JP3241910B2 - Manufacturing method of extremely low sulfur steel - Google Patents

Manufacturing method of extremely low sulfur steel

Info

Publication number
JP3241910B2
JP3241910B2 JP29984593A JP29984593A JP3241910B2 JP 3241910 B2 JP3241910 B2 JP 3241910B2 JP 29984593 A JP29984593 A JP 29984593A JP 29984593 A JP29984593 A JP 29984593A JP 3241910 B2 JP3241910 B2 JP 3241910B2
Authority
JP
Japan
Prior art keywords
slag
desulfurization
steel
low sulfur
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29984593A
Other languages
Japanese (ja)
Other versions
JPH06306442A (en
Inventor
雅之 前田
敬二 芥屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29984593A priority Critical patent/JP3241910B2/en
Publication of JPH06306442A publication Critical patent/JPH06306442A/en
Application granted granted Critical
Publication of JP3241910B2 publication Critical patent/JP3241910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加工性に優れた極低硫
鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing extremely low sulfur steel having excellent workability.

【0002】[0002]

【従来の技術】金属の加工性を向上させるには、金属中
のマンガン含有量(以下〔Mn〕という)を増加させる
と共に、硫黄含有量(以下〔S〕という)を低下させる
ことが重要である。従来行われている極低硫鋼の一般的
な製造方法は、溶銑予備処理工程で溶銑の脱硫及び脱燐
を行ったのち、転炉吹錬で脱炭及び脱燐を行い、吹錬終
了時点(以下吹止時という)でのカーボン含有量を0.
05%程度まで低下させたのち、取鍋へ出鋼し、ついで
多量のFeMnを添加したのち、除滓し、二次精錬にて
脱酸処理後、溶鋼脱硫処理を行い、脱硫後、真空脱ガス
処理装置にて脱ガス、介在物の浮上促進等成分調整を行
ってから連続鋳造している。
2. Description of the Related Art In order to improve the workability of a metal, it is important to increase the manganese content (hereinafter referred to as [Mn]) in the metal and to reduce the sulfur content (hereinafter referred to as [S]). is there. The general method of producing extremely low sulfur steel is to perform desulfurization and dephosphorization of the hot metal in the hot metal pretreatment step, then decarburize and dephosphorize by converter blowing, and at the end of blowing. (Hereinafter referred to as blow stop), the carbon content is set to 0.1.
After reducing the temperature to about 05%, the steel is poured into a ladle, then a large amount of FeMn is added, the slag is removed, the steel is deoxidized by secondary refining, molten steel desulfurization is performed, desulfurization is performed, and vacuum degassing is performed. Continuous casting is performed after degassing and component adjustment such as acceleration of inclusion floating by a gas treatment device.

【0003】この方法で除滓を行うのは、出鋼時に転炉
にて生成したスラグをスラグカットするにしても、一部
取鍋へ流出したスラグや出鋼中或いは出鋼後のFeMn
添加により生成したスラグ中にFeO、MnOの割合が
多く、溶鋼脱硫時にスラグ中の酸素ポテンシャルが高い
と、脱硫反応の進行が悪いためで、除滓には一般に簡便
で安全性のあるスラグドラッガーが用いられている。
[0003] The removal of slag by this method is performed even if slag generated in a converter at the time of tapping is cut by slag, slag which partially flows into a ladle or FeMn during or after tapping.
If the ratio of FeO and MnO in the slag generated by the addition is large and the oxygen potential in the slag during the desulfurization of molten steel is high, the progress of the desulfurization reaction is poor, and a simple and safe slag dragger is generally used for deslagging. Used.

【0004】また溶鋼の脱硫方法としては、取鍋内の溶
鋼にランスを挿入し、脱硫用フラックスをインジェクシ
ョンする方法、取鍋の底に設置したポーラスプラグを通
じて吹込んだ不活性ガスで溶鋼を攪拌すると共に、溶鋼
上部に添加した脱硫用フラックスを電極にて加熱し、脱
硫反応を促進させるLF等が採用されている。
As a method for desulfurizing molten steel, a method of inserting a lance into molten steel in a ladle and injecting flux for desulfurization, stirring the molten steel with an inert gas blown through a porous plug installed at the bottom of the ladle. At the same time, LF or the like is used which heats the desulfurization flux added to the upper part of the molten steel with an electrode to accelerate the desulfurization reaction.

【0005】[0005]

【発明が解決しようとする課題】転炉より出鋼後、除滓
を行う従来の溶鋼脱硫工程においては、除滓のための設
備や要員が必要であるほか、除滓による熱ロスが非常に
大きく、また除滓後、溶鋼を被覆するための造滓剤が多
量に必要となる難点があった。除滓を行わずに溶鋼脱硫
処理を行った場合、脱硫効率が低く、極低硫化を達成し
ようとすれば、多量のフラックスを必要とするほか、フ
ラックスコストの上昇、熱ロスの増大、耐火物の溶損
等、操業に支障を来たす問題があり、スラグの酸素ポテ
ンシャルを低下させるため、取鍋スラグ上にスラグ脱酸
剤を多量に添加しても、その大半が未反応として残り、
十分なスラグ改質が行われない難点があった。
In the conventional molten steel desulfurization process of removing slag after tapping from a converter, equipment and personnel for slag removal are required, and heat loss due to the slag removal is extremely large. There is a disadvantage that a large amount of a slag-making agent for coating the molten steel is required after removing the slag. If the desulfurization treatment of molten steel is performed without removing slag, the desulfurization efficiency is low, and in order to achieve ultra-low sulfurization, a large amount of flux is required, the flux cost increases, heat loss increases, and refractories are increased. There is a problem that hinders the operation such as erosion of slag, and even if a large amount of slag deoxidizer is added to the ladle slag to reduce the oxygen potential of the slag, most of it remains unreacted,
There was a problem that sufficient slag reforming was not performed.

【0006】また転炉からの出鋼中、或いは出鋼後に添
加された多量のFeMnは、一部が取鍋スラグ中の酸素
や大気と反応してMnOを生成し、その全てがスラグ中
に吸収され、溶鋼脱硫効率を低下させる原因となってい
る。本発明の目的は、従来法における取鍋のスラグの除
滓を不要にすると共に、出鋼後に添加されるマンガン添
加を少なくし、取鍋スラグ中の酸素ポテンシャルを低く
して、脱硫効率を向上させる極低硫鋼の製造方法を提供
しようとするものである。
A large amount of FeMn added during or after tapping from a converter partially reacts with oxygen or air in the ladle slag to form MnO, and all of the MnO is added to the slag. It is absorbed and causes a decrease in the desulfurization efficiency of molten steel. An object of the present invention is to eliminate deslagging of slag in a ladle in the conventional method, reduce the addition of manganese added after tapping, lower the oxygen potential in the ladle slag, and improve desulfurization efficiency. It is an object of the present invention to provide a method for producing an extremely low sulfur steel.

【0007】[0007]

【課題の解決手段及び作用】本発明の極低硫鋼の製造方
法は、溶銑予備処理工程で、脱硫及び脱燐を行った溶銑
を用いて転炉吹練を行い、吹止時の溶鋼中の炭素含有量
(以下〔C〕という)を0.1%以上に抑制して出鋼
したのち、取鍋スラグにスラグ脱酸剤を添加し、ついで
徐滓を実施することなく脱炭処理し、所定の炭素含有量
に調整したのち、脱酸処理を行い、その後溶鋼脱硫処理
を行うことを特徴とするものである。
The method for producing ultra-low sulfur steel according to the present invention is characterized in that in a hot metal pretreatment step, a converter is blown using hot metal that has been desulfurized and dephosphorized, and the molten steel at the time of blow-off is blown. carbon content of After steel out by (hereinafter [C] hereinafter) was suppressed to 0.1 5%, the slag deoxidant is added to the ladle slag, then decarburization without performing Jokasu Then, after adjusting to a predetermined carbon content, a deoxidizing treatment is performed, and then a molten steel desulfurizing treatment is performed.

【0008】転炉吹錬を行うと、当初は〔C〕濃度が低
下するが、〔C〕濃度がある程度低下すると、〔Mn〕
が酸化されるようになる。図1は、吹止時の〔C〕濃度
と、スラグ中のFeO、MnO濃度(以下(FeO)、
(MnO)という)との関係を示すもので、〔C〕濃度
が高い程(FeO)、(MnO)が低く、〔C〕<0.
1%となると、(FeO)、(MnO)が急増する様子
を示している。(FeO)、(MnO)は低い程、脱硫
反応が進行するから、脱硫効率を上げるには吹止時の
〔C〕≧0.1%とするのが望ましく、吹止時の〔C〕
制御精度のばら付きを考慮すれば、〔C〕≧0.15%
がより望ましい。
When the converter is blown, the concentration of [C] decreases at first, but when the concentration of [C] decreases to some extent, [Mn]
Becomes oxidized. FIG. 1 shows the [C] concentration at the time of blow-off and the concentrations of FeO and MnO in slag (hereinafter referred to as (FeO),
(Referred to as (MnO)). The higher the [C] concentration, the lower the (FeO) and (MnO), and the lower the [C] <0.
At 1%, (FeO) and (MnO) rapidly increase. Since the desulfurization reaction proceeds as the (FeO) and (MnO) become lower, it is desirable that the [C] at the time of the blow-off is 0.1% or more, and the [C] at the time of the blow-off is increased in order to increase the desulfurization efficiency.
Considering variation in control accuracy, [C] ≧ 0.15%
Is more desirable.

【0009】吹止時〔C〕≧0.1%とすることによ
り、(FeO)、(MnO)が低くなることはまた、吹
付時〔Mn〕濃度が高く維持され、添加されるマンガン
歩溜りが高くなることを意味する。添加されるマンガン
の歩溜りが向上すると、出鋼後、製品に要求される〔M
n〕レベル近くまでマンガンを添加する際のマンガン添
加量を低減させることができ、したがってそれによって
生成されるMnOを低減し、スラグ脱酸剤添加により
(MnO)を溶鋼脱硫に必要な程度まで減少させること
が容易となる。
[0009] With吹止when [C] ≧ 0.1 5%, (FeO) , also be (MnO) is lowered, when spraying is [Mn] concentration is kept high, manganese step added It means that the pool gets higher. When the yield of manganese to be added is improved, it is required for products after tapping [M
n] The amount of manganese added when manganese is added to near the level can be reduced, thereby reducing the MnO produced thereby, and the addition of slag deoxidizing agent reduces (MnO) to the extent required for molten steel desulfurization It becomes easy to do.

【0010】〔Mn〕レベルを製品に要求されるレベル
に到達させるには、従来法のようにFeMnを出鋼中、
或いは出鋼後に多量添加してもよいが、転炉溶鋼の昇熱
を必要とする場合には、出鋼中或いは出鋼後のFeMn
の添加の代わりに、転炉吹錬中にSiMnを製品に要求
される〔Mn〕レベル近くまで添加するのが望ましい。
In order to reach the [Mn] level required for a product, FeMn is produced during tapping as in the conventional method.
Alternatively, a large amount may be added after tapping. However, when it is necessary to raise the temperature of the converter molten steel, FeMn during or after tapping is required.
It is desirable to add SiMn to near the [Mn] level required for the product during the converter blowing instead of adding.

【0011】後の溶鋼脱硫工程において添加されるフラ
ックスによる熱ロスを補償するため、極低硫鋼の吹止時
における溶鋼温度は、一般鋼種に比べて高く、溶鋼の昇
熱のため、従来用いられてきた黒鉛等のカーボン系昇温
剤は、一般に不純物として硫黄を含有し、そのため吹錬
中に硫黄がピックアップされ、溶鋼中の〔S〕が増加す
るのに対し、SiMnはSiが酸化発熱反応を生じるた
め、カーボン系昇温剤の使用をなくすか、或いはその使
用量を少なくすることができ、したがって溶鋼中の硫黄
が増加しないか、又は硫黄の増加を制御することができ
る。
[0011] In order to compensate for heat loss due to the flux added in the subsequent molten steel desulfurization step, the temperature of molten steel at the time of blow-off of ultra-low sulfurized steel is higher than that of general steel types. Carbon-based heating agents such as graphite generally contain sulfur as an impurity, so that sulfur is picked up during blowing and the [S] in molten steel increases, whereas SiMn generates heat by oxidation of Si. Since the reaction occurs, the use of the carbon-based heating agent can be eliminated or the amount thereof can be reduced, so that the sulfur in the molten steel does not increase or the increase of the sulfur can be controlled.

【0012】吹錬時にSiMnを多量添加することによ
って、(MnO)も増加するが、出鋼時にスラグカット
装置を用いることにより、転炉内のスラグが取鍋内へ多
量流出しないようにすることができる。出鋼後、取鍋ス
ラグに脱酸剤を添加するには、取鍋内へ流出したスラグ
がFeOを5〜15%、MnOを3〜10%程度含有す
るため、これを脱酸して溶鋼脱硫効率を高めるためであ
る。この場合のスラグ脱酸剤としては、通常Al−Ca
CO3 、Al−Al2 3 等が用いられる。
(MnO) is increased by adding a large amount of SiMn at the time of blowing, but by using a slag cutting device at the time of tapping, it is necessary to prevent a large amount of slag in the converter from flowing into the ladle. Can be. In order to add a deoxidizer to the ladle slag after tapping, the slag flowing into the ladle contains 5 to 15% of FeO and 3 to 10% of MnO. This is to increase the desulfurization efficiency. The slag deoxidizer in this case is usually Al-Ca
CO 3 , Al—Al 2 O 3 or the like is used.

【0013】図2は、(FeO)+(MnO)と脱硫率
(%)の関係を示すもので、同図から見られるように、
スラグ脱酸剤の添加による脱酸後の(FeO)+(Mn
O)濃度を5%以下とすることにより,脱硫率を向上さ
せることができる。スラグ脱酸剤添加後の脱炭処理は通
常、RH真空脱ガス処理装置を用いて行われ、所定
〔C〕レベルまで脱炭させる。この際、脱炭に必要な酸
素が溶鋼中に溶存していないと、酸素吹付けが行われる
が、酸素吹付けが過剰に行われると、炭素の酸化ばかり
でなく、Mnの酸化も行われるようになり、MnOの増
加を招く。図3に示すように、脱炭終了時の溶鋼中の溶
存酸素を100ppm以下となるように、送酸速度を制
御すれば、Mnの酸化を制御することができる。
FIG. 2 shows the relationship between (FeO) + (MnO) and the desulfurization rate (%). As can be seen from FIG.
(FeO) + (Mn) after deoxidation by adding a slag deoxidizer
O) By setting the concentration to 5% or less, the desulfurization rate can be improved. The decarburizing treatment after the addition of the slag deoxidizing agent is usually performed by using an RH vacuum degassing apparatus, and decarburizing to a predetermined [C] level. At this time, if the oxygen necessary for decarburization is not dissolved in the molten steel, oxygen spraying is performed, but if oxygen blowing is performed excessively, not only oxidation of carbon but also oxidation of Mn is performed. And MnO is increased. As shown in FIG. 3, the oxidation of Mn can be controlled by controlling the acid supply rate so that the dissolved oxygen in the molten steel at the end of decarburization is 100 ppm or less.

【0014】溶鋼の脱硫方式としては、真空脱ガス工程
にて成分調整と、溶鋼脱酸を行ったのち、インジェクシ
ョン或いはLFにて脱硫を行う方法、真空脱ガス処理装
置にて溶鋼脱酸後、フラックスを添加する方法、RH真
空脱ガス処理装置の下部槽下部から不活性ガスをキャリ
ヤガスとしてフラックスを吹込む方法などを用いること
ができるが、RH真空脱ガス処理装置だけで脱硫までの
工程を行うのが、工程が複雑とならず好ましい。
As the desulfurization method of molten steel, a method of adjusting components in a vacuum degassing step and performing deoxidation of molten steel, followed by desulfurization by injection or LF, and deoxidation of molten steel by a vacuum degassing apparatus, A method of adding a flux, a method of blowing a flux using an inert gas as a carrier gas from a lower portion of a lower tank of the RH vacuum degassing apparatus, and the like can be used. It is preferable to perform the process without complicating the process.

【0015】また、RH真空脱ガス処理装置だけで脱硫
までの工程を行う場合、フラックス添加法では通常の合
金添加装置を用いるため、設備改造は不要であるが、脱
硫剤は自重で溶鋼中に落下するため、粒度を選定する際
に真空排気装置に吸引されない程度の塊状の脱硫剤を使
用せざるを得ない。このため脱硫反応界面積は小さくな
り、脱硫反応の向上は脱硫剤原単位を増加する方法しか
望めない。
[0015] When the process up to desulfurization is performed only with the RH vacuum degassing device, the flux addition method uses a normal alloy addition device, so no equipment remodeling is necessary. Because of the drop, when selecting the particle size, a massive desulfurizing agent must be used so as not to be sucked by the vacuum exhaust device. For this reason, the area of the desulfurization reaction interface becomes small, and improvement of the desulfurization reaction can be expected only by a method of increasing the desulfurizing agent basic unit.

【0016】脱硫効果をアップするには、粉状の脱硫剤
を使用するのが望ましく、その方法としてRH脱ガス処
理装置の下部から不活性ガスをキャリアガスとして吹込
む方法があるが、羽口の損耗、常時ガスパージが必要と
いった欠点がある。前述した溶鋼脱硫方法の問題を解決
するためには、RH真空脱ガス槽上部から槽内へ挿入さ
れたランスから、粉状の脱硫剤を環流する溶鋼中へ吹付
ける方法が望ましい。この方法によれば、設備費用、脱
硫剤費用を除いた比例費のコストアップにならない。
In order to improve the desulfurization effect, it is desirable to use a powdery desulfurizing agent. As a method for this, there is a method of blowing an inert gas as a carrier gas from the lower part of the RH degassing apparatus. There are drawbacks such as abrasion and the necessity of constant gas purging. In order to solve the above-mentioned problem of the molten steel desulfurization method, it is desirable to spray a powdery desulfurizing agent into the circulating molten steel from a lance inserted into the RH vacuum degassing tank from above. According to this method, there is no increase in the proportional cost excluding the equipment cost and the desulfurizing agent cost.

【0017】脱硫時のフラックス添加による温度降下に
対する熱補償は通常、Al添加後の酸素吹付けによって
行われる。この場合、昇温後の溶鋼中のAl(以下〔S
Ol・Al〕という)濃度が0.05%以上となると、
昇温中における〔Mn〕酸化を防止できることが分かっ
た。したがって昇温前のAl添加は、昇温後の〔SOl
・Al〕が0.05%以上となるように増加させるのが
望ましい。図4は昇温後の〔SOl・Al〕と昇温中の
〔Mn〕酸化速度との関係を示す。
The thermal compensation for the temperature drop due to the addition of flux during desulfurization is usually performed by oxygen spraying after Al addition. In this case, Al (hereinafter referred to as [S
Ol.Al]) is 0.05% or more.
It was found that [Mn] oxidation during the heating could be prevented. Therefore, the addition of Al before the temperature rise is based on [SOl
[Al] is desirably increased to 0.05% or more. FIG. 4 shows the relationship between the [SOl.Al] after the temperature rise and the [Mn] oxidation rate during the temperature rise.

【0018】[0018]

【実施例】【Example】

実施例1 溶銑予備処理工程で、脱硫及び脱燐を行った溶銑を転炉
に入れ、表1に示すように、溶銑1ton当り、SiM
nを35kg、Mn鉱石を9kg添加して吹錬を行っ
た。吹錬は吹止時の〔C〕が0.20%になるまで行
い、吹止時の〔Mn〕は1.80%、(FeO)は8.
2%、(MnO)は6.0%であった。その後スラグカ
ット装置によりスラグカットしながら溶鋼を取鍋に出鋼
し、取鍋スラグ上にスラグ脱酸剤Al−Al2 3 を溶
鋼1ton当たり2kg添加して脱酸を行い、ついでR
H真空脱ガス処理槽に移して2.3Nm3/tの送酸量で
上方より酸素吹付けを行い、脱炭して〔C〕を0.08
%とした。その後Alを溶鋼1ton当たり2.5kg
添加し、上方より酸素吹付けを行って加熱した。溶鋼昇
温後、溶鋼1t当たりFeMnを3kg添加して成分調
整したのち、脱硫フラックス槽内添加にて脱硫フラック
ス70CaO−30CaF2 を10kg/t、Alを
0.2kg/t添加して脱硫を行った。
Example 1 In a hot metal pretreatment step, hot metal that had been desulfurized and dephosphorized was put into a converter, and as shown in Table 1, per 1 ton of hot metal, SiM
35 kg of n and 9 kg of Mn ore were added and blowing was performed. Blowing is performed until [C] at the time of the blow-off becomes 0.20%, [Mn] at the time of the blow-off is 1.80%, and (FeO) is 8.
2% and (MnO) were 6.0%. Thereafter, the molten steel was tapped into a ladle while slag cutting with a slag cutting device, and a slag deoxidizer Al-Al 2 O 3 was added to the ladle slag at a rate of 2 kg per ton of molten steel to perform deoxidation.
H was transferred to a H vacuum degassing tank and sprayed with oxygen from above at an acid feed rate of 2.3 Nm 3 / t to remove [C] from 0.08
%. Then, 2.5 kg of Al per ton of molten steel
The mixture was added and heated by blowing oxygen from above. After the molten steel Atsushi Nobori, after component adjustment and FeMn per molten steel 1t was added 3 kg, the desulfurization flux 70CaO-30CaF 2 was added 10 kg / t, 0.2 kg of Al / t performing desulfurization with a desulfurization flux bath additives Was.

【0019】実施例2 実施例1と同様に溶銑予備処理工程で、脱硫及び脱燐を
行った溶銑を転炉に入れ、表1に示すように、溶銑1t
on当り、SiMnを35kg、Mn鉱石を9kg添加
して吹錬を行った。吹錬は吹止時の〔C〕が0.20%
になるまで行い、吹止時の〔Mn〕が1.80%、(F
eO)は7.4%、(MnO)は6.2%であった。そ
の後スグラカット装置によりスグラカットしながら溶鋼
を取鍋に出鋼し、取鍋スラグ上にスラグ脱酸剤Al−A
2 3 を溶鋼1ton当たり2kg添加して脱酸を行
い、ついでRH真空脱ガス処理槽に移して2.3Nm3
/tの送酸量で上方より酸素吹付けを行い、脱炭して
〔C〕を0.08%とした。その後Alを溶鋼1ton
当たり2.5kg添加し、上方より酸素吹付けを行って
加熱した。溶鋼昇温後、溶鋼1ton当たりFeMnを
3kg添加して成分調整したのち、脱硫フラックス70
CaO−30CaF2 を5kg/t、Alを0.2kg
/t添加して脱硫を行った。
Example 2 In the same manner as in Example 1, the hot metal subjected to desulfurization and dephosphorization in the hot metal pretreatment step was placed in a converter, and as shown in Table 1, 1 ton of hot metal was obtained.
Blowing was performed by adding 35 kg of SiMn and 9 kg of Mn ore per on. [C] at the time of blowing is 0.20%
Until [Mn] at the time of blow-off is 1.80%, (F
eO) was 7.4%, and (MnO) was 6.2%. After that, the molten steel is poured onto the ladle while slag cutting with a slag cutting device, and the slag deoxidizer Al-A is placed on the slag ladle.
Deoxidation was performed by adding 2 kg of 1 2 O 3 per 1 ton of molten steel, and then transferred to an RH vacuum degassing tank and 2.3 Nm 3
Oxygen was sprayed from above with an acid feed rate of / t to remove [C] to 0.08% by decarburization. After that, 1 ton of molten steel
2.5 kg per unit, and heated by spraying oxygen from above. After the temperature of the molten steel was raised, 3 kg of FeMn was added per 1 ton of the molten steel to adjust the composition, and then the desulfurization flux 70
5 kg / t of CaO-30CaF 2 and 0.2 kg of Al
/ T was added to perform desulfurization.

【0020】[0020]

【表1】 比較例1 同じく溶銑予備処理工程で、脱硫及び脱燐を行った溶銑
を転炉に入れ、表1に示すように、溶銑1ton当たり
カーボン系昇温剤(黒鉛)を25kg、マンガン鉱石を
18kg添加して吹錬を行った。吹止時の〔C〕は0.
05%、〔Mn〕は0.40%、(FeO)は21.0
%、(MnO)は7.5%であった。その後スラグカッ
ト装置によりスラグカットしながら溶鋼を取鍋に出鋼
し、出鋼中、溶鋼1ton当たりFeMnを22kg添
加した。そして出鋼後、取鍋スラグ上にスラグ脱酸剤A
l−Al2 3 を添加して脱酸を行った。次にこれをR
H真空脱ガス処理槽に移してAlを溶鋼1ton当た
り、1.8kg添加し、上方より酸素吹付けを行って加
熱した。溶鋼昇温後、溶鋼1ton当たりFeMnを3
kg添加して成分調整したのち、脱硫フラックス槽内添
加にて脱硫フラックス70CaO−30CaF2 を10
kg、Alを1.4kg添加して脱硫を行った。
[Table 1] Comparative Example 1 Similarly, in the hot metal pretreatment step, hot metal subjected to desulfurization and dephosphorization was put into a converter, and as shown in Table 1, 25 kg of a carbon-based heating agent (graphite) and 18 kg of manganese ore were added per 1 ton of hot metal. And blew. [C] at the time of blowing is 0.
05%, [Mn] is 0.40%, and (FeO) is 21.0%.
% And (MnO) were 7.5%. Thereafter, the molten steel was poured into a ladle while slag cutting with a slag cutting device, and 22 kg of FeMn was added per 1 ton of molten steel during tapping. And after tapping, slag deoxidizer A is put on ladle slag
The deoxidation was performed by the addition of l-Al 2 O 3. Then this is R
After transferring to a H vacuum degassing tank, 1.8 kg of Al was added per 1 ton of molten steel, and heated by blowing oxygen from above. After the temperature of the molten steel was raised, 3 FeMn / ton of molten steel was added.
After components adjusted kg added, the desulfurization flux 70CaO-30CaF 2 in the desulfurization flux bath additives 10
kg and 1.4 kg of Al were added for desulfurization.

【0021】比較例2 同じく溶銑予備処理工程で、脱硫及び脱燐を行った溶銑
を転炉に入れ、表1に示すように、溶銑1ton当たり
カーボン系昇温剤(黒鉛)を25kg、マンガン鉱石を
18kg添加して吹錬を行った。吹止時の〔C〕は0.
05%、〔Mn〕は0.40%、(FeO)は19.8
%、(MnO)は7.6%であった。その後スラグカッ
ト装置によりスラグカットしながら溶鋼を取鍋に出鋼
し、出鋼中、溶鋼1ton当たりFeMnを22kg添
加した。そして出鋼後、取鍋スラグ上にスラグ脱酸剤A
l−Al2 3 を添加して脱酸を行った。次にこれをR
H真空脱ガス処理槽に移してAlを溶鋼1ton当た
り、1.8kg添加し、上方より酸素吹付けを行って加
熱した。溶鋼昇温後、溶鋼1ton当たりFeMnを3
kg添加して成分調整したのち、フラックス吹付けにて
脱硫フラックス70CaO−30CaF2 を5kg、A
lを1.4kg添加して脱硫を行った。
Comparative Example 2 Similarly, in the hot metal pretreatment step, hot metal that had been desulfurized and dephosphorized was put into a converter, and as shown in Table 1, 25 kg of a carbon-based heating agent (graphite) per ton of hot metal, manganese ore Was added and the mixture was blown. [C] at the time of blowing is 0.
05%, [Mn] 0.40%, (FeO) 19.8
% And (MnO) were 7.6%. Thereafter, the molten steel was tapped into a ladle while slag cutting with a slag cutting device, and 22 kg of FeMn was added per ton of molten steel during tapping. And after tapping, slag deoxidizer A is put on ladle slag
The deoxidation was performed by the addition of l-Al 2 O 3. Then this is R
After transferring to a H vacuum degassing tank, 1.8 kg of Al was added per 1 ton of molten steel, and heated by blowing oxygen from above. After the temperature of the molten steel was raised, 3 FeMn per ton of molten steel
After adding kg and adjusting the components, 5 kg of desulfurization flux 70CaO-30CaF 2 was added by flux spraying, and A
l was added to carry out desulfurization.

【0022】表2は、上記実施例1及び比較例1の吹止
及びRH脱ガス処理時の〔S〕、〔Mn〕、(FeO)
及び(MnO)を示すものであり、表3は、実施例2及
び比較例2の吹止め及びRH脱ガス処理時の〔S〕、
〔Mn〕、(FeO)及び(MnO)を示すもので、前
者の表2はRH脱硫フラックス槽内添加によるもの、後
者の表3は、RH脱硫フラックス吹付けによるものであ
る。
Table 2 shows [S], [Mn], (FeO) at the time of the blow-off and RH degassing treatments of Example 1 and Comparative Example 1.
And (MnO). Table 3 shows [S] at the time of the blow stop and the RH degassing treatment of Example 2 and Comparative Example 2.
[Mn], (FeO) and (MnO) are shown. The former Table 2 is based on the addition in the RH desulfurization flux tank, and the latter Table 3 is based on the RH desulfurization flux spraying.

【0023】図5は同じく出鋼時及びRH脱ガス処理時
の〔Mn〕、〔Sol.Al〕、(MnO)を示すもの
である。図5から見られるように、実施例1はSiMn
の多量添加により吹止時には、〔Mn〕レベルが製品に
要求されるレベルにまで達しており、(MnO)も比較
例に比べ若干高くなっているが、比較例のように出鋼中
のFeMnの添加がないため、RH処理脱ガス処理前の
(MnO)は半減している。また昇温後の(MnO)上
昇もほとんど認められなかった。
FIG. 5 also shows [Mn] and [Sol. Al] and (MnO). As can be seen from FIG.
At the time of blowing, the [Mn] level has reached the level required for the product and (MnO) is slightly higher than that in the comparative example. (MnO) before the RH treatment and the degassing treatment is reduced by half because there is no addition. Also, almost no increase in (MnO) after heating was observed.

【0024】また表2、3に示されるように、溶銑予備
処理後の〔S〕が実施例1、2ではピックアップがない
のに対し、比較例1、2においては、〔S〕が10pp
mも上昇していることが認められた。また、実施例1、
比較例1のRH脱硫フラッックス添加に比べて実施例
2、比較例2のRH脱硫フラッックス吹付けの方が脱硫
フラックス原単位が約半分で同等或いは同等以上の低
[S]が得られた。
Further, as shown in Tables 2 and 3, [S] after the hot metal pretreatment was not provided in Examples 1 and 2, whereas in Comparative Examples 1 and 2, [S] was 10 pp.
m was also found to have increased. Example 1,
Compared to the addition of the RH desulfurization flux of Comparative Example 1, the spraying of the RH desulfurization flux of Example 2 and Comparative Example 2 provided about half the desulfurization flux basic unit, and a low [S] equivalent or equal to or more than that was obtained.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 図6は、脱硫フラックス添加後の脱硫挙動を示すもの
で、実施例1は(MnO)を低減したことにより、比較
例1に比べ脱硫効率が高まり、〔S〕を20〜30pp
mでも脱硫により10分間で〔S〕を10ppm以下に
安定させることができた。
[Table 3] FIG. 6 shows the desulfurization behavior after the desulfurization flux was added. In Example 1, the desulfurization efficiency was increased as compared with Comparative Example 1 by reducing (MnO), and [S] was 20 to 30 pp.
[S] was able to be stabilized to 10 ppm or less in 10 minutes by desulfurization.

【0027】また実施例、比較例1に比べ、実施例、比
較例2では、脱硫フラックスの微粉を吹付けることによ
り脱硫効率が高まり、約半分の時間で実施例2では
〔S〕を10ppm以下、比較例2では〔S〕15pp
m以下を得ることができた。 実施例3 表1に示すように、カーボン系昇温剤の添加量を27k
gとし、吹止時の〔C〕を0.20%とする以外は比較
例と同じ条件で吹錬を行った。吹止後の〔Mn〕は0.
55%であった。次に比較例1と同様、出鋼中にFeM
nを20kg添加したのち、取鍋にスラグ脱酸剤Al−
Al2 3 を2kg添加して脱酸を行い、RH真空脱ガ
ス処理槽に移して、実施例1と同様、2.3Nm3/tの
送酸量で上方より酸素吹付けを行って脱炭し、〔C〕を
0.08%とした。その後、Alを2.5kg添加して
酸素吹付けを行い、昇温後のFeMnを3kg添加して
成分調整したのち、脱硫フラックス70caO−30C
aF2 を10kg、Alを0.2kg添加して脱硫を行
った。
Further, in Examples and Comparative Example 2, the desulfurization efficiency was increased by spraying the fine powder of the desulfurization flux. In Example 2, [S] was reduced to 10 ppm or less in about half the time. In Comparative Example 2, [S] 15 pp
m or less could be obtained. Example 3 As shown in Table 1, the addition amount of the carbon-based heating agent was 27 k
g, and blowing was performed under the same conditions as in the comparative example, except that [C] at the time of blowing was set to 0.20%. [Mn] after blowing is 0.1.
55%. Next, as in Comparative Example 1, FeM
After adding 20 kg of n, the slag deoxidizer Al-
Deoxidation was performed by adding 2 kg of Al 2 O 3 , transferred to an RH vacuum degassing tank, and sprayed with oxygen from above at an acid feed rate of 2.3 Nm 3 / t as in Example 1. Carbonized, and [C] was set to 0.08%. Then, after adding 2.5 kg of Al and spraying oxygen, adding 3 kg of FeMn after the temperature rise and adjusting the components, the desulfurization flux 70caO-30C
Desulfurization was performed by adding 10 kg of aF 2 and 0.2 kg of Al.

【0028】表3は、吹止時及びRH処理時での
〔S〕、〔Mn〕、(FeO)及び(MnO)を示すも
ので、脱硫後の〔S〕は15ppmであった。
Table 3 shows [S], [Mn], (FeO) and (MnO) at the time of blow-off and at the time of RH treatment. [S] after desulfurization was 15 ppm.

【0029】[0029]

【発明の効果】本発明は以上のように構成され、次のよ
うな効果を奏する。請求項1記載の製造法によれば、吹
止時の〔C〕≧0.1%とすることにより、吹止時の
〔C〕制御精度にばら付きがあっても、吹止時の(Fe
O)、(MnO)を低くし、かつ転炉吹練時のMn歩溜
りを向上させて出鋼時の〔Mn〕調整のため添加された
るMn量を少なくすることができる。
The present invention is configured as described above and has the following effects. According to claim 1 process according, by the [C] ≧ 0.1 5% during吹止, during吹止
[C] Even if the control accuracy varies, (Fe
O) and (MnO) can be lowered, and the Mn yield during converter blowing can be improved to reduce the amount of Mn added for [Mn] adjustment during tapping.

【0030】したがって、それにより生成される(Mn
O)も低減させることができるため、出鋼後徐滓をしな
くてもスラグ脱酸剤を添加することにより(FeO)、
(MnO)を溶鋼脱硫に必要な程度まで減少させ、脱硫
効率を上げて脱硫を行うことができる。
Thus, the resulting (Mn
O) can also be reduced, so that the addition of the slag deoxidizer (FeO)
(MnO) can be reduced to a level required for molten steel desulfurization, and desulfurization can be performed with an increased desulfurization efficiency.

【0031】請求項記載の製造法のように、転炉吹練
時にSiMnを添加すれば、Siの酸化発熱反応によ
り、昇温のためのカーボン系昇温剤の使用をなくすか、
或いは少なくすることができ、硫黄のピックアップがな
くなるか、少なくなるため昇温により〔S〕が増加しな
いか、〔S〕の増加を少なくすることができる。請求項
記載の製造法のように、(FeO)+(MnO)≦5
%とすることにより脱硫率を向上させることができる。
According to the second aspect of the present invention, if SiMn is added during converter blowing, the use of a carbon-based heating agent for raising the temperature due to the exothermic reaction of oxidation of Si can be eliminated.
Alternatively, the number of sulfur pickups can be reduced or reduced, so that [S] does not increase or the increase of [S] can be reduced by increasing the temperature because sulfur is reduced. Claim
3 (FeO) + (MnO) ≦ 5
%, The desulfurization rate can be improved.

【0032】請求項4及び5記載の製造法のように、溶
存酸素を100ppm以下にすると、Mnの酸化を抑制
することができる。請求項6及び7記載の製造法のよう
に、RH脱ガス処理槽で脱炭から脱硫まで行うようにす
れば、工程が簡単となる。請求項記載の製造法のよう
に、昇温後の〔Sol、Al〕を0.0%以上とする
と、昇温中の〔Mn〕の酸化を防止することができる。
[0032] As according to claim 4 and 5, wherein the preparation, when the dissolved oxygen 100ppm or less, it is possible to suppress the oxidation of Mn. If the steps from decarburization to desulfurization are performed in the RH degassing tank as in the production method of the sixth and seventh aspects, the process is simplified. As of claim 8, wherein the preparation, when [Sol, Al] of temperature was raised to a 0.0 by 5% or more, it is possible to prevent oxidation of [Mn] of NoboriAtsushichu.

【0033】請求項記載の製造法のように、RH真空
脱ガス処理装置において、脱硫フラックスを吹付けるこ
とにより脱硫反応界面積を増大させ、脱硫効率を上昇さ
せることができる。
According to the ninth aspect of the present invention, in the RH vacuum degassing apparatus, the desulfurization reaction interface area can be increased by spraying a desulfurization flux to increase the desulfurization efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 吹止時の〔C〕と、吹止時の(FeO)及び
(MnO)の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between [C] at the time of blowing, and (FeO) and (MnO) at the time of blowing.

【図2】 (FeO)+(MnO)と脱硫率の関係を示
すグラフ。
FIG. 2 is a graph showing a relationship between (FeO) + (MnO) and a desulfurization rate.

【図3】 脱炭後の溶鋼中の溶存酸素と、〔Mn〕減少
との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between dissolved oxygen in molten steel after decarburization and [Mn] decrease.

【図4】 昇温後の〔Sol.Al〕と昇温中の酸化に
よる〔Mn〕減少率の関係を示すグラフ。
FIG. 4 [Sol. 5] A graph showing the relationship between [Al] and the [Mn] reduction rate due to oxidation during temperature rise.

【図5】 実施例1及び比較例のRH処理前後の〔M
n〕〔Sol.Al〕及び(MnO)濃度を示すグラ
フ。
FIG. 5 shows [M] before and after RH treatment in Example 1 and Comparative Example.
n] [Sol. 2] Graph showing [Al] and (MnO) concentrations.

【図6】 脱硫時の脱硫挙動を示すグラフ。FIG. 6 is a graph showing desulfurization behavior during desulfurization.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/064 C21C 7/06 C21C 7/068 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 7/064 C21C 7/06 C21C 7/068

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶銑予備処理工程で、脱硫及び脱燐を行っ
た溶銑を用いて転炉吹練を行い、吹練終了時の溶鋼中の
炭素含有量を0.1%以上に抑制して出鋼したのち、
取鍋スラグにスラグ脱酸剤を添加し、ついで徐滓を実施
することなく真空脱ガス設備にて脱炭処理し、所定の炭
素含有量に調整したのち、脱酸処理を行い、その後溶鋼
脱硫処理を行うことを特徴とする極低硫鋼の製造方法。
In 1. A molten iron pretreatment step, performed converter吹練with hot metal subjected to desulfurization and dephosphorization, suppressing the carbon content in the molten steel at吹練ended 0.1 5% After tapping,
Add slag deoxidizer to ladle slag, then decarburize in vacuum degassing equipment without adjusting slag, adjust to predetermined carbon content, deoxidize, and then desulfurize molten steel A method for producing an ultra-low sulfur steel, comprising performing a treatment.
【請求項2】溶銑予備処理工程で、脱硫及び脱燐を行っ
た溶銑を用いて転炉吹練を行い、吹練終了時の溶鋼中の
炭素含有量を0.1%以上に抑制して出鋼したのち、取
鍋スラグにスラグ脱酸剤を添加し、ついで徐滓を実施す
ることなく真空脱ガス設備にて脱炭処理し、所定の炭素
含有量に調整したのち、脱酸処理を行い、その後溶鋼脱
硫処理を行うことを特徴とする極低硫鋼の製造方法にお
いて、鋼中のMnレベルが製品に要求されるレベル近く
まで吹錬前にSiMnを添加することを特徴とする極低
硫鋼の製造方法。
2. Desulfurization and dephosphorization are performed in a hot metal pretreatment step.
Blown the converter using hot metal that has been
After tapping the steel with the carbon content suppressed to 0.1% or more,
Add the slag deoxidizer to the pot slag, then carry out the slag
Decarburization with vacuum degassing equipment
After adjusting the content to the deoxidation treatment,
The method for producing ultra-low sulfur steel is characterized by performing sulfuration treatment.
There are, manufacturing method of extremely low 硫鋼, wherein the Mn level in the steel is added SiMn before blow to near the level required for the product.
【請求項3】スラグ脱酸剤添加による脱酸後のスラグ中
のFeO+MnO濃度を5%以下とする請求項1又は
の請求項に記載の極低硫鋼の製造方法。
3. A process according to claim 1 or 2 FeO + MnO concentration in the slag after deoxidation by slag deoxidant added 5% or less
The method for producing an extremely low sulfur steel according to claim 1.
【請求項4】溶銑予備処理工程で、脱硫及び脱燐を行っ
た溶銑を用いて転炉吹練を行い、吹練終了時の溶鋼中の
炭素含有量を0.1%以上に抑制して出鋼したのち、取
鍋スラグにスラグ脱酸剤を添加し、ついで徐滓を実施す
ることなく真空脱ガス設備にて脱炭処理し、所定の炭素
含有量に調整したのち、脱酸処理を行い、その後溶鋼脱
硫処理を行うことを特徴とする極低硫鋼の製造方法にお
いて、脱炭終了時の溶鋼中の溶存酸素量を100ppm
以下とすることを特徴とする極低硫鋼の製造方法。
4. Desulfurization and dephosphorization are performed in a hot metal pretreatment step.
Blown the converter using hot metal that has been
After tapping the steel with the carbon content suppressed to 0.1% or more,
Add the slag deoxidizer to the pot slag, then carry out the slag
Decarburization with vacuum degassing equipment
After adjusting the content to the deoxidation treatment,
The method for producing ultra-low sulfur steel is characterized by performing sulfuration treatment.
And the dissolved oxygen content in the molten steel at the end of decarburization is 100 ppm
A method for producing an ultra-low sulfur steel, comprising:
【請求項5】脱炭終了時の溶鋼中の溶存酸素量を100
ppm以下とすることを特徴とする請求項1又は記載
の極低硫鋼の製造方法。
5. The amount of dissolved oxygen in molten steel at the end of decarburization is 100
The method for producing an ultra-low sulfur steel according to claim 1 or 2 , wherein the content is not more than ppm.
【請求項6】溶銑予備処理工程で、脱硫及び脱燐を行っ
た溶銑を用いて転炉吹練を行い、吹練終了時の溶鋼中の
炭素含有量を0.1%以上に抑制して出鋼したのち、取
鍋スラグにスラグ脱酸剤を添加し、ついで徐滓を実施す
ることなく真空脱ガス設備にて脱炭処理し、所定の炭素
含有量に調整したのち、脱酸処理を行い、その後溶鋼脱
硫処理を行うことを特徴とする極低硫鋼の製造方法にお
いて、R H真空脱ガス処理装置で、脱炭、脱酸、昇温、
成分調整及び脱硫を行うことを特徴とする極低硫鋼の製
造方法。
6. A desulfurization and dephosphorization step in a hot metal pretreatment step.
Blown the converter using hot metal that has been
After tapping the steel with the carbon content suppressed to 0.1% or more,
Add the slag deoxidizer to the pot slag, then carry out the slag
Decarburization with vacuum degassing equipment
After adjusting the content to the deoxidation treatment,
The method for producing ultra-low sulfur steel is characterized by performing sulfuration treatment.
There, in R H vacuum degassing apparatus, decarburization, deoxidation, Atsushi Nobori,
Manufacture of ultra-low sulfur steel characterized by component adjustment and desulfurization
Construction method.
【請求項7】RH真空脱ガス処理装置で、脱炭、脱酸、
昇温、成分調整及び脱硫を行う請求項1又は記載の極
低硫鋼の製造方法。
7. An RH vacuum degassing apparatus for decarburizing, deoxidizing,
The method for producing an extremely low sulfur steel according to claim 1 or 2 , wherein the temperature is raised, the components are adjusted, and desulfurization is performed.
【請求項8】脱硫フラックス添加による熱補償のため、
Alを添加して昇温した後の溶鋼中のAl濃度を0.0
5%以上とする請求項1又はに記載の極低硫鋼の製造
方法。
8. For thermal compensation by adding desulfurization flux,
After adding Al and raising the temperature, the Al concentration in the molten steel is set to 0.0
The method for producing an ultra-low sulfur steel according to claim 1 or 2 , wherein the content is 5% or more.
【請求項9】溶鋼の脱硫方法として、RH真空脱ガス処
理装置上部に設置された非浸漬ランスを槽内に挿入し、
不活性ガスを介して脱硫剤を吹付ける請求項6記載の極
低硫鋼の製造方法。
9. As a method for desulfurizing molten steel, a non-immersion lance installed above the RH vacuum degassing apparatus is inserted into the tank.
The method according to claim 6, wherein the desulfurizing agent is sprayed through an inert gas.
JP29984593A 1993-02-26 1993-11-30 Manufacturing method of extremely low sulfur steel Expired - Fee Related JP3241910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29984593A JP3241910B2 (en) 1993-02-26 1993-11-30 Manufacturing method of extremely low sulfur steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3902493 1993-02-26
JP5-39024 1993-02-26
JP29984593A JP3241910B2 (en) 1993-02-26 1993-11-30 Manufacturing method of extremely low sulfur steel

Publications (2)

Publication Number Publication Date
JPH06306442A JPH06306442A (en) 1994-11-01
JP3241910B2 true JP3241910B2 (en) 2001-12-25

Family

ID=26378335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29984593A Expired - Fee Related JP3241910B2 (en) 1993-02-26 1993-11-30 Manufacturing method of extremely low sulfur steel

Country Status (1)

Country Link
JP (1) JP3241910B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343308B2 (en) * 2006-09-11 2013-11-13 Jfeスチール株式会社 Desulfurization method for molten steel
JP5005476B2 (en) * 2007-08-28 2012-08-22 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel
JP5326310B2 (en) * 2008-03-18 2013-10-30 Jfeスチール株式会社 Method of melting high Mn ultra-low carbon steel
CN114107600B (en) * 2021-11-02 2022-10-14 北京科技大学 Smelting method of 27SiMn steel containing nucleating agent
CN114150106A (en) * 2021-11-17 2022-03-08 阳春新钢铁有限责任公司 Novel method for desulfurizing steel ladle by using manganese and calcium

Also Published As

Publication number Publication date
JPH06306442A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JPH09217110A (en) Method for melting extra-low sulfur steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP6780695B2 (en) Melting method of ultra-low sulfur low nitrogen steel
JP6551626B2 (en) Method of melting high manganese steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH0510406B2 (en)
JP3279161B2 (en) Melting method of ultra low carbon high manganese steel
JP4085898B2 (en) Melting method of low carbon high manganese steel
KR970004990B1 (en) Decarburizing method of stainless steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JP2008150710A (en) Method for melting low carbon high manganese steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH0153329B2 (en)
JP3870627B2 (en) Method for producing high phosphorus extra low carbon steel
JP7269485B2 (en) Melting method of high nitrogen stainless molten steel
JP4183524B2 (en) Manufacturing method of high cleanliness steel
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP3297998B2 (en) Melting method of high clean ultra low carbon steel
JP3390478B2 (en) Melting method of high cleanliness steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees