JP3390478B2 - Melting method of high cleanliness steel - Google Patents

Melting method of high cleanliness steel

Info

Publication number
JP3390478B2
JP3390478B2 JP04292393A JP4292393A JP3390478B2 JP 3390478 B2 JP3390478 B2 JP 3390478B2 JP 04292393 A JP04292393 A JP 04292393A JP 4292393 A JP4292393 A JP 4292393A JP 3390478 B2 JP3390478 B2 JP 3390478B2
Authority
JP
Japan
Prior art keywords
slag
steel
vacuum
ladle
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04292393A
Other languages
Japanese (ja)
Other versions
JPH06256837A (en
Inventor
一 鈴木
三郎 森脇
和久 浜上
隆一 朝穂
正昭 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04292393A priority Critical patent/JP3390478B2/en
Publication of JPH06256837A publication Critical patent/JPH06256837A/en
Application granted granted Critical
Publication of JP3390478B2 publication Critical patent/JP3390478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、清浄度に優れた極低炭
素鋼の製造方法に関し、特に真空脱ガス処理に際してス
ラグ脱酸剤を2段階に分けて添加することにより、真空
脱炭処理の促進を図るとともに、脱酸生成物の溶鋼中へ
の残留を極力抑えて高清浄度の鋼を製造する方法につい
て提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an extremely low carbon steel excellent in cleanliness, and particularly to a vacuum decarburizing treatment by adding a slag deoxidizing agent in two stages in vacuum degassing treatment. We propose a method for producing a steel with high cleanliness by promoting deoxidation and suppressing the residual of deoxidation products in molten steel as much as possible.

【0002】[0002]

【従来の技術】一般的な極低炭素鋼は、精錬炉にて溶製
したC含有量0.01〜0.06wt%の未脱酸鋼を真空脱ガス処
理して、C+→CO↑ 反応を起こさせて脱炭するこ
とにより製造されており、得られるCの含有量は 0.006
wt%以下のものである。
2. Description of the Related Art A general ultra-low carbon steel is produced by vacuum degassing undeoxidized steel with a C content of 0.01 to 0.06 wt% produced in a refining furnace to cause a C + O → CO ↑ reaction. It is manufactured by decarburization, and the content of C obtained is 0.006
wt% or less.

【0003】この既知の脱炭方法において、例えば、
C:400 ppm の溶鋼を30ppm まで脱炭するには、493 pp
m の酸素が必要となる。ところで、かかる真空脱炭処理
で必要とする酸素は、未脱酸鋼に含まれる溶存酸素(フ
リー酸素)とスラグ中の低級酸化物である酸化鉄などか
ら、溶鋼中に供給される酸素によりまかなわれている。
なお、未脱酸鋼は、鋼中フリー酸素濃度とスラグ中低級
酸化物濃度とが互いに平衡状態にあることが知られてい
る。従って、真空脱炭により極低炭素領域までの脱炭反
応を効率よく行わせるためには、スラグ中低級酸化物濃
度を高めにコントロールすることが有効である。。しか
し、これらのスラグ中低級酸化物(FeO, MnO等)は、
溶鋼の脱炭後にあっては十分に還元がされず、2次精錬
以降もそのまま高濃度でスラグ中に存在するおそれが高
い。そして、これらの残存低級酸化物は、溶鋼脱酸後に
鋼中の〔Al〕,〔Ti〕等の脱酸剤と反応して微小介在物
を生成し、溶鋼清浄度を低下させるのである。
In this known decarburization method, for example,
C: To decarburize 400 ppm molten steel to 30 ppm, 493 pp
m oxygen is required. By the way, the oxygen required for such vacuum decarburization is covered by the oxygen supplied to the molten steel from the dissolved oxygen (free oxygen) contained in the undeoxidized steel and the iron oxide that is a lower oxide in the slag. Has been.
It is known that the undeoxidized steel has a free oxygen concentration in the steel and a lower oxide concentration in the slag in equilibrium with each other. Therefore, in order to efficiently carry out the decarburization reaction to the extremely low carbon region by vacuum decarburization, it is effective to control the lower oxide concentration in the slag to be high. . However, lower oxides (FeO, MnO, etc.) in these slags are
After decarburization of molten steel, it is not sufficiently reduced, and there is a high possibility that it will be present in the slag in a high concentration as it is even after secondary refining. Then, these residual lower oxides react with deoxidizing agents such as [Al] and [Ti] in the steel after deoxidation of the molten steel to form fine inclusions, thereby lowering the cleanliness of the molten steel.

【0004】このような問題を克服するために、従来、
特開平2−30711 号公報では、「鋼精錬炉で低炭素未脱
酸鋼を溶製し、取鍋に出鋼後、取鍋内スラグ上に脱酸剤
を投入し、スラグ中のT.Fe濃度を5%以下とし、引続
き真空脱ガス処理装置にて、槽内に酸素を吹かしつつ脱
炭処理を行い、C含有量を 0.006%以下とすることを特
徴とする清浄度に優れた極低炭素鋼の製造方法」を提案
している。
In order to overcome such problems, conventionally,
Japanese Patent Application Laid-Open No. 2-30711 discloses, "Low carbon undeoxidized steel is melted in a steel refining furnace, tapped in a ladle, and then a deoxidizer is put on the slag in the ladle, and T. Fe concentration of 5% or less, decarburization treatment while continuing to blow oxygen into the tank with a vacuum degassing device, and C content of 0.006% or less, which is an extremely clean electrode. "Producing method of low carbon steel" is proposed.

【0005】この方法によれば、真空脱ガス処理によっ
て(T.Fe)や(MnO)は低くなるものの、真空槽内に
酸素を吹き込むために、脱炭に必要な鋼中酸素の不足が
生じるようなことはない。
According to this method, although (T.Fe) and (MnO) are lowered by the vacuum degassing treatment, oxygen is blown into the vacuum chamber, so that oxygen in steel necessary for decarburization is insufficient. There is no such thing.

【0006】また、他のスラグ改質方法として、特公昭
62−39205 号公報では、製鋼炉からの出鋼時に溶鋼を脱
酸し、その脱酸生成物の合体を促進するフラックスを添
加し、さらにスラグ還元剤を併用添加する方法を提案し
ている。
Further, as another slag reforming method, Japanese Patent Publication Sho
JP-A-62-39205 proposes a method of deoxidizing molten steel at the time of tapping from a steelmaking furnace, adding a flux that promotes coalescence of the deoxidized product, and further adding a slag reducing agent together.

【0007】さらに、特公平2−19168 号公報では、ス
ラグ改質反応を促進する方法として、スラグ還元剤とと
もにCaCO3 などのガス発生物質 (スラグ還元剤を予混合
したものも可) を添加する方法を提案している。
Further, in Japanese Patent Publication No. 2-19168, as a method for promoting the slag reforming reaction, a gas generating substance such as CaCO 3 (a premixed slag reducing agent is also possible) is added together with the slag reducing agent. Proposing a method.

【0008】[0008]

【発明が解決しようとする課題】上記従来技術のうち、
前記特開平2−30711号公報に開示の方法は、真空脱ガス
処理時に槽内に送酸するため、出鋼時に(T.Fe)<5
%までスラグ改質をしたとしても、送酸終了時には図1
に示すように、(T.Fe)が2〜4%も上昇してしまう。
従って、スラグ改質が不十分となり、十分な溶鋼清浄度
が得られないという問題があった。また、前記特公昭62
−39205号公報に開示の方法は、出鋼時に溶鋼を脱酸す
る方法であるため、極低炭素鋼の溶製には不向きであ
る。さらに、前記特公平2−19168号公報に開示の方法
は、ガス発生物質が別途必要となるばかりでなく、発煙
処理設備も必要となる。また、これらの特公昭62−3920
5号公報や特公平2−19168号公報に記載のスラグ改質方
法を製鋼炉出鋼時に実施したとしても、真空脱ガス処理
時の(T.Fe)の増大は避けることができないという間
題があった。
Of the above-mentioned conventional techniques,
The method disclosed in the JP-A 2-3071 1 discloses, in order to oxygen-flow in the tank during the vacuum degassing treatment, at the time of tapping (T.Fe) <5
% Even after slag reforming up to 100%, at the end of acid transfer
As shown in, (T.Fe) increases by 2 to 4%.
Therefore, there is a problem that slag reforming becomes insufficient and sufficient molten steel cleanliness cannot be obtained. Also, the Japanese Patent Publication Sho 62
The method disclosed in Japanese Patent Publication No. 39205 is a method of deoxidizing molten steel at the time of tapping, and thus is not suitable for melting ultra-low carbon steel. Further, the method disclosed in Japanese Patent Publication No. 2-19168 requires not only a gas generating substance separately but also a smoke generating treatment facility. In addition, these Japanese Patent Publications Sho 62-3920
Even if the slag reforming method described in Japanese Patent Publication No. 5 or Japanese Patent Publication No. 2-19168 is carried out at the time of tapping a steelmaking furnace, an increase in (T.Fe) during vacuum degassing treatment cannot be avoided. was there.

【0009】本発明の目的は、真空脱ガス処理時の脱炭
反応を阻害せずに高清浄度の極低炭素鋼を製造する技術
を確立することにある。
An object of the present invention is to establish a technique for producing an ultra-low carbon steel of high cleanliness without inhibiting the decarburization reaction during vacuum degassing.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記各従
来技術が抱えている上述した課題の克服に向けて鋭意研
究した結果、特に、上述した真空脱ガス処理時の(T.
Fe)の増大に対応するには、出鋼時のスラグ改質だけで
なく、真空脱炭処理後にもスラグ改質を実施するという
2段階の処理を施せば、いわゆる高清浄度の極低炭素鋼
を容易に製造できることを知見して本発明に想到した。
すなわち、かかる本発明の要旨構成は次のとおりであ
る。すなわち、鋼精錬炉にて低炭素未脱酸鋼を溶製し、
その後真空脱ガス処理装置にて真空槽内に送酸しながら
脱炭処理を行うことによって高清浄鋼を溶製する方法に
おいて、前記スラグ脱酸剤の添加を、まず、鋼精錬炉か
ら取鍋への出鋼中または出鋼終了直後の取鍋内スラグ
に、スラグ脱酸に必要な量のうちの一部だけを添加し、
その残りの分のスラグ脱酸剤を前記真空脱ガス処理装置
による脱炭処理の後の取鍋内スラグに添加することを特
徴とする高清浄鋼の溶製方法である。さらに、上記の溶
製方法において、出鋼中または出鋼終了直後に添加すべ
きスラグ脱酸剤は、取鍋内スラグ中(T.Fe)を5wt%
未満にするに足りる量を添加する。
DISCLOSURE OF THE INVENTION As a result of earnest research aimed at overcoming the above-mentioned problems of the above-mentioned respective prior arts, the inventors of the present invention have found that the above-mentioned vacuum degassing treatment (T.
In order to cope with the increase in Fe), not only slag reforming at the time of tapping but also two-stage treatment of performing slag reforming after vacuum decarburization treatment, so-called ultra-clean carbon The present invention was conceived by finding that steel can be easily manufactured.
That is, the gist of the present invention is as follows. That is, low-carbon undeoxidized steel is smelted in a steel refining furnace,
Then, in the method for producing highly clean steel by performing decarburization while feeding acid into a vacuum tank with a vacuum degassing device, the addition of the slag deoxidizer is first performed in steel refining. During tapping from the furnace to the ladle, or to the slag in the ladle immediately after tapping, add only a part of the amount required for slag deoxidation,
A slag deoxidizing agent for the remaining amount is added to the slag in the ladle after the decarburizing treatment by the vacuum degassing apparatus, which is a method for melting highly clean steel. Further, in the above melting method, the slag deoxidizer to be added during tapping or immediately after tapping is 5 wt% in the slag in the ladle (T.Fe).
Add enough to make it less than.

【0011】[0011]

【作用】図1は、真空脱ガス処理開始前とその処理後の
スラグ中(T.Fe) の関係について示すものであり、こ
の図によれば、真空脱ガス処理(槽内送酸)により、低
級酸化物である(T.Fe) が確実に上昇することが判
る。特に、真空脱ガス処理開始前のスラグ中(T.Fe)
が低いヒート程、送酸による(T.Fe)上昇度が大き
く、一度改質処理を実施しても、真空脱炭処理により
(T.Fe)が上昇し、溶鋼清浄度の点では満足できる状
態にはならない。
FIG. 1 shows the relationship between the slag (T.Fe) before the start of vacuum degassing and after the vacuum degassing. According to this figure, vacuum degassing (acid transfer in the tank) It can be seen that the low-grade oxide (T.Fe) surely rises. Especially in the slag before the start of vacuum degassing (T.Fe)
The lower the heat is, the greater the degree of increase in (T.Fe) due to acid transfer. Even if the reforming process is performed once, (T.Fe) increases due to the vacuum decarburization process, which is satisfactory in terms of molten steel cleanliness. Not in a state.

【0012】そこで、本発明は、精錬炉からの出鋼終了
直後に、スラグ中(T.Fe)が5%未満になるようにす
ることを目安にスラグ改質剤を添加し、次いで真空脱炭
処理を実施した後にも、真空脱炭処理により上昇した
(T.Fe)を改質するため、全添加スラグ改質剤のうち
の残量分を添加することにより、溶鋼清浄度を向上させ
ようとするものである。
Therefore, in the present invention, a slag modifier is added immediately after the completion of tapping from the refining furnace so that the slag (T.Fe) content is less than 5%, and then the vacuum degassing is performed. Even after carrying out the charcoal treatment, in order to modify the (T.Fe) that has risen due to the vacuum decarburization treatment, by adding the remaining amount of the total added slag modifier, the molten steel cleanliness is improved. It is something to try.

【0013】これに対して、出鋼時にスラグ改質を実施
せず、2次精錬での真空脱炭処理後にのみスラグ改質処
理する方法が考えられる。この方法は、真空脱炭時の溶
鋼への酸素供給量が多いことから脱炭速度が大きく、脱
炭処理時間は短くなるが、改質量が過大となる問題があ
る。すなわち、スラグ改質によって生じた脱酸生成物
が、スラグ−メタル界面から溶鋼中に侵入し、その後、
再び浮上してスラグ中に吸収されることになる。従っ
て、改質処理の終了〜鋳込スタートまでの時間が短い場
合や、2次精錬過程における溶鋼撹拌が不十分で脱酸生
成物の凝集合体が十分に行われない場合には、このよう
なスラグ改質の実施により、かえって溶鋼を汚染した状
態で鋳造をスタートすることになる。
On the other hand, a method is conceivable in which the slag modification is not carried out at the time of tapping, and the slag modification is carried out only after the vacuum decarburizing process in the secondary refining. This method has a large decarburization rate due to the large amount of oxygen supplied to the molten steel during vacuum decarburization and shortens the decarburization treatment time, but has the problem of an excessive reforming amount. That is, the deoxidation product generated by the slag modification penetrates into the molten steel from the slag-metal interface, and then,
It will rise again and be absorbed in the slag. Therefore, when the time from the end of the reforming process to the start of casting is short, or when the molten steel is not sufficiently stirred in the secondary refining process and the deoxidized products are not sufficiently aggregated and coalesced, By carrying out the slag reforming, the casting will start with the molten steel contaminated.

【0014】このような問題を防止するためには、真空
脱炭処理以後の改質量を極力少なくすることが望ましい
と言える。すなわち、真空脱炭終了後のスラグ改質を極
力少量に抑えるためには、まず精錬炉出鋼時に所定量の
スラグ脱酸剤を添加してスラグ中(T.Fe)<5%を目
安に予備的なスラグ改質を行い、次いで真空脱炭中の送
酸により上昇した分のみを真空脱炭後に再度スラグ改質
するという2段階に亘るスラグ改質処理が有効であると
判った。
In order to prevent such a problem, it can be said that it is desirable to minimize the amount of reforming after the vacuum decarburization treatment. That is, in order to suppress the slag reforming after the completion of vacuum decarburization to a minimum amount, first add a predetermined amount of slag deoxidizer at the time of tapping the refining furnace, and set the slag (T.Fe) <5% as a guide. It has been found that a two-stage slag reforming treatment is effective, in which preliminary slag reforming is performed, and then only the amount increased by the acid feeding during vacuum decarburizing is vacuum decarburized and then slag reforming is performed again.

【0015】このことを確かめるために、発明者らは次
のような実験を行った。この実験は、従来法としては、
製錬炉出鋼後に表1に示す組成のAl灰必要量の全量をス
ラグ還元剤として取鍋に添加し、図2に示すような真空
脱ガス設備で真空槽内に送酸しながら脱処理を行い極
低炭素鋼を溶製した。この方法では、真空槽内での送酸
により一旦、改質(還元)されたスラグが再度酸化され
てしまう。従って、Al灰の効率が低いばかりでなく、鋳
込み時のスラグ改質が不十分となり満足できるレベルに
至っていない。この従来改質法におけるスラグ中(T.
Fe)の推移を図4中でc法として示す。
In order to confirm this, the inventors conducted the following experiment. This experiment, as a conventional method,
After smelting furnace tapping on the total amount of Al ash required amount of composition shown in Table 1 was added to the ladle as a slag reductant, decarburization while oxygen-flow into the vacuum chamber at a vacuum degassing facility, as shown in FIG. 2 Treatment was performed to melt ultra low carbon steel. In this method, the slag that has been once modified (reduced) by the acid transfer in the vacuum tank is again oxidized. Therefore, not only the efficiency of Al ash is low, but also the slag reforming at the time of casting is insufficient and the level is not satisfactory. During the slag (T.
The transition of Fe) is shown as c method in FIG.

【0016】上記の問題を解決するため真空脱ガスでの
送酸後、すなわち脱ガス処理終了後に上記c法と同量の
Al灰を添加しスラグを撹拌して改質を行った(図4のa
法)。このa法(RH後一括改質)では、真空脱炭前の
(T.Fe)が高いため槽内送酸時にスラグがさらに酸化
される現象は認められなかった。その結果として上記c
法に比較して鋳込み前の(T.Fe)が低くなったが、改
質度(ΔT.Fe)が大きいためとスラグ攪拌をする必要
があることから、非金属介在物を十分に浮上させるため
には改質処理後の静置時間を十分にとる必要のあること
が判った。
In order to solve the above-mentioned problems, the same amount as in the above-mentioned method c is applied after the acid feeding by vacuum degassing, that is, after the degassing treatment is completed.
Al ash was added and the slag was stirred for modification (a in FIG. 4).
Law). In the method a (batch reforming after RH), since the (T.Fe) before vacuum decarburization was high, the phenomenon that the slag was further oxidized during the acid feeding in the tank was not observed. As a result, the above c
(T.Fe) before casting was lower than that of the method, but because the degree of modification (ΔT.Fe) was large and slag stirring was necessary, non-metallic inclusions were sufficiently floated. Therefore, it has been found that it is necessary to take a sufficient standing time after the modification treatment.

【0017】次に、本発明法として、精錬炉出鋼後に、
表1に示す組成のAl灰を必要量の一部だけをスラグ還元
剤として取鍋に添加し、真空脱ガス設備で真空槽内に送
酸しながら脱炭処理を行い極低炭素鋼を溶製し、脱ガス
処理終了後にまた残りのAl灰を添加し、スラグを攪拌し
て再度改質を行う方法を実施した(図4のb法)。
Next, as the method of the present invention, after tapping the refining furnace,
Al ash having the composition shown in Table 1 was added to the ladle as a slag reducing agent only in a necessary amount, and decarburization was performed while feeding acid into the vacuum tank with a vacuum degassing equipment to melt the ultra-low carbon steel. After the production, the remaining Al ash was added again after the degassing treatment was completed, and the slag was stirred to perform reforming again (method b in FIG. 4).

【0018】この本発明に従う方法によれば、真空脱炭
時のスラグ再酸化が発生しても脱炭処理後の改質により
還元することが可能であるし、真空脱炭時の脱炭速度低
下を招くほどスラグを還元してしまうこともない。さら
に、脱炭処理後の改質度も上記a法に比較して小さいこ
とから、改質処理後の静置時間も上記a法に比較して短
くてすむことが判った。しかも、鋳込み前のスラグ中
(T.Fe)も3方法の中で一番低くなっており、良好な
結果が得られた。なお、真空脱炭処理の前後に分けて添
加するAl灰の比率についてこの実施例では半分半分とし
たが、真空脱炭処理に先立つスラグ中(T.Fe)が5wt
%未満となるように、転炉出鋼時のスラグ酸化度を制御
し、また必要であれば処理後の静置時間なども制御すれ
ば、なおよい結果が得られることが判った。
According to the method of the present invention, even if slag reoxidation occurs during vacuum decarburization, it can be reduced by reforming after the decarburization treatment, and the decarburization rate during vacuum decarburization can be reduced. It does not reduce the slag enough to cause a drop. Further, since the degree of modification after the decarburization treatment is smaller than that of the method a, it was found that the standing time after the modification treatment can be shorter than that of the method a. Moreover, the slag before casting (T.Fe) was the lowest among the three methods, and good results were obtained. Although the ratio of Al ash added separately before and after the vacuum decarburization treatment was halved in this example, 5 wt% of slag (T.Fe) before the vacuum decarburization treatment was used.
It has been found that even better results can be obtained by controlling the slag oxidation degree at the time of tapping the converter, and if necessary controlling the standing time after the treatment so that it is less than%.

【0019】[0019]

【実施例】製錬炉出鋼直後に行うスラグ改質のために、
表1に示す化学組成のAl灰を、表2に示すような条件に
てスラグ還元剤として添加し、その後、図2に示すよう
な真空脱ガス設備のRH脱ガス槽1内にランス2よりO
2 を吹精しながら取鍋3内溶鋼4を真空脱炭処理した。
さらに、一部のヒートについては、真空脱炭処理後に表
1のAl灰を上記取鍋3内のスラグ5上に添加して、図3
に示すような方法でArガスを用いてスラグ5とAl灰を反
応させた。このときの操業結果の一例を表2にまとめて
示す。
[Example] For slag reforming performed immediately after tapping the smelting furnace,
Al ash having the chemical composition shown in Table 1 was added as a slag reducing agent under the conditions shown in Table 2, and then from the lance 2 into the RH degassing tank 1 of the vacuum degassing equipment as shown in FIG. O
The molten steel 4 in the ladle 3 was subjected to vacuum decarburization while blowing 2 .
Furthermore, for some of the heat, Al ash of Table 1 was added on the slag 5 in the ladle 3 after the vacuum decarburization treatment, as shown in FIG.
The slag 5 and Al ash were reacted using Ar gas by the method as shown in FIG. Table 2 shows an example of the operation results at this time.

【0020】この表2に示す結果より明らかなように、
例4〜6に示すような比較法(真空脱炭処理後スラグ再
改質処理なし)の場合、真空脱炭処理時のO2 吹精によ
りスラグ中の(T.Fe)が著しく上昇する。しかし、本
発明法に従う例1〜3の, いわゆる真空脱炭処理後に再
度スラグ改質を実施したヒートでは、改質後の(T.F
e)は改質未実施のヒートの(T.Fe)に比較して低下
している。
As is clear from the results shown in Table 2,
In the case of the comparative method as shown in Examples 4 to 6 (without slag re-reforming treatment after vacuum decarburizing treatment), (T.Fe) in the slag remarkably rises due to O 2 blowing during vacuum decarburizing treatment. However, in the heat of Examples 1 to 3 according to the method of the present invention, in which the slag reforming was performed again after the so-called vacuum decarburization treatment, (TF
e) is lower than (T.Fe) of the heat that has not been modified.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】なお、図5は、溶鋼中の清浄度を基準とし
て 1.0を示す。c法は出鋼時のみに改質を実施した比較
例、b法は出鋼時にのみ改質を実施し、その他はT.F
e)<5%として、真空脱炭後に再度改質を行う場合で
ある。ただし、上記a法は、出鋼時には改質せず、真空
脱炭後に改質を実施した場合である。以上の結果から、
b法のケースが最もT.Feを低下させることができ、高
清浄度鋼を得るのに適した溶製方法であることが判っ
た。
FIG. 5 shows 1.0 based on the cleanliness level in molten steel. The method c is a comparative example in which modification is performed only during tapping, the method b is modified only during tapping, and the other is T.I. F
e) When <5%, it is a case where reforming is performed again after vacuum decarburization. However, the above method a is a case where reforming is performed after vacuum decarburization without reforming at the time of tapping. From the above results,
The case of method b is the most T.I. It was found that Fe can be reduced, and that this is a suitable melting method for obtaining high-cleanliness steel.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
単スラグ改質のタイミングを2段階に分けるだけで、高
清浄度で極低炭素の鋼を、確実に製造することができ
る。
As described above, according to the present invention,
By simply dividing the timing of the single slag reforming into two stages, it is possible to reliably manufacture a steel having a high cleanliness and an extremely low carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】真空脱ガス処理前後における(T.Fe)の変化
のもようを示すグラフ。
FIG. 1 is a graph showing changes in (T.Fe) before and after vacuum degassing treatment.

【図2】真空脱ガス設備の一例を示す断面図。FIG. 2 is a sectional view showing an example of vacuum degassing equipment.

【図3】Arバブリング方法の一例を示す模式図。FIG. 3 is a schematic diagram showing an example of an Ar bubbling method.

【図4】各種改質方法の下での(T.Fe)変動のもよう
を示す模式図。
FIG. 4 is a schematic diagram showing how the (T.Fe) changes under various reforming methods.

【図5】各種改質方法の下での(T.O)変動のもよう
を示す模式図。
5 is a schematic diagram showing how (TO) fluctuations under various reforming methods are shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝穂 隆一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (72)発明者 久我 正昭 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所内 (56)参考文献 特開 平2−30711(JP,A) 特開 平6−256836(JP,A) 特開 昭61−246310(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 C21C 7/00 C21C 7/068 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryuichi Asaho 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (72) Inventor Masaaki Kuga 1 Kawasaki-cho, Chuo-ku, Chiba Chiba Steel Manufacturing Co., Ltd. Chiba Steel Works (56) References JP-A-2-30711 (JP, A) JP-A-6-256836 (JP, A) JP-A-61-246310 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21C 7/10 C21C 7/00 C21C 7/068

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼精錬炉にて低炭素未脱酸鋼を溶製し、
スラグ脱酸剤を添加して真空脱ガス処理装置にて真空槽
内に送酸しながら脱炭処理を行うことによって高清浄鋼
を溶製する方法において、 前記スラグ脱酸剤の添加を、まず、鋼精錬炉から取鍋へ
の出鋼中または出鋼終了直後の取鍋内スラグに、スラグ
脱酸に必要な量のうちの一部だけを添加し、その残りの
分のスラグ脱酸剤を前記真空脱ガス処理装置による脱炭
処理の後の取鍋内スラグに添加することを特徴とする高
清浄鋼の溶製方法。
1. A low carbon undeoxidized steel is melted in a steel refining furnace,
Add a slag deoxidizer and use a vacuum degassing device to vacuum the chamber.
In the method for producing highly clean steel by performing decarburization while feeding acid into the steel, the addition of the slag deoxidizer is first performed during or after tapping from the steel refining furnace to the ladle. To the slag in the ladle, add only a part of the amount necessary for deoxidizing slag, and add the remaining amount of the slag deoxidizer in the ladle after decarburizing treatment by the vacuum degassing device. A method for smelting highly clean steel, which is characterized by adding to slag.
【請求項2】 請求項1に記載の溶製方法において、出
鋼中または出鋼終了直後に、添加すべきスラグ脱酸剤
は、取鍋内スラグ中(T.Fe)を5wt%未満にするに足
りる量を添加することを特徴とする高清浄鋼の製造方
法。
2. The melting method according to claim 1, wherein the slag deoxidizing agent to be added during tapping or immediately after tapping is less than 5 wt% in the slag in the ladle (T.Fe). A method for producing a highly clean steel, which comprises adding a sufficient amount of water.
【請求項3】 請求項1に記載の溶製方法において、ス
ラグ脱酸剤の全量を添加し終えた後、取鍋内スラグを機
械的にもしくはガスを吹込むことにより攪拌することを
特徴とする高清浄鋼の製造方法。
3. The smelting method according to claim 1, wherein after the addition of the total amount of the slag deoxidizer is completed, the slag in the ladle is stirred mechanically or by blowing gas. Method for producing high-purity steel.
JP04292393A 1993-03-03 1993-03-03 Melting method of high cleanliness steel Expired - Fee Related JP3390478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04292393A JP3390478B2 (en) 1993-03-03 1993-03-03 Melting method of high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04292393A JP3390478B2 (en) 1993-03-03 1993-03-03 Melting method of high cleanliness steel

Publications (2)

Publication Number Publication Date
JPH06256837A JPH06256837A (en) 1994-09-13
JP3390478B2 true JP3390478B2 (en) 2003-03-24

Family

ID=12649547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04292393A Expired - Fee Related JP3390478B2 (en) 1993-03-03 1993-03-03 Melting method of high cleanliness steel

Country Status (1)

Country Link
JP (1) JP3390478B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419656B1 (en) * 1999-12-06 2004-02-25 주식회사 포스코 Method for refining extra low carbon steel by double deoxidizing slag
CN102296157B (en) * 2010-06-23 2013-03-13 宝山钢铁股份有限公司 Very low Ti control method of ultralow-carbon aluminum-silicon killed steel

Also Published As

Publication number Publication date
JPH06256837A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP3390478B2 (en) Melting method of high cleanliness steel
JPH0734117A (en) Production of extra-low carbon steel having excellent cleanliness
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP3002599B2 (en) Melting method for ultra low carbon steel with high cleanliness
KR101045972B1 (en) Refining method of highly clean ultra low carbon steel for soft two-piece can
KR970004990B1 (en) Decarburizing method of stainless steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JP3297998B2 (en) Melting method of high clean ultra low carbon steel
JP4183524B2 (en) Manufacturing method of high cleanliness steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2897639B2 (en) Refining method for extremely low sulfur steel
JP2855334B2 (en) Modification method of molten steel slag
JP3140256B2 (en) Slag reforming method
JP2976855B2 (en) Method of deoxidizing molten steel
JP2773525B2 (en) Melting method for grain-oriented electrical steel sheets
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JP2855333B2 (en) Modification method of molten steel slag
JP2615728B2 (en) Decarburization method for Cr-containing pig iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees