JPH06256836A - Production of high cleanliness and ultra-low carbon steel - Google Patents
Production of high cleanliness and ultra-low carbon steelInfo
- Publication number
- JPH06256836A JPH06256836A JP4011693A JP4011693A JPH06256836A JP H06256836 A JPH06256836 A JP H06256836A JP 4011693 A JP4011693 A JP 4011693A JP 4011693 A JP4011693 A JP 4011693A JP H06256836 A JPH06256836 A JP H06256836A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- vacuum
- ladle
- molten steel
- low carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、極低炭素鋼の溶製方法
に関し、特に高清浄度の極低炭素鋼を製造しようとする
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel, and more particularly to producing ultra-low carbon steel having high cleanliness.
【0002】[0002]
【従来の技術】極低炭素鋼の溶製は、製鋼炉で溶製され
た、C濃度が0.03〜0.06wt%(以下単に%と示す)程度
の未脱酸溶鋼を取鍋に出鋼し、次いで溶鋼上のスラグに
還元剤を添加し、その後の真空脱炭処理で支障を来さな
い程度まで、スラグ中のT.Fe濃度を低下する、いわゆ
るスラグ改質を行い、引き続き真空脱ガス装置にて真空
脱炭処理を行うのが、一般的である。2. Description of the Related Art The melting of ultra-low carbon steel is carried out by tapping the undeoxidized molten steel having a C concentration of about 0.03 to 0.06 wt% (hereinafter simply referred to as "%") melted in a steelmaking furnace into a ladle. Then, a reducing agent was added to the slag on the molten steel, and the T.O. It is general to perform so-called slag reforming to reduce the Fe concentration, and subsequently perform vacuum decarburization treatment with a vacuum degassing device.
【0003】このスラグの改質方法としては、取鍋内溶
鋼上のスラグに、Al、Al灰およびSi等の還元剤を投入
し、さらには特公平2−19168 号や特開平2−30711 号
各公報に開示されているように、還元剤を投入後にスラ
グの攪拌を行うことが、より有効である。As a method of modifying this slag, a reducing agent such as Al, Al ash and Si is put into the slag on the molten steel in the ladle, and further, Japanese Patent Publication No. 2-19168 and Japanese Patent Laid-Open No. 30711/1990. As disclosed in each publication, it is more effective to stir the slag after adding the reducing agent.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
溶製方法に従って、取鍋スラグの改質を行い、引き続き
真空脱ガス装置にて、酸化性ガスの供給による真空脱炭
処理を行うと、スラグの再酸化が生じて、スラグ中の
T.Fe濃度が上昇することが判明した。従って、真空脱
炭処理前のスラグ改質の効果、すなわちスラグ中のT.
Fe濃度の低減によって、スラグ中の酸素が鋼中Al等と反
応して鋼中酸素濃度が上昇するのを回避し、鋼の清浄度
を高める効果が減少する。すると、溶鋼の清浄度は低下
するため、この清浄度の低下に起因する、鋳造時のノズ
ル詰まりや成品の表面欠陥の発生を減少することが難し
かった。However, when the ladle slag is reformed according to the conventional melting method and subsequently the vacuum degassing apparatus performs the vacuum decarburizing treatment by supplying the oxidizing gas, the slag is Reoxidation of the T. It was found that the Fe concentration increased. Therefore, the effect of the slag modification before the vacuum decarburization treatment, that is, the T.
By reducing the Fe concentration, oxygen in the slag reacts with Al and the like in the steel to prevent the oxygen concentration in the steel from increasing, and the effect of increasing the cleanliness of the steel decreases. Then, since the cleanliness of the molten steel is lowered, it is difficult to reduce the occurrence of the nozzle clogging during casting and the surface defects of the product due to the decrease in the cleanliness.
【0005】本発明は、上記の問題を解消し、高清浄度
の極低炭素鋼を量産し得る方法について提案することを
目的とする。An object of the present invention is to solve the above problems and propose a method capable of mass-producing ultra-low carbon steel with high cleanliness.
【0006】[0006]
【課題を解決するための手段】本発明は、製鋼炉で溶製
した未脱酸溶鋼を取鍋に出鋼し、この取鍋から真空脱ガ
ス装置の真空槽内に導入した溶鋼に酸化性ガスを供給し
て真空脱炭処理を行う極低炭素鋼の溶製方法において、
真空脱炭処理終了後に、取鍋内スラグ上に還元剤を投入
し、取鍋内スラグの改質を行うことを特徴とする高清浄
度極低炭素鋼の溶製方法である。According to the present invention, undeoxidized molten steel melted in a steelmaking furnace is tapped into a ladle, and the molten steel introduced into the vacuum tank of a vacuum degassing apparatus is oxidized. In the melting method of ultra-low carbon steel that supplies gas and performs vacuum decarburization treatment,
After the vacuum decarburization treatment is completed, a reducing agent is put on the slag in the ladle to modify the slag in the ladle, which is a method for melting a highly clean ultra-low carbon steel.
【0007】ここで、真空脱炭処理終了後とは、脱炭処
理直後に限らず、例えば脱炭処理後に脱ガスや脱酸処理
(キルド処理)を行う場合には、これらの処理後にスラ
グの改質を行うことをも含むものである。The term "after vacuum decarburization treatment" is not limited to "immediately after decarburization treatment". For example, when degassing or deoxidation treatment (killing treatment) is performed after decarburization treatment, slag is removed after these treatments. It also includes performing reforming.
【0008】[0008]
【作用】図1は、取鍋に出鋼後の取鍋スラグに脱酸剤を
溶鋼1t当たり1kg添加した後、Arの底吹きによってス
ラグを攪拌してスラグの改質を行った後、RH真空脱ガ
ス装置の真空槽内に導入した溶鋼浴面上に酸素を供給し
つつ真空脱炭処理を行った際の、真空脱炭処理前および
処理後のスラグ中のT.Fe濃度を示したものである。Operation: Fig. 1 shows that after adding 1 kg of deoxidizer per 1 ton of molten steel to ladle slag after tapping in the ladle, the slag is reformed by stirring the slag by bottom blowing of Ar and then RH. When the vacuum decarburizing treatment was performed while supplying oxygen to the molten steel bath surface introduced into the vacuum tank of the vacuum degassing apparatus, the T.V. in the slag before and after the vacuum decarburizing treatment was performed. This shows the Fe concentration.
【0009】同図から、真空脱炭処理前にT.Fe≦8%
のスラグ改質を行った場合、真空脱炭処理後のT.Fe濃
度は、処理前のT.Fe濃度よりも高くなって、すなわち
スラグ改質による効果が激減してしまうことがわかる。
これは、真空脱炭処理にて、溶鋼に酸素が供給されて酸
素濃度が上昇し、スラグの再酸化が生じ、スラグ中の
T.Fe濃度が上昇するためである。そして、T.Fe濃度
が高いと、上述したスラグ改質の効果が期待できないた
め、鋼の清浄度を高めることは困難になる。[0009] From the figure, T. Fe ≦ 8%
When the slag modification of No. 1 was performed, the T.O. The Fe concentration is the same as that of the T. It is understood that the Fe concentration becomes higher than the Fe concentration, that is, the effect of the slag reforming is drastically reduced.
In the vacuum decarburizing treatment, oxygen is supplied to the molten steel to increase the oxygen concentration, causing reoxidation of the slag, and T. This is because the Fe concentration increases. And T. If the Fe concentration is high, the effect of the above-mentioned slag modification cannot be expected, so that it becomes difficult to increase the cleanliness of steel.
【0010】従って、スラグ改質をより確実に行うため
には、真空脱炭処理後に取鍋内スラグ上に還元剤を添加
することが、極めて有効な手段となり得る。さらに、ス
ラグ改質は、還元剤の投入後に、底吹きまたは上吹きラ
ンスや攪拌棒などにより、スラグを攪拌することで、よ
り高い効率で行うことが可能である。Therefore, in order to carry out the slag reforming more reliably, adding a reducing agent onto the slag in the ladle after the vacuum decarburizing treatment can be a very effective means. Furthermore, the slag modification can be performed with higher efficiency by stirring the slag with a bottom-blown or top-blown lance, a stirring rod, or the like after adding the reducing agent.
【0011】次に、本発明方法について詳しく説明す
る。まず、高炉からの溶銑を、製鋼炉、例えば転炉に装
入し、ここでは主に脱炭を行う。この転炉における吹止
めC濃度は、0.06%以下とすることが好ましい。なぜな
ら、0.06%を超えると、鋼中酸素濃度が低下するため脱
炭不良になり、処理時間が延びる等の問題が生じる場合
があるからである。一方C濃度の下限は、0.03%とする
ことが好ましい。この理由は、吹止めC濃度を0.03%よ
り低くすると、 .スラグ中T.Fe濃度の上昇により、スラグ改質の効
果が減少する、 .鋼中酸素濃度が脱炭に必要な濃度以上となり、過剰
脱酸剤原単位が増加する、 .転炉耐火物の損耗が激しくなる、 等の問題を生じるからである。Next, the method of the present invention will be described in detail. First, the hot metal from the blast furnace is charged into a steelmaking furnace, for example, a converter, where decarburization is mainly performed. The blowout stop C concentration in this converter is preferably 0.06% or less. This is because if it exceeds 0.06%, the oxygen concentration in the steel decreases, resulting in poor decarburization, which may lead to problems such as a longer processing time. On the other hand, the lower limit of the C concentration is preferably 0.03%. The reason for this is that if the blowing stop C concentration is lower than 0.03% ,. T. in slag As the Fe concentration increases, the effect of slag reforming decreases. The oxygen concentration in steel exceeds the concentration required for decarburization, and the excess deoxidizer basic unit increases. This is because problems such as severe wear of the converter refractories occur.
【0012】次いで、上記溶鋼を取鍋に出鋼した後、D
HまたはRH真空脱ガス装置にて、所定の炭素濃度とす
る。すなわち、上記までの工程で得られた炭素濃度及び
溶存酸素濃度、さらには溶鋼温度などに応じて、真空脱
ガス装置の真空槽に配置した、例えば上吹きランスか
ら、真空槽内の鋼浴面に酸素又は酸素を含む酸化性ガス
を吹付ける。ここで、溶存酸素濃度が不足している場合
は、吹付けた酸素は鋼中酸素源となって脱炭速度の上昇
に寄与し、また一部の酸素は脱炭で生じたCOガスを燃や
してCO2 となり、その燃焼熱は溶鋼に伝達される。Next, after the molten steel is tapped in a ladle, D
A H or RH vacuum degasser is used to achieve a predetermined carbon concentration. That is, according to the carbon concentration and the dissolved oxygen concentration obtained in the steps up to the above, and further the molten steel temperature, etc., it is arranged in the vacuum tank of the vacuum degassing device, for example, from the upper blowing lance, the steel bath surface in the vacuum tank. The surface is sprayed with oxygen or an oxidizing gas containing oxygen. Here, when the dissolved oxygen concentration is insufficient, the sprayed oxygen serves as an oxygen source in the steel and contributes to an increase in the decarburization rate, and some oxygen burns the CO gas generated by decarburization. Becomes CO 2 and the heat of combustion is transferred to the molten steel.
【0013】そして、所定の極低炭素濃度に調整する、
真空脱炭処理を終了したのちは、真空槽内への溶鋼の吸
い上げを中止し、取鍋内スラグの改質を行うか、または
真空脱炭処理に引き続いて、真空槽内にAlなどの還元剤
を添加して溶鋼の脱酸(キルド処理)をはかり、必要な
らば、さらに成分調整等も行って、これら処理後に溶鋼
の吸い上げを中止し、取鍋内スラグの改質を行う。な
お、取鍋内スラグの改質では、Al、Al灰およびSiなどの
還元剤をスラグに添加し、スラグ中のT.Fe濃度を5%
以下とすることが好ましい。Then, adjusting to a predetermined extremely low carbon concentration,
After completing the vacuum decarburization treatment, stop the sucking of molten steel into the vacuum tank and modify the slag in the ladle, or, following the vacuum decarburization treatment, reduce Al etc. in the vacuum tank. Deoxidizing molten steel by adding a chemical agent (killing treatment), and if necessary, further adjusting components, etc., after this treatment, sucking of molten steel is stopped and slag in the ladle is modified. In the modification of the slag in the ladle, a reducing agent such as Al, Al ash and Si is added to the slag, and the T. Fe concentration 5%
The following is preferable.
【0014】[0014]
(実施例1)転炉にて、C:0.05%の未脱酸溶鋼を溶製
し、取鍋に出鋼後、RH真空脱ガス装置の真空槽内に導
入した溶鋼浴面上に、真空槽の上から下へ垂直に挿入し
た水冷ランスから酸素ガスを5〜50Nm3/min の流量で吹
きつけて真空脱炭処理を行ってC:0.0025%まで脱炭
後、真空槽内に溶鋼1t当たり1.0kg のAlを投入してキ
ルド処理を行ってRH真空脱ガス処理を終了し、その後
取鍋内スラグ上に溶鋼1t当たり1.5kg のAl灰を添加す
るとともに、上吹きArのバブリングを3分間行ってスラ
グを十分に攪拌し、スラグの改質を行った。(Example 1) C: 0.05% undeoxidized molten steel was melted in a converter, tapped in a ladle, and then vacuumed on the molten steel bath surface introduced into the vacuum tank of the RH vacuum degassing apparatus. Oxygen gas is blown at a flow rate of 5 to 50 Nm 3 / min from a water-cooled lance vertically inserted from the top to the bottom of the tank to perform vacuum decarburization treatment to decarburize to C: 0.0025%, and 1t of molten steel is placed in the vacuum tank. The RH vacuum degassing process was terminated by introducing 1.0 kg of Al per liter and performing the kill treatment, and then 1.5 kg of Al ash per 1 ton of molten steel was added to the slag in the ladle, and bubbling of top-blown Ar was performed 3 times. The slag was sufficiently stirred for 1 minute to reform the slag.
【0015】(実施例2)転炉にて、C:0.05%の未脱
酸溶鋼を溶製し、取鍋に出鋼後、RH真空脱ガス装置の
真空槽内に導入した溶鋼浴面上に、真空槽の上から下へ
垂直に挿入した水冷ランスから酸素ガスを5〜50Nm3/mi
n の流量で吹きつけて真空脱炭処理を行ってC:0.0025
%まで脱炭後、RH真空脱ガス処理を中断し、取鍋内ス
ラグ上に溶鋼1t当たり1.5kg のAl灰を添加するととも
に、上吹きArのバブリングを5〜50Nm3/min の流量で3
分間行ってスラグを十分に攪拌し、スラグの改質を行っ
たのち、RH真空脱ガス処理を再開し、真空槽内に溶鋼
1t当たり1.0kg のAlを投入してキルド処理を行った。(Example 2) C: 0.05% undeoxidized molten steel was melted in a converter, tapped in a ladle, and then on a molten steel bath surface introduced into a vacuum tank of an RH vacuum degassing apparatus. In addition, 5 to 50 Nm 3 / mi of oxygen gas was introduced from the water cooling lance vertically inserted from the top to the bottom of the vacuum chamber.
Vacuum decarburization is performed by spraying at a flow rate of n and C: 0.0025
% Decarburization, the RH vacuum degassing process was interrupted, 1.5 kg of Al ash was added per 1 ton of molten steel on the slag in the ladle, and bubbling of top-blown Ar was performed at a flow rate of 5 to 50 Nm 3 / min.
After the slag was sufficiently agitated by performing the heating for 1 minute to reform the slag, the RH vacuum degassing treatment was restarted, and 1.0 kg of Al per 1 ton of molten steel was charged into the vacuum tank to perform the kill treatment.
【0016】(比較例)転炉にて、C:0.04%の未脱酸
溶鋼を溶製し、取鍋に出鋼後、取鍋内スラグ上に溶鋼1
t当たり1.5kg のAl灰を添加するとともに、上吹きArの
バブリングを5〜50Nm3/min の流量で3分間行ってスラ
グを十分に攪拌し、次いでRH真空脱ガス装置の真空槽
内に導入した溶鋼浴面上に酸素ガスを5〜50Nm3/min の
流量で供給しつつ真空脱炭処理を行い、その後真空槽内
に溶鋼1t当たり1.0kg のAlを投入してキルド処理を行
った。(Comparative Example) C: 0.04% undeoxidized molten steel was smelted in a converter, tapped in a ladle, and then molten steel 1 was placed on the slag in the ladle.
While adding 1.5 kg of Al ash per t, bubbling of top-blown Ar at a flow rate of 5 to 50 Nm 3 / min for 3 minutes to sufficiently stir the slag, and then introduce it into the vacuum chamber of the RH vacuum degasser. Oxygen gas was supplied onto the molten steel bath surface at a flow rate of 5 to 50 Nm 3 / min for vacuum decarburization treatment, and then 1.0 kg of Al per 1 ton of molten steel was charged into the vacuum tank for killing treatment.
【0017】かくして得られた極低炭素鋼は、それぞれ
タンディッシュに供給して連続鋳造に供した。図2に、
上記した実施例1、2および比較例における、転炉から
の出鋼直後からタンディッシュに到るまでのスラグ中の
T.Fe濃度の推移を示す。同図より、本発明に従う実施
例1、2は、連続鋳造中のタンディッシュ内スラグの
T.Fe濃度が、従来法に従う比較例と比べて低く、スラ
グの改質が効果的に行われたことがわかる。The ultra low carbon steels thus obtained were supplied to a tundish and subjected to continuous casting. In Figure 2,
In the above-mentioned Examples 1 and 2 and Comparative Example, the T.V. in the slag immediately after tapping from the converter to the tundish. The change of Fe concentration is shown. From the figure, in Examples 1 and 2 according to the present invention, the T.D. The Fe concentration was lower than that of the comparative example according to the conventional method, and it can be seen that the slag was effectively modified.
【0018】また、図3に、同様の条件下にて、連続鋳
造、熱間圧延、次いで冷間圧延を経て得られた製品にお
ける、表面欠陥数を指数で示すように、本発明に従う実
施例1、2で得られた極低炭素鋼による冷間圧延材での
表面欠陥は、比較例による冷間圧延材に比べて半減し、
品質向上に大きく寄与していることがわかる。なお、表
面欠陥指数は、コイル10m当たりの欠陥発生個数と長さ
を指数化したものである。Further, as shown in FIG. 3, the number of surface defects in the products obtained through continuous casting, hot rolling and then cold rolling under the same conditions is shown as an index. The surface defects in the cold rolled material made of the ultra low carbon steels obtained in Nos. 1 and 2 were reduced by half compared to the cold rolled material according to the comparative example,
It can be seen that it has greatly contributed to quality improvement. The surface defect index is an index of the number of defects and the length per 10 m of the coil.
【0019】[0019]
【発明の効果】本発明によれば、極低炭素鋼の清浄度を
格段に高めることができ、従って製品の品質改善を有利
に達成し得る。According to the present invention, the cleanliness of ultra-low carbon steel can be remarkably enhanced, and therefore the improvement of product quality can be advantageously achieved.
【図1】RH真空脱ガス処理前後のスラグ中のT.Fe濃
度を示すグラフである。FIG. 1 T.O.S. in slag before and after RH vacuum degassing treatment. It is a graph which shows Fe concentration.
【図2】スラグ中のT.Fe濃度を比較するグラフであ
る。FIG. 2 T. slag. 5 is a graph comparing Fe concentrations.
【図3】冷間圧延後の製品の表面欠陥を比較するグラフ
である。FIG. 3 is a graph comparing surface defects of products after cold rolling.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 三郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 久我 正昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Saburo Moriwaki, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Inside the Chiba Works, Kawasaki Steel Co., Ltd. (72) Masaaki Kuga 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Chiba Steel Works, Ltd.
Claims (1)
鋼し、この取鍋から真空脱ガス装置の真空槽内に導入し
た溶鋼に酸化性ガスを供給して真空脱炭処理を行う極低
炭素鋼の溶製方法において、真空脱炭処理終了後に、取
鍋内スラグ上に還元剤を投入し、取鍋内スラグの改質を
行うことを特徴とする高清浄度極低炭素鋼の溶製方法。1. Vacuum decarburization by tapping undeoxidized molten steel melted in a steelmaking furnace into a ladle and supplying an oxidizing gas to the molten steel introduced into the vacuum tank of a vacuum degassing device from this ladle. In the method of melting ultra-low carbon steel to be treated, after the vacuum decarburization treatment, a reducing agent is put on the slag in the ladle, and the slag in the ladle is reformed. Method for melting low carbon steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4011693A JPH06256836A (en) | 1993-03-01 | 1993-03-01 | Production of high cleanliness and ultra-low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4011693A JPH06256836A (en) | 1993-03-01 | 1993-03-01 | Production of high cleanliness and ultra-low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06256836A true JPH06256836A (en) | 1994-09-13 |
Family
ID=12571871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4011693A Pending JPH06256836A (en) | 1993-03-01 | 1993-03-01 | Production of high cleanliness and ultra-low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06256836A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053142A (en) * | 2001-12-22 | 2003-06-28 | 주식회사 포스코 | Method for Manufacturing Ultra Carbon Steel with High Cleanliness |
CN103160648A (en) * | 2013-03-18 | 2013-06-19 | 马钢(集团)控股有限公司 | Method of smelting ultra-low carbon steel in LF (Ladle Furnace) |
JP2023020853A (en) * | 2021-07-28 | 2023-02-09 | 北京科技大学 | Method for improving RH refining effect using hydrogen gas |
-
1993
- 1993-03-01 JP JP4011693A patent/JPH06256836A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053142A (en) * | 2001-12-22 | 2003-06-28 | 주식회사 포스코 | Method for Manufacturing Ultra Carbon Steel with High Cleanliness |
CN103160648A (en) * | 2013-03-18 | 2013-06-19 | 马钢(集团)控股有限公司 | Method of smelting ultra-low carbon steel in LF (Ladle Furnace) |
JP2023020853A (en) * | 2021-07-28 | 2023-02-09 | 北京科技大学 | Method for improving RH refining effect using hydrogen gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575827B2 (en) | Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness | |
JP3176374B2 (en) | Method for producing low carbon molten steel by vacuum degassing decarburization | |
JP3752801B2 (en) | Method for melting ultra-low carbon and ultra-low nitrogen stainless steel | |
JPH06256836A (en) | Production of high cleanliness and ultra-low carbon steel | |
JP3002593B2 (en) | Melting method of ultra low carbon steel | |
JP3473388B2 (en) | Refining method of molten stainless steel | |
JPH0734117A (en) | Production of extra-low carbon steel having excellent cleanliness | |
JPH10298631A (en) | Method for melting clean steel | |
JPH06207212A (en) | Production of high creanliness extra-low carbon steel of extremely low s | |
JP3241910B2 (en) | Manufacturing method of extremely low sulfur steel | |
JP2991796B2 (en) | Melting method of thin steel sheet by magnesium deoxidation | |
KR101045972B1 (en) | Refining method of highly clean ultra low carbon steel for soft two-piece can | |
JP3548273B2 (en) | Melting method of ultra low carbon steel | |
JP3411220B2 (en) | Refining method of high nitrogen low oxygen chromium-containing molten steel | |
JPH0488114A (en) | Method for producing high manganese steel | |
JP3297998B2 (en) | Melting method of high clean ultra low carbon steel | |
JPH05247522A (en) | Refining method of highly clean stainless steel | |
JP7269485B2 (en) | Melting method of high nitrogen stainless molten steel | |
JP3390478B2 (en) | Melting method of high cleanliness steel | |
JP2880842B2 (en) | How to make clean steel | |
JP3253138B2 (en) | Melting method of high cleanness ultra low carbon steel | |
JP3757435B2 (en) | Method for decarburizing and refining chromium-containing molten steel | |
JPH05239537A (en) | Method for melting cleanliness and extreme-low carbon steel | |
JPH0941028A (en) | Production of high purity ultra-low carbon steel | |
JP3167902B2 (en) | Decarburization refining method for Cr-containing molten steel |