to further improve the refining efficiency in the LF, it is effective to perform the removal before the LF treatment.
Furthermore, when the RH treatment is performed in the next step by controlling the temperature after the LF treatment to be higher, the treatment can be performed without performing the Al heating in RH, and the deterioration of the inclusion quality due to the formation of alumina can be avoided.
LFは加熱手段の他に攪拌手段も有しているが、LFの他に加熱攪拌手段を有しているASEA−SKFやVADも採用できる。 The LF also has a stirring means in addition to the heating means, but ASEA-SKF and VAD having a heating and stirring means in addition to the LF can also be adopted.
図1(a)に、本発明の、高炉から出銑された溶銑をそのまま転炉へ装入してからLF処理するまでの一連の処理フローの概念図を示す。 FIG. 1 (a) shows a conceptual diagram of a series of processing flows of the present invention from when the molten iron discharged from the blast furnace is charged into the converter as it is to LF treatment.
図1(b)に、本発明の、高炉から出銑された溶銑をそのまま転炉へ装入してからLF処理後、RH処理するまでの一連の処理フローの概念図を示す。 FIG. 1 (b) shows a conceptual diagram of a series of processing flows of the present invention from the charging of the molten iron discharged from the blast furnace to the converter as it is, the LF treatment, and the RH treatment.
ところで通常高炉から出銑された溶銑は通常、Si≦1.0%、P≦0.150%、S≦0.030%程度であり、この成分範囲であれば、未処理の状態でそのまま転炉に装入することが可能である。より高清浄な溶鋼の製造が必要な場合は、溶銑段階での事前脱P脱S処理を行うことで、さらに低P、低S化が可能となる。また高炉操業のばらつき、原料品位の悪化などによって溶銑成分が大幅に悪化し、Si≧1.50%、P≧0.200%、S≧0.050%のような場合は転炉精錬、二次精錬とも処理時間の延長につながり生産性の低下が想定されるが、この場合についても溶銑段階での事前処理を行うことが好ましい。 By the way, the hot metal discharged from a normal blast furnace usually has Si ≦ 1.0%, P ≦ 0.150%, and S ≦ 0.030%. It is possible to charge the furnace. When it is necessary to manufacture a higher-purity molten steel, it is possible to further reduce the P and the S by performing the prior de-P de-S treatment at the hot metal stage. In addition, the hot metal component is greatly deteriorated due to variations in blast furnace operation, deterioration of raw material quality, etc., and when Si ≧ 1.50%, P ≧ 0.200%, S ≧ 0.050%, In the next refining, the treatment time is extended and the productivity is assumed to be lowered. In this case as well, it is preferable to perform the pretreatment at the hot metal stage.
また、図2に示すとおり、吹止温度は低温ほど低P化に有利であるが、脱P工程能力の確保または次工程である二次精錬での昇熱負荷を考慮すると1660℃以下とすることが好ましい。 In addition, as shown in FIG. 2, the lower the blowing temperature, the lower the temperature, which is advantageous for lowering the P. However, taking into account the heat removal load in the secondary refining, which is the next process, or ensuring the de-P process capability, It is preferable.
次に、転炉の吹止Cは低くなるにつれ溶鋼中酸素濃度の上昇、スラグ中T.Feの上昇により脱Pに有利な条件となるが、図3に示すとおり、低C領域では急激に酸素濃度が上昇し、酸化物系介在物や気泡性欠陥を生成することから、吹止Cは0.07%未満を回避することが望ましい。本発明は、吹き止め温度の低下により、熱裕度の向上と脱C処理時の低P化を実現し、吹き止めC0.07%以上を可能とした。 Next, as the blow-off C of the converter decreases, the oxygen concentration in the molten steel increases, and the T. As shown in FIG. 3, the oxygen concentration rapidly increases in the low C region and generates oxide inclusions and bubble defects as shown in FIG. It is desirable to avoid less than 0.07%. The present invention realizes an improvement in heat tolerance and a reduction in P during de-C treatment due to a decrease in the blow-off temperature, enabling blow-off C 0.07% or more.
本プロセスの適用により、従来の分割精錬プロセスの溶銑予備処理により低下していた溶銑温度を大幅に上昇させることが可能となること、さらに二次精錬でアーク加熱取鍋精錬(例えばLF)を適用することで転炉の吹止温度を大幅に低減可能であることから、多大な熱裕度向上が可能となりかつ脱P、脱S、さらにはアルミナ介在物品質工程能力も従来並以上となる。脱Siは、脱C処理前の溶銑での処理で必要十分であり、脱C処理以降での特別な処理は必要ない。 Application of this process makes it possible to significantly increase the hot metal temperature, which has been reduced by the hot metal pretreatment of the conventional split refining process, and to apply arc heating ladle refining (for example, LF) in secondary refining. By doing so, the blow-off temperature of the converter can be greatly reduced, so that the heat tolerance can be greatly improved, and the process capability of de-P, de-S, and further, the quality of alumina inclusions is higher than the conventional level. De-Si is necessary and sufficient for the hot metal treatment before the de-C treatment, and no special treatment after the de-C treatment is necessary.
以下実施例により、さらに詳述する。 Hereinafter, the present invention will be described in more detail with reference to examples.
表1、2に示す発明例1、2は、高炉から出銑された溶銑をそのまま転炉に装入してからRH処理するまでの一連の処理フローにより溶鋼を製造した発明例である。溶銑の転炉装入温度は1400℃を超えており、多量の冷鉄源を使用することができ、脱C吹止温度を1660℃以下に制限したことにより、吹止Pは低位安定している。また、SもLF処理により十分に除去されている。 Inventive Examples 1 and 2 shown in Tables 1 and 2 are inventive examples in which molten steel was manufactured by a series of processing flows from charging the molten iron discharged from the blast furnace as it was into the converter to RH treatment. The hot metal converter charging temperature is over 1400 ° C, a large amount of cold iron source can be used, and the de-C blowing temperature is limited to 1660 ° C or less, so the blowing P is stabilized at a low level. Yes. Further, S is also sufficiently removed by the LF process.
表3に示す発明例3は、さらに清浄化させるために、転炉装入に先立ってトーピードカー(以下、TPCと表記)にて脱Si、脱P、脱Sの処理を行った後、転炉に装入し、以降は発明例1、2と同様の処理フローを実施した発明例である。LF処理後の溶鋼P量、S量は発明例1、2よりさらに低減し、より高清浄な溶鋼製造が可能となることが確認された。 Inventive Example 3 shown in Table 3 was subjected to de-Si, de-P, and de-S treatments in a torpedo car (hereinafter referred to as TPC) prior to the charging of the converter for further cleaning. The following is an example of the invention in which the same processing flow as that of Invention Examples 1 and 2 was performed. It was confirmed that the amounts of molten steel P and S after the LF treatment were further reduced from those of Invention Examples 1 and 2, and it was possible to produce a cleaner steel.
さらにいずれの発明例においてもRH工程ではAl昇熱を回避できることから、溶鋼中のアルミナ介在物の低減などの付帯効果も得られた。 Further, in any of the invention examples, since Al heating can be avoided in the RH process, additional effects such as reduction of alumina inclusions in the molten steel were also obtained.
表4に示す比較例1は、図4に示す、TPCにて脱S処理した後、上吹き転炉を2基利用し、一方を脱Si脱P炉とし、他方を脱C炉として処理し、その後、LF処理を行わない従来例である。脱Pおよび脱Sの工程能力は優れているものの、TPCでの脱S処理、および転炉で脱Si脱P処理後の溶銑払い出し別転炉への装入により、溶銑温度が低く、冷鉄源は多量に使用できず制限される。 In Comparative Example 1 shown in Table 4, after de-S treatment by TPC shown in FIG. 4, two top blowing converters are used, one as a de-Si de-P furnace and the other as a de-C furnace. Thereafter, this is a conventional example in which LF processing is not performed. Although the process capability of de-P and de-S is excellent, the hot metal temperature is low due to the de-S treatment in TPC and the discharge of hot metal after de-Si de-P treatment in the converter, and charging into a separate converter. The source cannot be used in large quantities and is limited.
表5に示す比較例2は、図5に示す、TPCにて脱S、脱Si、脱Pの処理を行い、転炉では脱C処理のみ行い、その後、LF処理を行わない従来例である。溶銑温度が比較例1よりも低下し、冷鉄源の使用量はさらに制限される。 Comparative Example 2 shown in Table 5 is a conventional example shown in FIG. 5 in which de-S, de-Si, and de-P treatments are performed by TPC, only de-C treatment is performed in the converter, and then LF treatment is not performed. . The hot metal temperature is lower than in Comparative Example 1, and the amount of cold iron source used is further limited.
比較例1、2の溶銑予備処理では、転炉装入温度は低下し、吹止温度も高いことから転炉で溶解できる冷鉄源量は制限される。特殊鋼など合金鉄を大量に溶解する場合、溶解に必要な顕熱を全て転炉だけで補償すると吹止温度が大幅に上昇し、冷鉄源使用量の抑制、転炉耐火物寿命低下、歩留低下などの多大な悪影響が発生するため、通常は二次精錬で負荷分担するのが一般的でRHなどでのAlと酸素の反応熱を利用した昇熱が広く行われている。比較例はRHで温度補償が必要となり、Al昇熱を行ったため、アルミナ生成による溶鋼清浄度への影響も懸念される。 In the hot metal preliminary treatment of Comparative Examples 1 and 2, the amount of cold iron that can be melted in the converter is limited because the furnace charging temperature is lowered and the blowing temperature is high. When a large amount of alloy iron such as special steel is melted, if all the sensible heat required for melting is compensated only by the converter, the blowing temperature will be significantly increased, the use of cold iron source will be reduced, the converter refractory life will be reduced, Since a great adverse effect such as a decrease in yield occurs, the load is usually shared by secondary refining, and heating using reaction heat of Al and oxygen in RH or the like is widely performed. In the comparative example, temperature compensation is required with RH, and Al heating is performed. Therefore, there is a concern that the production of alumina may affect the cleanliness of molten steel.
表6に示す比較例3は、TPCにて脱S処理を行い、同一転炉で脱Si脱P後排滓して引続き脱C処理を行い、その後、LF処理を行わない従来例である。TPCでの脱S処理および転炉吹止温度高によって冷鉄源使用量は制約される。また、同一転炉で脱Pおよび脱Cを行うため、脱P後の排滓を行ったものの十分でなく炉内のスラグ付着など脱C期へのPのキャリーオーバーが発生し、脱P維持のために脱C期でC吹き下げが発生し、それに伴い溶鋼中溶存酸素が大幅に上昇しており、脱酸後のアルミナ生成量が増大し、介在物品質影響も懸念される。 Comparative Example 3 shown in Table 6 is a conventional example in which de-S treatment is performed by TPC, de-Si de-P removal is performed in the same converter, followed by de-C treatment, and no LF treatment thereafter. The amount of cold iron source used is constrained by the removal of S in TPC and the high converter blowing temperature. In addition, because P and C are removed in the same converter, the waste after P removal was not sufficient, but P carryover to the C removal stage, such as slag adhesion in the furnace, occurred, maintaining P removal. For this reason, C blowing-down occurs in the de-C period, and accordingly, dissolved oxygen in the molten steel is greatly increased, the amount of alumina produced after deoxidation is increased, and there is a concern about the influence of inclusion quality.
Claims (7)
(1)溶銑を転炉に装入し、該装入した溶銑に脱Si処理および脱P処理を施す工程
(2)上記(1)の工程で生成したスラグのみを排出し、溶銑を転炉内に残留させる工程
(3)転炉内に残留させた溶銑に脱C処理を施し、吹き止め温度の上限を制限して吹き止め溶鋼中P濃度を上記(1)の工程終了時の溶銑中P濃度以下に抑制し、取鍋に出鋼する工程
(4)出鋼中または出鋼後の溶鋼に、Alを添加して脱酸処理を施す工程
(5)Alを添加して脱酸処理を施した溶鋼に、アーク加熱取鍋精錬装置により、昇温を施すと共に、脱S処理を施す工程 The method for producing molten steel to be subjected to continuous casting from hot metal, wherein the following steps (1) to (5) are sequentially performed.
(1) The hot metal is charged into the converter, and the molten iron is subjected to de-Si treatment and de-P treatment (2) Only the slag generated in the step (1) is discharged, and the hot metal is converted into the converter (3) The hot metal left in the converter is subjected to de-C treatment, the upper limit of the blowing temperature is limited, and the P concentration in the blowing steel is changed to the hot metal at the end of the step (1). The process of suppressing the P concentration to below the level of steel in the ladle (4) The process of adding Al to the molten steel during or after the steel output and performing the deoxidation process (5) Adding the Al to the deoxidation process To the molten steel that has been subjected to heat treatment using an arc heating ladle refining device, and to perform a de-S treatment
(1)溶銑を転炉に装入し、該装入した溶銑に脱Si処理および脱P処理を施す工程
(2)上記(1)の工程で生成したスラグのみを排出し、溶銑を転炉内に残留させる工程
(3)転炉内に残留した溶銑に脱C処理を施し、吹き止め温度の上限を制限して吹き止め溶鋼中P濃度を上記(1)の工程終了時の溶銑中P濃度以下に抑制し、取鍋に出鋼する工程
(4)出鋼中または出鋼後の溶鋼に、Alを添加して脱酸処理を施す工程
(5)Alを添加して脱酸処理を施した溶鋼に、アーク加熱取鍋精錬装置により、昇温を施すと共に、脱S処理を施す工程
(6)昇温および脱S処理した溶鋼に真空脱ガス処理を施す工程 The method for producing molten steel to be subjected to continuous casting from hot metal, wherein the following steps (1) to (6) are sequentially performed.
(1) The hot metal is charged into the converter, and the molten iron is subjected to de-Si treatment and de-P treatment (2) Only the slag generated in the step (1) is discharged, and the hot metal is converted into the converter (3) The hot metal remaining in the converter is subjected to de-C treatment, the upper limit of the blowing temperature is limited, and the P concentration in the blowing steel is changed to P in the hot metal at the end of the step (1). The step of suppressing the concentration to below the level and removing the steel in the ladle (4) The step of adding Al to the molten steel during or after the outgoing steel and performing the deoxidation treatment (5) Adding the Al to the deoxidation treatment A step of subjecting the molten steel to a temperature rise using an arc heating ladle refining device and a step of performing a de-S treatment (6) a step of subjecting the molten steel subjected to the temperature rise and the de-S treatment to a vacuum degassing treatment
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006241585A JP5063966B2 (en) | 2006-09-06 | 2006-09-06 | Manufacturing method of molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006241585A JP5063966B2 (en) | 2006-09-06 | 2006-09-06 | Manufacturing method of molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008063610A true JP2008063610A (en) | 2008-03-21 |
JP5063966B2 JP5063966B2 (en) | 2012-10-31 |
Family
ID=39286572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006241585A Expired - Fee Related JP5063966B2 (en) | 2006-09-06 | 2006-09-06 | Manufacturing method of molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5063966B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102211159A (en) * | 2011-05-06 | 2011-10-12 | 攀钢集团有限公司 | Production method of steel for 82 B steel stranded wires |
KR101246206B1 (en) * | 2011-02-25 | 2013-03-21 | 현대제철 주식회사 | Heat source member for secure of heat source in molten iron, method of dephosphorization of molten iron and method for reduction of dust of molten iron |
JP2013064188A (en) * | 2011-09-20 | 2013-04-11 | Nippon Steel & Sumitomo Metal Corp | Method for recycling steelmaking slag as resource |
CN112981032A (en) * | 2021-02-05 | 2021-06-18 | 邯郸钢铁集团有限责任公司 | Method for smelting low-titanium high-carbon chromium bearing steel by high-titanium molten iron |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111304405A (en) * | 2020-03-02 | 2020-06-19 | 马鞍山钢铁股份有限公司 | Method for accurately controlling superheat degree of molten steel in tundish by LF (ladle furnace) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718319A (en) * | 1993-06-30 | 1995-01-20 | Nippon Steel Corp | Converter refining method |
JPH07150217A (en) * | 1993-08-31 | 1995-06-13 | Nkk Corp | Production of steel material for hydrogen induced cracking resistance |
-
2006
- 2006-09-06 JP JP2006241585A patent/JP5063966B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718319A (en) * | 1993-06-30 | 1995-01-20 | Nippon Steel Corp | Converter refining method |
JPH07150217A (en) * | 1993-08-31 | 1995-06-13 | Nkk Corp | Production of steel material for hydrogen induced cracking resistance |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101246206B1 (en) * | 2011-02-25 | 2013-03-21 | 현대제철 주식회사 | Heat source member for secure of heat source in molten iron, method of dephosphorization of molten iron and method for reduction of dust of molten iron |
CN102211159A (en) * | 2011-05-06 | 2011-10-12 | 攀钢集团有限公司 | Production method of steel for 82 B steel stranded wires |
JP2013064188A (en) * | 2011-09-20 | 2013-04-11 | Nippon Steel & Sumitomo Metal Corp | Method for recycling steelmaking slag as resource |
CN112981032A (en) * | 2021-02-05 | 2021-06-18 | 邯郸钢铁集团有限责任公司 | Method for smelting low-titanium high-carbon chromium bearing steel by high-titanium molten iron |
CN112981032B (en) * | 2021-02-05 | 2022-09-06 | 邯郸钢铁集团有限责任公司 | Method for smelting low-titanium high-carbon chromium bearing steel by high-titanium molten iron |
Also Published As
Publication number | Publication date |
---|---|
JP5063966B2 (en) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736466B2 (en) | Method for producing high chromium molten steel | |
JP5671801B2 (en) | Converter refining method | |
JP2013234379A (en) | Method for melting extra-low phosphor and extra-low sulfur steel | |
JP2007224367A (en) | Method for producing high-nitrogen steel | |
JP2015042777A (en) | Method for smelting high nitrogen steel | |
JP5063966B2 (en) | Manufacturing method of molten steel | |
JP5386825B2 (en) | Method for melting Mn-containing ultra-low carbon steel | |
JP2015178646A (en) | Method of forming ingot of low-sulfur steel | |
JP4499969B2 (en) | Desulfurization method by ladle refining of molten steel | |
JP3627755B2 (en) | Method for producing high cleanliness ultra low carbon steel with extremely low S content | |
JP5625654B2 (en) | Hot metal production method | |
JP2018100427A (en) | Method for producing low sulfur steel | |
JP2005272958A (en) | Method for utilizing vacuum-degassing apparatus | |
JP4687103B2 (en) | Melting method of low carbon aluminum killed steel | |
JP2020180322A (en) | Production method of molten steel using converter | |
JP2009191290A (en) | Method for producing ingot of extra-low carbon steel | |
JP4534734B2 (en) | Melting method of low carbon high manganese steel | |
JP2000119732A (en) | Melting method for high cleanliness extra-low carbon steel | |
JPH09235611A (en) | Production of extra-low sulfur pure iron having high cleanliness | |
JP4461495B2 (en) | Dephosphorization method of hot metal | |
JP2003147430A (en) | Reducing agent for steelmaking, and steelmaking method | |
JP3158912B2 (en) | Stainless steel refining method | |
JP7302749B2 (en) | Molten iron dephosphorization method | |
JPH08104911A (en) | Method for melting phosphorus-containing steel | |
JP5979017B2 (en) | Hot metal refining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110125 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120702 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120808 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5063966 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |