JP2018100427A - Method for producing low sulfur steel - Google Patents

Method for producing low sulfur steel Download PDF

Info

Publication number
JP2018100427A
JP2018100427A JP2016245356A JP2016245356A JP2018100427A JP 2018100427 A JP2018100427 A JP 2018100427A JP 2016245356 A JP2016245356 A JP 2016245356A JP 2016245356 A JP2016245356 A JP 2016245356A JP 2018100427 A JP2018100427 A JP 2018100427A
Authority
JP
Japan
Prior art keywords
molten steel
steel
ladle
slag
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016245356A
Other languages
Japanese (ja)
Other versions
JP6547734B2 (en
Inventor
勇輔 藤井
Yusuke Fujii
勇輔 藤井
中井 由枝
Yoshie Nakai
由枝 中井
菊池 直樹
Naoki Kikuchi
直樹 菊池
永井 慎一
Shinichi Nagai
慎一 永井
直哉 澁田
Naoya Shibuta
直哉 澁田
孝彦 前田
Takahiko Maeda
孝彦 前田
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016245356A priority Critical patent/JP6547734B2/en
Publication of JP2018100427A publication Critical patent/JP2018100427A/en
Application granted granted Critical
Publication of JP6547734B2 publication Critical patent/JP6547734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low sulfur steel reduced in inclusions at a high desulfurization rate.SOLUTION: Provided is a method where, when a molten steel in a converter is tapped into a ladle, aluminum is added in a range satisfying formula (1), the molten steel is subjected to deacidification treatment, thereafter, a burner flame is formed at the tip lower part of a top-blown lance 13 installed in a vacuum refining furnace, while heating a CaO-AlObased premelt desulfurizing agent with the burner flame, it is sprayed toward the molten steel surface to subject the molten steel 3 to desulfurizing treatment, the ladle 2 is allowed to stand for 10 min or higher in a period from the completion of the treatment in the vacuum treatment furnace to the start of continuous casting in continuous casting equipment, and continuous casting for the molten steel in the ladle is started. 0.0011×a+10×[%Al]+0.05≤W≤0.0011×a+10×[%Al]+1.30 (1)( adenotes the content of oxygen in the molten steel at the end point of decarburization treatment; [%Al]denotes the lower limit value of the standard value of the Al content in a steel product; and Wdenotes the content of Al added to the molten steel upon the tapping.SELECTED DRAWING: Figure 1

Description

本発明は、RH真空脱ガス装置などの真空精錬炉で溶鋼に脱硫処理を施して低硫鋼を製造する方法に関する。   The present invention relates to a method for producing low-sulfur steel by subjecting molten steel to desulfurization in a vacuum refining furnace such as an RH vacuum degassing apparatus.

近年、鋼の高付加価値化や鉄鋼材料の使用用途拡大などに伴う材料特性向上のために、不純物の少ない高純度鋼溶製の要求が増加している。特に、鉄鋼材料の靭性を害する元素である硫黄(S)の含有量が少ない低硫鋼の要求が高い。硫黄含有量の少ない鋼は、脱硫効率の高い溶銑段階で脱硫処理を行い、その後、この溶銑を転炉で脱炭処理して製造される。但し、溶銑段階で硫黄を低減しても転炉での精錬中に硫黄がピックアップするので、例えば、硫黄含有量の規格値が0.0030質量%以下の低硫鋼は、溶銑段階の脱硫処理だけでは安定して製造することが困難である。そこで、高級電磁鋼板やラインパイプ用鋼材などの低硫鋼の製造の際には、転炉での精錬後に、取鍋精錬炉を用いて溶鋼段階でも脱硫処理が行われてきた。   In recent years, there has been an increasing demand for high-purity steel smelting with less impurities in order to improve material properties associated with increased added value of steel and expanded use of steel materials. In particular, there is a high demand for low-sulfur steel with a low content of sulfur (S), an element that impairs the toughness of steel materials. Steel with a low sulfur content is manufactured by performing a desulfurization process in a hot metal stage with high desulfurization efficiency, and then decarburizing the hot metal in a converter. However, even if sulfur is reduced in the hot metal stage, sulfur is picked up during refining in the converter. For example, low sulfur steel with a sulfur content standard value of 0.0030% by mass or less is desulfurized in the hot metal stage. It is difficult to produce stably only by itself. Therefore, in the production of low-sulfur steel such as high-grade electrical steel sheets and steel for line pipes, desulfurization treatment has been performed at the molten steel stage using a ladle refining furnace after refining in a converter.

しかし、取鍋精錬炉は減圧下での精錬機能を有しておらず、脱水素や脱窒素などの脱ガス処理が必要な場合には、取鍋精錬炉とRH真空脱ガス装置などの真空精錬炉との双方で精錬しなければならない。これにより、溶鋼温度の低下、作業能率の低下及び出鋼から鋳造までのリードタイムの延長などの操業上の問題のみならず、2つの二次精錬炉が必要であるという設備上の問題も生じる。そこで、二次精錬炉の統合と二次精錬工程の簡略化とを目的として、RH真空脱ガス装置などの真空精錬炉で脱硫処理する方法が行われるようになった。   However, the ladle smelting furnace does not have a refining function under reduced pressure, and when degassing such as dehydrogenation or denitrogenation is required, the ladle smelting furnace and the RH vacuum degassing equipment can It must be refined in both the smelting furnace. As a result, not only operational problems such as a decrease in molten steel temperature, a reduction in work efficiency, and an extension of the lead time from steelmaking to casting, but also a facility problem that two secondary refining furnaces are necessary are generated. . Thus, for the purpose of integrating the secondary smelting furnace and simplifying the secondary smelting process, a method of desulfurization treatment in a vacuum smelting furnace such as an RH vacuum degassing apparatus has been performed.

RH真空脱ガス装置での脱硫処理方法は、真空槽に設けられた原料投入口から、脱硫剤を真空槽内の溶鋼上に投入し、溶鋼と脱硫剤とを攪拌する方法が一般的であったが、投入した脱硫剤が排気系へ吸引されるなどの影響により、脱硫剤の歩留まりが悪いという欠点があった。脱硫剤の粒径を大きくすれば、脱硫剤の排気系への吸引は防止できるが、脱硫反応界面積の低下を招き、反応効率の面からは不利となる。   A desulfurization treatment method using an RH vacuum degassing apparatus is generally a method in which a desulfurizing agent is introduced onto molten steel in a vacuum chamber from a raw material charging port provided in the vacuum chamber, and the molten steel and desulfurizing agent are agitated. However, there is a drawback that the yield of the desulfurizing agent is poor due to the influence of the desulfurizing agent being sucked into the exhaust system. If the particle size of the desulfurizing agent is increased, suction of the desulfurizing agent into the exhaust system can be prevented, but the desulfurization reaction interfacial area is reduced, which is disadvantageous in terms of reaction efficiency.

そこで、真空精錬炉での溶鋼の脱硫処理において、脱硫剤の添加歩留まりを高め、溶鋼を効率的に脱硫することを目的として、多数の提案がなされている。   Therefore, in the desulfurization treatment of molten steel in a vacuum refining furnace, many proposals have been made for the purpose of increasing the yield of adding a desulfurizing agent and efficiently desulfurizing the molten steel.

特許文献1には、RH真空脱ガス装置の真空槽下部の溶鋼浴面下に設けた脱硫剤吹き込み羽口を介して粉体脱硫剤を搬送用ガスとともに溶鋼中に吹き込む方法が提案されている。しかしながら、特許文献1に提案される方法では、吹き込み羽口は消耗品であり、且つ、吹き込み羽口の保守・点検が必要であり、これらによって製造コストが嵩むのみならず、搬送用ガスの吹き込みによる溶鋼温度の低下が問題となる。また、脱硫剤の吹き込みを行わない期間も、脱硫剤吹き込み羽口に溶鋼が浸入して閉塞しないようにするために、希ガスを流す必要があり、希ガスの消費に伴う製造コストの上昇や、真空槽内の真空度が低下するなどの問題がある。   Patent Document 1 proposes a method in which a powdered desulfurizing agent is blown into molten steel together with a carrier gas through a desulfurizing agent blowing tuyere provided below the surface of the molten steel bath in the lower part of the vacuum tank of the RH vacuum degassing apparatus. . However, in the method proposed in Patent Document 1, the blowing tuyere is a consumable item, and maintenance and inspection of the blowing tuyere is necessary, which not only increases the manufacturing cost but also blows the conveying gas. The drop of the molten steel temperature due to is a problem. In addition, during the period when the desulfurizing agent is not blown, it is necessary to flow a rare gas in order to prevent the molten steel from entering and closing the desulfurizing agent blowing tuyere. There is a problem that the degree of vacuum in the vacuum chamber is lowered.

特許文献2には、RH真空脱ガス装置の真空槽に設置した上吹きランスから脱硫剤を搬送用ガスとともに真空槽内の溶鋼に吹き付けて溶鋼を脱硫する方法(固体物質を搬送用ガスとともに浴面に吹き付けることを「投射」ともいう)が提案されている。特許文献2のように、上吹きランスから脱硫剤を溶鋼に吹き付けて行う脱硫処理では、通常、脱硫剤の滓化を促進させるために、CaO−CaF系脱硫剤が使用されている。しかしながら、CaFを含有する脱硫剤を使用すると、フッ素(F)の溶出という環境上の問題から、生成した脱硫スラグの処理コストが嵩むという問題があり、また、脱硫剤中のCaFによって、取鍋や真空槽の内壁、及び、浸漬管の著しい溶損が発生し、耐火物コストの上昇という問題がある。 Patent Document 2 discloses a method for desulfurizing molten steel by blowing a desulfurizing agent onto a molten steel in a vacuum tank together with a conveying gas from an upper blowing lance installed in a vacuum tank of an RH vacuum degassing apparatus (a solid substance is bathed together with a conveying gas). Spraying the surface is also called “projection”). In a desulfurization process performed by spraying a desulfurizing agent onto molten steel from an upper blowing lance as in Patent Document 2, a CaO—CaF 2 -based desulfurizing agent is usually used to promote hatching of the desulfurizing agent. However, when a desulfurizing agent containing CaF 2 is used, there is a problem that the processing cost of the generated desulfurized slag increases from the environmental problem of elution of fluorine (F), and due to the CaF 2 in the desulfurizing agent, There is a problem that the inner wall of the ladle, the vacuum chamber, and the dip tube are significantly melted and the refractory cost is increased.

特許文献3には、CaO含有量が60質量%以上、Al含有量が5〜40%で、フッ素を含有しないCaO−Al系脱硫剤が提案されている。CaO−Al系脱硫剤を使用することで耐火物の著しい溶損は防止されるが、Al含有量が5〜40%の範囲ではCaO−Al系脱硫剤の融点は高く、添加したCaO−Al系脱硫剤の滓化速度は遅く、効率的な脱硫はできない。溶鋼温度で迅速に滓化させるためには、CaO−Al系脱硫剤に事前溶融処理(プリメルト処理)を施す必要があるが、特許文献3は、CaO−Al系脱硫剤に対して事前溶融処理を行っていない。 Patent Document 3 proposes a CaO—Al 2 O 3 desulfurization agent having a CaO content of 60% by mass or more, an Al 2 O 3 content of 5 to 40% and containing no fluorine. The use of the CaO—Al 2 O 3 desulfurizing agent prevents significant refractory melting, but when the Al 2 O 3 content is in the range of 5 to 40%, the CaO—Al 2 O 3 desulfurizing agent is used. The melting point is high, the hatching rate of the added CaO—Al 2 O 3 desulfurizing agent is slow, and efficient desulfurization cannot be performed. To rapidly slag formation is in the molten steel temperature, it is necessary to apply a pre-melt processed (pre-melt process) in CaO-Al 2 O 3 based desulfurizing agent, Patent Document 3, CaO-Al 2 O 3 based desulfurizing agent Is not pre-melted.

特許文献4及び特許文献5には、RH真空脱ガス装置の真空槽に設置した上吹きランスから、脱硫剤、燃料ガス、酸素ガスを真空槽内の溶鋼浴面に向けて吹き付け、燃料ガスの燃焼によって上吹きランスの先端下方に形成されるバーナー火炎で脱硫剤を加熱または溶融し、加熱または溶融した脱硫剤で溶鋼を脱硫処理する方法が提案されている。バーナー火炎で脱硫剤を加熱または溶融することで、脱硫反応が促進され、且つ、溶鋼温度の低下が防止される。   In Patent Document 4 and Patent Document 5, a desulfurizing agent, a fuel gas, and an oxygen gas are sprayed from a top blowing lance installed in a vacuum tank of an RH vacuum degassing apparatus toward a molten steel bath surface in the vacuum tank. There has been proposed a method in which a desulfurizing agent is heated or melted with a burner flame formed below the tip of an upper blowing lance by combustion, and the molten steel is desulfurized with the heated or melted desulfurizing agent. By heating or melting the desulfurizing agent with a burner flame, the desulfurization reaction is promoted and the temperature of the molten steel is prevented from lowering.

ところで、溶鋼の脱硫処理は、下記の(5)式の反応で進行する。この反応は酸素(O)と硫黄(S)との置換反応であり、溶鋼中の酸素含有量が増加すると、(5)式に示す脱硫反応は停滞する。   By the way, the desulfurization treatment of molten steel proceeds by the reaction of the following formula (5). This reaction is a substitution reaction between oxygen (O) and sulfur (S). When the oxygen content in the molten steel increases, the desulfurization reaction shown in the formula (5) stagnates.

CaO+S→CaS+O …(5)
真空槽内にバーナー火炎を形成する場合には、燃料ガスの燃焼用に供給している酸素ガスのうちの一部や、燃料ガスの燃焼によって生成するCOやHOなどの酸化性ガスが溶鋼浴面に到達し、溶鋼中の酸素含有量を低下するために添加された溶鋼中のアルミニウム(Al)と反応してアルミニウム酸化物(Al)を生成する。即ち、真空槽内にバーナー火炎を形成する場合には、アルミニウムの添加量に見合う、溶鋼中アルミニウム含有量の増加は達成できない。そのために、アルミニウムの添加による、溶鋼中酸素含有量を低減する効果が低減し、溶鋼中の酸素含有量が増加し、つまり、溶鋼中酸素の活量が上昇して、(5)式に示す脱硫反応が停滞する。また、酸化性ガスとの反応によって生成するAlによって、溶鋼の清浄性が低下するという問題もある。
CaO + S → CaS + O (5)
When a burner flame is formed in the vacuum chamber, a part of the oxygen gas supplied for combustion of the fuel gas or an oxidizing gas such as CO 2 or H 2 O generated by the combustion of the fuel gas Reaches the molten steel bath surface and reacts with aluminum (Al) in the molten steel added to reduce the oxygen content in the molten steel to produce aluminum oxide (Al 2 O 3 ). That is, when a burner flame is formed in the vacuum chamber, an increase in the aluminum content in the molten steel corresponding to the amount of aluminum added cannot be achieved. Therefore, the effect of reducing the oxygen content in the molten steel due to the addition of aluminum is reduced, the oxygen content in the molten steel is increased, that is, the activity of oxygen in the molten steel is increased, as shown in the equation (5) Desulfurization reaction stagnates. Further, there is a problem that the cleanliness of the molten steel is lowered by Al 2 O 3 generated by the reaction with the oxidizing gas.

特許文献6には、取鍋内のスラグによる脱硫処理後の復硫(復硫とは、脱硫反応によって形成したCaSが酸化されてCaOになり、溶鋼中硫黄濃度が上昇する現象である)を防止するために、RH真空脱ガス装置での溶鋼の脱硫処理において、脱硫剤を添加した後、環流する溶鋼中もしくは取鍋内溶鋼中またはこの両方に、MgO、Al、CaO、ZrOのうちの1種類以上から構成され、融点が脱硫処理温度以上である粉体状のフラックスを添加し、取鍋内スラグ層の下部に当該フラックス層を形成させ、脱硫処理後の溶鋼と取鍋内スラグとの接触を妨げる方法が提案されている。 Patent Document 6 discloses a resulfurization after a desulfurization treatment with slag in a ladle (resulfurization is a phenomenon in which CaS formed by a desulfurization reaction is oxidized to CaO, and the sulfur concentration in molten steel increases). In order to prevent this, in the desulfurization treatment of the molten steel in the RH vacuum degassing apparatus, MgO, Al 2 O 3 , CaO, ZrO is added to the molten steel in the circulating ladle or the molten steel in the ladle after adding the desulfurizing agent. 2 is added, and a powdery flux having a melting point equal to or higher than the desulfurization treatment temperature is added to form the flux layer below the slag layer in the ladle, and the molten steel after desulfurization treatment and removal A method for preventing contact with the slag in the pan has been proposed.

特許文献6は、スラグ中のFeO濃度とMnO濃度との和が5質量%を超えると復硫が著しくなることを開示しているが、バーナー火炎で加熱または溶融した脱硫剤を吹き付けて溶鋼を脱硫処理する場合に、どの程度の燃焼用酸素ガスを供給すると、復硫が著しくなるかは、特許文献6からは推定することができない。   Patent Document 6 discloses that when the sum of the FeO concentration and the MnO concentration in the slag exceeds 5% by mass, the sulfurization becomes remarkable. However, the molten steel is sprayed with a desulfurizing agent heated or melted with a burner flame. It cannot be estimated from Patent Document 6 how much oxygen gas for combustion is supplied when desulfurization is performed, and resulfurization becomes significant.

特開昭61−130413号公報Japanese Patent Laid-Open No. 61-130413 特開平5−311231号公報JP-A-5-311231 特開2003−129122号公報JP 2003-129122 A 特開平7−41826号公報JP 7-41826 A 特開2012−172213号公報JP 2012-172213 A 特開平7−224318号公報JP-A-7-224318

特許文献4、5に提案されるように、RH真空脱ガス装置などの真空精錬炉の真空槽に設置した上吹きランスの先端下方にバーナー火炎を形成させ、このバーナー火炎で脱硫剤を加熱または溶融し、加熱または溶融した脱硫剤を投射して溶鋼を脱硫処理することで、溶鋼温度の低下を抑制すると同時に、効率的な脱硫処理が可能となったが、高効率の脱硫率を得るための最適なアルミニウム添加量や、燃焼用酸素ガスなどによって溶鋼中に大量のAlが生成した場合の溶鋼の清浄性を確保するための手段については、未だ明らかにされていない。 As proposed in Patent Documents 4 and 5, a burner flame is formed below the tip of an upper blowing lance installed in a vacuum tank of a vacuum smelting furnace such as an RH vacuum degassing apparatus, and the desulfurizing agent is heated with this burner flame or By melting, heating or melting the desulfurizing agent to project the molten steel, the desulfurization treatment of the molten steel is suppressed, and at the same time an efficient desulfurization treatment is possible, but in order to obtain a highly efficient desulfurization rate The means for ensuring the cleanliness of the molten steel when a large amount of Al 2 O 3 is produced in the molten steel due to the optimal amount of aluminum added or the oxygen gas for combustion has not been clarified yet.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、真空精錬炉の真空槽に設置した上吹きランスの先端下方にバーナー火炎を形成させ、このバーナー火炎で脱硫剤を加熱または溶融し、加熱または溶融した脱硫剤を溶鋼浴面に吹き付けて溶鋼を脱硫処理して低硫鋼を製造するにあたり、高い脱硫率で脱硫処理することができ、且つ、酸化物系非金属介在物(以下、単に「介在物」とも記す)の少ない、清浄性の高い溶鋼を製造することのできる、低硫鋼の製造方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to form a burner flame under the tip of the upper blowing lance installed in the vacuum tank of the vacuum refining furnace, and heat the desulfurizing agent with this burner flame. Alternatively, when producing a low-sulfur steel by spraying molten, heated or melted desulfurization agent onto the surface of the molten steel to produce low-sulfur steel, it can be desulfurized at a high desulfurization rate, and oxide-based non-metallic intervening An object of the present invention is to provide a method for producing low-sulfur steel, which is capable of producing a molten steel having a small amount of material (hereinafter also simply referred to as “inclusions”) and having high cleanliness.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]脱炭処理によって生成された転炉内の溶鋼を、転炉から取鍋へ出鋼する際に、下記の(1)式を満足する範囲でアルミニウムを取鍋内に添加して溶鋼を脱酸処理し、
その後、前記溶鋼を収容する取鍋を真空精錬炉に搬送し、該真空精錬炉の真空槽に設置された上吹きランスの先端下方にバーナー火炎を形成し、該バーナー火炎でCaO−Al系プリメルト脱硫剤を加熱しながら、前記上吹きランスからCaO−Al系プリメルト脱硫剤を搬送用ガスとともに真空槽内の溶鋼浴面に向けて吹き付けて溶鋼を脱硫処理し、
前記真空精錬炉での前記溶鋼の処理終了後、前記真空精錬炉での処理終了から次工程の連続鋳造設備での連続鋳造開始までの期間で、脱硫処理された前記溶鋼を収容する取鍋を10分間以上にわたって静置し(静置とは、取鍋内に収容した溶鋼を強制的に撹拌することを行わずに取鍋を静止すること)、その後、取鍋内の溶鋼の連続鋳造を開始することを特徴とする、低硫鋼の製造方法。
0.0011×aof+10×[%Al]LL+0.05≦WLD-Al≦0.0011×aof+10×[%Al]LL+1.30 …(1)
但し、(1)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、[%Al]LLは、製造対象の低硫鋼から製造される鉄鋼製品のアルミニウム含有量規格値の下限値(質量%)、WLD-Alは、出鋼時の溶鋼へのアルミニウム添加量(kg/t)である。
[2]転炉から取鍋への出鋼後、溶鋼を収容する取鍋内のスラグ上に、下記の(2)式を満足する範囲でスラグ還元用のアルミニウムを添加するとともに、下記の(3)式を満足する範囲でスラグ成分改質用の生石灰を添加することを特徴とする、上記[1]に記載の低硫鋼の製造方法。
0.12×ln(aof)−0.5≦Wslag-Al≦0.12×ln(aof)−0.2 …(2)
0.0031×aof+1.5≦Wslag-CaO≦0.0031×aof+2.2 …(3)
但し、(2)式及び(3)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、Wslag-Alは、スラグ還元用のアルミニウムの添加量(kg/t)、Wslag-CaOは、スラグ成分改質用の生石灰の添加量(kg/t)である。
[3]前記バーナー火炎は、燃料ガスを酸素ガスで燃焼させて形成される火炎であり、バーナー火炎を形成する前記酸素ガスの供給量が0.5Nm/t以上の場合は、脱硫処理が終了した後に、石灰含有副原料を下記の(4)式を満足する範囲で真空槽内の溶鋼に添加することを特徴とする、上記[1]または上記[2]に記載の低硫鋼の製造方法。
0.3≦WRH-CaO×XCaO≦1.5 …(4)
但し、(4)式において、WRH-CaOは、石灰含有副原料の添加量(kg/t)、XCaOは、石灰含有副原料のCaO含有量比率(−)である。
The gist of the present invention for solving the above problems is as follows.
[1] When the molten steel in the converter produced by the decarburization process is discharged from the converter to the ladle, aluminum is added to the ladle within the range that satisfies the following formula (1). Deoxidation treatment,
Thereafter, the ladle containing the molten steel is transported to a vacuum smelting furnace, a burner flame is formed below the tip of the upper blowing lance installed in the vacuum tank of the vacuum smelting furnace, and CaO-Al 2 O is formed by the burner flame. while heating the 3-based pre-melt the desulfurizing agent, blowing toward the molten steel bath surface within the vacuum vessel was desulfurized molten steel together with carrier gas of CaO-Al 2 O 3 based pre-melt the desulfurizing agent from the upper lance,
A ladle containing the desulfurized molten steel in a period from the end of the processing in the vacuum refining furnace to the start of continuous casting in the continuous casting equipment in the next step after the processing of the molten steel in the vacuum refining furnace is completed. Let stand for 10 minutes or more (Standing is to stop the ladle without forcibly stirring the molten steel contained in the ladle), and then continuously casting the molten steel in the ladle. A method for producing low-sulfur steel, characterized by starting.
0.0011 × a of + 10 × [% Al] LL + 0.05 ≦ W LD-Al ≦ 0.0011 × a of + 10 × [% Al] LL +1.30… (1)
However, in the formula (1), a of is the oxygen content (mass ppm) in the molten steel at the end of converter decarburization treatment, and [% Al] LL is the steel product produced from the low-sulfur steel to be produced. The lower limit (mass%) of the aluminum content standard value, W LD-Al is the aluminum addition amount (kg / t) to the molten steel at the time of steel production.
[2] After the steel from the converter to the ladle, aluminum for slag reduction is added to the slag in the ladle containing the molten steel within the range satisfying the following formula (2). 3) The method for producing low-sulfur steel according to [1] above, wherein quick lime for slag component modification is added within a range satisfying the formula.
0.12 × ln (a of ) −0.5 ≦ W slag-Al ≦ 0.12 × ln (a of ) −0.2 (2)
0.0031 × a of + 1.5 ≦ W slag-CaO ≦ 0.0031 × a of +2.2… (3)
However, in the formulas (2) and (3), a of is the oxygen content (mass ppm) in the molten steel at the end of the converter decarburization treatment, and W slag-Al is the amount of aluminum added for slag reduction ( kg / t) and W slag-CaO are the addition amount (kg / t) of quicklime for slag component modification.
[3] The burner flame is a flame formed by burning fuel gas with oxygen gas. When the supply amount of the oxygen gas forming the burner flame is 0.5 Nm 3 / t or more, desulfurization treatment is performed. After completion, the low-sulfur steel according to [1] or [2] above, wherein the lime-containing auxiliary material is added to the molten steel in the vacuum tank within a range satisfying the following expression (4): Production method.
0.3 ≦ W RH-CaO × X CaO ≦ 1.5 (4)
However, in the formula (4), W RH-CaO is the addition amount (kg / t) of the lime-containing auxiliary material, and X CaO is the CaO content ratio (−) of the lime-containing auxiliary material.

本発明によれば、CaO−Al系プリメルト脱硫剤を、真空槽の頂部に設けた上吹きランスの先端下方に形成させたバーナー火炎で加熱しながら真空槽内の溶鋼に吹き付けて溶鋼の脱硫処理を行うにあたり、転炉出鋼後に適切な量のアルミニウムを添加して、溶鋼中のアルミニウム含有量を高く保持し且つ溶鋼中の酸素活量の上昇を抑制するので、脱硫反応の進行が促進されて低硫鋼を安定して製造することができる。また、脱硫処理後、脱硫処理した溶鋼を収容する取鍋を10分間以上にわたって静置(静置とは、取鍋内に収容した溶鋼を強制的に撹拌することを行わずに取鍋を静止すること)し、その後、取鍋内の溶鋼を連続鋳造するので、バーナー火炎によって生成する溶鋼中のAlを十分にスラグ中に浮上させることができ、これにより、酸化物系非金属介在物が少なく、清浄度の高い低硫鋼を安定して溶製することができる。 According to the present invention, a CaO—Al 2 O 3 -based premelt desulfurizing agent is sprayed onto molten steel in a vacuum tank while being heated by a burner flame formed below the tip of an upper blowing lance provided at the top of the vacuum tank. In the desulfurization treatment of steel, an appropriate amount of aluminum is added after the steel from the converter to keep the aluminum content in the molten steel high and suppress the increase in the oxygen activity in the molten steel. Is promoted, and low-sulfur steel can be stably produced. In addition, after the desulfurization treatment, the ladle containing the desulfurized molten steel is allowed to stand for 10 minutes or longer. (Standing means that the ladle held in the ladle is not forcibly agitated and left still. Then, since the molten steel in the ladle is continuously cast, the Al 2 O 3 in the molten steel generated by the burner flame can be sufficiently floated in the slag, and thereby the oxide-based nonmetal A low-sulfur steel with few inclusions and high cleanliness can be stably melted.

本発明を実施する際に用いるRH真空脱ガス装置の1例の概略縦断面図である。It is a schematic longitudinal cross-sectional view of one example of the RH vacuum degassing apparatus used when implementing this invention.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

高炉から出銑された溶銑を、溶銑鍋やトーピードカーなどの保持容器や搬送容器で受銑し、受銑した溶銑を、脱炭処理を行う製鋼工程に搬送する。この搬送の途中で、溶銑には、通常、脱硫処理や脱燐処理などの溶銑予備処理が施されており、本発明は、鉄鋼製品の硫黄含有量の規格値が0.0030質量%以下の低硫鋼を対象としていることから、溶銑に対して脱硫処理を実施することが必須である。この溶銑を転炉に装入し、装入した溶銑を酸素吹錬して脱炭処理する。脱炭処理後、溶銑が脱炭処理されて生成した転炉内の溶鋼を取鍋に出鋼する。   The hot metal discharged from the blast furnace is received by a holding container such as a hot metal ladle or a torpedo car or a transport container, and the received hot metal is transported to a steel making process for decarburization. In the middle of this conveyance, the hot metal is usually subjected to hot metal pretreatment such as desulfurization treatment or dephosphorization treatment, and the present invention has a standard value of sulfur content of steel products of 0.0030% by mass or less. Since it is intended for low-sulfur steel, it is essential to carry out desulfurization treatment on hot metal. This hot metal is charged into a converter, and the molten iron is decarburized by oxygen blowing. After the decarburization treatment, the molten steel in the converter formed by decarburizing the hot metal is put into a ladle.

転炉から取鍋への出鋼時、溶鋼成分調整用のマンガン系合金鉄やフェロシリコン合金鉄、及び、溶鋼を脱酸処理するためのアルミニウムを取鍋内に添加する。マンガン系合金鉄やフェロシリコン合金鉄の添加によって溶鋼中に形成されるSiOやMnOの生成量を軽減するために、アルミニウムの添加後に、つまり、溶鋼をアルミニウムで脱酸処理して溶存酸素を低減した後に、マンガン系合金鉄やフェロシリコン合金鉄を添加することが好ましい。また、アルミニウムの添加量は、溶鋼中の酸素を除去し、鉄鋼製品のアルミニウム含有量規格値の下限値を確保し、且つ、効率的な脱硫処理を行うために、下記の(1)式を満足する範囲内とする必要がある。 At the time of steel removal from the converter to the ladle, manganese-based alloy iron and ferrosilicon alloy iron for adjusting the molten steel components and aluminum for deoxidizing the molten steel are added into the ladle. In order to reduce the amount of SiO 2 and MnO formed in molten steel by the addition of manganese-based alloy iron and ferrosilicon alloy iron, after the addition of aluminum, that is, the molten steel is deoxidized with aluminum to reduce dissolved oxygen. After the reduction, it is preferable to add manganese-based alloy iron or ferrosilicon alloy iron. In addition, the amount of aluminum added is the following formula (1) in order to remove oxygen in molten steel, to secure the lower limit value of the aluminum content standard value of steel products, and to perform efficient desulfurization treatment. It is necessary to be within the range of satisfaction.

0.0011×aof+10×[%Al]LL+0.05≦WLD-Al≦0.0011×aof+10×[%Al]LL+1.30 …(1)
但し、(1)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、[%Al]LLは、製造対象の低硫鋼から製造される鉄鋼製品のアルミニウム含有量規格値の下限値(質量%)、WLD-Alは、出鋼時の溶鋼へのアルミニウム添加量(kg/t)である。添加するアルミニウムが金属アルミニウムの場合は、金属アルミニウムの添加量をWLD-Alの範囲とすればよく、添加するアルミニウムがAl−Fe合金のようなアルミニウム含有合金の場合は、アルミニウム含有合金のアルミニウム純分の添加量がWLD-Alの範囲となるようにすればよい。ここで「kg/t」とは、溶鋼1トンあたりの添加量(kg)を表している。
0.0011 × a of + 10 × [% Al] LL + 0.05 ≦ W LD-Al ≦ 0.0011 × a of + 10 × [% Al] LL +1.30… (1)
However, in the formula (1), a of is the oxygen content (mass ppm) in the molten steel at the end of converter decarburization treatment, and [% Al] LL is the steel product produced from the low-sulfur steel to be produced. The lower limit (mass%) of the aluminum content standard value, W LD-Al is the aluminum addition amount (kg / t) to the molten steel at the time of steel production. When the aluminum to be added is metallic aluminum, the amount of metallic aluminum added may be in the range of W LD-Al. When the aluminum to be added is an aluminum-containing alloy such as an Al-Fe alloy, the aluminum of the aluminum-containing alloy What is necessary is just to make it the addition amount of a pure part become the range of WLD -Al . Here, “kg / t” represents the addition amount (kg) per ton of molten steel.

また、転炉での脱炭処理時に生成した転炉内のスラグ(「転炉スラグ」という)が、出鋼時に溶鋼に混入して取鍋に排出され、出鋼後の取鍋内には、不可避的に転炉スラグが溶鋼上に存在する。転炉スラグはFeOやMnOを多量に含有しており、このFeOやMnOが溶鋼中のアルミニウムと反応して、溶鋼中にAlを形成し、生成したAlが溶鋼の清浄性を劣化させるので、これを防止するために、取鍋内のスラグ上にアルミニウムやアルミニウムドロスなどの脱酸剤を添加して転炉スラグを還元すること、及び、取鍋内のスラグ上に生石灰(CaO)を添加して、転炉スラグの塩基度(質量%CaO/質量%SiO)を高め、且つ、転炉スラグ中のFeO及びMnOを希釈することが好ましい。この生石灰は、スラグ成分改質用の生石灰という。 In addition, the slag in the converter (referred to as “converter slag”) generated during the decarburization process in the converter is mixed into the molten steel and discharged into the ladle at the time of steel output. Inevitably, converter slag is present on the molten steel. Converter slag is contained a large amount of FeO and MnO, the FeO and MnO reacts with aluminum in the molten steel, clean Al 2 O 3 is formed in the molten steel, is generated Al 2 O 3 of the molten steel In order to prevent this, the deoxidizer such as aluminum or aluminum dross is added to the slag in the ladle to reduce the converter slag, and the slag in the ladle. It is preferable to add quick lime (CaO) to increase the basicity (mass% CaO / mass% SiO 2 ) of the converter slag and dilute FeO and MnO in the converter slag. This quicklime is called quicklime for slag component modification.

スラグ還元用のアルミニウムの添加量は、下記の(2)式を満足する範囲内とすることが好ましく、また、スラグ成分改質用の生石灰の添加量は、下記の(3)式を満足する範囲内とすることが好ましい。   The amount of aluminum added for slag reduction is preferably within the range satisfying the following equation (2), and the amount of quicklime added for slag component modification satisfies the following equation (3). It is preferable to be within the range.

0.12×ln(aof)−0.5≦Wslag-Al≦0.12×ln(aof)−0.2 …(2)
0.0031×aof+1.5≦Wslag-CaO≦0.0031×aof+2.2 …(3)
但し、(2)式及び(3)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、Wslag-Alは、スラグ還元用のアルミニウムの添加量(kg/t)、Wslag-CaOは、スラグ成分改質用の生石灰の添加量(kg/t)である。尚、スラグ還元用のアルミニウム源としてアルミニウムドロスを使用する場合には、アルミニウムドロス中のアルミニウム純分が(2)式の範囲を満足するように、アルミニウムドロスのアルミニウム純分に応じて添加する。
0.12 × ln (a of ) −0.5 ≦ W slag-Al ≦ 0.12 × ln (a of ) −0.2 (2)
0.0031 × a of + 1.5 ≦ W slag-CaO ≦ 0.0031 × a of +2.2… (3)
However, in the formulas (2) and (3), a of is the oxygen content (mass ppm) in the molten steel at the end of the converter decarburization treatment, and W slag-Al is the amount of aluminum added for slag reduction ( kg / t) and W slag-CaO are the addition amount (kg / t) of quicklime for slag component modification. In addition, when using aluminum dross as an aluminum source for slag reduction, it adds according to the aluminum pure content of aluminum dross so that the aluminum pure content in aluminum dross satisfies the range of Formula (2).

スラグ還元用のアルミニウム及びスラグ成分改質用の生石灰の添加後、添加したこれらの物質と取鍋内のスラグとを十分に反応させるために、溶鋼に浸漬させた浸漬ランスや取鍋底部に設置したポーラスプラグから希ガスを吹き込み、溶鋼とスラグ還元用のアルミニウム及びスラグ成分改質用の生石灰とを攪拌することが好ましい。   After the addition of aluminum for slag reduction and quick lime for slag component modification, in order to sufficiently react these added substances with the slag in the ladle, it is installed at the bottom of the dipping lance or ladle immersed in molten steel. It is preferable to blow rare gas from the porous plug and stir the molten steel, aluminum for slag reduction, and quick lime for slag component modification.

その後、溶鋼を収容した取鍋を、RH真空脱ガス装置、DH真空脱ガス装置、VAD炉、VOD炉などの真空精錬炉に搬送する。尚、使用する溶鋼としては、高炉から出銑された溶銑を転炉で脱炭処理した溶鋼に限るものではなく、鉄スクラップなどを電気炉で溶解して精錬した溶鋼であってもよい。   Thereafter, the ladle containing the molten steel is conveyed to a vacuum refining furnace such as an RH vacuum degassing apparatus, a DH vacuum degassing apparatus, a VAD furnace, or a VOD furnace. The molten steel to be used is not limited to the molten steel obtained by decarburizing the molten iron discharged from the blast furnace, but may be molten steel obtained by melting iron scrap or the like in an electric furnace.

本発明で用いることができる真空精錬炉には、RH真空脱ガス装置、DH真空脱ガス装置、VAD炉、VOD炉などがあるが、それらの中で最も代表的なものは、RH真空脱ガス装置である。そこで、図1に示すRH真空脱ガス装置を例にとって説明する。   Examples of the vacuum smelting furnace that can be used in the present invention include an RH vacuum degassing apparatus, a DH vacuum degassing apparatus, a VAD furnace, and a VOD furnace. Device. Therefore, the RH vacuum degassing apparatus shown in FIG. 1 will be described as an example.

図1において、1はRH真空脱ガス装置、2は取鍋、3は溶鋼、4はスラグ、5は真空槽、6は上部槽、7は下部槽、8は上昇側浸漬管、9は下降側浸漬管、10は環流用ガス吹き込み管、11はダクト、12は原料投入口、13は上吹きランスであり、真空槽5は上部槽6と下部槽7とから構成されている。また、上吹きランス13は真空槽内を上下移動が可能となっており、この上吹きランス13から、燃料ガス及び燃料ガス燃焼用の酸素含有ガスが噴射されて、上吹きランス13の先端下方にバーナー火炎が形成され、且つ、希ガスまたは酸素含有ガスを搬送用ガスとして粉状の脱硫剤が、バーナー火炎によって加熱されながら溶鋼浴面に吹き付けられるように構成されている。燃料ガス燃焼用の酸素含有ガスは、搬送用ガスとしての酸素含有ガスを兼ねることができる。燃料ガスとしては、メタンガス、プロパンガス、LNGなどの炭化水素系のガスを使用し、燃料ガス燃焼用の酸素含有ガスとしては、酸素ガス(純酸素)、希ガスと酸素ガスとの混合ガス、空気、酸素富化空気などを使用する。   In FIG. 1, 1 is a RH vacuum degassing device, 2 is a ladle, 3 is molten steel, 4 is a slag, 5 is a vacuum tank, 6 is an upper tank, 7 is a lower tank, 8 is a rising side dip tube, and 9 is a lowering A side dip tube, 10 is a circulating gas blowing tube, 11 is a duct, 12 is a raw material inlet, 13 is an upper blowing lance, and the vacuum chamber 5 is composed of an upper tank 6 and a lower tank 7. Further, the upper blowing lance 13 can be moved up and down in the vacuum chamber, and fuel gas and oxygen-containing gas for fuel gas combustion are injected from the upper blowing lance 13, and below the tip of the upper blowing lance 13. In addition, a burner flame is formed, and a powdery desulfurizing agent is sprayed onto the molten steel bath surface while being heated by the burner flame using a rare gas or an oxygen-containing gas as a carrier gas. The oxygen-containing gas for fuel gas combustion can also serve as an oxygen-containing gas as a carrier gas. As the fuel gas, a hydrocarbon gas such as methane gas, propane gas, or LNG is used. As the oxygen-containing gas for fuel gas combustion, oxygen gas (pure oxygen), a mixed gas of rare gas and oxygen gas, Use air, oxygen-enriched air, etc.

この構成のRH真空脱ガス装置1において、溶鋼3に対して以下のようにして脱硫処理を実施する。   In the RH vacuum degassing apparatus 1 having this configuration, the molten steel 3 is desulfurized as follows.

溶鋼3を収納する取鍋2を真空槽5の直下に搬送する。取鍋2の内部には転炉や電気炉などにおける精錬で発生したスラグ4が一部混入し、溶鋼3の浴面を覆っている。搬送した取鍋2を昇降装置(図示せず)によって上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋2に収容された溶鋼3に浸漬させる。そして、環流用ガス吹き込み管10から上昇側浸漬管8の内部にアルゴンガスを環流用ガスとして吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置(図示せず)にて排気し、真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋2に収容された溶鋼3は、環流用ガス吹き込み管10から吹き込まれるアルゴンガスによるガスリフト効果によってアルゴンガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を介して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が溶鋼3に対して施される。   The ladle 2 in which the molten steel 3 is stored is conveyed directly under the vacuum chamber 5. Inside the ladle 2 is partially mixed with slag 4 generated by refining in a converter or an electric furnace, and covers the bath surface of the molten steel 3. The conveyed ladle 2 is raised by an elevating device (not shown), and the ascending side dip tube 8 and the descending side dip tube 9 are immersed in the molten steel 3 accommodated in the ladle 2. Then, argon gas is blown into the rising side dip tube 8 from the reflux gas blowing tube 10 as the reflux gas, and the inside of the vacuum chamber 5 is evacuated by an exhaust device (not shown) connected to the duct 11. The pressure inside the vacuum chamber 5 is reduced. When the inside of the vacuum chamber 5 is depressurized, the molten steel 3 accommodated in the ladle 2 ascends the ascending side dip tube 8 together with the argon gas due to the gas lift effect by the argon gas blown from the reflux gas blow tube 10 and is vacuumed. After flowing into the tank 5 and returning to the ladle 2 via the descending side dip tube 9, a so-called recirculation is formed, and RH vacuum degassing is applied to the molten steel 3.

このRH真空脱ガス精錬中に、脱硫処理前の溶鋼中のアルミニウム含有量を分析し、アルミニウム含有量が鉄鋼製品のアルミニウム含有量規格値の下限値を下回る場合には、溶鋼中のアルミニウム含有量が、アルミニウム含有量規格値の下限値よりも0.005質量%高く、且つ、アルミニウム含有量規格値の上限値を超えない範囲で、アルミニウムを原料投入口12を介して溶鋼3に添加する。   During this RH vacuum degassing refining, the aluminum content in the molten steel before desulfurization is analyzed, and if the aluminum content is below the lower limit of the aluminum content standard value of steel products, the aluminum content in the molten steel However, aluminum is added to the molten steel 3 through the raw material inlet 12 within a range that is 0.005 mass% higher than the lower limit value of the aluminum content specification value and does not exceed the upper limit value of the aluminum content specification value.

その後、上吹きランス13から、搬送用ガス(一般的には希ガスを使用する)とともに粉状の石灰系脱硫剤、及び、燃料ガス、燃料ガス燃焼用の酸素含有ガスを真空槽5の内部の溶鋼3に向けて吹き付けて添加し、燃料ガスを酸素含有ガスで燃焼して上吹きランス13の先端下方にバーナー火炎を形成し、このバーナー火炎で粉状の石灰系脱硫剤を加熱しながら溶鋼3に吹き付けて(「バーナー投射」という)、溶鋼3に脱硫処理を施す。石灰系脱硫剤としては、CaFを含有しない、CaO含有量が55〜75質量%、Al含有量が25〜45質量%である、事前溶融処理(プリメルト処理)を施したCaO−Al系脱硫剤(「プリメルト脱硫剤」と称す)を用いる。 Thereafter, a powdery lime-based desulfurization agent, a fuel gas, and an oxygen-containing gas for fuel gas combustion are supplied from the top blowing lance 13 together with a carrier gas (generally using a rare gas) to the inside of the vacuum chamber 5. This is burned toward the molten steel 3 and burned with an oxygen-containing gas to form a burner flame below the tip of the upper blowing lance 13 while heating the powdered lime-based desulfurization agent with this burner flame. The molten steel 3 is sprayed (referred to as “burner projection”), and the molten steel 3 is desulfurized. The lime-based desulfurizing agent, not containing CaF 2, CaO content of 55 to 75 wt%, Al 2 O 3 content of 25 to 45 wt%, was subjected to pre-melt processed (pre-melt processed) CaO- An Al 2 O 3 desulfurizing agent (referred to as “pre-melt desulfurizing agent”) is used.

脱硫処理の際に、真空槽5の内部の真空度を高くすると、上吹きランス13からの噴出ガス速度の減衰が少なくなるので、搬送用ガス流量を一定とした場合でも、噴出ガスの溶鋼3の浴面におけるガス動圧が高くなり、脱硫剤の歩留まり向上及び脱硫反応促進の観点から有利である。但し、真空度を高くしすぎると、排気系に吸引される脱硫剤が増加するので、真空槽5の真空度は20〜100torr(2.7〜13.3kPa)に調整することが好ましい。   When the degree of vacuum inside the vacuum chamber 5 is increased during the desulfurization process, the attenuation of the jet gas velocity from the top blowing lance 13 decreases, so even if the transport gas flow rate is constant, the molten steel 3 of the jet gas. This is advantageous from the viewpoint of improving the yield of the desulfurizing agent and promoting the desulfurization reaction. However, if the degree of vacuum is too high, the amount of desulfurization agent sucked into the exhaust system increases, so the degree of vacuum of the vacuum chamber 5 is preferably adjusted to 20 to 100 torr (2.7 to 13.3 kPa).

使用するCaO−Al系脱硫剤はCaFを含有しないが、これは、耐火物の溶損を防止するため、及び、脱硫剤価格を安価にするためには、必要なことである。CaO−Al系脱硫剤のCaO含有量が55質量%未満の場合は、脱硫能が乏しいことから好ましくなく、一方、CaO含有量が75質量%を超えると、脱硫剤の融点が高くなり、バーナー火炎内で溶融せず、溶鋼中に侵入しても速やかに溶融せず、脱硫反応が遅滞することから、好ましくない。 The CaO—Al 2 O 3 desulfurization agent used does not contain CaF 2 , but this is necessary to prevent the refractory from being melted and to reduce the desulfurization agent price. . When the CaO content of the CaO—Al 2 O 3 desulfurization agent is less than 55% by mass, it is not preferable because the desulfurization ability is poor. On the other hand, when the CaO content exceeds 75% by mass, the melting point of the desulfurization agent is high. Therefore, it does not melt in the burner flame, and even if it enters into the molten steel, it does not melt quickly and the desulfurization reaction is delayed.

使用するCaO−Al系脱硫剤の粒度は、反応効率の観点から、粒径1mm未満、望ましくは粒径150μm未満が質量比率で80%以上であることが好ましい。一方、排気系に吸引される量を少なくする観点からは、微粉分は少ない方が望ましく、したがって、粒径10μm未満が質量比率で10%未満であるのが好ましく、粒径50μm未満が10%未満であるのがより好ましい。尚、CaO−Al系脱硫剤には不純物として5質量%までのSiOは許容できる。SiO含有量が5質量%を超えると、脱硫能が低下するので好ましくない。 From the viewpoint of reaction efficiency, the CaO—Al 2 O 3 desulfurizing agent to be used preferably has a particle size of less than 1 mm, desirably less than 150 μm in weight ratio of 80% or more. On the other hand, from the viewpoint of reducing the amount sucked into the exhaust system, it is desirable that the amount of fine powder is small. Accordingly, the particle size of less than 10 μm is preferably less than 10% by mass, and the particle size of less than 50 μm is 10%. More preferably, it is less than. In addition, up to 5% by mass of SiO 2 is acceptable as an impurity in the CaO—Al 2 O 3 desulfurization agent. When the SiO 2 content exceeds 5% by mass, the desulfurization ability is lowered, which is not preferable.

更に、脱硫処理時の溶鋼3の酸素ポテンシャルを低位に維持するとともに、脱硫後の復硫を効果的に防止するために、RH真空脱ガス装置1にてCaO−Al系脱硫剤をバーナー投射する前に、真空槽5の内部の溶鋼3にMgO源を投入することが好ましい。MgO源の投入方法としては、原料投入口12から投入する方法、または、CaO−Al系脱硫剤を投射する上吹きランス13から投射する方法のどちらであっても構わないが、排気系への吸引量を少なくし、且つ、塊状のマグネシアクリンカーなども使用できる点からは、原料投入口12から投入する方法を採用することが好ましい。 Furthermore, in order to maintain the oxygen potential of the molten steel 3 during the desulfurization treatment at a low level and to effectively prevent the desulfurization after the desulfurization, a CaO—Al 2 O 3 desulfurization agent is used in the RH vacuum degassing apparatus 1. It is preferable to put an MgO source into the molten steel 3 inside the vacuum chamber 5 before performing the burner projection. As a method for charging the MgO source, either a method of charging from the raw material charging port 12 or a method of projecting from the upper blowing lance 13 that projects the CaO—Al 2 O 3 -based desulfurizing agent may be used. From the viewpoint of reducing the amount of suction to the system and using a massive magnesia clinker or the like, it is preferable to adopt a method of charging from the raw material charging port 12.

真空槽5の内部に投入されたMgO源は、下降側浸漬管9から溶鋼流に随伴されて取鍋2に収容された溶鋼3に流出し、取鍋内の溶鋼中を浮上して、取鍋内の溶鋼3の浴面上に存在するスラグ4と溶鋼3との間に高融点のバリア層を形成する。このバリア層により、スラグ4に含有されるFeOやMnOなどの酸化性成分による溶鋼3の再酸化が防止でき、脱硫に好適な低酸素ポテンシャルの雰囲気を維持することができるとともに、復硫も防止できる。   The MgO source introduced into the vacuum chamber 5 flows from the descending side dip tube 9 into the molten steel 3 accommodated in the ladle 2 along with the molten steel flow, and floats in the molten steel in the ladle. A barrier layer having a high melting point is formed between the slag 4 present on the bath surface of the molten steel 3 in the pan and the molten steel 3. This barrier layer can prevent reoxidation of the molten steel 3 due to oxidizing components such as FeO and MnO contained in the slag 4, maintain a low oxygen potential atmosphere suitable for desulfurization, and prevent resulfurization. it can.

MgO源としてはマグネシアクリンカーのほか、MgO系耐火物屑なども使用できる。上記効果を発揮させるための好ましいMgO源の投入量は、1kg/t以上、より好ましくは1.5kg/t以上である。但し、多量に投入すると溶鋼3の温度降下をきたすので、好ましくは、上限を5kg/tとし、より好ましくは3kg/tとする。   As the MgO source, in addition to magnesia clinker, MgO-based refractory waste can be used. A preferable input amount of the MgO source for exhibiting the above effect is 1 kg / t or more, more preferably 1.5 kg / t or more. However, since a temperature drop of the molten steel 3 is caused when a large amount is added, the upper limit is preferably 5 kg / t, more preferably 3 kg / t.

上吹きランス13は、ランスの軸中心部に設けられた、溶鋼3に吹き付けるCaO−Al系脱硫剤が搬送用ガスとともに通る通路と、この通路の先端において前記CaO−Al系脱硫剤を噴出する中心孔と、燃料ガス燃焼用の酸素含有ガスの通る通路と、燃料ガスの通る通路と、燃料ガス燃焼用の酸素含有ガスと燃料ガスとで火炎を形成することのできる周囲孔と、からなる上吹きランス、または、酸素含有ガスを搬送用ガスとしてCaO−Al系脱硫剤を噴出する中心孔と、この中心孔の先端に燃料ガスが合流する上吹きランスのいずれを用いても構わない。 The top blowing lance 13 is provided at the center of the lance with a passage through which CaO—Al 2 O 3 -based desulfurization agent sprayed onto the molten steel 3 together with the conveying gas, and at the tip of the passage, the CaO—Al 2 O 3 A flame can be formed by the center hole for ejecting the system desulfurization agent, the passage through which the oxygen-containing gas for fuel gas combustion, the passage through which the fuel gas passes, and the oxygen-containing gas and fuel gas for fuel gas combustion. An upper blowing lance comprising a peripheral hole, or a central hole for ejecting a CaO—Al 2 O 3 -based desulfurization agent using an oxygen-containing gas as a carrier gas, and an upper blowing lance in which fuel gas is merged at the tip of the central hole Any of these may be used.

溶鋼3の硫黄含有量が目標値以下になったなら、CaO−Al系脱硫剤、燃料ガス、及び燃料ガス燃焼用の酸素含有ガスの供給を停止して脱硫処理を終了する。脱硫処理終了後、溶鋼3を環流しながら合金成分の調整を行い、その後、RH真空脱ガス精錬を終了する。 When the sulfur content of the molten steel 3 is equal to or less than the target value, the supply of the CaO—Al 2 O 3 desulfurizing agent, the fuel gas, and the oxygen-containing gas for fuel gas combustion is stopped, and the desulfurization process is terminated. After completion of the desulfurization treatment, the alloy components are adjusted while circulating the molten steel 3, and then the RH vacuum degassing refining is completed.

但し、脱硫処理時に、燃料ガス燃焼用の酸素含有ガスとして酸素ガスを使用し、上吹きランス13からの燃料ガス燃焼用の酸素ガスの供給量が0.5Nm/t以上となった場合には、溶鋼中にAlが大量に生成し、溶鋼3の清浄性を劣化させる可能性がある。鋼中のAl介在物は、後工程の圧延時に鋼製品で表面割れなどの欠陥の原因となる。そこで、燃料ガス燃焼用の酸素ガスの供給量が0.5Nm/t以上である場合には、燃料ガス燃焼用の酸素ガスの供給が終了した後、軽焼ドロマイト、生石灰などの石灰含有副原料を真空槽内の溶鋼3に原料投入口12を介して添加し、添加後、溶鋼3を5分間以上環流させることが好ましい。 However, when oxygen gas is used as the oxygen-containing gas for fuel gas combustion during the desulfurization process, and the supply amount of oxygen gas for fuel gas combustion from the top blowing lance 13 becomes 0.5 Nm 3 / t or more. May cause a large amount of Al 2 O 3 to be produced in the molten steel, which may deteriorate the cleanliness of the molten steel 3. Al 2 O 3 inclusions in steel cause defects such as surface cracks in steel products during subsequent rolling. Therefore, when the supply amount of the oxygen gas for fuel gas combustion is 0.5 Nm 3 / t or more, after the supply of the oxygen gas for fuel gas combustion is finished, the lime-containing auxiliary lime such as light burned dolomite and quick lime It is preferable to add the raw material to the molten steel 3 in the vacuum chamber through the raw material charging port 12 and to reflux the molten steel 3 for 5 minutes or more after the addition.

軽焼ドロマイト、生石灰などの石灰含有副原料の添加量は、下記の(4)式を満足する範囲内とすることが好ましい。   The addition amount of the lime-containing auxiliary raw materials such as light-burned dolomite and quicklime is preferably within a range satisfying the following expression (4).

0.3≦WRH-CaO×XCaO≦1.5 …(4)
但し、(4)式において、WRH-CaOは、石灰含有副原料の添加量(kg/t)、XCaOは、石灰含有副原料のCaO含有量比率(−)である。
0.3 ≦ W RH-CaO × X CaO ≦ 1.5 (4)
However, in the formula (4), W RH-CaO is the addition amount (kg / t) of the lime-containing auxiliary material, and X CaO is the CaO content ratio (−) of the lime-containing auxiliary material.

石灰含有副原料を添加し、溶鋼3と攪拌することで、石灰含有副原料中のCaOと溶鋼中のAlとが結合し、この結合によって生成するCaO−Al系介在物は、融点が低下して浮上しやすく、溶鋼中を浮上してスラグ中に除去される。この効果を発揮させるための好ましい溶鋼3の環流時間は5分間以上、より好ましくは7分間以上である。但し、長すぎると溶鋼3の温度降下をきたすので、好ましくは上限を10分間とする。 By adding the lime-containing auxiliary material and stirring with the molten steel 3, CaO in the lime-containing auxiliary material and Al 2 O 3 in the molten steel are combined, and CaO—Al 2 O 3 -based inclusions generated by this combination Is easy to float due to a decrease in melting point, and floats in the molten steel and is removed into the slag. The preferable reflux time of the molten steel 3 for exhibiting this effect is 5 minutes or more, more preferably 7 minutes or more. However, since the temperature drop of the molten steel 3 will be caused if it is too long, the upper limit is preferably set to 10 minutes.

RH真空脱ガス装置1での溶鋼3の処理終了後、RH真空脱ガス装置1での処理終了から次工程の連続鋳造設備での連続鋳造開始までの期間で、脱硫処理された溶鋼3を収容する取鍋2を10分間以上にわたって静置する。尚、「静置」とは、取鍋内に収容した溶鋼3を強制的に撹拌することを行わずに取鍋2を静止することを指す。   After the processing of the molten steel 3 in the RH vacuum degassing apparatus 1, the desulfurized molten steel 3 is accommodated in the period from the end of the processing in the RH vacuum degassing apparatus 1 to the start of continuous casting in the continuous casting equipment of the next process. Leave the ladle 2 to stand for 10 minutes or more. “Standing” means that the ladle 2 is stopped without forcibly stirring the molten steel 3 accommodated in the ladle.

脱硫処理後の溶鋼3を収容する取鍋2を10分間以上にわたって静置することで、溶鋼3に懸濁して存在する介在物は、溶鋼中を浮上してスラグ4に至り、スラグ4に吸収されて、溶鋼3の清浄性が向上する。取鍋2の静置場所は、RH真空脱ガス装置1に備えられた台車やRH真空脱ガス装置1の周囲であっても、または、溶鋼3を収容する取鍋2を次工程の連続鋳造設備に搬送し、その連続鋳造設備の周囲、もしくは、スイングタワーなどの連続鋳造設備自体であっても構わない。   By leaving the ladle 2 containing the molten steel 3 after the desulfurization treatment for 10 minutes or more, inclusions suspended in the molten steel 3 float up in the molten steel, reach the slag 4 and are absorbed by the slag 4. Thus, the cleanliness of the molten steel 3 is improved. The ladle 2 can be placed at a place where the RH vacuum degassing apparatus 1 is equipped with a cart or around the RH vacuum degassing apparatus 1 or the ladle 2 containing the molten steel 3 is continuously cast in the next process. It may be transported to the facility and may be the periphery of the continuous casting facility or the continuous casting facility itself such as a swing tower.

脱硫処理後の溶鋼3を収容する取鍋2を10分間以上にわたって静置して溶鋼中介在物をスラグ4に浮上させた後に、連続鋳造設備にて溶鋼3の連続鋳造を開始する。上記静置効果を発揮させるための静置時間は10分間以上必要であり、好ましくは15分間以上である。但し、長すぎると溶鋼3の温度降下をきたすので、好ましくは上限を25分間とする。静置時間が10分間未満であると溶鋼中介在物が十分に浮上せず、品質が悪化する。   The ladle 2 containing the desulfurized molten steel 3 is allowed to stand for 10 minutes or more to allow the inclusions in the molten steel to float on the slag 4, and then the continuous casting of the molten steel 3 is started in a continuous casting facility. The standing time for exhibiting the above-mentioned standing effect is 10 minutes or more, preferably 15 minutes or more. However, if the length is too long, the temperature of the molten steel 3 is lowered, so the upper limit is preferably set to 25 minutes. If the standing time is less than 10 minutes, the inclusions in the molten steel do not sufficiently float and the quality deteriorates.

以上説明したように、本発明によれば、CaO−Al系プリメルト脱硫剤を、真空槽5の頂部に設けた上吹きランス13の先端下方に形成させたバーナー火炎で加熱しながら真空槽内の溶鋼3に吹き付けて溶鋼3の脱硫処理を行うにあたり、転炉出鋼後に適切な量のアルミニウムを添加して、溶鋼中のアルミニウム含有量を高く保持し且つ溶鋼中の酸素活量の上昇を抑制するので、脱硫反応の進行が促進されて低硫鋼を安定して製造することができる。また、脱硫処理後、脱硫処理した溶鋼3を収容する取鍋2を10分間以上にわたって静置し、その後、取鍋内の溶鋼3を連続鋳造するので、バーナー火炎によって生成する溶鋼中のAlを十分にスラグ中に浮上させることができ、これにより、酸化物系非金属介在物が少なく、清浄度の高い低硫鋼を安定して溶製することができる。 As described above, according to the present invention, the CaO—Al 2 O 3 based premelt desulfurization agent is vacuum heated while being heated by the burner flame formed below the top end of the top blowing lance 13 provided at the top of the vacuum chamber 5. In performing desulfurization treatment of the molten steel 3 by spraying on the molten steel 3 in the tank, an appropriate amount of aluminum is added after the converter steel to keep the aluminum content in the molten steel high and the oxygen activity in the molten steel Since the rise is suppressed, the progress of the desulfurization reaction is promoted, and the low-sulfur steel can be stably produced. In addition, after the desulfurization treatment, the ladle 2 containing the desulfurized molten steel 3 is allowed to stand for 10 minutes or more, and then the molten steel 3 in the ladle is continuously cast. Therefore, Al 2 in the molten steel generated by the burner flame is used. O 3 can be sufficiently floated in the slag, and thereby, low-sulfur steel having a high degree of cleanliness and a low-sulfur steel with less oxide non-metallic inclusions can be stably melted.

尚、上記説明は真空精錬炉としてRH真空脱ガス装置1を使用した例で説明したが、本発明は、RH真空脱ガス装置1に限るものではなく、上吹きランス13を有するならば、DH真空脱ガス装置、VAD炉、VOD炉などにも上記説明に沿って実施することができる。   In addition, although the said description demonstrated by the example which used RH vacuum degassing apparatus 1 as a vacuum refining furnace, this invention is not restricted to RH vacuum degassing apparatus 1, If it has the top blowing lance 13, DH A vacuum degassing apparatus, a VAD furnace, a VOD furnace, or the like can also be implemented in accordance with the above description.

転炉から取鍋への出鋼時の取鍋内への金属アルミニウムの添加量を変化させ、且つ、RH真空脱ガス装置での脱硫処理後の静置時間を変化させ、出鋼時のアルミニウム添加量の脱硫効率に及ぼす影響、及び、脱硫処理後の静置時間の清浄性に及ぼす影響を調査する試験を行った(試験番号1〜15)。   Change the amount of metallic aluminum added to the ladle at the time of steel removal from the converter to the ladle, and change the standing time after desulfurization treatment in the RH vacuum degassing device, Tests were conducted to investigate the effect of the addition amount on the desulfurization efficiency and the effect of the standing time after the desulfurization treatment on the cleanliness (test numbers 1 to 15).

転炉から出鋼された約300トンの溶鋼を、図1に示すRH真空脱ガス装置に搬送し、そのRH真空脱ガス装置を用いて溶鋼の脱硫処理を行った。RH真空脱ガス処理前の溶鋼組成は、炭素含有量が0.08〜0.10質量%、珪素含有量が0.1〜0.2質量%、硫黄含有量が0.0030〜0.0032質量%であり、溶鋼温度は1600〜1650℃であった。脱硫処理時の上吹きランスのランス高さは6mとした。   About 300 tons of molten steel produced from the converter was conveyed to the RH vacuum degassing apparatus shown in FIG. 1, and the molten steel was desulfurized using the RH vacuum degassing apparatus. The molten steel composition before the RH vacuum degassing treatment has a carbon content of 0.08 to 0.10 mass%, a silicon content of 0.1 to 0.2 mass%, and a sulfur content of 0.0030 to 0.0032. The molten steel temperature was 1600 to 1650 ° C. The lance height of the top blowing lance during the desulfurization treatment was 6 m.

転炉から出鋼された溶鋼に、マンガン系合金鉄、フェロシリコン合金鉄及び金属アルミニウムなどを添加した後、この溶鋼をRH真空脱ガス装置に搬送し、必要に応じて溶鋼温度の測定を行い、脱硫剤の添加前に必要な溶鋼温度が確保できているかを確認した。その後、出鋼時に添加したアルミニウム量だけでは十分な溶鋼中アルミニウム濃度が確保されていない場合は、金属アルミニウムを添加して溶鋼中アルミニウム濃度を調整し、その後、真空槽の上部から挿入した上吹きランスの先端を溶鋼浴面から6mの位置で固定し、燃料ガスとしてLNGを供給し、且つ、燃料ガス燃焼用の酸素含有ガスとして酸素ガスを供給して、上吹きランスの先端下方にバーナー火炎を形成させ、アルゴンガスを搬送用ガスとして、CaO−Al系プリメルト脱硫剤(CaO含有量;70質量%、Al含有量;30質量%)を175kg/minの添加速度で5kg/t投射して脱硫処理を行い、脱硫効率を各試験で評価した。 After adding manganese-based alloy iron, ferrosilicon alloy iron, metallic aluminum, etc. to the molten steel produced from the converter, this molten steel is transported to the RH vacuum degasser, and the molten steel temperature is measured as necessary. It was confirmed whether the necessary molten steel temperature could be secured before the addition of the desulfurizing agent. After that, if sufficient aluminum concentration in the molten steel is not ensured by the amount of aluminum added at the time of steel production, the aluminum concentration in the molten steel is adjusted by adding metallic aluminum, and then the top blow inserted from the top of the vacuum chamber The tip of the lance is fixed at a position 6 m from the surface of the molten steel bath, LNG is supplied as a fuel gas, and oxygen gas is supplied as an oxygen-containing gas for fuel gas combustion. CaO—Al 2 O 3 -based pre-melt desulfurization agent (CaO content; 70 mass%, Al 2 O 3 content; 30 mass%) at an addition rate of 175 kg / min using argon gas as the carrier gas The desulfurization treatment was performed by projecting 5 kg / t, and the desulfurization efficiency was evaluated in each test.

全ての試験で、脱硫処理時のLNGの供給流量は400Nm/h、酸素ガスの供給流量は920Nm/h、搬送用ガスのアルゴンガス流量は400Nm/h、環流用アルゴンガス流量は3000NL/minとした。出鋼時のスラグ成分改質用の生石灰の添加量は3kg/tとした。脱硫処理後の溶鋼を収容する取鍋の静置場所は、連続鋳造設備のスイングタワーとした。つまり、取鍋をスイングタワーに上架させた状態で所定の時間静置させた。また、試験を行った鋼種(鉄鋼製品)のアルミニウム含有量規格値の下限値は、0.015質量%、上限値は0.035質量%であった。表1に各試験における操業条件及び操業結果を示す。 In all tests, the supply flow rate of LNG during desulfurization treatment is 400 Nm 3 / h, the supply flow rate of oxygen gas is 920 Nm 3 / h, the argon gas flow rate of the carrier gas is 400 Nm 3 / h, and the reflux argon gas flow rate is 3000 NL. / Min. The addition amount of quicklime for slag component modification at the time of steel output was 3 kg / t. The place where the ladle containing the molten steel after the desulfurization treatment was placed was a swing tower of continuous casting equipment. That is, the ladle was left standing for a predetermined time with the ladle placed on the swing tower. Moreover, the lower limit of the aluminum content specification value of the steel type (steel product) tested was 0.015 mass%, and the upper limit was 0.035 mass%. Table 1 shows the operation conditions and operation results in each test.

Figure 2018100427
Figure 2018100427

表1から以下のことがわかる。尚、表1中の脱硫指数は、単位脱硫剤原単位あたりの脱硫率(硫黄濃度低下量/初期硫黄濃度)を指数化したものであり、脱硫指数が大きいほど、脱硫反応が促進されることを示す。また、RH真空脱ガス精錬終了直後の溶鋼中介在物を評価し、介在物指数として示した。この介在物指数は、数値が大きいほど介在物が多いことを表す。   Table 1 shows the following. The desulfurization index in Table 1 is an index of the desulfurization rate (sulfur concentration decrease / initial sulfur concentration) per unit of desulfurizing agent. The larger the desulfurization index, the more the desulfurization reaction is promoted. Indicates. Moreover, the inclusion in molten steel immediately after completion | finish of RH vacuum degassing refining was evaluated, and it showed as an inclusion index. This inclusion index indicates that the greater the value, the more inclusions.

バーナー火炎を形成しなかった試験番号1は、脱硫剤投射前後での溶鋼温度降下が37℃であったのに対して、バーナー火炎を形成した試験番号2〜15は、溶鋼温度降下が25〜27℃であり、試験番号1よりも溶鋼温度降下が抑制されていた。これは、バーナー火炎の熱が溶鋼へ着熱したものである。また、試験番号1は、脱硫指数が0.4であったのに対して、試験番号2〜15は、脱硫指数が0.7〜0.8と高位であった。これは、脱硫剤をバーナー投射することで、脱硫剤の滓化・溶融が促進され、脱硫反応が促進されたことによると考えられる。   The test number 1 that did not form the burner flame had a molten steel temperature drop of 37 ° C. before and after the desulfurization agent projection, whereas the test numbers 2 to 15 that formed the burner flame had a molten steel temperature drop of 25 to 25 ° C. It was 27 degreeC and the molten steel temperature fall was suppressed rather than the test number 1. This is because the heat of the burner flame is applied to the molten steel. Test number 1 had a desulfurization index of 0.4, whereas test numbers 2 to 15 had a high desulfurization index of 0.7 to 0.8. This is thought to be because the hatching and melting of the desulfurizing agent was promoted and the desulfurization reaction was accelerated by projecting the desulfurizing agent with a burner.

また、転炉出鋼時のアルミニウム添加量(WLD-Al)が(1)式を満たしている試験番号4〜9、13〜15では、RH真空脱ガス精錬の処理時間が29〜31分間であった。これは、RH真空脱ガス装置で金属アルミニウムを添加する必要がないために、処理時間が他の試験に比較して短くなったことによる。転炉出鋼時のアルミニウム添加量(WLD-Al)が(1)式の範囲よりも少ない試験番号2、3では、RH真空脱ガス精錬の処理時間が35〜36分間であり、試験番号4〜9、13〜15に比較して長くなった。これは、試験番号2、3では、溶鋼中のアルミニウム濃度を調整するために、RH真空脱ガス装置で金属アルミニウムを添加したことによる。転炉出鋼時のアルミニウム添加量(WLD-Al)が(1)式の範囲よりも大きい試験番号10、11、12では、RH真空脱ガス精錬の処理時間が33〜38分間であり、試験番号4〜9、13〜15に比べて長くなった。これは、転炉出鋼時のアルミニウム添加量(WLD-Al)が多すぎて、溶鋼中のアルミニウム含有量がアルミニウム含有量規格値の上限値を上回る濃度であったことから、RH真空脱ガス装置で真空槽内の溶鋼に送酸を行い、脱アルミニウム処理を実施したことによる。 In addition, in test numbers 4 to 9 and 13 to 15 in which the aluminum addition amount (W LD-Al ) at the time of converter steelmaking satisfies the formula (1), the treatment time of RH vacuum degassing refining is 29 to 31 minutes. Met. This is because it is not necessary to add metallic aluminum in the RH vacuum degassing apparatus, and the processing time is shorter than in other tests. In test numbers 2 and 3 in which the amount of aluminum added (W LD-Al ) at the time of steel conversion from the converter is less than the range of the formula (1), the treatment time for RH vacuum degassing is 35 to 36 minutes. It became long compared with 4-9 and 13-15. This is because, in Test Nos. 2 and 3, metallic aluminum was added with an RH vacuum degassing device in order to adjust the aluminum concentration in the molten steel. In test numbers 10, 11, and 12 in which the aluminum addition amount (W LD-Al ) at the time of converter steelmaking is larger than the range of the formula (1), the treatment time of RH vacuum degassing refining is 33 to 38 minutes, It became long compared with test numbers 4-9 and 13-15. This is because the amount of aluminum added (W LD-Al ) at the time of steel leaving the converter was too high, and the aluminum content in the molten steel was higher than the upper limit of the aluminum content standard value. This is due to the fact that the molten steel in the vacuum chamber was fed with a gas device and dealuminated.

また、溶鋼を収容した取鍋を10分間以上静置した試験番号2〜12、15では、静置時間が10分間以下であった試験番号13,14に比べて、介在物指数が低位であった。これは、静置時間を十分確保したことで、溶鋼中介在物がスラグに浮上し、溶鋼の清浄性が上昇したためであると考えられる。   In addition, in the test numbers 2 to 12 and 15 in which the ladle containing the molten steel was allowed to stand for 10 minutes or more, the inclusion index was lower than the test numbers 13 and 14 in which the standing time was 10 minutes or less. It was. This is considered to be because the inclusion in the molten steel floated on the slag and the cleanliness of the molten steel was increased by ensuring a sufficient standing time.

転炉からの出鋼後に、取鍋内のスラグ上に添加するスラグ還元用のアルミニウムの添加量及びスラグ成分改質用の生石灰の添加量を変化させ、脱硫反応に及ぼす影響を調査する試験を行った(試験番号21〜29)。   A test to investigate the effect on desulfurization reaction by changing the amount of aluminum for slag reduction added on the slag in the ladle and the amount of quick lime for reforming slag components after steel from the converter. (Test numbers 21 to 29).

転炉から出鋼された約300トンの溶鋼を図1に示すRH真空脱ガス装置に搬送し、そのRH真空脱ガス装置で溶鋼の脱硫処理を実施した。全ての試験で、転炉出鋼時の溶鋼脱酸用のアルミニウム添加量(WLD-Al)は(1)式を満足する範囲とし、且つ、RH真空脱ガス装置での脱硫処理は、脱硫剤添加速度、ランス高さ、真空度などの処理条件を実施例1と同一条件とした。試験を行った鋼種(鉄鋼製品)のアルミニウム含有量規格値の下限値は0.015質量%、上限値は0.035質量%であり、脱硫処理後の溶鋼を収容する取鍋の静置場所は連続鋳造設備のスイングタワーとし、静置時間は12分間とした。表2に各試験における操業条件及び操業結果を示す。 About 300 tons of molten steel produced from the converter was transported to the RH vacuum degassing apparatus shown in FIG. 1, and the molten steel was desulfurized with the RH vacuum degassing apparatus. In all tests, the amount of aluminum added for deoxidation of molten steel (W LD-Al ) at the time of converter steelmaking is within the range that satisfies the formula (1), and the desulfurization treatment in the RH vacuum degassing apparatus is desulfurization. The processing conditions such as the agent addition speed, the lance height, and the degree of vacuum were the same as those in Example 1. The lower limit of the aluminum content standard value of the tested steel type (steel product) is 0.015% by mass, the upper limit is 0.035% by mass, and the place where the ladle containing the molten steel after desulfurization treatment is placed Was a swing tower of continuous casting equipment, and the standing time was 12 minutes. Table 2 shows the operation conditions and operation results in each test.

Figure 2018100427
Figure 2018100427

表2から以下のことがわかる。   Table 2 shows the following.

スラグ還元用のアルミニウムの添加量(Wslag-Al)が(2)式を満足し、スラグ成分改質用の生石灰の添加量(Wslag-CaO)が(3)式を満足し、且つ、スラグ還元用のアルミニウム及びスラグ成分改質用の生石灰の添加後に溶鋼を攪拌した試験番号22、23では、浸漬管の溶損はなく、脱硫指数は、1.0〜1.1であり、脱硫反応が促進されていた。 The addition amount of aluminum for reducing slag (W slag-Al ) satisfies the formula (2), the addition amount of quick lime for modifying slag components (W slag-CaO ) satisfies the formula (3), and In test numbers 22 and 23 in which the molten steel was stirred after the addition of aluminum for slag reduction and quick lime for slag component modification, there was no erosion loss of the dip tube, and the desulfurization index was 1.0 to 1.1. The reaction was promoted.

これに対して、スラグ還元用のアルミニウムの添加量(Wslag-Al)が(2)式よりも少ない、または、スラグ成分改質用の生石灰の添加量(Wslag-CaO)が(3)式よりも少ない試験番号21、26、27では、脱硫指数は0.7〜0.8であり、試験番号22、23に比較して脱硫効率が低下していた。これは、試験番号21では、スラグ還元用のアルミニウムの添加量が少なく、スラグの酸化度が高かったためであると考えられ、試験番号26、27では、スラグ成分改質用の生石灰の添加量が少なかったために、スラグの塩基度が十分に高くならず、スラグから溶鋼への復硫が多かったと考えられる。 On the other hand, the added amount of aluminum for reducing slag (W slag-Al ) is less than the formula (2), or the added amount of quick lime for modifying slag components (W slag-CaO ) is (3). In test numbers 21, 26, and 27 smaller than the equation, the desulfurization index was 0.7 to 0.8, and the desulfurization efficiency was lower than that in test numbers 22 and 23. This is considered to be due to the fact that the amount of aluminum added for slag reduction was small in Test No. 21 and the degree of oxidation of slag was high. In Test Nos. 26 and 27, the amount of quick lime for slag component modification was high. It was thought that the basicity of the slag was not sufficiently high because there were few, and there was much sulfurization from slag to molten steel.

試験番号24、25では、脱硫指数は高かったものの、処理時間が34〜35分間になり、試験番号22、23に比べて長くなった。これは、スラグ還元用のアルミニウムの添加量が多すぎ、スラグ還元用のアルミニウムの一部が溶鋼中のアルミニウム濃度の上昇に寄与してしまい、アルミニウム規格上限値を上回る濃度であったために、真空槽内の溶鋼に送酸を実施して脱アルミニウム処理を実施したことが原因である。   In test numbers 24 and 25, although the desulfurization index was high, the treatment time was 34 to 35 minutes, which was longer than that of test numbers 22 and 23. This is because the amount of aluminum added for slag reduction is too much, and a part of the aluminum for slag reduction contributed to the increase in the aluminum concentration in the molten steel, and the concentration exceeded the upper limit of the aluminum standard. This is because the dealumination was carried out by feeding the molten steel in the tank with acid.

試験番号28は、脱硫指数は高かったものの、浸漬管の溶損が大きくなった。これは、スラグ成分改質用の生石灰の添加量が多すぎたために、浸漬管の溶損が大きくなってしまったと考えられる。   In Test No. 28, although the desulfurization index was high, the dip tube was damaged greatly. This is thought to be due to the fact that the amount of quick lime for modifying the slag component was too large, so that the dip tube melted out.

試験番号29は、スラグ還元用のアルミニウム及びスラグ成分改質用の生石灰を添加した後に、溶鋼を攪拌しなかったために、スラグ還元用のアルミニウム及びスラグ成分改質用の生石灰とスラグとが十分反応せず、スラグ還元用のアルミニウム及びスラグ成分改質用の生石灰の添加効果が発揮されず、脱硫率が低位であったと考えられる。   Test No. 29 was not enough to stir the molten steel after the addition of aluminum for slag reduction and quick lime for slag component modification, so that the slag was sufficiently reacted with aluminum for slag reduction and quick lime for slag component modification. The effect of adding aluminum for reducing slag and quick lime for modifying slag components was not exhibited, and it is considered that the desulfurization rate was low.

実施例1と同様に、図1に示すRH真空脱ガス装置で約300トンの溶鋼の脱硫処理を実施した際に、RH真空脱ガス装置での脱硫処理で、燃料ガス燃焼用の酸素ガスの供給量が0.5Nm/tとなった場合に、酸素ガスの供給が終了した後に、石灰含有副原料として、軽焼ドロマイトまたは生石灰を添加する試験を実施した(試験番号31〜41)。軽焼ドロマイト中のCaO含有量は60質量%(CaO含有量比率=0.6)である。 As in Example 1, when about 300 tonnes of molten steel was desulfurized with the RH vacuum degassing apparatus shown in FIG. 1, the desulfurization with the RH vacuum degassing apparatus resulted in oxygen gas for fuel gas combustion. When the supply amount was 0.5 Nm 3 / t, after the supply of oxygen gas was completed, a test was conducted in which light-burned dolomite or quicklime was added as a lime-containing auxiliary material (test numbers 31 to 41). The CaO content in the light-burned dolomite is 60% by mass (CaO content ratio = 0.6).

全ての試験で、転炉出鋼時の溶鋼脱酸用のアルミニウム添加量(WLD-Al)は(1)式を満足する1.5kg/tとし、且つ、RH真空脱ガス装置での脱硫処理は、脱硫剤添加速度、ランス高さ、真空度などの処理条件を実施例1と同一条件とし、スラグ還元用のアルミニウムの添加量(Wslag-Al)を0.4kg/t、スラグ成分改質用の生石灰の添加量(Wslag-CaO)を3.5kg/tとした。 In all the tests, the amount of aluminum added for deoxidation of molten steel (W LD-Al ) at the time of converter steelmaking was 1.5 kg / t satisfying the formula (1), and desulfurization with an RH vacuum degasser. The treatment was performed under the same treatment conditions as in Example 1 such as the desulfurization agent addition speed, lance height, and vacuum degree, the amount of aluminum added for slag reduction (W slag-Al ) was 0.4 kg / t, and the slag component The amount of quicklime for reforming (W slag-CaO ) was 3.5 kg / t.

試験を行った鋼種(鉄鋼製品)のアルミニウム含有量規格値の下限値は0.015質量%、上限値は0.035質量%であり、脱硫処理後の溶鋼を収容する取鍋の静置場所は連続鋳造設備のスイングタワーとし、静置時間は12分間とした。表3に各試験における操業条件及び操業結果を示す。   The lower limit of the aluminum content standard value of the tested steel type (steel product) is 0.015% by mass, the upper limit is 0.035% by mass, and the place where the ladle containing the molten steel after desulfurization treatment is placed Was a swing tower of continuous casting equipment, and the standing time was 12 minutes. Table 3 shows the operation conditions and operation results in each test.

Figure 2018100427
Figure 2018100427

表3から、以下のことがわかる。試験番号31〜41のいずれにおいても、脱硫指数は1.5であった。RH真空脱ガス装置での溶鋼への酸素ガス供給が終了した後に添加した軽焼ドロマイトまたは生石灰の添加量が(4)式を満たしている試験番号33〜39では介在物指数が0.1〜0.3であった。   Table 3 shows the following. In any of the test numbers 31 to 41, the desulfurization index was 1.5. In test numbers 33 to 39 in which the addition amount of light calcined dolomite or quick lime added after the supply of oxygen gas to the molten steel in the RH vacuum degassing apparatus satisfies the formula (4), the inclusion index is 0.1 to It was 0.3.

一方、軽焼ドロマイトまたは生石灰の添加量が(4)式を満たしていない試験番号31、32、40、41では、介在物指数が0.5〜0.6となり、試験番号33〜39に比べて高い値となった。これは、試験番号31、32では、軽焼ドロマイト及び生石灰の添加量が少なかったために、十分に鋼中のAlを捕捉しきれず、試験番号40、41では、軽焼ドロマイトまたは生石灰の添加量が多すぎたため、CaO系の介在物が鋼中に残存してしまったものと考えられる。 On the other hand, in the test numbers 31, 32, 40, and 41 in which the addition amount of light-burned dolomite or quicklime does not satisfy the formula (4), the inclusion index is 0.5 to 0.6, compared with the test numbers 33 to 39. It became a high value. In Test Nos. 31 and 32, the amount of light burned dolomite and quick lime was small, so that Al 2 O 3 in the steel could not be captured sufficiently. In Test Nos. 40 and 41, light burned dolomite or quick lime It is considered that CaO-based inclusions remained in the steel because the amount added was too large.

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Lower tank 8 Rising side immersion pipe 9 Lowering side immersion pipe 10 Recirculation gas blowing pipe 11 Duct 12 Raw material inlet 13 Upper blowing lance

Claims (3)

脱炭処理によって生成された転炉内の溶鋼を、転炉から取鍋へ出鋼する際に、下記の(1)式を満足する範囲でアルミニウムを取鍋内に添加して溶鋼を脱酸処理し、
その後、前記溶鋼を収容する取鍋を真空精錬炉に搬送し、該真空精錬炉の真空槽に設置された上吹きランスの先端下方にバーナー火炎を形成し、該バーナー火炎でCaO−Al系プリメルト脱硫剤を加熱しながら、前記上吹きランスからCaO−Al系プリメルト脱硫剤を搬送用ガスとともに真空槽内の溶鋼浴面に向けて吹き付けて溶鋼を脱硫処理し、
前記真空精錬炉での前記溶鋼の処理終了後、前記真空精錬炉での処理終了から次工程の連続鋳造設備での連続鋳造開始までの期間で、脱硫処理された前記溶鋼を収容する取鍋を10分間以上にわたって静置し(静置とは、取鍋内に収容した溶鋼を強制的に撹拌することを行わずに取鍋を静止すること)、その後、取鍋内の溶鋼の連続鋳造を開始することを特徴とする、低硫鋼の製造方法。
0.0011×aof+10×[%Al]LL+0.05≦WLD-Al≦0.0011×aof+10×[%Al]LL+1.30 …(1)
但し、(1)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、[%Al]LLは、製造対象の低硫鋼から製造される鉄鋼製品のアルミニウム含有量規格値の下限値(質量%)、WLD-Alは、出鋼時の溶鋼へのアルミニウム添加量(kg/t)である。
When the molten steel in the converter generated by the decarburization process is discharged from the converter to the ladle, aluminum is added to the ladle within the range satisfying the following formula (1) to deoxidize the molten steel. Process,
Thereafter, the ladle containing the molten steel is transported to a vacuum smelting furnace, a burner flame is formed below the tip of the upper blowing lance installed in the vacuum tank of the vacuum smelting furnace, and CaO-Al 2 O is formed by the burner flame. while heating the 3-based pre-melt the desulfurizing agent, blowing toward the molten steel bath surface within the vacuum vessel was desulfurized molten steel together with carrier gas of CaO-Al 2 O 3 based pre-melt the desulfurizing agent from the upper lance,
A ladle containing the desulfurized molten steel in a period from the end of the processing in the vacuum refining furnace to the start of continuous casting in the continuous casting equipment in the next step after the processing of the molten steel in the vacuum refining furnace is completed. Let stand for 10 minutes or more (Standing is to stop the ladle without forcibly stirring the molten steel contained in the ladle), and then continuously casting the molten steel in the ladle. A method for producing low-sulfur steel, characterized by starting.
0.0011 × a of + 10 × [% Al] LL + 0.05 ≦ W LD-Al ≦ 0.0011 × a of + 10 × [% Al] LL +1.30… (1)
However, in the formula (1), a of is the oxygen content (mass ppm) in the molten steel at the end of converter decarburization treatment, and [% Al] LL is the steel product produced from the low-sulfur steel to be produced. The lower limit (mass%) of the aluminum content standard value, W LD-Al is the aluminum addition amount (kg / t) to the molten steel at the time of steel production.
転炉から取鍋への出鋼後、溶鋼を収容する取鍋内のスラグ上に、下記の(2)式を満足する範囲でスラグ還元用のアルミニウムを添加するとともに、下記の(3)式を満足する範囲でスラグ成分改質用の生石灰を添加することを特徴とする、請求項1に記載の低硫鋼の製造方法。
0.12×ln(aof)−0.5≦Wslag-Al≦0.12×ln(aof)−0.2 …(2)
0.0031×aof+1.5≦Wslag-CaO≦0.0031×aof+2.2 …(3)
但し、(2)式及び(3)式において、aofは、転炉脱炭処理終点での溶鋼中酸素含有量(質量ppm)、Wslag-Alは、スラグ還元用のアルミニウムの添加量(kg/t)、Wslag-CaOは、スラグ成分改質用の生石灰の添加量(kg/t)である。
After the steel from the converter to the ladle, aluminum for slag reduction is added to the slag in the ladle containing the molten steel within the range that satisfies the following formula (2), and the following formula (3) The method for producing low-sulfur steel according to claim 1, wherein quick lime for slag component modification is added within a range that satisfies the above.
0.12 × ln (a of ) −0.5 ≦ W slag-Al ≦ 0.12 × ln (a of ) −0.2 (2)
0.0031 × a of + 1.5 ≦ W slag-CaO ≦ 0.0031 × a of +2.2… (3)
However, in the formulas (2) and (3), a of is the oxygen content (mass ppm) in the molten steel at the end of the converter decarburization treatment, and W slag-Al is the amount of aluminum added for slag reduction ( kg / t) and W slag-CaO are the addition amount (kg / t) of quicklime for slag component modification.
前記バーナー火炎は、燃料ガスを酸素ガスで燃焼させて形成される火炎であり、バーナー火炎を形成する前記酸素ガスの供給量が0.5Nm/t以上の場合は、脱硫処理が終了した後に、石灰含有副原料を下記の(4)式を満足する範囲で真空槽内の溶鋼に添加することを特徴とする、請求項1または請求項2に記載の低硫鋼の製造方法。
0.3≦WRH-CaO×XCaO≦1.5 …(4)
但し、(4)式において、WRH-CaOは、石灰含有副原料の添加量(kg/t)、XCaOは、石灰含有副原料のCaO含有量比率(−)である。
The burner flame is a flame formed by burning fuel gas with oxygen gas. When the supply amount of the oxygen gas forming the burner flame is 0.5 Nm 3 / t or more, after the desulfurization treatment is finished The method for producing low-sulfur steel according to claim 1 or 2, wherein the lime-containing auxiliary material is added to the molten steel in the vacuum tank within a range satisfying the following expression (4).
0.3 ≦ W RH-CaO × X CaO ≦ 1.5 (4)
However, in the formula (4), W RH-CaO is the addition amount (kg / t) of the lime-containing auxiliary material, and X CaO is the CaO content ratio (−) of the lime-containing auxiliary material.
JP2016245356A 2016-12-19 2016-12-19 Method of manufacturing low-sulfur steel Active JP6547734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245356A JP6547734B2 (en) 2016-12-19 2016-12-19 Method of manufacturing low-sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245356A JP6547734B2 (en) 2016-12-19 2016-12-19 Method of manufacturing low-sulfur steel

Publications (2)

Publication Number Publication Date
JP2018100427A true JP2018100427A (en) 2018-06-28
JP6547734B2 JP6547734B2 (en) 2019-07-24

Family

ID=62714166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245356A Active JP6547734B2 (en) 2016-12-19 2016-12-19 Method of manufacturing low-sulfur steel

Country Status (1)

Country Link
JP (1) JP6547734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126737A (en) * 2019-06-24 2020-12-25 上海梅山钢铁股份有限公司 Production method of low-sulfur alloy molten steel
CN115572890A (en) * 2021-06-21 2023-01-06 上海梅山钢铁股份有限公司 Production method of low-sulfur peritectic steel continuous casting slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126737A (en) * 2019-06-24 2020-12-25 上海梅山钢铁股份有限公司 Production method of low-sulfur alloy molten steel
CN112126737B (en) * 2019-06-24 2022-04-15 上海梅山钢铁股份有限公司 Production method of low-sulfur alloy molten steel
CN115572890A (en) * 2021-06-21 2023-01-06 上海梅山钢铁股份有限公司 Production method of low-sulfur peritectic steel continuous casting slab
CN115572890B (en) * 2021-06-21 2023-06-09 上海梅山钢铁股份有限公司 Production method of low-sulfur peritectic steel continuous casting slab

Also Published As

Publication number Publication date
JP6547734B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5573424B2 (en) Desulfurization treatment method for molten steel
KR101529454B1 (en) Method of vacuum-refining molten steel
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
JP6028755B2 (en) Method for melting low-sulfur steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP5891826B2 (en) Desulfurization method for molten steel
JP5200380B2 (en) Desulfurization method for molten steel
TWI685577B (en) Smelting method of high manganese steel
JP2008163389A (en) Method for producing bearing steel
JP6323688B2 (en) Desulfurization method for molten steel
JP4360270B2 (en) Method for refining molten steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP6806288B2 (en) Steel manufacturing method
JP3777630B2 (en) Method for heat refining of molten steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP5515651B2 (en) Desulfurization method for molten steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP6939733B2 (en) Refining method of molten steel under reduced pressure
JP2009114491A (en) Method for refining molten steel by rh-vacuum degassing apparatus
JP2009173994A (en) Method for producing al-less extra-low carbon steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250