JP2009173994A - Method for producing al-less extra-low carbon steel - Google Patents

Method for producing al-less extra-low carbon steel Download PDF

Info

Publication number
JP2009173994A
JP2009173994A JP2008013285A JP2008013285A JP2009173994A JP 2009173994 A JP2009173994 A JP 2009173994A JP 2008013285 A JP2008013285 A JP 2008013285A JP 2008013285 A JP2008013285 A JP 2008013285A JP 2009173994 A JP2009173994 A JP 2009173994A
Authority
JP
Japan
Prior art keywords
slag
molten steel
mass
low carbon
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013285A
Other languages
Japanese (ja)
Inventor
Takayuki Masutani
貴幸 益谷
Daisuke Takahashi
大輔 高橋
Takashi Takaoka
隆司 高岡
Yoshikazu Kurose
芳和 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008013285A priority Critical patent/JP2009173994A/en
Publication of JP2009173994A publication Critical patent/JP2009173994A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the erosion of an immersion tube in an RH vacuum-degassing apparatus with slag, when an Al-less extra- low carbon steel is produced by using a converter and the RH vacuum-degassing apparatus. <P>SOLUTION: When the Al-less extra-low carbon steel having ≤0.001 mass% Al content is produced by decarburize-treating the molten steel 3 refined with the converter, with the RH vacuum-degassing apparatus 1; at the tapping-off time or after tapping-off the molten steel from the converter, CaO source and MgO source are added into a ladle accommodating the molten steel, and CaO content and MgO content in the slag 4 existing in the molten steel in the ladle, are adjusted to respectively 50-70 mass% and 10-30 mass%, and thereafter, the molten steel is refined with the RH vacuum-degassing apparatus. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転炉とRH真空脱ガス装置とを用いてAlレス極低炭素鋼を溶製する方法に関し、詳しくは、RH真空脱ガス装置でAlレス極低炭素鋼を精錬する際にRH真空脱ガス装置に設置される浸漬管のスラグによる溶損を抑制しつつAlレス極低炭素鋼を溶製する方法に関するものである。   The present invention relates to a method for melting Al-less ultra-low carbon steel using a converter and an RH vacuum degassing apparatus, and more specifically, when refining an Al-less ultra-low carbon steel with an RH vacuum degassing apparatus. The present invention relates to a method of melting an Al-less ultra-low carbon steel while suppressing melting damage due to slag of a dip tube installed in a vacuum degassing apparatus.

鉄心材料に使用される電磁用鋼板では、一般的に、結晶粒度が大きいほど磁気特性に優れるので、結晶粒の成長を阻害する原因である鋼中の炭化物、窒化物、硫化物、酸化物などの非金属介在物を可能な限り少なくすることが行われている。例えば、精錬工程では、二次精錬炉による脱炭処理、脱窒処理及び脱硫処理などにより鋼中のC、N、Sを低減することが行われ、また、材料の成分設計では、Ti、V、Al、Zrなどの窒化物生成元素及び硫化物生成元素を含有しない成分系とすることが行われている。つまり、磁気特性に優れる電磁用鋼板は、一般的にAlレス極低炭素鋼で運用されている。   Electromagnetic steel sheets used for iron core materials generally have better magnetic properties as the crystal grain size increases, so the carbides, nitrides, sulfides, oxides, etc. in steel that are the cause of hindering crystal grain growth The non-metallic inclusions are reduced as much as possible. For example, in the refining process, C, N, and S in steel are reduced by decarburization treatment, denitrification treatment and desulfurization treatment in a secondary refining furnace, and in the component design of materials, Ti, V A component system that does not contain nitride-forming elements and sulfide-generating elements such as Al, Zr, and the like has been used. That is, an electromagnetic steel sheet having excellent magnetic properties is generally operated with an Al-less ultra-low carbon steel.

しかしながら、Alレス極低炭素鋼では、酸化物の低減効果の大きいAlを脱酸剤として使用できないことから、Alよりも酸素との親和力の弱いSi及びMnを脱酸剤として用いざるを得ず、従って、Alキルド鋼に比較して、溶鋼のみならず溶鋼上に存在するスラグも酸素ポテンシャルが高い状態となる。つまり、Alレス極低炭素鋼の精錬過程で形成されるスラグは、酸素ポテンシャルを高める成分であるFeOやMnOの濃度が高く且つそれによりスラグ自体が液状化することから、耐火物に対する反応性に富むと同時に黒鉛含有耐火物などで耐火物の損耗防止のために耐火物中に添加される酸化防止剤の酸化を促進することになる。また、Alレス極低炭素鋼のRH真空脱ガス装置における処理時の溶鋼温度は1600℃以上、鋼種によっては1650℃以上となることから、溶鋼上のスラグも高温となり、スラグの液状化が更に促進されて反応性に富み、且つ、高温であることからスラグ自体のMgOやAl23 の飽和溶解度が上昇する。 However, in Al-less ultra-low carbon steel, Al, which has a large oxide reduction effect, cannot be used as a deoxidizer, so Si and Mn, which have a lower affinity for oxygen than Al, must be used as a deoxidizer. Therefore, as compared with Al killed steel, not only the molten steel but also the slag present on the molten steel has a higher oxygen potential. In other words, the slag formed during the refining process of Al-less ultra-low carbon steel has a high concentration of FeO and MnO, which are components that increase the oxygen potential, and as a result, the slag itself liquefies, making it reactive to refractories. At the same time, the graphite-containing refractory promotes the oxidation of the antioxidant added to the refractory to prevent wear of the refractory. Moreover, since the molten steel temperature at the time of processing in the RH vacuum degassing apparatus of the Al-less ultra-low carbon steel is 1600 ° C. or higher, and depending on the steel type, it is 1650 ° C. or higher. Since it is accelerated and rich in reactivity, and because of high temperature, the saturation solubility of MgO and Al 2 O 3 in the slag itself increases.

RH真空脱ガス装置に設置される浸漬管は、一般的にMgO質耐火物或いはMgO−C質耐火物で構成されており、取鍋内にこのような状態のスラグを伴って取鍋内の溶鋼をRH真空脱ガス装置において処理してAlレス極低炭素鋼を溶製すると、スラグと接触する部位である浸漬管の外周が激しく溶損する。従って、Alレス極低炭素鋼をRH真空脱ガス装置で処理する場合には、1チャージの処理毎にMgO吹付け補修などの補修作業を浸漬管に対して行う必要があり、RH真空脱ガス装置の生産性を損ねる原因の1つとなっていた。   The dip tube installed in the RH vacuum degassing apparatus is generally made of MgO refractory or MgO-C refractory, and the ladle with such slag is placed in the ladle. When molten steel is processed in an RH vacuum degassing apparatus to produce an Al-less ultra-low carbon steel, the outer periphery of the dip tube, which is a part in contact with the slag, is severely melted. Therefore, when processing Al-less ultra-low carbon steel with an RH vacuum degassing device, it is necessary to perform repair work such as MgO spray repair on the dip tube every time one charge is processed. This has been one of the causes of impairing device productivity.

ところで、鋼の清浄性を高めるために取鍋内スラグの改質など種々の対策が行われており、極低炭素鋼においても、清浄性を高めるための対策が行われている。例えば、特許文献1には、転炉で精錬した溶鋼をRH真空脱ガス装置にて脱炭した後、Si脱酸して極低炭素Siキルド鋼を溶製するに当たり、CaOを主体とするフラックス中のCaO純分質量(B)と処理する溶鋼質量(A)との比(B/A)が0.001〜0.01の範囲となるように、RH真空脱ガス装置での処理中に前記フラックスを溶鋼中に添加することが提案されている。特許文献1を適用することにより、添加したフラックスが取鍋内の溶鋼上に浮遊するスラグと融合し、スラグの鉄酸化物濃度を希釈して、スラグの酸素ポテンシャルが低下する。しかしながら、本発明者等の試験・検討結果から、特許文献1は、Alレス極低炭素鋼の清浄性の向上には有効であるが、スラグの酸素ポテンシャルを低下させるだけであり、Alレス極低炭素鋼のRH真空脱ガス精錬中における浸漬管の溶損を抑制できないことを確認している。   By the way, in order to improve the cleanliness of steel, various measures such as reforming the slag in the ladle are taken, and measures are also taken to improve the cleanliness even in extremely low carbon steel. For example, Patent Document 1 discloses a flux mainly composed of CaO in desulfurizing molten steel refined in a converter using an RH vacuum degassing apparatus and then deoxidizing the molten steel to produce ultra-low carbon Si killed steel. During the treatment with the RH vacuum degassing apparatus so that the ratio (B / A) of the pure CaO mass (B) and the molten steel mass (A) to be treated is in the range of 0.001 to 0.01. It has been proposed to add the flux to the molten steel. By applying patent document 1, the added flux unites with the slag floating on the molten steel in the ladle, dilutes the iron oxide concentration of the slag, and lowers the oxygen potential of the slag. However, from the test and examination results of the present inventors, Patent Document 1 is effective in improving the cleanliness of Al-less ultra-low carbon steel, but only reduces the oxygen potential of the slag. It has been confirmed that the dip tube cannot be prevented from being melted during RH vacuum degassing of low carbon steel.

また、特許文献2には、極低炭素鋼を溶製するに当たり、溶鋼を取鍋へ出鋼する際に金属AlまたはAl合金を含有するスラグ改質剤を添加して、取鍋内スラグの(質量%CaO)/(質量%Al23 )を1〜2とし、その後、RH真空脱ガス装置において脱炭処理を実施し、脱炭処理終了後に金属AlまたはAl合金を添加して脱酸処理を行うとともに、CaOを主体とし且つ粒径0.1〜10mmのフラックスを、フラックス添加量Y(kg/t)と取鍋内のスラグ質量X(kg/t)との関係が「(0.1X+1)≦Y≦(0.4X+4)」となるように真空槽内の溶鋼に添加することが提案されている。特許文献2では、出鋼時とRH真空脱ガス精錬時との2回で取鍋内のスラグを改質し、最終的にはかなりCaO濃度の高いスラグに改質しているが、CaO濃度の高いスラグの形成されるのはRH真空脱ガス精錬の末期であり、浸漬管の溶損を抑制する効果は少ない。また、特許文献2は、対象がAlキルド鋼であり、本発明の対象とするAlレス極低炭素鋼とは異なるものである。
特開平11−293329号公報 特開平9−49012号公報
In addition, Patent Document 2 adds a slag modifier containing metal Al or an Al alloy when removing molten steel to a ladle when melting ultra-low carbon steel, (Mass% CaO) / (mass% Al 2 O 3 ) is set to 1 to 2, and then decarburization processing is performed in the RH vacuum degassing apparatus, and after the decarburization processing is completed, metal Al or Al alloy is added and decarburized. In addition to performing acid treatment, a flux mainly composed of CaO and having a particle diameter of 0.1 to 10 mm is represented by the relationship between the flux addition amount Y (kg / t) and the slag mass X (kg / t) in the ladle. It has been proposed to add to the molten steel in the vacuum chamber so that “0.1X + 1) ≦ Y ≦ (0.4X + 4)”. In Patent Document 2, the slag in the ladle is reformed twice at the time of steelmaking and at the time of RH vacuum degassing and finally reformed to a slag having a considerably high CaO concentration. High slag is formed at the end of the RH vacuum degassing refining, and the effect of suppressing the dip tube melting is small. Patent Document 2 is an Al killed steel, which is different from the Al-less ultra-low carbon steel that is the subject of the present invention.
JP 11-293329 A JP-A-9-49012

上記説明のように、転炉とRH真空脱ガス装置とを用いてAlレス極低炭素鋼を溶製するに当たり、RH真空脱ガス装置の浸漬管のスラグによる溶損を防止する技術が切望されているにも拘わらず、従来、有効な手段はなく、やむなくAlレス極低炭素鋼をRH真空脱ガス装置で処理する毎に浸漬管の補修を行っており、RH真空脱ガス装置の生産性を低下させるのみならず、製造コストの上昇をもたらしていた。   As described above, in melting Al-less ultra-low carbon steel using a converter and an RH vacuum degassing device, a technique for preventing melting damage due to slag in the dip tube of the RH vacuum degassing device is desired. Despite this, there has been no effective means in the past, and dip tube repairs are made every time Al-less ultra-low carbon steel is treated with the RH vacuum degasser, and the productivity of the RH vacuum degasser As well as lowering the manufacturing cost, the manufacturing cost increased.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉とRH真空脱ガス装置とを用いてAlレス極低炭素鋼を溶製するに当たり、RH真空脱ガス装置の浸漬管のスラグによる溶損を防止することができ、その結果、RH真空脱ガス装置の生産性を向上させ、製造コストを従来に比較して大幅に低減することのできる、Alレス極低炭素鋼の溶製方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an RH vacuum degassing apparatus for melting Al-less ultra-low carbon steel using a converter and an RH vacuum degassing apparatus. Al-less ultra-low carbon that can prevent melting damage due to slag in the dip tube, and as a result, can improve the productivity of the RH vacuum degassing device and can greatly reduce the manufacturing cost compared to the conventional one. It is to provide a method for melting steel.

上記課題を解決するための第1の発明に係るAlレス極低炭素鋼の溶製方法は、転炉で精錬した溶鋼をRH真空脱ガス装置にて脱炭処理してAl含有量が0.001質量%以下であるAlレス極低炭素鋼を溶製するに当たり、溶鋼の転炉出鋼時または出鋼後に溶鋼を収容する取鍋内にCaO源とMgO源とを添加して、取鍋内溶鋼上に存在するスラグ中のCaO含有量を50〜70質量%、MgO含有量を10〜30質量%に調整し、その後、RH真空脱ガス装置にて精錬することを特徴とするものである。   The method for melting Al-less ultra-low carbon steel according to the first aspect of the present invention for solving the above-described problem is that the molten steel refined in the converter is decarburized with an RH vacuum degassing apparatus and has an Al content of 0. When melting Al-less ultra-low carbon steel of 001 mass% or less, a CaO source and an MgO source are added to a ladle containing molten steel at the time of or after the molten steel is left in the converter. The CaO content in the slag existing on the inner molten steel is adjusted to 50 to 70 mass%, the MgO content is adjusted to 10 to 30 mass%, and then refined with an RH vacuum degassing apparatus. is there.

第2の発明に係るAlレス極低炭素鋼の溶製方法は、第1の発明において、RH真空脱ガス装置にて脱炭処理した後、真空槽内の溶鋼にSi源を添加して溶鋼を脱酸処理すること特徴とするものである。   The method for melting Al-less ultra-low carbon steel according to the second invention is the molten steel in the first invention, after decarburizing with an RH vacuum degassing apparatus, and then adding Si source to the molten steel in the vacuum chamber. Is characterized by deoxidation treatment.

第3の発明に係るAlレス極低炭素鋼の溶製方法は、第1または第2の発明において、前記CaO源として生石灰を使用し、MgO源としてマグネシアクリンカーを使用することを特徴とするものである。   The method for melting Al-less ultra-low carbon steel according to the third invention is characterized in that, in the first or second invention, quick lime is used as the CaO source and magnesia clinker is used as the MgO source. It is.

本発明によれば、Al含有量が0.001質量%以下であるAlレス極低炭素鋼をRH真空脱ガス装置にて精錬する際に、取鍋内のスラグ組成を、CaO含有量が50〜70質量%、MgO含有量が10〜30質量%の範囲に予め調整するので、スラグの融点が上昇することによるスラグの耐火物に対する反応性の低下と、スラグが既に十分に高濃度のMgOを含有していることによるスラグへのMgOの溶出の抑制効果とによって、RH真空脱ガス処理中にスラグと接触する浸漬管の溶損を抑制することが可能となる。その結果、Alレス極低炭素鋼をRH真空脱ガス装置で処理する毎に浸漬管の補修を行う必要がなくなり、RH真空脱ガス装置の生産性が向上して製造コストの削減が達成される。   According to the present invention, when an Al-less ultra-low carbon steel having an Al content of 0.001% by mass or less is refined by an RH vacuum degassing apparatus, the slag composition in the ladle is reduced to a CaO content of 50. -70 mass%, MgO content is adjusted in the range of 10-30 mass% in advance, so that the reactivity of the slag to refractories increases due to the melting point of the slag, and the slag is already sufficiently high in concentration MgO Due to the effect of suppressing the elution of MgO into the slag due to the inclusion of slag, it becomes possible to suppress the damaging of the dip tube in contact with the slag during the RH vacuum degassing process. As a result, it is no longer necessary to repair the dip tube every time the Al-less ultra-low carbon steel is processed by the RH vacuum degassing apparatus, and the productivity of the RH vacuum degassing apparatus is improved and the manufacturing cost is reduced. .

以下、本発明を具体的に説明する。尚、本発明で対象とするAlレス極低炭素鋼とは、C含有量が0.003質量%以下、Al含有量が0.001質量%以下であり、その他の成分として必要に応じて、Si、Mnなどを含有する鋼である。   The present invention will be specifically described below. The Al-less ultra-low carbon steel targeted in the present invention has a C content of 0.003% by mass or less, an Al content of 0.001% by mass or less, and other components as necessary. Steel containing Si, Mn and the like.

高炉から出銑された溶銑をトーピードカーや溶銑鍋などの溶銑保持・搬送用容器で受銑し、大気圧下で脱炭精錬を行う、次工程の転炉に搬送する。この搬送途中で、溶銑に対して予備脱硫処理や予備脱燐処理などの溶銑予備処理を施すことが一般的であり、本発明においても、Alレス極低炭素鋼の成分組成に応じて溶銑予備処理を実施する。つまり、Alレス極低炭素鋼のS含有量やP含有量に低いレベルが要求される場合には、予備脱硫処理や予備脱燐処理を実施する。予備脱硫処理や予備脱燐処理は、慣用の処理方法を用いればよい。   The hot metal discharged from the blast furnace is received in a hot metal holding / conveying vessel such as a torpedo car or hot metal ladle and transferred to the next converter where decarburization and refining is performed under atmospheric pressure. During this conveyance, it is common to perform hot metal pretreatment such as preliminary desulfurization treatment or preliminary dephosphorization treatment on the hot metal. In the present invention, the hot metal preliminary treatment is performed according to the composition of the Al-less ultra-low carbon steel. Perform the process. That is, when a low level is required for the S content or P content of the Al-less ultra-low carbon steel, preliminary desulfurization treatment or preliminary dephosphorization treatment is performed. A conventional treatment method may be used for the preliminary desulfurization treatment and the preliminary dephosphorization treatment.

この溶銑を転炉に装入し、上吹き酸素或いは底吹き酸素などによって脱炭精錬する。この転炉における溶銑の脱炭精錬は、生石灰やドロマイトなどを媒溶剤として用いた通常の精錬を実施する。転炉における脱炭精錬終了時の溶鋼中C濃度は、0.02〜0.06質量%とすることが好ましい。0.02質量%未満まで脱炭精錬した場合には、Fe及び溶鋼中Mnの酸化が著しくなり、Fe及びMnの歩留まりが低下して製造コストの上昇を招くので好ましくない。一方、脱炭精錬終了時の溶鋼中C濃度が0.06質量%を超える場合には、次工程のRH真空脱ガス装置における脱炭精錬の負担が重くなり、処理時間が延長するなどして製造コストの上昇を招くので好ましくない。脱炭精錬終了時の溶鋼中C濃度の前記成分範囲への調整は、転炉内への脱炭用酸素ガスの供給量の調整によって実施する。   This hot metal is charged into a converter and decarburized and refined by top blowing oxygen or bottom blowing oxygen. The decarburization and refining of hot metal in this converter is carried out by ordinary refining using quick lime or dolomite as a solvent medium. The C concentration in the molten steel at the end of decarburization refining in the converter is preferably 0.02 to 0.06% by mass. When decarburizing and refining to less than 0.02% by mass, oxidation of Mn in Fe and molten steel becomes remarkable, and the yield of Fe and Mn is lowered, leading to an increase in manufacturing cost. On the other hand, when the C concentration in the molten steel at the end of decarburization refining exceeds 0.06% by mass, the burden of decarburization refining in the RH vacuum degassing apparatus in the next process becomes heavy, and the processing time is extended. This is not preferable because the manufacturing cost is increased. Adjustment to the said component range of C concentration in molten steel at the time of completion | finish of decarburization refining is implemented by adjustment of the supply amount of oxygen gas for decarburization in a converter.

転炉での脱炭精錬の終了後、脱炭精錬によって得られた溶鋼を転炉から取鍋に出鋼する。出鋼末期、溶鋼に巻き込まれて転炉内のスラグの一部が取鍋内に流出し、取鍋内の溶鋼上に留まるので、この溶鋼上に存在するスラグ中のCaO含有量が50〜70質量%、MgO含有量が10〜30質量%となるように、出鋼中または出鋼直後に、取鍋内にCaO源及びMgO源を添加する。添加したCaO源及びMgO源の溶融を促進させるために、添加後、溶鋼に攪拌ガスを吹き込むなどして溶鋼を攪拌してもよい。   After completion of decarburization refining in the converter, the molten steel obtained by decarburization refining is discharged from the converter into a ladle. At the end of steelmaking, a part of the slag in the converter is caught in the molten steel and flows out into the ladle and remains on the molten steel in the ladle, so the CaO content in the slag present on the molten steel is 50 to A CaO source and a MgO source are added into the ladle during or immediately after the steel output so that the content is 70% by mass and the MgO content is 10 to 30% by mass. In order to promote melting of the added CaO source and MgO source, the molten steel may be stirred after the addition by blowing a stirring gas into the molten steel.

スラグ中のCaO含有量を50〜70質量%とすることで、スラグの融点が上昇し、スラグの液状化が抑制され、耐火物に対する反応性が低下する。また、スラグの酸素ポテンシャルを高める成分であるスラグ中のFeOやMnOの濃度が希釈され、スラグの酸素ポテンシャルが低下し、黒鉛含有耐火物に添加される酸化防止剤の酸化が抑制される。スラグ中のFeOやMnOの濃度が希釈されることもスラグの融点上昇に寄与する。   By making CaO content in slag 50-70 mass%, melting | fusing point of slag rises, liquefaction of slag is suppressed and the reactivity with respect to a refractory falls. Moreover, the density | concentration of FeO and MnO in slag which is a component which raises the oxygen potential of slag is diluted, the oxygen potential of slag falls, and the oxidation of the antioxidant added to a graphite containing refractory is suppressed. Dilution of the concentration of FeO or MnO in the slag also contributes to an increase in the melting point of the slag.

また、スラグ中のMgO含有量を10〜30質量%とすることで、スラグ中のMgO濃度がMgO飽和溶解度と同等或いは飽和溶解度以上となり、スラグへのMgOの溶解、つまりスラグと接触する耐火物中のMgOのスラグへの溶解が抑制される。因みに、スラグ中のMgO含有量が飽和溶解度以上の場合には、理論上は耐火物中のMgOのスラグへの溶解はゼロとなる。MgOは高融点物質であり、スラグにMgOを添加することもスラグの融点上昇に寄与する。   Further, by setting the MgO content in the slag to 10 to 30% by mass, the MgO concentration in the slag becomes equal to or higher than the saturation solubility of MgO, and the MgO dissolves in the slag, that is, the refractory that comes into contact with the slag. Dissolution of MgO in the slag is suppressed. Incidentally, when the MgO content in the slag is equal to or higher than the saturation solubility, theoretically, the dissolution of MgO in the refractory into the slag becomes zero. MgO is a high melting point substance, and adding MgO to the slag also contributes to an increase in the melting point of the slag.

即ち、スラグ中のCaO含有量を50〜70質量%とし且つスラグ中のMgO含有量を10〜30質量%とすることで、スラグと接触する耐火物のスラグによる溶損を格段に抑制することが可能となる。   That is, by making the CaO content in the slag 50 to 70% by mass and the MgO content in the slag 10 to 30% by mass, the refractory slag in contact with the slag is significantly suppressed from being damaged by the slag. Is possible.

スラグ中のCaO含有量が50質量%未満では、スラグ融点の上昇量が小さいことからCaO源添加の効果が少なく、一方、スラグ中のCaO含有量が70質量%を越えると、スラグ融点の上昇量は確保されるものの、CaO源の添加量が多くなりすぎ、溶鋼温度の低下やCaO源原単位の上昇によるコストアップを招くことから好ましくない。また、スラグ中のMgO含有量が10質量%未満では、スラグのMgO飽和溶解度に比較して低く、スラグへのMgOの溶解が発生し、一方、スラグ中のMgO含有量が30質量%を越えると、MgOの飽和溶解度に達しておりそれ以上のMgOは不用であり、MgO源原単位の上昇によるコストアップを招き好ましくない。   When the CaO content in the slag is less than 50% by mass, the increase in the slag melting point is small, so the effect of adding the CaO source is small. On the other hand, when the CaO content in the slag exceeds 70% by mass, the slag melting point increases. Although the amount is ensured, the amount of CaO source added is too large, and this is not preferable because it leads to an increase in cost due to a decrease in molten steel temperature and an increase in the basic unit of CaO source. In addition, when the MgO content in the slag is less than 10% by mass, the MgO content in the slag is lower than the saturated solubility of MgO in the slag, and the MgO content in the slag exceeds 30% by mass. In addition, the saturation solubility of MgO has been reached, and no more MgO is required, which is not preferable because of an increase in cost due to an increase in the MgO source unit.

CaO源としては生石灰(CaO)や石灰石(CaCO3 )、MgO源としてはマグネシアクリンカー(MgO)やドロマイト(MgCO3・CaCO3 )を用いることができる。ドロマイトはCaO源としても機能する。CaO源及びMgO源の添加量は、転炉から取鍋に流出するスラグの量及び組成を経験的に把握し、この経験的に把握した数値に基づいて算出すればよい。CaO源及びMgO源を迅速にスラグ中に溶融させるために、CaO源及びMgO源は粒径20mm以下程度の粉体とすることが好ましい。 Quick lime (CaO) or limestone (CaCO 3 ) can be used as the CaO source, and magnesia clinker (MgO) or dolomite (MgCO 3 · CaCO 3 ) can be used as the MgO source. Dolomite also functions as a source of CaO. The addition amount of the CaO source and the MgO source may be calculated based on the empirically grasped amount and composition of the slag flowing out from the converter to the ladle and based on the empirically grasped numerical value. In order to rapidly melt the CaO source and the MgO source into the slag, the CaO source and the MgO source are preferably powders having a particle size of about 20 mm or less.

本発明では次工程のRH真空脱ガス装置において減圧下で脱炭精錬(「真空脱炭精錬」とも記す)を実施するので、溶鋼の酸素ポテンシャルは高いほど好ましく、従って、出鋼時には、Al、Siなどの強脱酸剤として機能する成分は添加しない。また、添加しても真空脱炭精錬で酸化してしまい、Alレス極低炭素鋼の必要成分であったとしても溶鋼中には残らず、再度の添加が必要になり無意味である。Mnも脱酸剤として機能するので、出鋼時には添加しないことが好ましい。その他、Alレス極低炭素鋼で必要とする成分であっても、減圧下での脱炭精錬において酸化ロスする成分は添加する意味がないので添加しない。   In the present invention, decarburization refining (also referred to as “vacuum decarburization refining”) is performed under reduced pressure in the RH vacuum degassing apparatus in the next step. Therefore, the higher the oxygen potential of the molten steel, the more preferable. Components that function as strong deoxidizers such as Si are not added. Moreover, even if it is added, it is oxidized by vacuum decarburization refining, and even if it is a necessary component of the Al-less ultra-low carbon steel, it does not remain in the molten steel, and it needs to be added again, which is meaningless. Since Mn also functions as a deoxidizer, it is preferable not to add Mn when steeling. In addition, even if it is a component required for Al-less ultra-low carbon steel, a component that causes oxidation loss in decarburization refining under reduced pressure is meaningless and is not added.

次いで、溶鋼を収容した取鍋をRH真空脱ガス装置に搬送し、RH真空脱ガス装置において真空脱炭精錬を実施する。図1に、本発明を実施する際に用いたRH真空脱ガス装置の例を縦断面概略図で示す。図1において、符号4は、CaO源及びMgO源が添加されて成分が調整されたスラグである。   Next, the ladle containing the molten steel is transported to the RH vacuum degassing apparatus, and vacuum decarburization refining is performed in the RH vacuum degassing apparatus. In FIG. 1, the example of the RH vacuum degassing apparatus used when implementing this invention is shown with a longitudinal cross-sectional schematic diagram. In FIG. 1, the code | symbol 4 is the slag to which the component was adjusted by adding CaO source and MgO source.

図1に示すように、RH真空脱ガス装置1は、上部槽6及び下部槽7からなる真空槽5と、下部槽7の下部に設けられた上昇側浸漬管8及び下降側浸漬管9とを備え、上部槽6には、排気装置(図示せず)と接続するダクト11と、原料投入口12と、真空槽5の内部を上下方向に移動可能な上吹きランス13とが備えられ、また、上昇側浸漬管8には環流用ガス吹き込み管10が設けられている。環流用ガス吹き込み管10からは環流用ガスとしてArガスが上昇側浸漬管8の内部に吹き込まれる構造となっている。上吹きランス13は、酸素ガスを真空槽5の内部の溶鋼3に向かって吹き付けることができるように構成されている。当然ながら希ガスのみを吹き込んだり、希ガスと酸素ガスとの混合ガスを吹き込んだりすることもできるように構成されている。上昇側浸漬管8及び下降側浸漬管9は、厚みの略中央部に芯金(図示せず)を有し、その両側にMgO質耐火物或いはMgO−C質耐火物が施工された構造である(特開2005−264263号公報などを参照)。   As shown in FIG. 1, the RH vacuum degassing apparatus 1 includes a vacuum tank 5 including an upper tank 6 and a lower tank 7, an ascending-side dip pipe 8 and a descending-side dip pipe 9 provided below the lower tank 7. The upper tank 6 is provided with a duct 11 connected to an exhaust device (not shown), a raw material inlet 12, and an upper blowing lance 13 that is movable in the vertical direction inside the vacuum tank 5, The ascending-side dip tube 8 is provided with a circulating gas blowing tube 10. From the reflux gas blowing tube 10, Ar gas is blown into the rising side immersion tube 8 as the reflux gas. The upper blowing lance 13 is configured to be able to blow oxygen gas toward the molten steel 3 inside the vacuum chamber 5. Of course, only a rare gas is blown or a mixed gas of a rare gas and an oxygen gas can be blown. The ascending-side dip tube 8 and the descending-side dip tube 9 have a structure in which a metal core (not shown) is provided at a substantially central portion of the thickness, and MgO refractories or MgO-C refractories are applied to both sides thereof. (See JP 2005-264263 A).

このように構成されているRH真空脱ガス装置1において、先ず、スラグ4でその上面を覆われた溶鋼3を収納する取鍋2を真空槽5の直下に搬送し、取鍋2を昇降装置(図示せず)によって上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋2に収容された溶鋼3に浸漬させる。次いで、環流用ガス吹き込み管10から上昇側浸漬管8の内部にArガスを環流用ガスとして吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋2に収容された溶鋼3は、環流用ガス吹き込み管10から吹き込まれるArガスとともにガスリフト効果によって上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を介して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が施される。   In the RH vacuum degassing apparatus 1 configured as described above, first, a ladle 2 containing the molten steel 3 whose upper surface is covered with the slag 4 is conveyed directly under the vacuum tank 5, and the ladle 2 is moved up and down. The ascending-side dip tube 8 and the descending-side dip tube 9 are immersed in the molten steel 3 accommodated in the pan 2. Next, Ar gas is blown into the inside of the rising side dip tube 8 from the reflux gas blowing tube 10 as a reflux gas, and the inside of the vacuum chamber 5 is exhausted by an exhaust device connected to the duct 11. Depressurize the inside. When the inside of the vacuum chamber 5 is depressurized, the molten steel 3 accommodated in the ladle 2 ascends the rising side dip tube 8 by the gas lift effect together with Ar gas blown from the reflux gas blow tube 10, and After flowing into the inside, a flow returning to the ladle 2 through the descending side dip pipe 9, that is, a so-called recirculation flow is formed and RH vacuum degassing is performed.

真空槽5の内部が減圧雰囲気になると、真空槽5の内部雰囲気のCOガス分圧が大気圧下で実施した転炉脱炭精錬時に比べて大幅に小さくなり、従って、溶鋼3が真空槽5の内部の減圧雰囲気に曝されると、溶鋼中のCと溶存酸素との反応が発生する。つまり、脱炭反応が発生し、溶鋼3に含まれるCはCOガスとなって排ガスとともに真空槽5からダクト11を介して排出され、溶鋼3に真空脱炭精錬が施される。この場合に、溶鋼3の溶存酸素が不足するなどの理由で脱炭反応が遅延する場合には、上吹きランス13から真空槽5の内部の溶鋼3に向かって酸素ガス或いは酸素ガスと希ガスとの混合ガスを吹き付けて、脱炭反応を促進させることもできる。   When the inside of the vacuum chamber 5 is in a reduced pressure atmosphere, the CO gas partial pressure in the inner atmosphere of the vacuum chamber 5 is significantly smaller than that at the time of converter decarburization and refining performed under atmospheric pressure. When exposed to a reduced pressure atmosphere inside the steel, a reaction between C in the molten steel and dissolved oxygen occurs. That is, a decarburization reaction occurs, C contained in the molten steel 3 becomes CO gas and is discharged together with the exhaust gas from the vacuum tank 5 through the duct 11, and the molten steel 3 is subjected to vacuum decarburization refining. In this case, when the decarburization reaction is delayed due to a shortage of dissolved oxygen in the molten steel 3, oxygen gas or oxygen gas and rare gas from the top blowing lance 13 toward the molten steel 3 inside the vacuum chamber 5. The decarburization reaction can be promoted by spraying a mixed gas.

このようにして真空脱炭精錬を継続し、溶鋼3のC含有量が0.003質量%以下の所定の値となったなら、原料投入口12から溶鋼3にSi、Mnなどの脱酸剤を添加して溶鋼3を脱酸処理する。Si、Mnなどの脱酸剤の添加により溶鋼3の溶存酸素は急激に減少し、それに伴って脱炭反応が終了する。そして、脱酸剤添加後も更に数分間程度の環流を継続し、その後、Alレス極低炭素鋼の成分組成に応じて、Si、Mn、Ni、Cr、Cu、Nb、Ti、V、Bなどの成分調整剤を原料投入口12から溶鋼3に投入して溶鋼3の成分を調整する。成分調整後、真空槽5の内部を大気圧に戻してRH真空脱ガス精錬を終了する。   In this way, if the vacuum decarburization refining is continued and the C content of the molten steel 3 reaches a predetermined value of 0.003% by mass or less, a deoxidizer such as Si or Mn is supplied from the raw material inlet 12 to the molten steel 3. Is added to deoxidize the molten steel 3. By adding a deoxidizing agent such as Si or Mn, the dissolved oxygen in the molten steel 3 rapidly decreases, and the decarburization reaction ends accordingly. Then, after adding the deoxidizer, the recirculation is continued for about several minutes. A component adjusting agent such as is introduced into the molten steel 3 from the raw material inlet 12 to adjust the components of the molten steel 3. After the component adjustment, the inside of the vacuum chamber 5 is returned to atmospheric pressure, and the RH vacuum degassing refining is completed.

このRH真空脱ガス精錬中、上昇側浸漬管8及び下降側浸漬管9の外壁とスラグ4とは接触し続けるが、スラグ4の組成を、CaO含有量が50〜70質量%、MgO含有量が10〜30質量%の範囲に予め調整しているので、スラグ4の融点が上昇することによるスラグ4の耐火物に対する反応性の低下と、スラグ4へのMgOの溶出が抑制されることとによって、上昇側浸漬管8及び下降側浸漬管9のスラグ4による溶損が抑制される。   During this RH vacuum degassing refining, the outer walls of the ascending side dip tube 8 and the descending side dip tube 9 and the slag 4 are kept in contact with each other, but the composition of the slag 4 has a CaO content of 50 to 70% by mass and an MgO content. Is adjusted in the range of 10 to 30% by mass in advance, so that a decrease in reactivity of the slag 4 to the refractory due to an increase in the melting point of the slag 4 and suppression of elution of MgO into the slag 4 are suppressed. Therefore, the melting damage by the slag 4 of the ascending side dip tube 8 and the descending side dip tube 9 is suppressed.

以下、C含有量が0.0024質量%以下、Al含有量が0.001質量%以下、Si含有量が0.4〜0.7質量%、Mn含有量が0.1〜0.3質量%、S含有量が0.003質量%以下であるAlレス極低炭素鋼を、本発明を適用して溶製した例を説明する。尚、用いたRH真空脱ガス装置の上昇側浸漬管及び下降側浸漬管は、ともにMgO質耐火物で施工されている。   Hereinafter, the C content is 0.0024% by mass or less, the Al content is 0.001% by mass or less, the Si content is 0.4 to 0.7% by mass, and the Mn content is 0.1 to 0.3% by mass. An example in which an Al-less ultra-low carbon steel having a% and S content of 0.003 mass% or less is melted by applying the present invention will be described. The ascending side dip tube and the descending side dip tube of the used RH vacuum degassing apparatus are both constructed of MgO refractories.

高炉から出銑された溶銑をトーピードカーにて受銑し、受銑した溶銑をトーピードカーから取鍋型の転炉装入鍋に移し、この転炉装入鍋にCaO系脱硫剤を添加するとともに回転する攪拌羽根を浸漬させて溶銑と脱硫剤とを攪拌し、予備脱硫処理を実施した。その後、溶銑を転炉に装入して溶銑の脱炭精錬を実施した。転炉出鋼時の溶鋼成分は、C:0.04質量%、Si:トレース、Mn:0.12質量%、P:0.03質量%、S:0.002質量%で、溶鋼温度は1670℃であった。   The hot metal discharged from the blast furnace is received by a torpedo car, and the received hot metal is transferred from the torpedo car to a ladle-type converter charging pot, and a CaO-based desulfurizing agent is added to the converter charging pot and rotated. The hot metal and the desulfurizing agent were stirred by immersing the stirring blade to perform a preliminary desulfurization treatment. After that, hot metal was charged into the converter and decarburization refining of the hot metal was performed. Molten steel components at the time of steel leaving the converter are C: 0.04 mass%, Si: trace, Mn: 0.12 mass%, P: 0.03 mass%, S: 0.002 mass%, and the molten steel temperature is 1670 ° C.

転炉での脱炭精錬終了後、転炉から取鍋への出鋼時に、CaO源として粒径が20mm以下の生石灰を溶鋼トン当たり3.0kg取鍋内に添加するとともに、MgO源として粒径が10mm以下のマグネシアクリンカーを溶鋼トン当たり2.0kg取鍋内に添加した。その後、取鍋をRH真空脱ガス装置に搬送して、先ず、真空脱炭精錬を実施した。真空脱炭精錬によって溶鋼中C含有量が0.001質量%に到達した時点で原料投入口からFe−Si合金を投入して真空脱炭精錬を終了し、その後更に数分間の還流を継続した後、Fe−Si合金、Fe−Mn合金を投入して成分を調整し、RH真空脱ガス精錬を終了した。RH真空脱ガス精錬中、取鍋内からスラグを採取し、スラグ組成を分析した。また、RH真空脱ガス精錬後、上昇側浸漬管及び下降側浸漬管の溶損状況をCCDカメラの画像に基づき解析した。   After completion of decarburization and refining in the converter, quick lime having a particle size of 20 mm or less as a CaO source is added to the ladle to 3.0 kg per ton of molten steel, and grains are used as the MgO source when steel is discharged from the converter to the ladle. A magnesia clinker having a diameter of 10 mm or less was added into a 2.0 kg ladle per ton of molten steel. Then, the ladle was conveyed to the RH vacuum degassing apparatus, and first, vacuum decarburization refining was performed. When the C content in the molten steel reached 0.001% by mass by vacuum decarburization refining, the Fe-Si alloy was charged from the raw material inlet to finish the vacuum decarburization refining, and then continued to reflux for several more minutes. Thereafter, Fe—Si alloy and Fe—Mn alloy were added to adjust the components, and RH vacuum degassing refining was completed. During RH vacuum degassing, slag was collected from the ladle and analyzed for slag composition. Further, after the RH vacuum degassing refining, the erosion state of the ascending side dip tube and the descending side dip tube was analyzed based on the image of the CCD camera.

その結果、スラグ組成は、CaO:56.1質量%、SiO2 :19.1質量%、MgO:15.3質量%、Al23:9.5質量%であり、上昇側浸漬管及び下降側浸漬管ともに溶損はほとんど見られず、これらの浸漬管の溶損状況から判断して補修を実施しなくても当該Alレス極低炭素鋼を連続して5チャージ処理可能であることが確認できた。これに対して、CaO源及びMgO源を取鍋内に添加しなかった従来の場合には、スラグ組成は、CaO:33.1質量%、SiO2 :31.2質量%、MgO:13.4質量%、Al23 :22.3質量%であり、上昇側浸漬管及び下降側浸漬管ともに溶損が激しく、当該Alレス極低炭素鋼の処理毎に上昇側浸漬管及び下降側浸漬管の補修を必要としており、本発明によってこれらの浸漬管の溶損が大幅に抑制されることが確認できた。 As a result, the slag composition was CaO: 56.1% by mass, SiO 2 : 19.1% by mass, MgO: 15.3% by mass, Al 2 O 3 : 9.5% by mass, Almost no erosion is observed in the descending dip tubes, and it is possible to treat the Al-less ultra-low carbon steel continuously for 5 charges without performing repairs based on the erosion status of these dip tubes. Was confirmed. On the other hand, in the conventional case where the CaO source and the MgO source were not added to the pan, the slag composition was CaO: 33.1% by mass, SiO 2 : 31.2% by mass, MgO: 13. 4% by mass and Al 2 O 3 : 22.3% by mass. Both the ascending side dip tube and the descending side dip tube are severely damaged, and the ascending side dip tube and the descending side each time the Al-less ultra-low carbon steel is processed. It is necessary to repair the dip tubes, and it was confirmed that the erosion damage of these dip tubes is greatly suppressed by the present invention.

本発明を実施する際に用いたRH真空脱ガス装置の縦断面概略図である。It is the longitudinal cross-sectional schematic of the RH vacuum degassing apparatus used when implementing this invention.

符号の説明Explanation of symbols

1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 4 Slag 5 Vacuum tank 6 Upper tank 7 Lower tank 8 Rising side immersion pipe 9 Lowering side immersion pipe 10 Recirculation gas blowing pipe 11 Duct 12 Raw material inlet 13 Upper blowing lance

Claims (3)

転炉で精錬した溶鋼をRH真空脱ガス装置にて脱炭処理してAl含有量が0.001質量%以下であるAlレス極低炭素鋼を溶製するに当たり、溶鋼の転炉出鋼時または出鋼後に溶鋼を収容する取鍋内にCaO源とMgO源とを添加して、取鍋内溶鋼上に存在するスラグ中のCaO含有量を50〜70質量%、MgO含有量を10〜30質量%に調整し、その後、RH真空脱ガス装置にて精錬することを特徴とする、Alレス極低炭素鋼の溶製方法。   When molten steel refined in a converter is decarburized with an RH vacuum degasser to produce an Al-less ultra-low carbon steel with an Al content of 0.001% by mass or less, Or after adding steel, a CaO source and a MgO source are added to a ladle containing molten steel, and the CaO content in the slag present on the molten steel in the ladle is 50 to 70% by mass, and the MgO content is 10 to 10. A method for melting Al-less ultra-low carbon steel, which is adjusted to 30% by mass and then refined with an RH vacuum degassing apparatus. RH真空脱ガス装置にて脱炭処理した後、真空槽内の溶鋼にSi源を添加して溶鋼を脱酸処理すること特徴とする、請求項1に記載のAlレス極低炭素鋼の溶製方法。   2. The molten Al-less ultra-low carbon steel according to claim 1, wherein after decarburizing with an RH vacuum degassing apparatus, the molten steel in the vacuum chamber is added with a Si source to deoxidize the molten steel. Manufacturing method. 前記CaO源として生石灰を使用し、MgO源としてマグネシアクリンカーを使用することを特徴とする、請求項1または請求項2に記載のAlレス極低炭素鋼の溶製方法。   The method for melting an Al-less ultra-low carbon steel according to claim 1 or 2, wherein quick lime is used as the CaO source and magnesia clinker is used as the MgO source.
JP2008013285A 2008-01-24 2008-01-24 Method for producing al-less extra-low carbon steel Pending JP2009173994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013285A JP2009173994A (en) 2008-01-24 2008-01-24 Method for producing al-less extra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013285A JP2009173994A (en) 2008-01-24 2008-01-24 Method for producing al-less extra-low carbon steel

Publications (1)

Publication Number Publication Date
JP2009173994A true JP2009173994A (en) 2009-08-06

Family

ID=41029387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013285A Pending JP2009173994A (en) 2008-01-24 2008-01-24 Method for producing al-less extra-low carbon steel

Country Status (1)

Country Link
JP (1) JP2009173994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468881A (en) * 2013-09-24 2013-12-25 山西太钢不锈钢股份有限公司 Method for prolonging service life of RH inserting tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468881A (en) * 2013-09-24 2013-12-25 山西太钢不锈钢股份有限公司 Method for prolonging service life of RH inserting tube

Similar Documents

Publication Publication Date Title
JP5573424B2 (en) Desulfurization treatment method for molten steel
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP4742740B2 (en) Method for melting low-sulfur steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP6028755B2 (en) Method for melting low-sulfur steel
JP2015042777A (en) Method for smelting high nitrogen steel
JP2011208170A (en) Method of producing manganese-containing low carbon steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP5891826B2 (en) Desulfurization method for molten steel
TWI685577B (en) Smelting method of high manganese steel
JP2008163389A (en) Method for producing bearing steel
JP5200380B2 (en) Desulfurization method for molten steel
CN103225009A (en) Method for producing high-cleanness steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP5315669B2 (en) Method for refining molten steel with RH vacuum degassing equipment
JP5326310B2 (en) Method of melting high Mn ultra-low carbon steel
JP2015232157A (en) Dephosphorization method of molten steel using vacuum degasification facility
JP4360270B2 (en) Method for refining molten steel
JP2009173994A (en) Method for producing al-less extra-low carbon steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP2008150710A (en) Method for melting low carbon high manganese steel
JP2017025373A (en) Desulfurization method of molten steel
JPH10298631A (en) Method for melting clean steel