JP5326310B2 - Method of melting high Mn ultra-low carbon steel - Google Patents

Method of melting high Mn ultra-low carbon steel Download PDF

Info

Publication number
JP5326310B2
JP5326310B2 JP2008068644A JP2008068644A JP5326310B2 JP 5326310 B2 JP5326310 B2 JP 5326310B2 JP 2008068644 A JP2008068644 A JP 2008068644A JP 2008068644 A JP2008068644 A JP 2008068644A JP 5326310 B2 JP5326310 B2 JP 5326310B2
Authority
JP
Japan
Prior art keywords
molten steel
mass
steel
vacuum
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008068644A
Other languages
Japanese (ja)
Other versions
JP2009221561A (en
Inventor
勲 下田
学 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008068644A priority Critical patent/JP5326310B2/en
Publication of JP2009221561A publication Critical patent/JP2009221561A/en
Application granted granted Critical
Publication of JP5326310B2 publication Critical patent/JP5326310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下の高Mn極低炭素鋼の溶製方法に関し、詳しくは、真空脱炭精錬後に行うAl脱酸処理方法を改善した、高Mn極低炭素鋼の溶製方法に関するものである。   The present invention relates to a method for melting high Mn ultra-low carbon steel having a carbon content of 0.005 mass% or less and a Mn content of 0.4 mass% or more and 2.0 mass% or less. The present invention relates to a method for melting high-Mn ultra-low carbon steel by improving the Al deoxidation method performed after charcoal refining.

近年、自動車外装用鋼板、缶用鋼板、家庭電化製品用鋼板など、多くの用途に使用されている薄鋼板は、その加工性向上の容易さから、炭素含有量が0.01〜0.1質量%の低炭素鋼から、真空脱炭精錬でなければ到達できない、炭素含有量が0.005質量%以下の極低炭素鋼に転換されつつあり、薄鋼板に占める極低炭素鋼の比率は拡大の一途である。尚、真空脱炭精錬とは、雰囲気圧力が大気圧よりも低い状態で行われる脱炭精錬である。   In recent years, thin steel sheets used for many applications such as steel sheets for automobile exteriors, steel sheets for cans, and steel sheets for home appliances have a carbon content of 0.01 to 0.1 because of their ease of improving workability. The mass of low-carbon steel is being converted to ultra-low carbon steel with a carbon content of 0.005 mass% or less, which can only be achieved by vacuum decarburization refining. It is expanding. In addition, vacuum decarburization refining is decarburization refining performed in the state where atmospheric pressure is lower than atmospheric pressure.

この極低炭素鋼は、転炉などを用いて経済的に許容し得る限界まで大気圧下で脱炭精錬して溶銑から溶鋼を得て、その後、得られた溶鋼を、真空脱ガス設備を用いて減圧下で鋼中酸素または添加酸素源との反応によって目的の濃度まで真空脱炭精錬し、この真空脱炭精錬後に引き続き、金属Alなどの脱酸剤を添加して脱酸処理するとともに成分調整・介在物低減処理を施して溶製されている(例えば特許文献1を参照)。   This ultra-low carbon steel is obtained by decarburizing and refining at atmospheric pressure to the limit that can be economically acceptable using a converter etc. to obtain molten steel from hot metal, and then the obtained molten steel is installed in a vacuum degassing facility. Using vacuum decarburization refining to the target concentration by reaction with oxygen in steel or added oxygen source under reduced pressure, and after this vacuum decarburization refining, adding deoxidizer such as metal Al and deoxidizing treatment It is manufactured by applying component adjustment / inclusion reduction treatment (see, for example, Patent Document 1).

この溶製工程において、転炉では、一般的に炭素濃度が0.03〜0.06質量%程度まで脱炭するが、この程度まで脱炭すると炭素以外にも鉄が酸化され、転炉終点時のスラグ中のFeO濃度が高くなる。また、溶銑中のMnも酸化され、前記スラグ中のMnO濃度が高くなる。このスラグの一部は、出鋼時に溶鋼に混入して溶鋼とともに取鍋に流出する。この状態において真空脱ガス設備で真空脱炭精錬した後にAlによる脱酸処理を行うと、脱酸処理後にもスラグ中のFeO及びMnOが溶鋼中のAlと反応して、溶鋼中のAl濃度が減少し、最終的にはAl含有量が成分規格範囲を外れたり、複数回のAlの成分調整が必要となって生産性が低下したりするという問題が発生する。特に、Mn含有量が高くなると、真空脱炭精錬中にもMnOが生成し、スラグ中のMnOが多くなり、前記問題が顕在化する。尚、生成したAl23によって鋼の清浄性が低下するという問題も発生するが、本発明ではこの問題は対象としない。 In this melting process, in the converter, the carbon concentration is generally decarburized to about 0.03 to 0.06% by mass, but when decarburized to this level, iron is oxidized in addition to carbon, and the converter end point is reached. The FeO concentration in the slag at the time increases. Moreover, Mn in the hot metal is also oxidized, and the MnO concentration in the slag is increased. A part of this slag is mixed into the molten steel when steel is discharged and flows out into the ladle together with the molten steel. In this state, when deoxidation treatment with Al is performed after vacuum decarburization refining with a vacuum degassing facility, FeO and MnO in the slag react with Al in the molten steel even after the deoxidation treatment, and the Al concentration in the molten steel becomes In the end, there is a problem that the Al content is outside the component specification range, or that multiple adjustments of the Al component are required, resulting in a decrease in productivity. In particular, when the Mn content is high, MnO is generated even during vacuum decarburization and refining, and the amount of MnO in the slag increases, and the above problem becomes apparent. Although cleanliness of the steel by Al 2 O 3 which generated also occur lowered, this problem does not interest the present invention.

ところで、このような、MnOによる悪影響を抑制した極低炭素鋼の溶製方法が幾つか提案されている。例えば特許文献2には、転炉から取鍋への出鋼中にFe−Mnなどの合金鉄を添加せずに取鍋に出鋼し、真空脱ガス設備において、酸素ガスを吹き込んで真空脱炭精錬を行い、溶鋼中炭素濃度が0.005質量%以下に到達した時点でAlを添加して脱酸し、その後、電解金属Mn(JIS:「MMnE」)を添加してMn濃度の調整を行うことを特徴とする、極低炭素鋼の溶製方法が提案されている。また、特許文献3には、転炉出鋼後の溶鋼を真空脱ガス設備で真空脱炭精錬して、Mnを0.3〜3質量%含有する極低炭素鋼を溶製するに際し、前記真空脱炭精錬前の溶鋼中Mn濃度を0.3質量%以下に抑えて真空脱炭精錬し次いで脱酸処理を行い、該脱酸処理の後に、真空脱ガス槽内に電解金属Mnを添加して溶鋼中Mn濃度を所望値に調整することを特徴とする、含Mn極低炭素鋼の製造方法が提案されている。   By the way, several methods for melting ultra-low carbon steel in which adverse effects due to MnO are suppressed have been proposed. For example, Patent Document 2 discloses that steel is removed from a converter to a ladle without adding alloy iron such as Fe-Mn to the ladle, and in a vacuum degassing facility, oxygen gas is blown into the ladle. When the carbon concentration in molten steel reaches 0.005% by mass or less after carbon refining, Al is added to deoxidize, and then electrolytic metal Mn (JIS: “MMnE”) is added to adjust the Mn concentration. A method for melting ultra-low carbon steel has been proposed. Further, in Patent Document 3, the molten steel after the converter steel is vacuum decarburized and refined with a vacuum degassing facility, and when melting an ultra-low carbon steel containing 0.3 to 3% by mass of Mn, Vacuum decarburization refining is carried out with the Mn concentration in the molten steel before vacuum decarburization refining kept to 0.3% by mass or less, followed by deoxidation treatment, and after the deoxidation treatment, electrolytic metal Mn is added to the vacuum degassing tank Thus, a method for producing a Mn-containing ultra-low carbon steel has been proposed, characterized in that the Mn concentration in the molten steel is adjusted to a desired value.

特許文献2及び特許文献3のように、真空脱炭精錬時の溶鋼中Mn濃度を低位に維持すれば、スラグ中のMnOは少なく、Alによる脱酸処理は容易になる。しかしながら、特許文献2及び特許文献3で真空脱炭精錬後にMn調整のために使用する電解金属Mnは極めて高価であり、製造コストの上昇を招き、好ましい操業形態とは言い難い。   If patent document 2 and patent document 3 maintain Mn density | concentration in the molten steel at the time of vacuum decarburization refining at low level, there will be little MnO in slag and the deoxidation process by Al will become easy. However, in Patent Document 2 and Patent Document 3, the electrolytic metal Mn used for Mn adjustment after vacuum decarburization refining is extremely expensive, which causes an increase in manufacturing cost and is not a preferable operation mode.

安価なMn源としては、Mn鉱石が知られており、Mnを含有する極低炭素鋼を溶製する場合も、省資源及び省エネルギーの観点から、Mn源としてMn鉱石を使用することが望まれている。尚、Mn鉱石は、溶銑を転炉にて脱炭精錬する際に転炉に装入され、溶銑中の炭素によって還元され、還元されたMnが溶鋼中に移行することで、Mn源として機能する。溶鋼中に移行したMnの一部は、転炉での脱炭精錬中に酸化されてスラグに移行するが、この歩留りを考慮しても電解金属Mnよりも遥かに安価である。
特開2002−69527号公報 特開平8−291319号公報 特開2003−253324号公報
As an inexpensive Mn source, Mn ore is known, and when melting extremely low carbon steel containing Mn, it is desirable to use Mn ore as a Mn source from the viewpoint of resource saving and energy saving. ing. In addition, Mn ore is charged into the converter when decarburizing and refining the hot metal in the converter, is reduced by the carbon in the hot metal, and the reduced Mn moves into the molten steel, thereby functioning as a Mn source. To do. A part of Mn transferred into the molten steel is oxidized during the decarburization refining in the converter and transferred to slag, but even if this yield is taken into consideration, it is much cheaper than the electrolytic metal Mn.
JP 2002-69527 A JP-A-8-291319 JP 2003-253324 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、高価な電解金属Mnの使用量を削減するべく、Mn鉱石をMn源の一部として使用して、転炉における大気圧下での脱炭精錬と、真空脱ガス設備における減圧下での真空脱炭精錬とを組み合わせて、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下である高Mn極低炭素鋼を溶製するにあたり、1回のAl脱酸処理のみで溶鋼中のAl含有量が規格内に調整でき、複数回のAlの成分調整を必要とせず、真空脱ガス設備の生産性を低下させることなく、溶鋼中のAl成分を調整することのできる、高Mn極低炭素鋼の溶製方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to use Mn ore as a part of the Mn source in order to reduce the amount of expensive electrolytic metal Mn used. Combining decarburization refining under atmospheric pressure and vacuum decarburization refining under reduced pressure in vacuum degassing equipment, the carbon content is 0.005 mass% or less, the Mn content is 0.4 mass% or more, 2 When melting high-Mn ultra-low carbon steel of less than 0.0% by mass, the Al content in the molten steel can be adjusted within the standard by only one Al deoxidation treatment, and multiple adjustments of Al components are required. The object is to provide a high Mn ultra-low carbon steel melting method that can adjust the Al component in the molten steel without reducing the productivity of the vacuum degassing equipment.

上記課題を解決するための本発明に係る高Mn極低炭素鋼の溶製方法は、転炉にて溶銑に対して大気圧下での脱炭精錬を行って溶鋼を得て、次いで、転炉から出鋼後の溶鋼を真空脱ガス設備にて真空脱炭精錬及びAl脱酸処理して、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下の高Mn極低炭素鋼を溶製するに際し、前記転炉ではMn源としてMn鉱石を投入して脱炭精錬し、前記真空脱炭精錬後のAl脱酸処理では、下記の(1)式で算出されるAl系脱酸剤投入量のAl系脱酸剤を添加することを特徴とするものである。
AL=(A+α×[O]+β+γ×ΔMn)/B …(1)
但し、(1)式において、WAL:溶鋼トンあたりのAl系脱酸剤投入量(kg/t)、A:溶鋼トンあたりのAl含有量目標値(kg/t)、[O]:Al脱酸前の溶鋼中酸素濃度(ppm)、ΔMn:出鋼直後の溶鋼中Mn濃度と真空脱炭精錬終了時の溶鋼中Mn濃度との差(質量%)、B:Al系脱酸剤のAl純分(−)、α:定数(0.001≦α≦0.002)、β:定数(0.3≦β≦0.5)、γ:定数(1.0≦γ≦1.5)である。
In order to solve the above-mentioned problems, the method for melting high-Mn ultra-low carbon steel according to the present invention obtains molten steel by decarburizing and refining hot metal in a converter at atmospheric pressure. 1. The molten steel after steel is discharged from the furnace is subjected to vacuum decarburization refining and Al deoxidation treatment in a vacuum degassing equipment, so that the carbon content is 0.005 mass% or less and the Mn content is 0.4 mass% or more. When melting high-Mn ultra-low carbon steel of 0% by mass or less, the converter uses Mn ore as a Mn source for decarburization and refining. In the Al deoxidation treatment after the vacuum decarburization and refining, The amount of Al-based deoxidizer calculated by the formula (1) is added, and an Al-based deoxidizer is added.
W AL = (A + α × [O] + β + γ × ΔMn) / B (1)
However, in the formula (1), W AL : Al-based deoxidizer input amount per ton of molten steel (kg / t), A: Al content target value per ton of molten steel (kg / t), [O]: Al Oxygen concentration in molten steel (ppm) before deoxidation, ΔMn: Difference between Mn concentration in molten steel immediately after steelmaking and Mn concentration in molten steel at the end of vacuum decarburization refining (mass%), B: Al-based deoxidizer Al pure component (−), α: constant (0.001 ≦ α ≦ 0.002), β: constant (0.3 ≦ β ≦ 0.5), γ: constant (1.0 ≦ γ ≦ 1.5) ).

本発明によれば、転炉から取鍋への出鋼後から、真空脱ガス設備での真空脱炭精錬までの期間における溶鋼中のMnの酸化分に応じて、真空脱炭精錬後のAl脱酸処理時でのAl系脱酸剤の投入量を設定するので、Al系脱酸剤は過不足なく投入され、1回のAl脱酸処理のみで溶鋼中のAl含有量が規格内に調整でき、複数回のAlの成分調整を必要とせず、真空脱ガス設備の生産性を低下させることなく、溶鋼中のAl成分を調整することが可能となる。   According to the present invention, Al after vacuum decarburization refining according to the oxidized content of Mn in the molten steel in the period from after the steel from the converter to the ladle to vacuum decarburization refining in the vacuum degassing equipment. Since the amount of Al-based deoxidizer charged during deoxidation treatment is set, Al-based deoxidizer is charged without excess and deficiency, and the Al content in the molten steel is within the standard with only one Al deoxidation treatment. It is possible to adjust, and it is possible to adjust the Al component in the molten steel without requiring multiple adjustments of the Al component and without reducing the productivity of the vacuum degassing equipment.

以下、本発明を詳細に説明する。先ず、本発明に至った経緯について説明する。   Hereinafter, the present invention will be described in detail. First, the background to the present invention will be described.

本発明者等は、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下の高Mn極低炭素鋼の溶製工程で溶鋼中のMn調整用に使用する電解金属Mn(MMnE)の使用量を削減することを目的として種々検討した結果、最も効果的なことは、転炉脱炭精錬において安価なMn源であるMn鉱石を可能な限り多く配合し、このMn鉱石を転炉脱炭精錬時に溶鋼中の炭素で還元して、溶鋼中のMn濃度を転炉脱炭精錬の段階で高く確保しておくことであることが分かった。   The inventors have made Mn in molten steel in the melting process of high Mn ultra-low carbon steel having a carbon content of 0.005 mass% or less and a Mn content of 0.4 mass% or more and 2.0 mass% or less. As a result of various studies for the purpose of reducing the amount of electrolytic metal Mn (MMnE) used for adjustment, the most effective thing is to enable Mn ore which is an inexpensive Mn source in converter decarburization refining As much as possible, this Mn ore was reduced with carbon in the molten steel at the time of converter decarburization and refining, and it was found that the Mn concentration in the molten steel was kept high at the stage of converter decarburization and refining. .

これは以下の理由による。即ち、Mn鉱石は還元されて生成したMnは溶鋼中に移行し、この溶鋼中Mnは、転炉脱炭精錬及び真空脱ガス設備での真空脱炭精錬において酸化してスラグに移行するが、溶鋼中のMnが全て酸化ロスするわけではなく、酸化ロスする分は一部分にとどまる。Mn鉱石によってもたらされた溶鋼中Mnの一部分が酸化ロスしても、Mn鉱石はMn源として極めて安価であり、酸化ロスしたとしても多量に添加しておくことにより残留分もそれに応じて増加するので、それなりに電解金属Mnの使用量が削減される。電解金属Mnの使用量の削減によるコストメリットが多大であることから、全体として製造コストが削減されるからである。   This is due to the following reason. That is, Mn ore is reduced and Mn produced is transferred into molten steel, and Mn in the molten steel is oxidized and transferred to slag in vacuum decarburization and refining in converter decarburization and vacuum degassing equipment. Not all Mn in molten steel undergoes oxidation loss, and the amount of oxidation loss is only a part. Even if a part of Mn in molten steel caused by Mn ore is oxidized and lost, Mn ore is very cheap as a source of Mn, and even if it is oxidized and lost, the amount of residue increases accordingly. Therefore, the amount of electrolytic metal Mn used is reduced accordingly. This is because the manufacturing cost is reduced as a whole because the cost merit by reducing the amount of electrolytic metal Mn used is great.

但し、上記溶製工程においては、取鍋に収容された未脱酸状態の溶鋼を転炉から真空脱ガス設備に搬送し、そして、真空脱ガス設備では酸化精錬である真空脱炭精錬を実施するので、この期間、溶鋼中のMnが酸化されてスラグ中のMnOが増加する。そのために、真空脱ガス設備での真空脱炭精錬の後に実施するAl脱酸処理では、スラグ中のMnOと溶鋼中のAlとの反応に起因して、溶鋼中のAl含有量がばらつき、溶鋼のAl成分調整のためにAl脱酸処理後に再度のAl添加が必要になる場合が多発した。つまり、再度のAl調整のために、真空脱ガス設備における処理時間が長くなり、生産性が低下するという問題が発生した。   However, in the above smelting process, the undeoxidized molten steel contained in the ladle is transported from the converter to the vacuum degassing facility, and the vacuum degassing facility performs vacuum decarburization refining, which is oxidation refining. Therefore, during this period, Mn in the molten steel is oxidized and MnO in the slag increases. Therefore, in the Al deoxidation treatment performed after the vacuum decarburization refining in the vacuum degassing equipment, the Al content in the molten steel varies due to the reaction between MnO in the slag and Al in the molten steel. In order to adjust the Al component, it was often necessary to add Al again after the Al deoxidation treatment. In other words, due to the re-adjustment of Al, there is a problem that the processing time in the vacuum degassing facility becomes longer and the productivity is lowered.

そこで、溶鋼中のMn濃度を変化させ、Al脱酸時に添加したAl分のうちで、溶鋼中のAlとはならずに酸化されてロスとなるAlロス分に及ぼす溶鋼中のMn濃度の影響を調査した。尚、Alロス分となるものは、溶鋼中の酸素を脱酸するために費やされるAl分、スラグ中のFeOやMnOなどを還元するために費やされるAl分、雰囲気中の酸素ガスによって酸化されるAl分などである。   Therefore, by changing the Mn concentration in the molten steel, among the Al content added during Al deoxidation, the effect of the Mn concentration in the molten steel on the Al loss content that is oxidized and lost instead of Al in the molten steel. investigated. The Al loss component is oxidized by the Al component spent to deoxidize oxygen in the molten steel, the Al component spent to reduce FeO and MnO in the slag, and the oxygen gas in the atmosphere. Al content.

調査結果を図1に示す。尚、図1に示すMn濃度とは、出鋼直後の取鍋内溶鋼のMn濃度であり、Alロス分は溶鋼1トンあたりの質量(単位:kg)で表示している。図1に示すように、Al脱酸前の溶鋼中酸素濃度に比例してAlロス分が上昇することが分かるが、●印のMn濃度範囲(0.05〜0.12質量%)と、○印のMn濃度範囲(0.26〜0.35質量%)とでは、Alロス分のレベルが異なることが分かった。つまり、溶鋼中のMn濃度が高くなるほど、Alロス分が増加することが確認できた。   The survey results are shown in FIG. In addition, the Mn concentration shown in FIG. 1 is the Mn concentration of the molten steel in the ladle immediately after the steel is drawn, and the Al loss is indicated by the mass per ton of molten steel (unit: kg). As shown in FIG. 1, it can be seen that the Al loss increases in proportion to the oxygen concentration in the molten steel before Al deoxidation, but the Mn concentration range (0.05 to 0.12% by mass) marked with It was found that the level of Al loss was different from the Mn concentration range (0.26 to 0.35 mass%) indicated by ○. In other words, it was confirmed that the Al loss increased as the Mn concentration in the molten steel increased.

この結果に基づき、更に詳細にAlロス分を調査した結果、出鋼直後の取鍋内溶鋼のMn濃度と、真空脱炭精錬終了時の溶鋼中Mn濃度との差分に比例して、Alロス分が増大することが分かった。即ち、取鍋内で生成するMnOに比例して、Alロス分が増加することが確認できた。   Based on this result, the amount of Al loss was investigated in more detail. As a result, the Al loss was proportional to the difference between the Mn concentration in the molten steel in the ladle immediately after steelmaking and the Mn concentration in the molten steel at the end of vacuum decarburization refining. The minute was found to increase. That is, it was confirmed that the Al loss increased in proportion to the MnO generated in the ladle.

本発明は、この調査結果に基づきなされたもので、本発明に係る高Mn極低炭素鋼の溶製方法は、転炉にて溶銑に対して大気圧下での脱炭精錬を行って溶鋼を得て、次いで、転炉から出鋼後の溶鋼を真空脱ガス設備にて真空脱炭精錬及びAl脱酸処理して、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下の高Mn極低炭素鋼を溶製するに際し、前記転炉ではMn源としてMn鉱石を投入して脱炭精錬し、前記真空脱炭精錬後のAl脱酸処理では、下記の(1)式で算出されるAl系脱酸剤投入量のAl系脱酸剤を添加することを特徴とする。   The present invention was made on the basis of the results of this investigation, and the method for melting high Mn ultra-low carbon steel according to the present invention is performed by decarburizing and refining the molten iron at atmospheric pressure in the converter. Next, the molten steel after the steel output from the converter was vacuum decarburized and Al deoxidized in a vacuum degassing facility, so that the carbon content was 0.005% by mass or less, and the Mn content was 0.00. When melting 4% by mass or more and 2.0% by mass or less of high Mn ultra-low carbon steel, in the converter, Mn ore is introduced as a Mn source and decarburized and refined, and the Al after the vacuum decarburized and refined The deoxidation treatment is characterized by adding an Al-based deoxidizing agent in an amount of Al-based deoxidizing agent calculated by the following equation (1).

AL=(A+α×[O]+β+γ×ΔMn)/B …(1)
但し、(1)式において、WAL:溶鋼トンあたりのAl系脱酸剤投入量(kg/t)、A:溶鋼トンあたりのAl含有量目標値(kg/t)、[O]:Al脱酸前の溶鋼中酸素濃度(ppm)、ΔMn:出鋼直後の溶鋼中Mn濃度と真空脱炭精錬終了時の溶鋼中Mn濃度との差(質量%)、B:Al系脱酸剤のAl純分(−)、α:定数(0.001≦α≦0.002)、β:定数(0.3≦β≦0.5)、γ:定数(1.0≦γ≦1.5)である。ここで、定数βは、主にスラグ中のFeOを還元するために費やされるAl分であり、図1においては、Al脱酸前の溶鋼中酸素濃度がゼロの場合のAlロス分に相当し、また、定数α及び定数γは、図1などの調査結果に基づくものである。Al純分(B)は、例えばAl含有量が60質量%の場合には、B=0.6とする。
W AL = (A + α × [O] + β + γ × ΔMn) / B (1)
However, in the formula (1), W AL : Al-based deoxidizer input amount per ton of molten steel (kg / t), A: Al content target value per ton of molten steel (kg / t), [O]: Al Oxygen concentration in molten steel (ppm) before deoxidation, ΔMn: Difference between Mn concentration in molten steel immediately after steelmaking and Mn concentration in molten steel at the end of vacuum decarburization refining (mass%), B: Al-based deoxidizer Al pure component (−), α: constant (0.001 ≦ α ≦ 0.002), β: constant (0.3 ≦ β ≦ 0.5), γ: constant (1.0 ≦ γ ≦ 1.5) ). Here, the constant β is an Al content mainly consumed for reducing FeO in the slag, and in FIG. 1, it corresponds to an Al loss when the oxygen concentration in the molten steel before Al deoxidation is zero. In addition, the constant α and the constant γ are based on the investigation results shown in FIG. The pure Al content (B) is, for example, B = 0.6 when the Al content is 60% by mass.

次ぎに、上記構成の本発明に係る高Mn極低炭素鋼の溶製方法を説明する。   Next, a method for melting high-Mn ultra-low carbon steel according to the present invention having the above-described configuration will be described.

高炉から出銑された溶銑を溶銑鍋やトーピードカーなどの溶銑保持・搬送用容器で受銑する。この溶銑を転炉で脱炭精錬する前に、溶銑に対して脱珪処理または脱燐処理を実施する。本発明では、転炉での脱炭精錬時に炉内にMn鉱石を装入し、この転炉脱炭精錬において溶銑中の炭素でMn鉱石を還元する。このMn鉱石を転炉脱炭精錬にて効率良く還元するためには、転炉内のスラグ量を少なくする必要があり、脱珪処理または脱燐処理を施すことによって溶銑中の珪素(Si)が減少するので、転炉脱炭精錬におけるSiO2の生成量が少なくなり、転炉内のスラグ量が減少するからである。尚、脱珪処理とは、脱燐反応を促進させるために脱燐反応を阻害する珪素を予め除去するための精錬である。 The hot metal discharged from the blast furnace is received in a hot metal holding / conveying vessel such as a hot metal ladle or torpedo car. Before the hot metal is decarburized and refined in a converter, the hot metal is subjected to desiliconization or dephosphorization. In the present invention, Mn ore is charged into the furnace at the time of decarburization and refining in the converter, and Mn ore is reduced with carbon in the hot metal in this converter decarburization and refining. In order to efficiently reduce this Mn ore by converter decarburization refining, it is necessary to reduce the amount of slag in the converter, and silicon (Si) in the hot metal by performing desiliconization treatment or dephosphorization treatment This is because the amount of SiO 2 generated in converter decarburization refining is reduced and the amount of slag in the converter is reduced. The desiliconization treatment is refining for removing in advance silicon that inhibits the dephosphorization reaction in order to promote the dephosphorization reaction.

溶銑段階での脱硫処理は、溶製する鋼種の硫黄規格値に応じて実施すればよい。つまり、硫黄規格値が0.010質量%以下の低硫鋼の場合には、CaO系脱硫剤などを用いて予備脱硫処理を実施する。   What is necessary is just to implement the desulfurization process in a hot metal stage according to the sulfur specification value of the steel type to melt. That is, in the case of low-sulfur steel having a sulfur standard value of 0.010% by mass or less, a preliminary desulfurization treatment is performed using a CaO-based desulfurizing agent or the like.

脱珪処理または脱燐処理が施され、必要に応じて脱硫処理が施された溶銑を転炉に装入して、酸素ガスを上吹きまたは底吹きして溶銑の脱炭精錬を実施する。この脱炭精錬では、生成するスラグの塩基度(質量%CaO/質量%SiO2)が2〜5の範囲内になるように生石灰やドロマイトなどを媒溶剤として転炉内に装入するとともに、Mn鉱石を連続的または断続的に転炉内に装入して、脱炭精錬を実施する。 Hot metal that has been subjected to desiliconization treatment or dephosphorization treatment and, if necessary, desulfurized treatment is charged into a converter, and oxygen gas is blown up or blown down to decarburize and refine the hot metal. In this decarburization refining, while the basicity (mass% CaO / mass% SiO 2 ) of the slag to be produced is in the range of 2-5, quick lime or dolomite is charged into the converter as a solvent, Mn ore is charged into the converter continuously or intermittently and decarburization refining is performed.

転炉脱炭精錬の終点時期は、脱炭精錬によって生成した溶鋼の炭素濃度が0.04〜0.06質量%となった時点とすることが好ましい。溶鋼の炭素濃度を下げすぎると、溶鋼及び炉内スラグの酸素ポテンシャルが高くなり、溶鋼に還元されたMnが酸化してスラグに移行してしまうが、溶鋼の炭素濃度が0.04質量%以上であれば、スラグへのMnの移行を防止することができる。一方、溶鋼の炭素濃度が高すぎると、次工程の真空脱ガス設備における真空脱炭精錬の処理時間が長くなり、生産性が低下する。溶鋼の炭素濃度が0.06質量%以下であれば、真空脱炭精錬の処理時間を、連続鋳造工程を阻害しない所定時間内に処理することがでる。   The end point timing of converter decarburization refining is preferably the time when the carbon concentration of the molten steel produced by decarburization refining is 0.04 to 0.06% by mass. If the carbon concentration of the molten steel is lowered too much, the oxygen potential of the molten steel and the slag in the furnace increases, and Mn reduced to the molten steel is oxidized and transferred to the slag, but the carbon concentration of the molten steel is 0.04% by mass or more. If it is, the transfer of Mn to the slag can be prevented. On the other hand, if the carbon concentration of the molten steel is too high, the processing time for vacuum decarburization refining in the vacuum degassing facility in the next process becomes long, and the productivity decreases. If the carbon concentration of the molten steel is 0.06 mass% or less, the processing time for vacuum decarburization refining can be processed within a predetermined time that does not hinder the continuous casting process.

この溶鋼を転炉から取鍋に出鋼し、次いで、溶鋼を収容した取鍋をRH真空脱ガス装置などの真空脱ガス設備に搬送する。出鋼直後、取鍋内の溶鋼から分析用試料を採取して、溶鋼中のMn濃度を把握する。   This molten steel is discharged from the converter into a ladle, and then the ladle containing the molten steel is conveyed to a vacuum degassing facility such as an RH vacuum degassing apparatus. Immediately after the steel is extracted, a sample for analysis is taken from the molten steel in the ladle to grasp the Mn concentration in the molten steel.

真空脱ガス設備では、真空脱炭精錬を実施するので、出鋼時、Al、Ti、Siなどの強脱酸元素による脱酸処理は実施せず、未脱酸のまま搬送する。また、出鋼時、炉内スラグの一部が溶鋼に巻き込まれて転炉から取鍋内に流出し、取鍋内の溶鋼上に滞留する。取鍋内に滞留するスラグは、次工程の真空脱ガス設備における脱酸処理後に溶鋼中のAlなどの脱酸剤と反応して溶鋼の清浄性を損なうこともあるので、スラグ中に金属Alなどのスラグ改質剤を取鍋上方から添加してスラグを脱酸してもよい。   In the vacuum degassing equipment, vacuum decarburization refining is carried out, and therefore, deoxidation treatment with strong deoxidation elements such as Al, Ti, Si and the like is not performed at the time of steel extraction, and the steel is transported without being deoxidized. Further, at the time of steel output, a part of the slag in the furnace is caught in the molten steel, flows out from the converter into the ladle, and stays on the molten steel in the ladle. Since the slag staying in the ladle may react with a deoxidizer such as Al in the molten steel after deoxidation treatment in the vacuum degassing facility in the next process, the cleanliness of the molten steel may be impaired. A slag modifier such as a slag may be added from above the pan to deoxidize the slag.

真空脱ガス設備においては、先ず、減圧下での真空脱炭精錬を実施する。この真空脱炭精錬は、溶鋼中の溶在酸素を利用する方法や、真空脱ガス設備の真空槽内の溶鋼に酸素ガスや酸化鉄を供給する方法などの従来行われている方法を用いて実施する。この真空脱炭精錬の末期、溶鋼中の炭素濃度が目標値以下まで脱炭された時点で、溶鋼から分析用試料を採取して、真空脱炭精錬終了時の溶鋼中のMn濃度及び酸素濃度を把握する。   In the vacuum degassing facility, first, vacuum decarburization refining under reduced pressure is performed. This vacuum decarburization refining uses conventional methods such as a method of utilizing dissolved oxygen in molten steel and a method of supplying oxygen gas and iron oxide to molten steel in a vacuum tank of a vacuum degassing facility. carry out. At the end of this vacuum decarburization refining, when the carbon concentration in the molten steel is decarburized to below the target value, an analytical sample is taken from the molten steel, and the Mn concentration and oxygen concentration in the molten steel at the end of the vacuum decarburization refining To figure out.

そして、前記(1)式を用いてAl系脱酸剤投入量(WAL)を求め、求めたAl系脱酸剤投入量(WAL)と同量の、金属AlやFe−Al合金などのAl系脱酸剤を添加して、溶鋼を脱酸処理する。溶鋼を脱酸処理することによって真空脱炭精錬は自ずと終了するが、酸素ガスなどの酸素源を供給していた場合には、Al脱酸処理の前に、酸素源の供給を中止する。Al脱酸処理後、更に真空脱ガス設備で真空脱ガス精錬を施し、必要に応じて、Mn、Si、Ti、Nb、Vなどの成分調整を実施する。Mnの成分調整には主として電解金属Mnを使用する。成分調整が終了したなら、溶鋼を収容した取鍋を連続鋳造工程に搬送し、連続鋳造によって溶鋼から鋳片を製造する。 Then, the Al-based deoxidizing agent input amount (W AL ) is obtained using the equation (1), and the same amount of the obtained Al-based deoxidizing agent input amount (W AL ), such as metal Al or Fe—Al alloy, etc. The Al-based deoxidizer is added to deoxidize the molten steel. The vacuum decarburization refining is naturally terminated by deoxidizing the molten steel. However, when an oxygen source such as oxygen gas is supplied, the supply of the oxygen source is stopped before the Al deoxidation process. After the Al deoxidation treatment, vacuum degassing refining is further performed in a vacuum degassing facility, and components such as Mn, Si, Ti, Nb, and V are adjusted as necessary. Electrolytic metal Mn is mainly used to adjust the Mn component. When the component adjustment is completed, the ladle containing the molten steel is conveyed to a continuous casting process, and a slab is produced from the molten steel by continuous casting.

以上説明したように、本発明によれば、転炉から取鍋への出鋼後から、真空脱ガス設備での真空脱炭精錬までの期間における溶鋼中のMnの酸化分に応じて、真空脱炭精錬後のAl脱酸処理時でのAl系脱酸剤の投入量を設定するので、Al系脱酸剤は過不足なく投入され、1回のAl脱酸処理のみで溶鋼中のAl含有量が規格内に調整でき、複数回のAlの成分調整を必要とせず、真空脱ガス設備の生産性を低下させることなく、溶鋼中のAl成分を調整することが可能となる。また、Mn源としてMn鉱石を使用するので、高価な電解金属Mnを削減することができる。   As described above, according to the present invention, after the steel is discharged from the converter to the ladle, depending on the oxidized content of Mn in the molten steel in the period from vacuum decarburization refining in the vacuum degassing equipment, vacuum is applied. Since the amount of Al-based deoxidizer to be used in Al deoxidation after decarburization and refining is set, the Al-based deoxidizer is charged without excess and deficiency, and Al in molten steel can be obtained only by one Al deoxidation. The content can be adjusted within the standard, and it is possible to adjust the Al component in the molten steel without requiring multiple adjustments of the Al component and without reducing the productivity of the vacuum degassing equipment. Moreover, since Mn ore is used as a Mn source, expensive electrolytic metal Mn can be reduced.

Mn濃度規格が0.55〜0.65質量%、Al濃度規格が0.02〜0.04質量%である高Mn極低炭素鋼を、本発明方法を適用して溶製した例を説明する。   Explained an example in which a high Mn ultra-low carbon steel having a Mn concentration standard of 0.55 to 0.65 mass% and an Al concentration standard of 0.02 to 0.04 mass% was applied by applying the method of the present invention. To do.

高炉から出銑された溶銑を脱燐処理し、この溶銑を転炉に装入して上吹きランスから酸素ガスを供給して脱炭精錬を実施した。この脱炭精錬では、転炉内に溶鋼トンあたり12kgのMn鉱石を添加するとともに、転炉内のスラグの塩基度を3.0に調整した。溶鋼中炭素濃度が0.045質量%となった時点で転炉脱炭精錬を終了した。   The hot metal discharged from the blast furnace was dephosphorized, and the hot metal was charged into a converter and supplied with oxygen gas from an upper blow lance to perform decarburization refining. In this decarburization refining, 12 kg of Mn ore per ton of molten steel was added to the converter, and the basicity of the slag in the converter was adjusted to 3.0. Converter decarburization refining was completed when the carbon concentration in the molten steel reached 0.045 mass%.

得られた溶鋼を転炉から取鍋へ出鋼し、その後、RH真空脱ガス装置に搬送し、RH真空脱ガス装置にて炭素濃度が0.001質量%となるまで真空脱炭精錬を実施した。この真空脱炭精錬後に、前述した(1)式で算出される値と同量の金属Alを添加して脱酸処理し、脱酸処理後、電解金属Mnを使用してMn濃度が0.6質量%になるようにMn調整を行って、高Mn極低炭素鋼を溶製した。尚、(1)式を用いて算出するに際して、Al純分(B)は1.0、溶鋼のAl含有量目標値(A)は0.3kg/t(溶鋼のAl目標値=0.03質量%)、αは0.0015、βは0.4、γは1.3として算出した。   The obtained molten steel is discharged from the converter to the ladle, then transported to the RH vacuum degasser, and vacuum decarburized and refined until the carbon concentration reaches 0.001% by mass with the RH vacuum degasser. did. After this vacuum decarburization refining, the same amount of metal Al as the value calculated by the above-mentioned formula (1) is added for deoxidation treatment, and after deoxidation treatment, the electrolytic metal Mn is used to make the Mn concentration 0. Mn adjustment was performed so that it might become 6 mass%, and high Mn very low carbon steel was melted. When calculating using the formula (1), the pure Al content (B) is 1.0, and the Al content target value (A) of the molten steel is 0.3 kg / t (Al target value of the molten steel = 0.03). Mass%), α was 0.0015, β was 0.4, and γ was 1.3.

脱ガス精錬処理後、溶鋼をRH真空脱ガス装置から連続鋳造設備に搬送して鋳造し、スラブ鋳片を製造した。このスラブ鋳片から分析試料を採取してAl濃度を分析し、チャージ間でのAl成分値のバラツキを調査した。その結果、Al成分値の標準偏差のσ値は0.0042質量%であり、従来のσ値が0.0057質量%であったことから、鋳片のAl成分値のバラツキは大幅に低減することが確認できた。また、本発明を適用することによってRH真空脱ガス装置での処理時間は28.0分となり、従来の処理時間29.5分に比較して約1.5分間短縮された。   After the degassing refining treatment, the molten steel was transferred from the RH vacuum degasser to a continuous casting facility and cast to produce a slab slab. An analytical sample was collected from the slab slab, the Al concentration was analyzed, and the variation in the Al component value between charges was investigated. As a result, the σ value of the standard deviation of the Al component value was 0.0042% by mass, and the conventional σ value was 0.0057% by mass, so the variation in the Al component value of the slab is greatly reduced. I was able to confirm. Further, by applying the present invention, the processing time in the RH vacuum degassing apparatus was 28.0 minutes, which was shortened by about 1.5 minutes compared to the conventional processing time of 29.5 minutes.

溶鋼中のMn濃度を変化させてAlロス分を調査した結果である。It is the result of investigating the Al loss by changing the Mn concentration in the molten steel.

Claims (1)

転炉にて溶銑に対して大気圧下での脱炭精錬を行って溶鋼を得て、次いで、転炉から出鋼後の溶鋼を真空脱ガス設備にて真空脱炭精錬及びAl脱酸処理して、炭素含有量が0.005質量%以下、Mn含有量が0.4質量%以上、2.0質量%以下の高Mn極低炭素鋼を溶製するに際し、前記転炉ではMn源としてMn鉱石を投入して脱炭精錬し、前記真空脱炭精錬後のAl脱酸処理では、下記の(1)式で算出されるAl系脱酸剤投入量のAl系脱酸剤を添加することを特徴とする、高Mn極低炭素鋼の溶製方法。
AL=(A+α×[O]+β+γ×ΔMn)/B …(1)
但し、(1)式において各記号は以下を表すものである。
AL:溶鋼トンあたりのAl系脱酸剤の投入量(kg/t)
A:溶鋼トンあたりのAl含有量目標値(kg/t)
[O]:Al脱酸前の溶鋼中酸素濃度(ppm)
ΔMn:出鋼直後の溶鋼中Mn濃度と真空脱炭精錬終了時の溶鋼中Mn濃度との差(質量%)
B:Al系脱酸剤のAl純分(−)
α:定数(0.001≦α≦0.002)
β:定数(0.3≦β≦0.5)
γ:定数(1.0≦γ≦1.5)
Decarburization and refining of the molten iron in the converter at atmospheric pressure is performed to obtain molten steel, and then the molten steel that has been discharged from the converter is vacuum decarburized and Al deoxidized in a vacuum degassing facility. When the high Mn ultra-low carbon steel having a carbon content of 0.005 mass% or less and a Mn content of 0.4 mass% or more and 2.0 mass% or less is melted, Mn ore is added and decarburized and refined, and in the Al deoxidation treatment after the vacuum decarburized refinement, an Al-based deoxidizer is added in the amount of Al-based deoxidizer calculated by the following formula (1). A method for melting high-Mn ultra-low carbon steel, characterized by:
W AL = (A + α × [O] + β + γ × ΔMn) / B (1)
However, in the formula (1), each symbol represents the following.
W AL : Input amount of Al-based deoxidizer per ton of molten steel (kg / t)
A: Target value of Al content per ton of molten steel (kg / t)
[O]: Oxygen concentration in molten steel (ppm) before Al deoxidation
ΔMn: Difference between the Mn concentration in the molten steel immediately after steelmaking and the Mn concentration in the molten steel at the end of vacuum decarburization (% by mass)
B: Al pure content of an Al-based deoxidizer (-)
α: Constant (0.001 ≦ α ≦ 0.002)
β: Constant (0.3 ≦ β ≦ 0.5)
γ: Constant (1.0 ≦ γ ≦ 1.5)
JP2008068644A 2008-03-18 2008-03-18 Method of melting high Mn ultra-low carbon steel Active JP5326310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068644A JP5326310B2 (en) 2008-03-18 2008-03-18 Method of melting high Mn ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068644A JP5326310B2 (en) 2008-03-18 2008-03-18 Method of melting high Mn ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JP2009221561A JP2009221561A (en) 2009-10-01
JP5326310B2 true JP5326310B2 (en) 2013-10-30

Family

ID=41238635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068644A Active JP5326310B2 (en) 2008-03-18 2008-03-18 Method of melting high Mn ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP5326310B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168833B1 (en) * 2017-12-22 2020-10-22 주식회사 포스코 Method for Refining Low Carbon Steel
KR102103380B1 (en) * 2018-07-09 2020-04-22 주식회사 포스코 Manufacturing method of molten steel
CN114807731A (en) * 2022-05-20 2022-07-29 山东钢铁集团日照有限公司 Smelting method of steel grade with ultra-low carbon and large silicon-manganese alloy amount

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458612A (en) * 1977-10-19 1979-05-11 Nippon Steel Corp Oxygen steel making process using iron manganese ore as mn source
JP2776118B2 (en) * 1992-02-28 1998-07-16 住友金属工業株式会社 Melting method for non-oriented electrical steel sheet
JP3241910B2 (en) * 1993-02-26 2001-12-25 日新製鋼株式会社 Manufacturing method of extremely low sulfur steel
JPH06306445A (en) * 1993-04-28 1994-11-01 Sumitomo Metal Ind Ltd Method for decarburizing and desulfurizing molten steel
JP3279161B2 (en) * 1995-12-18 2002-04-30 日本鋼管株式会社 Melting method of ultra low carbon high manganese steel

Also Published As

Publication number Publication date
JP2009221561A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP4742740B2 (en) Method for melting low-sulfur steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP2015042777A (en) Method for smelting high nitrogen steel
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
JP5326310B2 (en) Method of melting high Mn ultra-low carbon steel
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JPH10298631A (en) Method for melting clean steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH06207212A (en) Production of high creanliness extra-low carbon steel of extremely low s
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
KR101045972B1 (en) Refining method of highly clean ultra low carbon steel for soft two-piece can
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JP5315669B2 (en) Method for refining molten steel with RH vacuum degassing equipment
JP4667841B2 (en) Method for melting chromium-containing steel
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP4352898B2 (en) Method of melting high cleanliness steel
JPH08134528A (en) Production of extra low carbon steel
JP2009173994A (en) Method for producing al-less extra-low carbon steel
KR20060035274A (en) Method for manufacturing molten steel for galvanized steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250