JP5200380B2 - Desulfurization method for molten steel - Google Patents

Desulfurization method for molten steel Download PDF

Info

Publication number
JP5200380B2
JP5200380B2 JP2007001249A JP2007001249A JP5200380B2 JP 5200380 B2 JP5200380 B2 JP 5200380B2 JP 2007001249 A JP2007001249 A JP 2007001249A JP 2007001249 A JP2007001249 A JP 2007001249A JP 5200380 B2 JP5200380 B2 JP 5200380B2
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
aluminum
treatment
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007001249A
Other languages
Japanese (ja)
Other versions
JP2008169407A (en
Inventor
由枝 中井
郁宏 鷲見
誠司 鍋島
佑 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007001249A priority Critical patent/JP5200380B2/en
Publication of JP2008169407A publication Critical patent/JP2008169407A/en
Application granted granted Critical
Publication of JP5200380B2 publication Critical patent/JP5200380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転炉などの脱炭精錬炉から取鍋に出鋼された取鍋内の溶鋼に対して減圧下で脱硫剤を添加して行う溶鋼の脱硫方法に関するものである。   The present invention relates to a method for desulfurizing molten steel, which is performed by adding a desulfurizing agent under reduced pressure to molten steel in a ladle that has been discharged from a decarburization refining furnace such as a converter.

近年、鋼の高付加価値化及び鉄鋼材料の使用用途拡大化に伴う材料特性の向上のために、従来にも増して高純度鋼の要求が増加している。この要求に応えるためには、溶鋼の極低硫化は重要な1つの条件である。   In recent years, the demand for high-purity steel is increasing compared to the prior art in order to improve the material properties accompanying the increase in added value of steel and the expansion of the use of steel materials. In order to meet this demand, extremely low sulfidation of molten steel is one important condition.

硫黄濃度が0.003〜0.010質量%程度の所謂「低硫鋼」の溶製においては、転炉での脱炭精錬工程の前に溶銑段階で脱硫処理を施すことで対処可能であるが、高級電磁鋼板や高級ラインパイプ用鋼板などの硫黄濃度が0.0010質量%以下である所謂「極低硫鋼」では、溶銑段階の脱硫処理のみでは対処できず、溶銑段階で脱硫処理を施した後、更に転炉から出鋼後の溶鋼段階でも脱硫処理が行われている。従来、この溶鋼の脱硫処理は、加熱手段、攪拌手段及びフラックスのインジェクション(吹き込み)手段などを備えた、大気圧で行う所謂「取鍋精錬炉」で行われていた。   In the melting of so-called “low-sulfur steel” with a sulfur concentration of about 0.003 to 0.010 mass%, it can be dealt with by performing a desulfurization process in the hot metal stage before the decarburization refining process in the converter. However, the so-called “ultra-low-sulfur steel” with a sulfur concentration of 0.0010% by mass or less, such as high-grade electrical steel sheets and high-grade line pipe steel sheets, cannot be dealt with only by the desulfurization process in the hot metal stage, but is desulfurized in the hot metal stage. After application, desulfurization treatment is also performed in the molten steel stage after the steel is removed from the converter. Conventionally, this desulfurization treatment of molten steel has been carried out in a so-called “ladder refining furnace” which is performed at atmospheric pressure and equipped with heating means, stirring means, flux injection means, and the like.

ところで、極低硫鋼のような高級品種では、脱水素或いは溶鋼の清浄化などの目的のために脱ガス処理が必要であり、従って、極低硫鋼は、転炉などで脱炭精錬された後、先ず、取鍋精錬炉で脱硫処理され、その後、RH真空脱ガス装置などの真空脱ガス設備で脱水素処理などがなされ、取鍋内において2つの二次精錬設備を経て製造されていた。しかし、2つの二次精錬設備の間を搬送することの煩雑さや、設備の二重投資などの問題点を解決するために、脱水素が主体であった真空脱ガス設備において脱硫処理を行うことで、製造プロセスの簡素化を図る多数の試みが提案されている。   By the way, in high-grade varieties such as ultra-low sulfur steel, degassing treatment is necessary for the purpose of dehydrogenation or cleaning of molten steel. Therefore, ultra-low sulfur steel is decarburized and refined in a converter or the like. After that, it is first desulfurized in a ladle refining furnace, and then dehydrogenated in a vacuum degassing facility such as an RH vacuum degassing device, and is manufactured through two secondary refining facilities in the ladle. It was. However, in order to solve problems such as the complexity of transporting between the two secondary refining facilities and the double investment of the facilities, desulfurization treatment should be performed in the vacuum degassing facilities that were mainly dehydrogenated. Many attempts have been made to simplify the manufacturing process.

例えば、真空脱ガス設備として最も広く使用されているRH真空脱ガス装置を対象とした脱硫方法として、特許文献1には、取鍋内スラグ中の酸化鉄及び酸化マンガンの合計濃度を5質量%以下に調整し、その後、RH真空脱ガス装置での精錬中に上吹きランスを用いて減圧下の溶鋼浴面に脱硫剤を吹き付けて脱硫処理することが提案され、特許文献2には、取鍋内のスラグのトータル・Fe濃度を10質量%以下に調整した後、RH真空脱ガス装置の真空槽内に環流する溶鋼表面に対して鉛直に、CaOを主成分としてCaF2 またはAl23 を含有する脱硫剤を上吹きランスを介して吹き付けて脱硫処理することが提案され、特許文献3には、酸素との親和力の強い金属を含有する脱硫剤を、ランス高さを1〜3mとした上吹きランスを介して減圧下の溶鋼浴面に吹き付けて脱硫処理することが提案されている。 For example, as a desulfurization method for an RH vacuum degassing apparatus that is most widely used as a vacuum degassing facility, Patent Document 1 discloses that the total concentration of iron oxide and manganese oxide in slag in a ladle is 5 mass%. It was proposed that the desulfurization treatment be performed by spraying a desulfurizing agent on the surface of the molten steel bath under reduced pressure using an upper blowing lance during refining in the RH vacuum degassing apparatus. After adjusting the total Fe concentration of the slag in the pan to 10 mass% or less, CaF 2 or Al 2 O containing CaO as the main component perpendicular to the surface of the molten steel circulating in the vacuum tank of the RH vacuum degasser It is proposed that a desulfurizing agent containing 3 be sprayed through an upper blowing lance for desulfurization treatment. Patent Document 3 discloses a desulfurizing agent containing a metal having a strong affinity for oxygen, and a lance height of 1 to 3 m. The top blowing lance It is proposed that the desulfurization treatment be performed by spraying the molten steel bath surface under reduced pressure.

特許文献4には、取鍋内スラグの酸化鉄と酸化マンガンの合計濃度を5質量%以下に調整した後、真空槽内の溶鋼に上吹きランスを介して酸素及びアルミニウムを添加して溶鋼温度を上昇させた後、前記ランスを介して脱硫剤を吹き付けて脱硫処理することが提案され、特許文献5には、取鍋内のスラグ組成、真空槽内の真空度、上吹きランスのランス高さ、脱硫剤の組成、脱硫剤の吹き込み速度を規定して、上吹きランスから減圧下の溶鋼に向けて脱硫剤を吹き付けて脱硫処理することが提案されている。   In Patent Document 4, after adjusting the total concentration of iron oxide and manganese oxide in the slag in the ladle to 5% by mass or less, oxygen and aluminum are added to the molten steel in the vacuum chamber through an upper blowing lance, and the molten steel temperature is increased. It is proposed that the desulfurization treatment is performed by spraying a desulfurizing agent through the lance, and the slag composition in the ladle, the degree of vacuum in the vacuum chamber, and the lance height of the upper lance are disclosed in Patent Document 5. It has been proposed that the composition of the desulfurizing agent and the blowing speed of the desulfurizing agent are defined, and the desulfurizing treatment is performed by spraying the desulfurizing agent from the top blowing lance toward the molten steel under reduced pressure.

また、特許文献6には、溶鋼中のアルミニウム濃度を0.100質量%以上として上吹きランスから減圧下の溶鋼表面に脱硫剤を吹き付けて脱硫処理し、脱硫処理後、溶鋼中のアルミニウムを燃焼除去することが提案されている。
特開平5−214424号公報 特開平5−171253号公報 特開平6−73429号公報 特開平5−287359号公報 特開平9−170012号公報 特開平6−299229号公報
In Patent Document 6, the aluminum concentration in the molten steel is set to 0.100% by mass or more and desulfurization treatment is performed by spraying a desulfurizing agent from the top blowing lance onto the molten steel surface under reduced pressure. After desulfurization treatment, the aluminum in the molten steel is burned. It has been proposed to remove.
JP-A-5-214424 JP-A-5-171253 JP-A-6-73429 JP-A-5-287359 JP-A-9-170012 JP-A-6-299229

RH真空脱ガス装置では取鍋内のスラグを攪拌することは困難であり、RH真空脱ガス装置で脱硫処理を行う場合には、特許文献1,2,4,5に記載されているように、RH真空脱ガス装置へ到着する前に、取鍋内のスラグの酸素ポテンシャルを低減し、脱硫処理に適したスラグに調整することが必要である。また、溶鋼の成分に関しては、脱硫効率が溶鋼の酸素ポテンシャルに依存することから、特許文献6は、溶鋼中のアルミニウム濃度を0.100質量%程度の高い濃度にすることを提案し、特許文献1でも溶鋼中のアルミニウム濃度を0.025〜0.053質量%にすることを提案している。   In the RH vacuum degassing apparatus, it is difficult to stir the slag in the ladle. When desulfurization is performed in the RH vacuum degassing apparatus, as described in Patent Documents 1, 2, 4, and 5, Before reaching the RH vacuum degassing apparatus, it is necessary to reduce the oxygen potential of the slag in the ladle and adjust it to a slag suitable for the desulfurization process. As for the composition of the molten steel, since the desulfurization efficiency depends on the oxygen potential of the molten steel, Patent Document 6 proposes that the aluminum concentration in the molten steel be a high concentration of about 0.100% by mass. 1 suggests that the aluminum concentration in the molten steel be 0.025 to 0.053 mass%.

本発明者等は、種々検討した結果、RH真空脱ガス装置で溶鋼を脱硫処理する場合に、溶鋼中のアルミニウム以外の成分も脱硫効率に寄与することを知見した。しかしながら、従来、特許文献1,2,4,5,6のように脱硫効率を向上させるために、脱硫処理前に取鍋内のスラグ組成及び溶鋼中のアルミニウム濃度を調整することは提案されているが、その他の成分については何ら言及していない。   As a result of various studies, the present inventors have found that components other than aluminum in molten steel also contribute to desulfurization efficiency when the molten steel is desulfurized with an RH vacuum degassing apparatus. However, conventionally, in order to improve the desulfurization efficiency as in Patent Documents 1, 2, 4, 5, and 6, it has been proposed to adjust the slag composition in the ladle and the aluminum concentration in the molten steel before the desulfurization treatment. However, no mention is made of other ingredients.

また、特許文献1〜5には、RH真空脱ガス装置における脱硫方法の各種条件が提案されているが、特許文献5のように、脱硫剤の吹き込み条件やスラグ組成などを細かく規定した場合においても、以下の問題点が残る。   In addition, Patent Documents 1 to 5 propose various conditions for the desulfurization method in the RH vacuum degassing apparatus. However, as in Patent Document 5, when the desulfurization agent blowing conditions and the slag composition are defined in detail. However, the following problems remain.

即ち、RH真空脱ガス装置は取鍋精錬炉のように溶鋼を加熱するための電気加熱装置を有していないため、脱硫剤添加による温度降下の影響を受けやすい。そのために、溶鋼中のアルミニウムを燃焼させて溶鋼温度を昇熱する必要の生ずる場合がある。また、RH真空脱ガス装置では、脱水素処理や脱窒素処理などのガス成分の除去処理以外に、脱硫処理のみならず真空脱炭処理を行う必要のある場合もある。これらの処理のうちで、真空脱炭処理及びアルミニウムの燃焼による昇熱処理は酸化反応であり、酸素ガスの供給などによって溶鋼の酸素ポテンシャルが高められる。一方、脱硫処理は還元反応であるため、溶鋼の酸素ポテンシャルは低いほど好ましい。   That is, since the RH vacuum degassing apparatus does not have an electric heating apparatus for heating molten steel like a ladle refining furnace, it is easily affected by a temperature drop due to the addition of a desulfurizing agent. For this reason, it may be necessary to burn aluminum in the molten steel to raise the temperature of the molten steel. In addition, in the RH vacuum degassing apparatus, it may be necessary to perform not only a desulfurization process but also a vacuum decarburization process in addition to a gas component removal process such as a dehydrogenation process or a denitrogenation process. Among these processes, the vacuum decarburization process and the heat treatment by burning aluminum are oxidation reactions, and the oxygen potential of the molten steel is increased by supplying oxygen gas or the like. On the other hand, since the desulfurization treatment is a reduction reaction, the lower the oxygen potential of molten steel, the better.

従って、脱硫処理の後に真空脱炭処理及びアルミニウムの燃焼による昇熱処理を実施すると、脱硫処理により一旦溶鋼からスラグに移行した硫黄が溶鋼中の酸素ポテンシャルの上昇に伴って溶鋼に戻る反応、所謂「復硫反応」が生じるため、安定して溶鋼の硫黄濃度を下げることができない。一方、真空脱炭処理及びアルミニウムの燃焼による昇熱処理の後に脱硫処理を実施する場合には、スラグの酸素ポテンシャルが高く、脱硫処理のために添加した脱硫剤が酸化されてしまい脱硫反応が進行しない、また、脱硫処理のために溶鋼を脱酸処理した際に発生したAl23 と添加した脱硫剤とが反応し、脱硫剤の脱硫能力が低下してしまうなどの問題が発生する。特に、アルミニウムの燃焼による昇熱処理においては、生成するAl23 が多く、脱硫剤の脱硫能力を低下させる。 Therefore, when the desulfurization treatment is followed by the vacuum decarburization treatment and the heat treatment by combustion of aluminum, the sulfur once transferred from the molten steel to the slag by the desulfurization treatment returns to the molten steel as the oxygen potential in the molten steel rises, so-called `` Because the “sulfurization reaction” occurs, the sulfur concentration of the molten steel cannot be lowered stably. On the other hand, when the desulfurization treatment is performed after the vacuum decarburization treatment and the heat treatment by combustion of aluminum, the oxygen potential of the slag is high, and the desulfurization agent added for the desulfurization treatment is oxidized and the desulfurization reaction does not proceed. In addition, there arises a problem that Al 2 O 3 generated when the molten steel is deoxidized for the desulfurization treatment reacts with the added desulfurization agent to reduce the desulfurization ability of the desulfurization agent. In particular, in the heat treatment by combustion of aluminum, a large amount of Al 2 O 3 is produced, which reduces the desulfurization ability of the desulfurizing agent.

これらから、真空脱ガス設備で脱硫処理を実施する場合には、脱硫処理以外の精錬に応じて、脱硫能を低下させない脱硫方法を確立することが必要であるが、特許文献1〜5はこの点について何ら言及していない。   From these, when desulfurization treatment is carried out in a vacuum degassing facility, it is necessary to establish a desulfurization method that does not lower the desulfurization capacity in accordance with refining other than desulfurization treatment. There is no mention of any points.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、RH真空脱ガス装置などの真空脱ガス設備で溶鋼を脱硫処理するに当たり、取鍋内スラグの組成、溶鋼成分及び真空脱ガス設備における精錬の順序を最適化し、従来に比べて格段に効率良く脱硫処理することのできる、溶鋼の脱硫方法を提供することである。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to desulfurize molten steel in a vacuum degassing facility such as an RH vacuum degassing apparatus. To provide a method for desulfurizing molten steel that optimizes the order of refining in a degassing facility and can perform desulfurization processing much more efficiently than conventional methods.

本発明者等は、上記課題を達成するべく、転炉から出鋼された溶鋼をRH真空脱ガス装置で脱硫処理する際に、出鋼時の溶鋼成分、出鋼後の取鍋内スラグの改質条件、及び、RH真空脱ガス装置における精錬の順序、精錬間の時間を変更した試験操業を実施し、これらの条件が脱硫処理に及ぼす影響を調査・検討した。   In order to achieve the above-mentioned problems, the present inventors, when desulfurizing the molten steel discharged from the converter with an RH vacuum degassing apparatus, the molten steel components at the time of steel extraction, the slag in the ladle after the steel output A test operation was carried out by changing the reforming conditions, the order of refining in the RH vacuum degassing apparatus, and the time between refining, and the effects of these conditions on the desulfurization treatment were investigated and examined.

その結果、80%以上の高い脱硫率を確保するためには、脱硫処理前のスラグ中のトータル.Feと酸化マンガンとの合計濃度を5質量%以下に調整する必要のあることが分かった。また、溶鋼中の珪素濃度も重要であり、スラグ中のトータル.Feと酸化マンガンとの合計濃度を5質量%以下に調整すると同時に、溶鋼中の珪素濃度を0.10質量%以上とする必要のあることが分かった。尚、スラグ中のトータル.Feとは、スラグ中の全ての鉄酸化物(FeOやFe23 など)の鉄分の合計値である。 As a result, in order to ensure a high desulfurization rate of 80% or more, the total slag in the slag before desulfurization treatment. It was found that the total concentration of Fe and manganese oxide needs to be adjusted to 5% by mass or less. In addition, the silicon concentration in the molten steel is also important. It was found that the total concentration of Fe and manganese oxide was adjusted to 5% by mass or less, and at the same time, the silicon concentration in the molten steel was required to be 0.10% by mass or more. In addition, the total in the slag. Fe is the total iron content of all iron oxides (FeO, Fe 2 O 3 etc.) in the slag.

また、溶鋼温度が不足してRH真空脱ガス装置でアルミニウムの燃焼による昇熱処理を行う場合には、この昇熱処理が完了した後、3分間以上真空脱ガス精錬を継続して溶鋼中のAl23 を十分に浮上・分離させてから脱硫剤を添加することで、効率的に脱硫処理を行えることが分かった。 Further, in the case where the molten steel temperature is insufficient and the RH vacuum degassing apparatus performs the heat treatment by the combustion of aluminum, after the heat treatment is completed, the vacuum degassing refining is continued for 3 minutes or more and the Al 2 in the molten steel. It was found that desulfurization can be efficiently performed by adding a desulfurizing agent after sufficiently floating and separating O 3 .

本発明は、上記検討結果に基づいてなされたものであり、本発明に係る溶鋼の脱硫方法は、大気圧下で脱炭精錬を行う脱炭精錬炉から取鍋への出鋼中に珪素含有合金鉄を投入して取鍋内の溶鋼の珪素濃度を0.10質量%以上に調整し、出鋼後の前記取鍋内のスラグに対してアルミニウムを含有するスラグ改質剤を添加して、前記スラグのトータル.Fe及び酸化マンガンの合計濃度を5質量%以下に調整し、その後、前記取鍋を真空脱ガス設備に搬送し、該真空脱ガス設備では、溶鋼にアルミニウムを添加し、次いで、減圧下の溶鋼表面に向けて上吹きランスを介して酸素ガスを供給して溶鋼中のアルミニウムを燃焼させて溶鋼を昇熱し、その後、溶鋼昇熱後の溶鋼に溶解するアルミニウム濃度を0.010質量%以上に確保した状態で、溶鋼昇熱のための酸素ガスの供給終了後から3分間以上溶鋼を減圧下で環流して前記溶鋼昇熱時に生成したAl23 の溶鋼からの浮上・分離を進行させ、その後、50torr以下の減圧下の溶鋼の表面に向けて、上吹きランスを介して脱硫剤を搬送用ガスとともに吹き付けて添加し、前記溶鋼を脱硫処理することを特徴とするものである。 The present invention has been made based on the above examination results, and the desulfurization method for molten steel according to the present invention includes silicon in steel discharged from a decarburization refining furnace that performs decarburization refining under atmospheric pressure to a ladle. Alloy iron is added to adjust the silicon concentration of the molten steel in the ladle to 0.10% by mass or more, and an aluminum-containing slag modifier is added to the slag in the ladle after steelmaking. The total of the slag. The total concentration of Fe and manganese oxide is adjusted to 5% by mass or less, and then the ladle is transported to a vacuum degassing facility, where aluminum is added to the molten steel, and then the molten steel under reduced pressure. Oxygen gas is supplied to the surface through an upper blowing lance to burn aluminum in the molten steel to raise the temperature of the molten steel. Thereafter, the aluminum concentration dissolved in the molten steel after the molten steel is heated to 0.010% by mass or more while ensuring, allowed to proceed floating and separation of the molten steel than 3 minutes after completion of the supply of the oxygen gas from the molten steel Al 2 O 3 which was refluxing under reduced pressure was generated when the molten steel temperature heat for the molten steel temperature heat Thereafter, a desulfurizing agent is sprayed and added to the surface of the molten steel under reduced pressure of 50 torr or less together with a carrier gas through an upper blowing lance to desulfurize the molten steel.

本発明によれば、脱硫処理前のスラグ中のトータル.Fe及び酸化マンガンの合計濃度を5質量%以下とし、且つ、溶鋼の珪素濃度を0.10質量%以上とするので、溶鋼及びスラグの酸素ポテンシャルが低下し、溶鋼を効率良く脱硫処理することができる。また、溶鋼温度が不足していて真空脱ガス設備でアルミニウムの燃焼による昇熱処理を行う場合には、昇熱処理終了後、減圧下で3分間以上溶鋼を精錬してから脱硫処理を開始するので、昇熱処理で生成したAl23 の浮上・分離が進行し、脱硫剤はこのAl23 の影響を受けることなく、脱硫能を低下させずに効率良く脱硫処理することができる。 According to the present invention, the total slag in the slag before the desulfurization treatment. Since the total concentration of Fe and manganese oxide is 5% by mass or less and the silicon concentration of the molten steel is 0.10% by mass or more, the oxygen potential of the molten steel and slag is lowered, and the molten steel can be efficiently desulfurized. it can. In addition, when the temperature of the molten steel is insufficient and the heat treatment by combustion of aluminum is performed in the vacuum degassing facility, the desulfurization treatment is started after refining the molten steel for 3 minutes or more under reduced pressure after the completion of the heat treatment. The floating and separation of Al 2 O 3 produced by the heat treatment proceeds, and the desulfurization agent can be efficiently desulfurized without being affected by the Al 2 O 3 and without degrading the desulfurization ability.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

高炉から出銑された溶銑を溶銑鍋やトーピードカーなどの溶銑保持・搬送用容器で受銑し、次工程の大気圧下で脱炭精錬を行う転炉に搬送する。この搬送途中で溶銑に対して脱硫処理を実施する。これは、転炉精錬後の溶鋼段階で脱硫処理を実施する鋼種は、一般的に極低硫鋼であるので、予め溶銑段階で脱硫処理を施し、溶鋼段階での脱硫処理の負荷を軽減させるためである。この溶銑段階における脱硫処理は、機械的に攪拌している溶銑にCaO系脱硫剤を上置き添加する機械攪拌式脱硫法や、搬送用ガスとともに溶銑中にCaO系脱硫剤を吹き込むインジェクション法(吹き込み法)などの慣用の脱硫方法を用いればよい。脱硫処理後、生成した脱硫スラグを溶銑保持・搬送用容器から排出し、溶銑を転炉に搬送する。   The hot metal discharged from the blast furnace is received in a hot metal holding / conveying vessel such as a hot metal ladle or torpedo car, and transferred to a converter that performs decarburization and refining under atmospheric pressure in the next process. A desulfurization process is performed on the hot metal during the conveyance. This is because the type of steel that undergoes desulfurization treatment in the molten steel stage after converter refining is generally ultra-low-sulfurized steel, so desulfurization treatment is performed in advance in the hot metal stage to reduce the load of desulfurization treatment in the molten steel stage. Because. This desulfurization process in the hot metal stage includes a mechanical stirring type desulfurization method in which a CaO-based desulfurizing agent is added to the mechanically stirred hot metal, and an injection method (blowing) in which a CaO-based desulfurizing agent is blown into the hot metal together with a carrier gas. A conventional desulfurization method such as (Method) may be used. After the desulfurization treatment, the generated desulfurization slag is discharged from the hot metal holding / conveying vessel, and the hot metal is conveyed to the converter.

この溶銑を転炉に装入し、上吹き酸素、底吹き酸素などによって脱炭精錬する。脱炭精錬の終了後、脱炭精錬によって得られた溶鋼を転炉から取鍋に出鋼する。この出鋼の際に、Fe−Si合金或いはSi−Mn合金などの珪素含有合金鉄を取鍋内に添加し、取鍋内の溶鋼中に溶解する珪素濃度が0.10質量%以上となるように調整する。また、この出鋼時に、金属アルミニウムを取鍋内に添加して溶鋼を脱酸しても構わない。金属アルミニウムの添加量は、溶鋼の酸素ポテンシャルを低位に安定させるために、溶鋼中に溶解するアルミニウムが0.01質量%以上となるように調整することが好ましい。また更に、スラグ中のトータル・Fe(以下「T.Fe」と記す)及び酸化マンガンを希釈するために、出鋼時に生石灰または生石灰を含有するフラックスを添加しても構わない。   This hot metal is charged into a converter and decarburized and refined with top blown oxygen, bottom blown oxygen, and the like. After completion of decarburization refining, the molten steel obtained by decarburization refining is discharged from the converter to the ladle. At the time of this steel removal, silicon-containing alloy iron such as Fe-Si alloy or Si-Mn alloy is added to the ladle, and the silicon concentration dissolved in the molten steel in the ladle becomes 0.10% by mass or more. Adjust as follows. Moreover, you may deoxidize molten steel by adding metallic aluminum in a ladle at the time of this steel extraction. In order to stabilize the oxygen potential of molten steel at a low level, the amount of metal aluminum added is preferably adjusted so that the amount of aluminum dissolved in the molten steel is 0.01% by mass or more. Furthermore, in order to dilute total Fe (hereinafter referred to as “T.Fe”) and manganese oxide in the slag, quick lime or a flux containing quick lime may be added at the time of steel production.

そして、出鋼後、取鍋内の溶鋼上に存在するスラグにアルミニウムを含有するスラグ改質剤を添加して、スラグ中のT.Fe及び酸化マンガンの合計濃度を5質量%以下に調整する。アルミニウムを含有するスラグ改質剤としては、金属アルミニウム単体、金属アルミニウムと生石灰などとの混合物、Al灰(「アルミドロス」ともいう)などが使用できる。特に、安価であることからAl灰が好適である。Al灰とは、金属アルミニウムを30〜50質量%含有した金属アルミニウムとAl23 との混合物であり、他の成分も含有している。 And after steeling out, the slag modifier which contains aluminum is added to the slag which exists on the molten steel in a ladle, T. in slag is added. The total concentration of Fe and manganese oxide is adjusted to 5% by mass or less. As the slag modifier containing aluminum, metallic aluminum alone, a mixture of metallic aluminum and quicklime, Al ash (also referred to as “aluminum dross”), and the like can be used. In particular, Al ash is suitable because it is inexpensive. Al ash is a mixture of metallic aluminum containing 30 to 50% by mass of metallic aluminum and Al 2 O 3, and also contains other components.

次いで、この溶鋼をRH真空脱ガス装置、DH真空脱ガス装置、或いはVOD炉などの真空脱ガス設備に搬送し、搬送した真空脱ガス設備において所定の真空精錬並びに脱硫処理を実施する。   Next, the molten steel is transported to a vacuum degassing facility such as an RH vacuum degassing device, a DH vacuum degassing device, or a VOD furnace, and predetermined vacuum refining and desulfurization treatment are performed in the transported vacuum degassing facility.

尚、真空脱ガス設備において脱硫処理を施す溶鋼としては、高炉から出銑された溶銑を転炉で脱炭精錬した溶鋼に限るものではなく、冷銑、鉄スクラップなどを電気炉で溶解して電気炉で脱炭精錬して溶製した溶鋼であっても構わない。その場合には、上記説明の出鋼以降の工程で、転炉を電気炉に置き換えればよい。電気炉で溶製した溶鋼の場合には、脱硫処理が1回だけとなるので、極低硫鋼を対象としない場合も当然ある。   The molten steel subjected to the desulfurization treatment in the vacuum degassing equipment is not limited to the molten steel obtained by decarburizing and refining the molten iron discharged from the blast furnace. It may be molten steel decarburized and refined by an electric furnace. In that case, what is necessary is just to replace a converter with an electric furnace in the process after the steelmaking of the said description. In the case of molten steel melted in an electric furnace, the desulfurization process is performed only once.

真空脱ガス設備の代表的な設備はRH真空脱ガス装置であり、以下、真空脱ガス設備としてRH真空脱ガス装置を用いて精錬する例で説明する。図1に、本発明を実施する際に用いたRH真空脱ガス装置の例を示す。   A typical equipment of the vacuum degassing equipment is an RH vacuum degassing apparatus. Hereinafter, an example of refining using an RH vacuum degassing equipment as the vacuum degassing equipment will be described. FIG. 1 shows an example of an RH vacuum degassing apparatus used in carrying out the present invention.

図1に示すように、RH真空脱ガス装置1は、上部槽6及び下部槽7からなる真空槽5と、下部槽7の下部に設けられた上昇側浸漬管8及び下降側浸漬管9とを備え、上部槽6には、排気装置(図示せず)と接続するダクト11と、原料投入口12と、真空槽5の内部を上下方向に移動可能な上吹きランス13とが設けられ、また、上昇側浸漬管8には環流用ガス吹き込み管10が設けられている。環流用ガス吹き込み管10からは環流用ガスとしてArガスが上昇側浸漬管8の内部に吹き込まれる構造となっている。   As shown in FIG. 1, the RH vacuum degassing apparatus 1 includes a vacuum tank 5 including an upper tank 6 and a lower tank 7, an ascending-side dip pipe 8 and a descending-side dip pipe 9 provided below the lower tank 7. The upper tank 6 is provided with a duct 11 connected to an exhaust device (not shown), a raw material inlet 12, and an upper blowing lance 13 that is movable in the vertical direction inside the vacuum tank 5, The ascending-side dip tube 8 is provided with a circulating gas blowing tube 10. From the reflux gas blowing tube 10, Ar gas is blown into the rising side immersion tube 8 as the reflux gas.

上吹きランス13は、酸素ガスを真空槽5の内部の溶鋼3に向かって吹き付けることや、脱硫剤を非酸化性ガスや希ガスを搬送用ガスとして真空槽5の内部の溶鋼3に向かって吹き付けることができるように構成されている。当然ながら非酸化性ガスや希ガスのみを吹き込んだり、非酸化性ガス及び希ガスと、酸素ガスとの混合ガスを吹き込んだりすることもできるように構成されている。   The top blowing lance 13 blows oxygen gas toward the molten steel 3 inside the vacuum chamber 5, or toward the molten steel 3 inside the vacuum chamber 5 using a desulfurizing agent as a non-oxidizing gas or a rare gas as a carrier gas. It is configured so that it can be sprayed. Naturally, only a non-oxidizing gas or a rare gas can be blown, or a mixed gas of a non-oxidizing gas, a rare gas, and oxygen gas can be blown.

このような構成のRH真空脱ガス装置1において、以下のようにして溶鋼3の脱硫処理を実施する。   In the RH vacuum degassing apparatus 1 having such a configuration, the desulfurization treatment of the molten steel 3 is performed as follows.

先ず、溶鋼3を収納する取鍋2を真空槽5の直下に搬送する。取鍋2の内部には転炉や電気炉などにおける脱炭精錬で発生し、スラグ改質剤によってT.Fe及び酸化マンガンの合計濃度が5質量%以下に改質されたスラグ4が溶鋼3の湯面を覆っている。次いで、取鍋2を昇降装置(図示せず)によって上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋2に収容された溶鋼3に浸漬させる。そして、環流用ガス吹き込み管10から上昇側浸漬管8の内部にArガスを環流用ガスとして吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋2に収容された溶鋼3は、環流用ガス吹き込み管10から吹き込まれるArガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を介して取鍋2に戻る流れ、所謂、「環流」を形成してRH真空脱ガス精錬が施される。   First, the ladle 2 in which the molten steel 3 is stored is conveyed directly under the vacuum chamber 5. The inside of the ladle 2 is generated by decarburization refining in a converter, electric furnace, etc. The slag 4 modified so that the total concentration of Fe and manganese oxide is 5 mass% or less covers the molten metal surface of the molten steel 3. Next, the ladle 2 is raised by an elevating device (not shown), and the ascending side dip tube 8 and the descending side dip tube 9 are immersed in the molten steel 3 accommodated in the ladle 2. Then, Ar gas is blown into the rising side dip tube 8 from the reflux gas blowing tube 10 as a reflux gas, and the inside of the vacuum chamber 5 is evacuated by an exhaust device connected to the duct 11. Depressurize the inside. When the inside of the vacuum chamber 5 is depressurized, the molten steel 3 accommodated in the ladle 2 ascends the rising side dip tube 8 together with Ar gas blown from the reflux gas blowing tube 10 and flows into the vacuum chamber 5. Then, a flow returning to the ladle 2 through the descending side dip tube 9, that is, a so-called “circular flow” is formed, and RH vacuum degassing is performed.

このRH真空脱ガス精錬中に、上吹きランス13から搬送用ガスとともに粉状の脱硫剤を、真空槽5の内部の溶鋼3に向けて吹き付けて添加(「投射」ともいう)し、溶鋼3の脱硫処理を実施する。使用する脱硫剤は特に規定する必要はないが、安価であることからCaOを主体とするCaO系脱硫剤が好適である。具体的には、生石灰単体或いは生石灰と蛍石との混合体などを使用することができる。   During this RH vacuum degassing, a powdered desulfurization agent is sprayed from the top blowing lance 13 together with the carrier gas toward the molten steel 3 inside the vacuum chamber 5 (also referred to as “projection”), and the molten steel 3 The desulfurization treatment is performed. The desulfurizing agent to be used is not particularly required, but a CaO-based desulfurizing agent mainly composed of CaO is suitable because it is inexpensive. Specifically, quicklime simple substance or a mixture of quicklime and fluorite can be used.

投射した脱硫剤は、溶鋼3に巻き込まれ、下降側浸漬管9を通って取鍋2に至り、取鍋内で浮上してスラグ4に混入する。脱硫剤がスラグ4に混入するまでの過程において溶鋼中の硫黄と脱硫剤との反応が起こり、脱硫反応生成物は脱硫剤とともにスラグ4に混入する。スラグ4は、T.Fe及び酸化マンガンの合計濃度が5質量%以下であり、酸素ポテンシャルが低く、復硫は発生しない。また、溶鋼3の珪素濃度が0.10質量%以上であり、酸素ポテンシャルが低いので、脱硫反応が促進される。   The projected desulfurizing agent is caught in the molten steel 3, reaches the ladle 2 through the descending side dip tube 9, floats in the ladle, and enters the slag 4. In the process until the desulfurization agent is mixed into the slag 4, sulfur in the molten steel reacts with the desulfurization agent, and the desulfurization reaction product is mixed into the slag 4 together with the desulfurization agent. The slag 4 is T.D. The total concentration of Fe and manganese oxide is 5% by mass or less, the oxygen potential is low, and no sulfurization occurs. Moreover, since the silicon concentration of the molten steel 3 is 0.10% by mass or more and the oxygen potential is low, the desulfurization reaction is promoted.

脱硫剤を真空槽5の内部の溶鋼3に投射して脱硫処理する場合、真空槽5の内部の真空度を高くする(圧力を低くする)と、上吹きランス13からの噴出ガス速度の減衰が少なくなるため、搬送用ガス流量を一定とした場合でも、噴出ガスの溶鋼3の浴面におけるガス動圧が高くなり、精錬剤の歩留まりが向上すると同時に投射位置における脱硫反応が促進されることから有利である。従って、真空槽5の内部の圧力は50torr(66.7hPa)以下にすることが好ましく、高真空までの排気が可能であるならば、10torr(13.3hPa)以下にすることが望ましい。   When the desulfurization agent is projected onto the molten steel 3 inside the vacuum chamber 5 and subjected to desulfurization treatment, if the degree of vacuum inside the vacuum chamber 5 is increased (the pressure is decreased), the velocity of the gas blown out from the top blowing lance 13 is attenuated. Therefore, even when the transfer gas flow rate is constant, the gas dynamic pressure on the bath surface of the molten steel 3 of the jet gas is increased, the yield of the refining agent is improved, and at the same time, the desulfurization reaction at the projection position is promoted. Is advantageous. Therefore, the pressure inside the vacuum chamber 5 is preferably 50 torr (66.7 hPa) or less, and preferably 10 torr (13.3 hPa) or less if evacuation to a high vacuum is possible.

溶鋼3をRH真空脱ガス装置1で精錬する場合、本来の目的である、脱水素処理及び脱窒素処理などのガス成分の除去処理以外に、脱硫処理のみならず、真空脱炭処理、アルミニウムの燃焼による昇熱処理(以下、単に「昇熱処理」とも記す)及び溶鋼3の成分調整を行う必要のある場合がある。これらの処理のうちで真空脱炭処理及び昇熱処理は酸化反応であり、特に真空脱炭処理の場合には、酸素ガスの付与などによって溶鋼3の酸素ポテンシャルを高める必要がある。一方、脱硫処理は還元反応であるため、溶鋼3の酸素ポテンシャルは低いほど好ましい。   When refining the molten steel 3 with the RH vacuum degassing apparatus 1, in addition to the original purpose, gas component removal treatment such as dehydrogenation treatment and denitrogenation treatment, not only desulfurization treatment, but also vacuum decarburization treatment, aluminum There is a case where it is necessary to perform a heat treatment by combustion (hereinafter, also simply referred to as “heat treatment”) and a component adjustment of the molten steel 3. Among these processes, the vacuum decarburization process and the heat treatment are oxidation reactions. In particular, in the case of the vacuum decarburization process, it is necessary to increase the oxygen potential of the molten steel 3 by applying oxygen gas or the like. On the other hand, since the desulfurization treatment is a reduction reaction, the lower the oxygen potential of the molten steel 3, the better.

従って、脱硫処理の後に真空脱炭処理及びアルミニウムの燃焼による昇熱処理を実施すると、脱硫処理で使用した還元剤即ち脱酸剤が酸化されてしまうために無駄となるのみならず、一旦、溶鋼3からスラグ4に移行した硫黄が、真空脱炭処理時及び昇熱処理時の酸素ポテンシャルの上昇に伴って溶鋼3に戻る反応、所謂復硫反応が生じるため、安定して溶鋼3の硫黄濃度を下げることができない。   Therefore, if the vacuum decarburization treatment and the heat treatment by combustion of aluminum are carried out after the desulfurization treatment, the reducing agent used in the desulfurization treatment, that is, the deoxidizing agent, is oxidized and is wasted. Since the sulfur transferred from the slag 4 returns to the molten steel 3 as the oxygen potential increases during vacuum decarburization treatment and heat treatment, a so-called sulfite reaction occurs, so the sulfur concentration of the molten steel 3 is stably reduced. I can't.

そこで、本発明においては、酸化反応である真空脱炭処理及びアルミニウムの燃焼による昇熱処理を実施した後に脱硫処理を実施し、脱硫処理を実施した後に成分調整を実施する。真空脱炭処理と昇熱処理との双方を実施しなければならない場合には、真空脱炭処理においても溶鋼3は昇熱するので、先ず、真空脱炭処理を実施し、次いで、アルミニウムの燃焼による昇熱処理を実施する。アルミニウムの燃焼による昇熱処理の後に脱硫処理を実施する場合には、昇熱処理によって生成したAl23 の脱硫剤に及ぼす影響を少なくするために、昇熱処理の終了後、具体的には昇熱処理のための上吹きランス13からの酸素ガスの供給(送酸)を停止した後、3分間以上溶鋼3を環流させて、昇熱処理によって生成したAl23 の浮上・分離を図ってから脱硫処理を開始する。具体的には、以下のようにして溶鋼3に対してRH脱ガス精錬を実施する。 Therefore, in the present invention, the desulfurization process is performed after the vacuum decarburization process, which is an oxidation reaction, and the heat treatment by the combustion of aluminum, and the component adjustment is performed after the desulfurization process. When both the vacuum decarburization treatment and the heat treatment are to be performed, the molten steel 3 is also heated in the vacuum decarburization treatment. Therefore, first, the vacuum decarburization treatment is performed, and then the aluminum is burned. A heat treatment is performed. When desulfurization treatment is performed after the heat treatment by combustion of aluminum, in order to reduce the influence of the Al 2 O 3 produced by the heat treatment on the desulfurization agent, specifically, after the heat treatment, the heat treatment is specifically performed. After stopping the supply of oxygen gas from the top blow lance 13 for feeding (acid delivery), the molten steel 3 is circulated for 3 minutes or more, and the desulfurization is performed after the floatation and separation of the Al 2 O 3 produced by the sublimation heat treatment. Start processing. Specifically, RH degassing refining is performed on the molten steel 3 as follows.

(1)真空脱炭処理を伴う場合:溶鋼3の還流が開始されたなら、先ず、上吹きランス13から酸素ガスを供給するなどして真空脱炭処理を実施する。そして、真空脱炭処理後、溶鋼3に溶解するアルミニウムが0.010質量%以上となるように、原料投入口12から金属アルミニウムを添加して溶鋼3を脱酸し、その後、上吹きランス13から脱硫剤を吹き付けて脱硫処理を実施する。脱硫処理後に、原料投入口12から合金鉄や冷却材を添加して溶鋼3の成分及び温度の調整を実施し、その後、RH真空脱ガス精錬を終了する。尚、真空脱炭処理後に金属アルミニウムを投入する理由は、真空脱炭処理によって溶鋼中のアルミニウムは酸化されて実質的にゼロになり、これを補うためである。また、冷却材とは、チョッパー屑のような小型の薄鋼板屑を丸い形状に加工したものである。   (1) When accompanied by vacuum decarburization treatment: When the reflux of the molten steel 3 is started, first, vacuum decarburization treatment is performed by supplying oxygen gas from the top blowing lance 13 or the like. After the vacuum decarburization treatment, the molten steel 3 is deoxidized by adding metal aluminum from the raw material inlet 12 so that the aluminum dissolved in the molten steel 3 becomes 0.010 mass% or more, and then the top blow lance 13 The desulfurization treatment is carried out by spraying the desulfurization agent from After the desulfurization treatment, the alloy iron and the coolant are added from the raw material inlet 12 to adjust the components and temperature of the molten steel 3, and then the RH vacuum degassing refining is finished. The reason why the metal aluminum is added after the vacuum decarburization treatment is that aluminum in the molten steel is oxidized to become substantially zero by the vacuum decarburization treatment and compensates for this. The coolant is obtained by processing small thin steel plate scraps such as chopper scraps into a round shape.

(2)真空脱炭処理及び昇熱処理の双方を伴う場合:溶鋼3の還流が開始されたなら、先ず、上吹きランス13から酸素ガスを供給するなどして真空脱炭処理を実施する。そして、真空脱炭処理後、原料投入口12から金属アルミニウムを投入して溶鋼中のアルミニウム濃度を十分に高め、その状態で上吹きランス13から酸素ガスを溶鋼表面に向けて吹き付け、溶鋼中のアルミニウムを酸化し、この酸化反応による熱を利用して溶鋼3を昇熱させる。この昇熱処理の終了後、溶鋼3に溶解するアルミニウムが0.010質量%以上となるように、原料投入口12から金属アルミニウムを添加して溶鋼3を脱酸する。昇熱処理の終了後、3分間以上溶鋼3を環流させた後、上吹きランス13から脱硫剤を吹き付けて脱硫処理を実施する。脱硫処理後に、原料投入口12から合金鉄や冷却材を添加して溶鋼3の成分及び温度の調整を実施し、その後、RH真空脱ガス精錬を終了する。尚、昇熱処理の終了時点で溶鋼3に溶解するアルミニウムが0.010質量%以上確保されているならば、昇熱処理終了後の金属アルミニウムの添加は必要ない。   (2) When both the vacuum decarburization process and the heat treatment are accompanied: When the molten steel 3 starts to reflux, first, the vacuum decarburization process is performed by supplying oxygen gas from the top blowing lance 13. Then, after vacuum decarburization treatment, metal aluminum is introduced from the raw material inlet 12 to sufficiently increase the aluminum concentration in the molten steel, and in this state, oxygen gas is blown from the top blowing lance 13 toward the surface of the molten steel. Aluminum is oxidized and the molten steel 3 is heated using the heat generated by this oxidation reaction. After the end of this heat treatment, the molten steel 3 is deoxidized by adding metallic aluminum from the raw material inlet 12 so that the aluminum dissolved in the molten steel 3 becomes 0.010 mass% or more. After the heat treatment is completed, the molten steel 3 is circulated for 3 minutes or more, and then a desulfurizing agent is sprayed from the top blowing lance 13 to perform the desulfurization treatment. After the desulfurization treatment, the alloy iron and the coolant are added from the raw material inlet 12 to adjust the components and temperature of the molten steel 3, and then the RH vacuum degassing refining is finished. In addition, if the aluminum melt | dissolved in the molten steel 3 is ensured 0.010 mass% or more at the time of completion | finish of a heat treatment, the addition of the metal aluminum after completion | finish of a heat treatment is unnecessary.

(3)昇熱処理を伴う場合:溶鋼3の還流が開始されたなら、先ず、原料投入口12から金属アルミニウムを投入して溶鋼中のアルミニウム濃度を十分に高め、その状態で上吹きランス13から酸素ガスを溶鋼表面に向けて吹き付け、溶鋼中のアルミニウムを酸化し、この酸化反応による熱を利用して溶鋼3を昇熱させる。この昇熱処理の終了後、溶鋼3に溶解するアルミニウムが0.010質量%以上となるように、原料投入口12から金属アルミニウムを添加して溶鋼3を脱酸する。昇熱処理の終了後、3分間以上溶鋼3を環流させた後、上吹きランス13から脱硫剤を吹き付けて脱硫処理を実施する。脱硫処理後に、原料投入口12から合金鉄や冷却材を添加して溶鋼3の成分及び温度の調整を実施し、その後、RH真空脱ガス精錬を終了する。尚、昇熱処理の終了時点で溶鋼3に溶解するアルミニウムが0.010質量%以上確保されているならば、昇熱処理終了後の金属アルミニウムの添加は必要ない。   (3) When heat treatment is accompanied: When reflux of molten steel 3 is started, first, metal aluminum is introduced from raw material inlet 12 to sufficiently increase the aluminum concentration in the molten steel. Oxygen gas is blown toward the surface of the molten steel to oxidize aluminum in the molten steel, and the molten steel 3 is heated using heat generated by this oxidation reaction. After the end of this heat treatment, the molten steel 3 is deoxidized by adding metallic aluminum from the raw material inlet 12 so that the aluminum dissolved in the molten steel 3 becomes 0.010 mass% or more. After the heat treatment is completed, the molten steel 3 is circulated for 3 minutes or more, and then a desulfurizing agent is sprayed from the top blowing lance 13 to perform the desulfurization treatment. After the desulfurization treatment, the alloy iron and the coolant are added from the raw material inlet 12 to adjust the components and temperature of the molten steel 3, and then the RH vacuum degassing refining is finished. In addition, if the aluminum melt | dissolved in the molten steel 3 is ensured 0.010 mass% or more at the time of completion | finish of a heat treatment, the addition of the metal aluminum after completion | finish of a heat treatment is unnecessary.

真空脱炭処理及び昇熱処理の双方を実施しない場合には、溶鋼3の還流が開始されたなら直ちに脱硫処理を実施し、その後、溶鋼3の成分及び温度の調整を実施する。   When neither vacuum decarburization processing nor heat-up heat treatment is performed, desulfurization processing is performed immediately after the reflux of the molten steel 3 is started, and then the components and temperature of the molten steel 3 are adjusted.

このようにして溶鋼3の脱硫処理を実施することで、溶鋼3及びスラグ4の酸素ポテンシャルが低下し、溶鋼3を効率良く脱硫処理することが可能となる。また、溶鋼温度が不足していてアルミニウムの燃焼による昇熱処理を行う場合には、昇熱処理終了後、減圧下で3分間以上溶鋼3を環流してから脱硫処理を開始するので、昇熱処理で生成したAl23 の浮上・分離が進行し、脱硫剤はこのAl23 の影響を受けることなく、脱硫能を低下させずに効率良く脱硫することができる。 By performing the desulfurization treatment of the molten steel 3 in this manner, the oxygen potential of the molten steel 3 and the slag 4 is lowered, and the molten steel 3 can be efficiently desulfurized. In addition, when the temperature of the molten steel is insufficient and the heat treatment is performed by burning aluminum, the desulfurization process is started after the molten steel 3 is circulated for 3 minutes or more under reduced pressure after the heat treatment is completed. As a result, floating and separation of Al 2 O 3 proceeded, and the desulfurizing agent can be efficiently desulfurized without being affected by the Al 2 O 3 and without reducing the desulfurization ability.

尚、上記説明は真空脱ガス設備としてRH真空脱ガス装置1を使用した例で説明したが、本発明はRH真空脱ガス装置1に限るものではなく、上吹きランスを有するならば、DH真空脱ガス装置、VOD設備、VAD設備などにも上記説明に沿って実施することができる。   In the above description, the example in which the RH vacuum degassing apparatus 1 is used as the vacuum degassing equipment has been described. However, the present invention is not limited to the RH vacuum degassing apparatus 1. The degassing apparatus, VOD facility, VAD facility, etc. can be implemented in accordance with the above description.

図1に示すRH真空脱ガス装置を用いて、本発明の脱硫方法を実施した例を説明する。   The example which implemented the desulfurization method of this invention using the RH vacuum degassing apparatus shown in FIG. 1 is demonstrated.

転炉で脱炭精錬された約350トンの溶鋼を取鍋に出鋼した。この出鋼時、取鍋内にFe−Si合金を添加し、溶鋼中の珪素濃度を0.10質量%以上とした。また、比較のために、Fe−Si合金の投入量を変更し、溶鋼中の珪素濃度が0.10質量%未満の操業も実施した。また、出鋼時、金属アルミニウムを添加して溶鋼中の溶解アルミニウムを0.010質量%以上として脱酸するとともに、生石灰を出鋼流に向けて1000kg添加した。   About 350 tons of molten steel decarburized and refined in a converter was put into a ladle. At the time of steeling, an Fe—Si alloy was added to the ladle so that the silicon concentration in the molten steel was 0.10% by mass or more. In addition, for comparison, the amount of Fe-Si alloy input was changed, and an operation in which the silicon concentration in the molten steel was less than 0.10% by mass was also performed. Further, at the time of steel output, metal aluminum was added to deoxidize the molten aluminum in the molten steel to 0.010% by mass or more, and 1000 kg of quick lime was added toward the steel output flow.

出鋼後、取鍋内のスラグにスラグ改質剤として金属アルミニウムを添加してスラグの改質を実施した。比較のために、スラグ改質剤である金属アルミニウムを添加しない操業も実施し、スラグ組成の脱硫率へ及ぼす影響について調査した。尚、脱硫率とは、脱硫処理前後の溶鋼中硫黄濃度の差分を脱硫処理前の溶鋼中硫黄濃度に対して百分率で表示したものである。   After steeling, metal aluminum was added to the slag in the ladle as a slag modifier to improve the slag. For comparison, an operation in which metallic aluminum as a slag modifier was not added was also carried out, and the influence of the slag composition on the desulfurization rate was investigated. The desulfurization rate is the difference between the sulfur concentration in the molten steel before and after the desulfurization treatment, expressed as a percentage with respect to the sulfur concentration in the molten steel before the desulfurization treatment.

その後、溶鋼を収容した取鍋をRH真空脱ガス装置に搬送した。RH真空脱ガス装置による処理前の溶鋼は、炭素濃度が0.02〜0.1質量%、珪素濃度が0.01〜0.43質量%、硫黄濃度が0.0025〜0.0040質量%で、溶鋼温度は1600〜1650℃であった。   Then, the ladle which accommodated the molten steel was conveyed to RH vacuum degassing apparatus. The molten steel before treatment by the RH vacuum degassing apparatus has a carbon concentration of 0.02 to 0.1 mass%, a silicon concentration of 0.01 to 0.43 mass%, and a sulfur concentration of 0.0025 to 0.0040 mass%. And the molten steel temperature was 1600-1650 degreeC.

RH真空脱ガス装置での処理開始後、必要に応じて酸素ガスを上吹きランスから供給して真空脱炭処理を実施した後、溶鋼温度を測定し、脱硫処理開始前に必要な温度が確保されているかを確認した。必要な温度とは、脱硫処理の経過に伴う温度低下と脱硫剤の添加による温度低下とを考慮して、処理条件毎に決められる温度である。温度不足の場合には、原料投入口から金属アルミニウムを添加し、上吹きランスから酸素ガスを供給して溶鋼中のアルミニウムを酸化・燃焼させ、その燃焼熱で溶鋼の温度を所定の温度まで上昇させた。   After starting the treatment in the RH vacuum degassing device, supply oxygen gas from the top blowing lance as needed, perform vacuum decarburization treatment, measure the molten steel temperature, and secure the necessary temperature before starting the desulfurization treatment Confirmed that it has been. The necessary temperature is a temperature determined for each processing condition in consideration of a temperature decrease with the progress of the desulfurization process and a temperature decrease due to the addition of the desulfurizing agent. If the temperature is insufficient, metal aluminum is added from the raw material inlet, oxygen gas is supplied from the top blowing lance to oxidize and burn aluminum in the molten steel, and the heat of combustion raises the temperature of the molten steel to a predetermined temperature. I let you.

この酸素ガスの供給終了後、3分間以上溶鋼を環流させてから脱硫処理を開始した。また、比較のために、酸素ガスの供給終了から3分間経過しない間に脱硫処理を開始する操業も実施して、脱硫率に及ぼす昇熱処理終了後からの経過時間の影響を調査した。脱硫処理は、上吹きランスの先端位置を溶鋼表面から1.5〜2.5mの範囲とし、真空槽内の真空度を50torr(66.7hPa)以下に調整した後、上吹きランスからArガスを搬送用ガスとしてCaO系脱硫剤を真空槽内の溶鋼表面に向けて投射して実施した。   After the supply of oxygen gas was completed, the molten steel was circulated for 3 minutes or more, and then the desulfurization treatment was started. In addition, for comparison, an operation of starting the desulfurization treatment within 3 minutes from the end of the supply of oxygen gas was also performed, and the influence of the elapsed time after the end of the heat treatment on the desulfurization rate was investigated. In the desulfurization treatment, the tip position of the top blowing lance is set within a range of 1.5 to 2.5 m from the surface of the molten steel, the degree of vacuum in the vacuum chamber is adjusted to 50 torr (66.7 hPa) or less, and then Ar gas is discharged from the top blowing lance. Was carried out by projecting a CaO-based desulfurizing agent toward the molten steel surface in the vacuum chamber.

表1に、RH真空脱ガス装置到着時のスラグ中のT.Feと酸化マンガン(MnO)の合計濃度、RH真空脱ガス装置到着時の溶鋼の珪素濃度及び硫黄濃度、及び、RH脱ガス精錬終了時の溶鋼中硫黄濃度、並びに脱硫率を示す。尚、表1に示すデータは、全て、昇熱処理を実施した場合には昇熱処理終了後5分間の溶鋼環流時間を確保した操業のデータである。   Table 1 shows the T.V. in the slag upon arrival of the RH vacuum degasser. The total concentration of Fe and manganese oxide (MnO), the silicon concentration and sulfur concentration of the molten steel upon arrival of the RH vacuum degassing apparatus, the sulfur concentration in the molten steel at the end of RH degassing refining, and the desulfurization rate are shown. In addition, all the data shown in Table 1 are the data of the operation which ensured the molten steel recirculation time for 5 minutes after completion | finish of a heat-up heat treatment, when a heat-up heat treatment was implemented.

Figure 0005200380
Figure 0005200380

図2は、本発明例1〜10及び比較例1〜4において得られた、RH真空脱ガス装置到着時の溶鋼中珪素濃度と脱硫率との関係を示す図である。これらのデータは全て、RH真空脱ガス装置到着時のスラグ中のT.FeとMnOの合計濃度が5質量以下のデータである。   FIG. 2 is a graph showing the relationship between the silicon concentration in the molten steel and the desulfurization rate when the RH vacuum degassing apparatus arrives, obtained in Invention Examples 1-10 and Comparative Examples 1-4. All of these data indicate the T.V. in the slag upon arrival at the RH vacuum degasser. The total concentration of Fe and MnO is data of 5 mass or less.

図2に示すように、溶鋼中の珪素濃度が0.10質量%未満の場合(比較例1〜4)では、30%未満の低い脱硫率であったが、溶鋼中の珪素濃度が0.10質量%以上の場合には、80%以上の高い脱硫率を得ることができた。溶鋼中の珪素濃度が0.10質量%以上であるならば、珪素濃度の増加に伴う脱硫率の増加は見られないことから、溶鋼中の珪素濃度は0.10質量%以上であればよく、必要以上に高くする必要はない。0.10質量%以上の範囲で、求められる鉄鋼製品の規格から決定すればよい。   As shown in FIG. 2, when the silicon concentration in the molten steel was less than 0.10% by mass (Comparative Examples 1 to 4), the desulfurization rate was less than 30%, but the silicon concentration in the molten steel was 0.00. In the case of 10% by mass or more, a high desulfurization rate of 80% or more could be obtained. If the silicon concentration in the molten steel is 0.10% by mass or more, an increase in the desulfurization rate with the increase in the silicon concentration is not observed. Therefore, the silicon concentration in the molten steel may be 0.10% by mass or more. There is no need to make it higher than necessary. What is necessary is just to determine from the specification of the steel product calculated | required in the range of 0.10 mass% or more.

図3は、本発明例11〜17及び比較例5〜12において得られたRH真空脱ガス装置到着時のスラグ中T.FeとMnOの合計濃度と、脱硫率との関係を示す図である。これらのデータは全て、RH真空脱ガス装置到着時の溶鋼中の珪素濃度が0.10質量以上のデータである。   FIG. 3 is a graph showing T.V. in the slag upon arrival at the RH vacuum degassing apparatus obtained in Invention Examples 11-17 and Comparative Examples 5-12. It is a figure which shows the relationship between the sum total density | concentration of Fe and MnO, and a desulfurization rate. All of these data are data in which the silicon concentration in the molten steel upon arrival of the RH vacuum degassing apparatus is 0.10 mass or more.

図3に示すように、RH真空脱ガス装置到着時のスラグ中T.FeとMnOの合計濃度が5質量%以下の場合(本発明例1〜17)では、脱硫率は80%以上であったが、RH真空脱ガス装置到着時のスラグ中T.FeとMnOの合計濃度が5質量%を超え10質量%以下の場合(比較例5〜9)では、脱硫率が60〜70%とやや悪化し、更に、RH真空脱ガス装置到着時のスラグ中T.FeとMnOの合計濃度が12質量%を超えた場合(比較例10〜12)では、40%未満の低い脱硫率であった。   As shown in FIG. 3, TD in the slag upon arrival of the RH vacuum degasser. When the total concentration of Fe and MnO was 5% by mass or less (Examples 1 to 17 of the present invention), the desulfurization rate was 80% or more. When the total concentration of Fe and MnO is more than 5% by mass and 10% by mass or less (Comparative Examples 5 to 9), the desulfurization rate is slightly deteriorated to 60 to 70%, and further, the slag upon arrival at the RH vacuum degassing device Medium T. When the total concentration of Fe and MnO exceeded 12% by mass (Comparative Examples 10 to 12), the desulfurization rate was less than 40%.

表2に、RH脱ガス精錬におけるアルミニウムの燃焼による昇熱処理の実施時期、昇熱処理終了時から脱硫処理開始までの環流時間、各過程における溶鋼中硫黄濃度、及び、脱硫率を示す。尚、表2に示すデータは、全て、RH真空脱ガス装置到着時の溶鋼中の珪素濃度が0.10質量以上で、且つ、RH真空脱ガス装置到着時のスラグ中のT.FeとMnOの合計濃度が5質量以下の操業のデータである。   Table 2 shows the timing of the heat treatment by burning aluminum in the RH degassing refining, the reflux time from the end of the heat treatment to the start of the desulfurization treatment, the sulfur concentration in the molten steel, and the desulfurization rate in each process. The data shown in Table 2 all indicate that the silicon concentration in the molten steel at the arrival of the RH vacuum degassing apparatus is 0.10 mass or more, and the T.V. in the slag at the arrival of the RH vacuum degassing apparatus. It is data of an operation in which the total concentration of Fe and MnO is 5 mass or less.

Figure 0005200380
Figure 0005200380

表2に示すように、脱硫処理の後に昇熱処理を実施した比較例15〜19では、復硫が発生し、80%以上の高い脱硫率を得ることができなかった。   As shown in Table 2, in Comparative Examples 15 to 19 in which the heat treatment was performed after the desulfurization treatment, resulfurization occurred, and a high desulfurization rate of 80% or more could not be obtained.

図4は、昇熱処理を脱硫処理前に行った場合(本発明例18〜24及び比較例13〜14)において得られた、昇熱処理のための送酸の終了後から脱硫処理開始までの送酸終了後還流時間(=昇熱処理終了時から脱硫処理開始までの環流時間)と脱硫率との関係を示す図である。   FIG. 4 shows the results from the completion of the acid feed for the heat treatment to the start of the desulfurization treatment obtained in the case where the heat treatment was performed before the desulfurization treatment (Examples 18 to 24 and Comparative Examples 13 to 14 of the present invention). It is a figure which shows the relationship between the reflux time after completion | finish of an acid (= recirculation | circulation time from the time of completion | finish of a heat-up heat processing to the start of a desulfurization process), and a desulfurization rate.

図4に示すように、送酸終了後還流時間が3分未満の場合(比較例13〜14)では、60〜70%の低い脱硫率であるが、昇熱処理終了後3分間の環流時間を確保した後に脱硫処理を実施した場合には、80%以上の高い脱硫率が得られた。但し、昇熱処理終了後10分間を越える環流時間を確保した場合には処理時間の増加につながるため、昇熱処理終了後3〜10分間の環流時間を確保することが好ましい。   As shown in FIG. 4, in the case where the reflux time after the end of acid feeding is less than 3 minutes (Comparative Examples 13 to 14), the desulfurization rate is as low as 60 to 70%. When desulfurization treatment was performed after securing, a high desulfurization rate of 80% or more was obtained. However, if a reflux time exceeding 10 minutes is ensured after completion of the heat treatment, the treatment time is increased. Therefore, it is preferable to ensure a reflux time of 3 to 10 minutes after the completion of the heat treatment.

以上の結果から、RH真空脱ガス装置到着時の溶鋼中の珪素濃度を0.10質量以上とし、且つRH真空脱ガス装置到着時のスラグ中のT.FeとMnOの合計濃度を5質量以下とし、更に、RH真空脱ガス装置でアルミニウムの燃焼による昇熱処理を実施する場合には、昇熱処理終了後、3分間以上溶鋼を環流させた後に脱硫処理することで、80%以上の高い脱硫率が得られることが分かった。   From the above results, the silicon concentration in the molten steel at the arrival of the RH vacuum degassing apparatus was set to 0.10 mass or more, and the T.O. When the total concentration of Fe and MnO is set to 5 mass or less, and when the heat treatment is performed by combustion of aluminum with the RH vacuum degassing apparatus, the desulfurization treatment is performed after the molten steel is circulated for 3 minutes or more after the heat treatment. Thus, it was found that a high desulfurization rate of 80% or more can be obtained.

本発明を実施する際に用いたRH真空脱ガス装置の例を示す図である。It is a figure which shows the example of the RH vacuum degassing apparatus used when implementing this invention. RH真空脱ガス装置到着時の溶鋼中珪素濃度と脱硫率との関係を示す図である。It is a figure which shows the relationship between the silicon concentration in molten steel at the time of arrival of RH vacuum degassing apparatus, and a desulfurization rate. RH真空脱ガス装置到着時のスラグ中T.FeとMnOの合計濃度と、脱硫率との関係を示す図である。Slag in slag upon arrival of RH vacuum degasser It is a figure which shows the relationship between the sum total density | concentration of Fe and MnO, and a desulfurization rate. 送酸終了後の還流時間と脱硫率との関係を示す図である。It is a figure which shows the relationship between the reflux time after completion | finish of acid feeding, and a desulfurization rate.

符号の説明Explanation of symbols

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Lower tank 8 Rising side immersion pipe 9 Lowering side immersion pipe 10 Recirculation gas blowing pipe 11 Duct 12 Raw material inlet 13 Upper blowing lance

Claims (1)

大気圧下で脱炭精錬を行う脱炭精錬炉から取鍋への出鋼中に珪素含有合金鉄を投入して取鍋内の溶鋼の珪素濃度を0.10質量%以上に調整し、出鋼後の前記取鍋内のスラグに対してアルミニウムを含有するスラグ改質剤を添加して、前記スラグのトータル.Fe及び酸化マンガンの合計濃度を5質量%以下に調整し、その後、前記取鍋を真空脱ガス設備に搬送し、
該真空脱ガス設備では、溶鋼にアルミニウムを添加し、次いで、減圧下の溶鋼表面に向けて上吹きランスを介して酸素ガスを供給して溶鋼中のアルミニウムを燃焼させて溶鋼を昇熱し、その後、溶鋼昇熱後の溶鋼に溶解するアルミニウム濃度を0.010質量%以上に確保した状態で、溶鋼昇熱のための酸素ガスの供給終了後から3分間以上溶鋼を減圧下で環流して前記溶鋼昇熱時に生成したAl23 の溶鋼からの浮上・分離を進行させ、その後、50torr以下の減圧下の溶鋼の表面に向けて、上吹きランスを介して脱硫剤を搬送用ガスとともに吹き付けて添加し、前記溶鋼を脱硫処理することを特徴とする、溶鋼の脱硫方法。
By introducing silicon-containing alloy iron into the ladle from the decarburizing and refining furnace that performs decarburization and refining at atmospheric pressure, the silicon concentration of the molten steel in the ladle is adjusted to 0.10 mass% or more. A slag modifier containing aluminum is added to the slag in the ladle after steel, and the total amount of the slag. The total concentration of Fe and manganese oxide is adjusted to 5% by mass or less, and then the ladle is transported to a vacuum degassing facility.
In the vacuum degassing equipment, aluminum is added to the molten steel, and then oxygen gas is supplied to the molten steel surface under reduced pressure through an upper blowing lance to burn the aluminum in the molten steel to raise the temperature of the molten steel. , while ensuring the concentration of aluminum to be dissolved in the molten steel after the molten steel temperature heat than 0.010 wt%, the molten steel or 3 minutes after completion of the supply of oxygen gas for the molten steel temperature heat to reflux under reduced pressure The floatation and separation of Al 2 O 3 generated during molten steel heating from the molten steel proceeds, and then a desulfurizing agent is sprayed together with the carrier gas through the top blowing lance toward the surface of the molten steel under reduced pressure of 50 torr or less. And desulfurizing the molten steel. A method for desulfurizing molten steel.
JP2007001249A 2007-01-09 2007-01-09 Desulfurization method for molten steel Active JP5200380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001249A JP5200380B2 (en) 2007-01-09 2007-01-09 Desulfurization method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001249A JP5200380B2 (en) 2007-01-09 2007-01-09 Desulfurization method for molten steel

Publications (2)

Publication Number Publication Date
JP2008169407A JP2008169407A (en) 2008-07-24
JP5200380B2 true JP5200380B2 (en) 2013-06-05

Family

ID=39697783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001249A Active JP5200380B2 (en) 2007-01-09 2007-01-09 Desulfurization method for molten steel

Country Status (1)

Country Link
JP (1) JP5200380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515651B2 (en) * 2009-11-10 2014-06-11 Jfeスチール株式会社 Desulfurization method for molten steel
CN103562415B (en) 2011-08-12 2015-05-06 杰富意钢铁株式会社 Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
CN108640114B (en) * 2018-05-16 2021-04-13 合肥工业大学 Double-body type active carbon vacuum sulfurizing device and using method thereof
CN114871240B (en) * 2022-03-30 2023-05-30 湖南博一环保科技有限公司 Electrolytic manganese filter pressing slag for ammonia nitrogen removal and desulfurization as well as preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287359A (en) * 1992-04-14 1993-11-02 Kawasaki Steel Corp Method for desulfurizing molten steel using rh vacuum degassing apparatus
JP3221812B2 (en) * 1995-03-06 2001-10-22 新日本製鐵株式会社 Low oxygen steel smelting method
JP3267177B2 (en) * 1996-12-11 2002-03-18 住友金属工業株式会社 Heated refining method for molten steel
JP3885387B2 (en) * 1998-10-20 2007-02-21 Jfeスチール株式会社 Method for producing ultra-low sulfur steel with excellent cleanability
JP2000239733A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Ind Ltd Production of high cleanliness steel

Also Published As

Publication number Publication date
JP2008169407A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
JP3885387B2 (en) Method for producing ultra-low sulfur steel with excellent cleanability
JP6028755B2 (en) Method for melting low-sulfur steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP5200380B2 (en) Desulfurization method for molten steel
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP5891826B2 (en) Desulfurization method for molten steel
JP5200324B2 (en) Desulfurization method for molten steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP6323688B2 (en) Desulfurization method for molten steel
JP4360270B2 (en) Method for refining molten steel
JP4844552B2 (en) Melting method of low carbon high manganese steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP5515651B2 (en) Desulfurization method for molten steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
JP6414098B2 (en) Melting method of high Si high Al ultra-low carbon steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP4352898B2 (en) Method of melting high cleanliness steel
JP2009173994A (en) Method for producing al-less extra-low carbon steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP3465801B2 (en) Method for refining molten Fe-Ni alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250