JPH05239537A - Method for melting cleanliness and extreme-low carbon steel - Google Patents

Method for melting cleanliness and extreme-low carbon steel

Info

Publication number
JPH05239537A
JPH05239537A JP4039454A JP3945492A JPH05239537A JP H05239537 A JPH05239537 A JP H05239537A JP 4039454 A JP4039454 A JP 4039454A JP 3945492 A JP3945492 A JP 3945492A JP H05239537 A JPH05239537 A JP H05239537A
Authority
JP
Japan
Prior art keywords
molten steel
vacuum degassing
steel
ladle
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4039454A
Other languages
Japanese (ja)
Other versions
JP3370349B2 (en
Inventor
Osamu Kirihara
理 桐原
Yoshihide Kato
嘉英 加藤
Tetsuya Fujii
徹也 藤井
Shigeru Omiya
茂 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12553494&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05239537(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03945492A priority Critical patent/JP3370349B2/en
Priority to US07/993,388 priority patent/US5304231A/en
Priority to EP92121682A priority patent/EP0548868B1/en
Priority to DE69227014T priority patent/DE69227014T2/en
Priority to KR1019920025275A priority patent/KR960009168B1/en
Priority to BR9205155A priority patent/BR9205155A/en
Priority to CA002086193A priority patent/CA2086193C/en
Priority to CN92115273A priority patent/CN1061381C/en
Publication of JPH05239537A publication Critical patent/JPH05239537A/en
Publication of JP3370349B2 publication Critical patent/JP3370349B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To realize good efficient decarburizing treatment in a melting method of an extreme-low carbon steel, particularly a high cleanliness and extreme-low carbon steel using an RH vacuum degassing apparatus. CONSTITUTION:In a ladle incorporating the molten steel decarbunized in a refining furnace, after a total concn. of FeO and MnO in slag on this molten steel is adjusted to <=5wt.%, the RH vacuum degassing apparatus is put on this ladle, and oxidizing gas is blown from a top-blowing lance on the molten steel surface introduced into a vacuum vessel in this apparatus during at least a part of the period for the RH vacuum degassing treatment. After the RH vacuum degassing treatment completes, successively Al is added to the molten steel and flux powder containing >=50wt.% CaO is injected to the molten steel surface from the top-blowing lance at a rate of >=3kg/t of molten steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、RH真空脱ガス装置
を用いた極低炭素鋼、中でも清浄度の高い極低炭素鋼を
溶製する方法に関し、特に、効率の良い脱酸処理を実現
しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel using an RH vacuum degassing apparatus, especially ultra-low carbon steel with high cleanliness, and particularly, to achieve efficient deoxidation treatment. Is what you are trying to do.

【0002】[0002]

【従来の技術】RH真空脱ガス装置を用いた溶製例のう
ち特開昭53−92320 号公報には、真空槽内の溶鋼の浴面
に、フラックス粉を吹きつけて溶鋼浴表面に塩基度の高
いスラグ層を形成し、鋼中の酸素濃度を低下する技術に
ついて提案している。しかしながら、この開示の方法に
は、鋼中酸素の低減に重要な取鍋スラグの組成に関する
記載がなく、高清浄度の極低炭素鋼の溶製に適用するこ
とは難しい。
2. Description of the Related Art Among the melting examples using an RH vacuum degassing apparatus, Japanese Patent Laid-Open No. 53-92320 discloses that a molten steel bath surface in a vacuum chamber is sprayed with flux powder to form a base on the molten steel bath surface. We have proposed a technology to reduce the oxygen concentration in steel by forming a slag layer with high degree. However, the method of this disclosure does not describe the composition of the ladle slag that is important for reducing oxygen in the steel, and it is difficult to apply it to the smelting of extremely clean low carbon steel.

【0003】また、特開平3−183722号公報には、脱酸
処理後にMgO を主成分とする添加物を真空槽の上部から
添加し、溶鋼表面とスラグ層との間に介在させて溶鋼の
酸化を防止し、高清浄度の鋼を溶製する方法が開示され
ている。しかしながら、この開示の方法にあっては、真
空槽で添加する添加物の粒度が小さい場合、上記添加物
が真空ポンプからの排気とともに排出される一方、粒度
が大きいと下降管から溶鋼中に導入されてもすぐに下降
管近傍に浮上し、スラグ−メタル界面を効果的に遮断す
ることができないため、鋼中酸素濃度を低減させること
が実現し難いという問題があった。
Further, in Japanese Patent Laid-Open No. 183722/1993, an additive containing MgO as a main component is added from the upper part of a vacuum chamber after deoxidation treatment, and the additive is added between the surface of the molten steel and the slag layer to form the molten steel. A method of preventing oxidation and melting high-cleanliness steel is disclosed. However, in the method of this disclosure, when the particle size of the additive to be added in the vacuum tank is small, the additive is discharged together with the exhaust from the vacuum pump, while when the particle size is large, it is introduced into the molten steel from the downcomer pipe. Even if it is done, it immediately floats in the vicinity of the downcomer pipe and cannot effectively block the slag-metal interface, so that there is a problem that it is difficult to reduce the oxygen concentration in the steel.

【0004】[0004]

【発明が解決しようとする課題】上記したRH真空脱ガ
ス装置でフラックス処理を行う従来の手法は、フラック
スが溶鋼顕熱を奪って温度降下を引き起こすため、効率
の良い処理は実現できないという共通する大きな問題を
抱えていた。なお、この温度降下を補償するために、処
理開始時の溶鋼温度を上昇させておくことは、RH真空
脱ガス処理の前工程で用いる転炉の耐火物の負荷を増加
するため好ましくない。
The conventional method of performing the flux treatment in the above-mentioned RH vacuum degassing apparatus is common in that the flux takes away the sensible heat of molten steel and causes a temperature drop, so that efficient treatment cannot be realized. I had a big problem. In order to compensate for this temperature drop, it is not preferable to raise the temperature of the molten steel at the start of the treatment because it increases the load on the refractory of the converter used in the preceding step of the RH vacuum degassing treatment.

【0005】そこで、この発明は上記各従来技術が抱え
ている諸問題を解消し、清浄度の高い極低炭素鋼を効率
よく安価に量産し得る方法について提案することを目的
とする。
Therefore, an object of the present invention is to solve the problems of the above-mentioned respective prior arts and to propose a method capable of efficiently mass-producing extremely low carbon steel having high cleanliness at low cost.

【0006】[0006]

【課題を解決するための手段】上記の目的を成就するに
は、スラグによる溶鋼の再酸化を防止することが肝要で
ある。従って、RH真空脱ガス処理に供する取鍋内溶鋼
における浴面上スラグの組成が非常に重要であることが
新たに判明した。ちなみに、従来技術として掲げた特開
昭53−92320 号及び特開平3−183722号各公報には、ス
ラグ組成に関する記載は見当たらない。発明者らは、こ
のスラグ組成を適切な範囲とすることで、従来法に比べ
て効率の高い処理が、再酸化などの溶鋼汚染の危惧を招
くことなしに実現されることを確認し、この発明を完成
するに到った。
To achieve the above object, it is essential to prevent re-oxidation of molten steel by slag. Therefore, it was newly found that the composition of the slag on the bath surface in the molten steel in the ladle to be subjected to the RH vacuum degassing treatment is very important. By the way, there is no description about the slag composition in each of Japanese Patent Laid-Open No. 53-92320 and Japanese Patent Laid-Open No. 3-183722, which are cited as the prior art. The inventors confirmed that, by setting the slag composition in an appropriate range, highly efficient treatment as compared with the conventional method can be realized without inviting the risk of molten steel contamination such as reoxidation. The invention was completed.

【0007】すなわちこの発明は、RH真空脱ガス装置
にて極低炭素鋼を溶製するに際し、まず、精錬炉で脱炭
した溶鋼を取鍋内に収容し、その取鍋内浴面上に、出鋼
中もしくは出鋼後に還元剤を添加することによって、Fe
O およびMnO の合計濃度が5wt%以下となるように調整
されたスラグを形成し、ついで、その取鍋にRH真空脱
ガス装置を設置したのち、該装置の真空槽内に導入した
溶鋼浴面上に、少なくともRH真空脱ガス処理の一部の
期間にわたり、上吹きランスから酸化性ガスを吹きつ
け、次いでRH真空脱ガス処理の終了後の溶鋼にAlを添
加し、引き続き、その溶鋼浴面に対して上記上吹きラン
スから、CaO を50wt%以上含有するフラックス粉を溶鋼
1t当たり3kg以上で吹きつけることを特徴とする高清
浄度極低炭素鋼の溶製方法である。
That is, according to the present invention, when melting ultra-low carbon steel in an RH vacuum degassing apparatus, first, molten steel decarburized in a refining furnace is placed in a ladle, and is placed on the bath surface in the ladle. , By adding a reducing agent during or after tapping,
After forming a slag adjusted so that the total concentration of O and MnO is 5 wt% or less, and then installing a RH vacuum degassing device in the ladle, the molten steel bath surface was introduced into the vacuum tank of the device. At least for a part of the RH vacuum degassing process, an oxidizing gas is blown from the top blowing lance, and then Al is added to the molten steel after the RH vacuum degassing process is finished. On the other hand, it is a method for melting a high cleanliness ultra-low carbon steel, characterized in that flux powder containing 50 wt% or more of CaO is sprayed at 3 kg or more per ton of molten steel from the above-mentioned top lance.

【0008】[0008]

【作用】次に、この発明の方法の手順について説明す
る。まず転炉などの精錬炉での精錬を経た溶鋼を取鍋へ
出鋼中または出鋼後に、そのスラグにAlなどの還元剤を
添加し、スラグ成分を(FeO )+(MnO )≦5%に調整
することが、スラグからの再酸化を防止する上で肝要で
ある。
Next, the procedure of the method of the present invention will be described. First, molten steel that has undergone refining in a refining furnace such as a converter is tapped into a ladle during or after tapping, and a reducing agent such as Al is added to the slag to make the slag component (FeO) + (MnO) ≦ 5%. It is important to adjust to prevent reoxidation from slag.

【0009】すなわち、図1にスラグ中のFeO およびMn
O の合計濃度とRH真空脱ガス処理後の酸素濃度との関
係を示すように、スラグ中のFeO およびMnO の合計濃度
が5%をこえるとRH真空脱ガス処理後の酸素濃度が急
激に上昇することがわかる。この理由は、スラグ中のFe
O およびMnO とCaOを50wt%以上含有するフラックス粉
体との滓化が急速に進行してしまって、フラックスによ
るスラグ−メタル界面の遮断ができずに再酸化が進行す
るためであると考えられる。
That is, in FIG. 1, FeO and Mn in the slag are
As shown in the relationship between the total concentration of O 2 and the oxygen concentration after RH vacuum degassing, when the total concentration of FeO and MnO in the slag exceeds 5%, the oxygen concentration after RH vacuum degassing increases sharply. I understand that The reason for this is Fe in the slag
It is considered that this is because the slag formation of O and MnO and the flux powder containing 50% by weight or more of CaO progresses rapidly, and the slag-metal interface cannot be blocked by the flux and reoxidation proceeds. ..

【0010】次に、浴面上のスラグ組成を、精錬炉から
の溶鋼出鋼中もしくは受鋼後の取鍋中で調整した取鍋
に、RH真空脱ガス装置を設置し、RH真空脱ガス装置
の真空槽に配置した上吹きランスから、真空槽内の鋼浴
面に酸素または酸素を含む酸化性ガスを、少なくともR
H真空脱ガス処理の一部の期間にわたり吹付ける。次い
で、RH真空脱ガス処理の終了後に溶鋼へAlを添加し、
引き続き、溶鋼浴面に対し上記上吹きランスから、CaO
を50%以上含有するフラックス粉を溶鋼1t当たり3kg
以上吹きつける。
Next, the RH vacuum degassing device was installed in a ladle in which the slag composition on the bath surface was adjusted during molten steel tapping from the refining furnace or in the ladle after receiving the steel, and RH vacuum degassing was performed. From the top blowing lance arranged in the vacuum chamber of the apparatus, oxygen or an oxidizing gas containing oxygen is supplied to the steel bath surface in the vacuum chamber by at least R.
Spray for part of the H 2 vacuum degassing process. Then, Al is added to the molten steel after the RH vacuum degassing treatment is completed,
Next, from the above-mentioned top blowing lance to the molten steel bath surface, CaO
3kg / t of molten steel containing 50% or more of flux powder
Blow over.

【0011】この処理において、上吹きランスからは真
空槽内の鋼浴面に酸化性ガスを吹きつけることによって
溶鋼の昇温をはかり、取鍋出鋼前の溶鋼温度を大幅に上
昇させることなしに、RH真空脱ガス処理におけるフラ
ックスの大量吹き込みを実現する。このフラックスは鋼
中介在物の浮上を促進することから、鋼清浄度の極低炭
素鋼の溶製が可能となる。
In this process, the temperature of the molten steel was measured by blowing an oxidizing gas from the top blowing lance onto the steel bath surface in the vacuum chamber, and the temperature of the molten steel before ladle tapping was not significantly increased. In addition, a large amount of flux is blown in the RH vacuum degassing process. Since this flux promotes the floating of inclusions in the steel, it becomes possible to produce an extremely low carbon steel having a steel cleanliness.

【0012】また、CaO を50%以上含有するフラックス
粉を溶鋼1t当たり3kg以上で吹きつける理由は、スラ
グ−メタル界面をフラックスによって完全に遮断するた
めであり、溶鋼1t当たりの吹きつけ量が3kg未満で
は、RH真空脱ガス処理後の酸素濃度が低下しない不利
を招く結果となる。
The reason why the flux powder containing 50% or more of CaO is sprayed at 3 kg or more per ton of molten steel is that the slag-metal interface is completely blocked by the flux, and the spray amount per ton of molten steel is 3 kg. When the amount is less than the above, the oxygen concentration after the RH vacuum degassing process is not lowered, resulting in a disadvantage.

【0013】さらに、上吹きランスから酸化性ガスまた
はフラックスを吹き込むため、浸漬ランスによる吹き込
みのように、使用していないときにパージガスを流す必
要がなく、RH真空脱ガス処理中の温度降下を最小限に
抑えることができる。
Further, since the oxidizing gas or the flux is blown from the upper blowing lance, it is not necessary to flow the purge gas when not in use unlike the blowing by the immersion lance, and the temperature drop during the RH vacuum degassing process is minimized. You can keep it to the limit.

【0014】[0014]

【実施例】転炉で吹錬し吹止め時のC含有量を0.03〜0.
05%および溶鋼温度を1635〜1650℃とした、溶鋼 280t
を取鍋に出鋼した。取鍋内に流入した転炉スラグに、40
%のAlを含むアルミナを主成分とする還元材を添加し、
スラグ中のFeO 及びMnO の合計濃度を5%以下に調整し
た。
[Example] The C content at the time of blowing and blowing in a converter is 0.03 to 0.
Molten steel 280t with 05% and molten steel temperature of 1635 to 1650 ℃
The steel was tapped in the ladle. The converter slag that flowed into the ladle was
%, And a reducing agent whose main component is alumina containing Al,
The total concentration of FeO and MnO in the slag was adjusted to 5% or less.

【0015】その後、図2に示すように、取鍋1にRH
真空脱ガス装置の浸漬管2を溶鋼3中に挿入し、排気口
4から排気を行って真空槽5内に溶鋼を導入した。次い
で、浸漬管2から溶鋼中にArガスを吹き込み、リフトポ
ンプの原理を利用して溶鋼を還流させて脱ガス処理を行
った。このRH真空脱ガス処理開始2分後に、真空槽の
上から下へ垂直に挿入した上吹きランス6からO2 ガス
を35Nm3/min で120 〜280Nm3吹きつけた。RH処理開始
から20分間は脱炭を行い、次に、Alを添加して脱酸を行
って鋼中Al濃度を50×10-3%に調整した。その後、さら
に下降した上吹きランス6からArガスをキャリアガスと
して、CaO 粉7を100 〜150kg/min の吹きつけ速度で供
給した。このCaO 粉7の吹きつけ後3〜5分間溶鋼を還
流させてRH処理を終了した。
Thereafter, as shown in FIG.
The immersion pipe 2 of the vacuum degassing device was inserted into the molten steel 3, the gas was exhausted from the exhaust port 4, and the molten steel was introduced into the vacuum chamber 5. Next, Ar gas was blown into the molten steel from the immersion pipe 2, and the molten steel was refluxed using the principle of a lift pump to perform degassing treatment. This RH vacuum degassing treatment starts after 2 minutes, was sprayed 120 ~280Nm 3 in the lance 6 top-blown inserted vertically from the top to the bottom of the vacuum chamber O 2 gas 35 Nm 3 / min. Decarburization was performed for 20 minutes from the start of the RH treatment, and then Al was added to deoxidize to adjust the Al concentration in the steel to 50 × 10 −3 %. After that, the CaO powder 7 was supplied from the further downwardly blown lance 6 using Ar gas as a carrier gas at a blowing rate of 100 to 150 kg / min. After spraying the CaO powder 7, the molten steel was refluxed for 3 to 5 minutes to complete the RH treatment.

【0016】ここで、図3にCaO からなるフラックス粉
7の供給量とRH処理後の鋼中全酸素量との関係を示す
ように、CaO 粉供給量が溶鋼1t当たり3kg未満では酸
素濃度が低下しないため、鋼中全酸素量を15ppm 以下の
高清浄度鋼を安定して溶製するには、溶鋼1t当たり3
kg以上のフラックスを必要とすることがわかる。
Here, as shown in FIG. 3, which shows the relationship between the supply amount of the flux powder 7 made of CaO and the total oxygen amount in the steel after RH treatment, when the CaO powder supply amount is less than 3 kg per 1 t of molten steel, the oxygen concentration is Since it does not decrease, in order to stably produce high-cleanliness steel with a total oxygen content of 15 ppm or less, 3 per 1 ton of molten steel is required.
It turns out that more than kg of flux is required.

【0017】さらに、RH処理中に上吹きランスからO
2 ガスを吹きつけることによって、RH処理前の溶鋼温
度を大幅に上昇させることなしに、大量のフラックスを
供給できた。すなわち、図4に、O2 ガスを180Nm3上吹
きした後フラックスを3.3kg/t 上吹きした場合、および
2 ガスの上吹きを行わずにフラックスを2.5kg/t 上吹
きした場合の脱炭処理中における溶鋼温度の変化を示し
たが、この図に示すように、フラックスの吹きつけに先
立ちO2 ガスを上吹きすることにより、リムド処理中の
2次燃焼による真空槽内溶鋼温度が上昇し、処理中の温
度降下速度を小さくできることがわかる。RH処理前の
溶鋼温度を同一としてO2 ガスの上吹きがない場合は、
溶鋼温度が低くなるためフラックス量も少なくなってし
まった。
Further, during the RH treatment, O is discharged from the top blowing lance.
By blowing two gases, a large amount of flux could be supplied without significantly increasing the temperature of the molten steel before the RH treatment. That is, in FIG. 4, prolapse when O 2 If the flux was blown above 180 Nm 3 gas was blown over 3.3 kg / t, and O 2 flux without top-blown gas was blown over 2.5 kg / t The change in molten steel temperature during charcoal treatment was shown. As shown in this figure, by blowing O 2 gas before the flux was sprayed, the molten steel temperature in the vacuum tank due to the secondary combustion during rimming treatment was increased. It can be seen that the temperature rises and the temperature drop rate during processing can be reduced. When the molten steel temperature before RH treatment is the same and there is no O 2 gas top blowing,
Since the molten steel temperature became lower, the amount of flux also decreased.

【0018】また、上記した実施例、すなわち、取鍋ス
ラグの成分調整およびフラックス吹き込みを実施した場
合の比較として、取鍋スラグの成分調整{(FeO )+
(MnO)≦5%}のみを実施した場合とフラックス吹き
込み(3kg/t)のみを実施した場合におけるRH処理後
の鋼中全酸素量について、図5に示す。同図から、この
発明に従う各処理の組み合わせによって、初めて高清浄
度の極低炭素鋼が得られることがわかる。
Further, as a comparison of the above-mentioned embodiment, that is, the case of adjusting the composition of the ladle slag and performing the flux blowing, the composition of the ladle slag is adjusted {(FeO) +
FIG. 5 shows the total oxygen content in the steel after RH treatment when only (MnO) ≦ 5%} was carried out and when only flux blowing (3 kg / t) was carried out. From the figure, it can be seen that an extremely low carbon steel with high cleanliness can be obtained only by combining the respective treatments according to the present invention.

【0019】なお、上記例ではCaO からなるフラックス
粉を用いたが、CaO は少なくとも50%含有していれば所
望の効果が得られるため、CaO の他にMgO などを含有す
ることは可能である。
In the above example, the flux powder made of CaO was used. However, if CaO is contained at least 50%, the desired effect can be obtained. Therefore, it is possible to contain MgO in addition to CaO. ..

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
清浄度の高い極低炭素鋼を、RH処理前の精錬工程での
負荷を増すことなしに、効率良く大量生産することがで
きる。
As described above, according to the present invention,
Ultra-low carbon steel with high cleanliness can be efficiently mass-produced without increasing the load in the refining process before RH treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】(FeO )+(MnO )とRH処理後鋼中全酸素量
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between (FeO 2) + (MnO 2) and the total oxygen content in steel after RH treatment.

【図2】RH処理を示す模式図である。FIG. 2 is a schematic diagram showing RH processing.

【図3】フラックス量とRH処理後鋼中全酸素量との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of flux and the amount of total oxygen in steel after RH treatment.

【図4】溶鋼温度に及ぼす酸化性ガス吹きつけの影響を
示すグラフである。
FIG. 4 is a graph showing the effect of blowing an oxidizing gas on the temperature of molten steel.

【図5】各種処理とRH処理後鋼中全酸素量との関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between various treatments and the total oxygen content in steel after RH treatment.

【符号の説明】[Explanation of symbols]

1 取鍋 2 浸漬管 3 溶鋼 4 排気口 5 真空槽 6 上吹きランス 7 フラックス粉 1 Ladle 2 Immersion pipe 3 Molten steel 4 Exhaust port 5 Vacuum tank 6 Top blowing lance 7 Flux powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 徹也 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 大宮 茂 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuya Fujii 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Shigeru Omiya 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama ) Kawasaki Steel Co., Ltd. Mizushima Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH真空脱ガス装置にて極低炭素鋼を溶
製するに際し、まず、精錬炉で脱炭した溶鋼を取鍋内に
収容し、その取鍋内浴面上に、出鋼中もしくは出鋼後に
還元剤を添加することによって、FeO およびMnO の合計
濃度が5wt%以下となるように調整されたスラグを形成
し、ついで、その取鍋にRH真空脱ガス装置を設置した
のち、該装置の真空槽内に導入した溶鋼浴面上に、少な
くともRH真空脱ガス処理の一部の期間にわたり、上吹
きランスから酸化性ガスを吹きつけ、次いでRH真空脱
ガス処理の終了後の溶鋼にAlを添加し、引き続き、その
溶鋼浴面に対して上記上吹きランスから、CaO を50wt%
以上含有するフラックス粉を溶鋼1t当たり3kg以上吹
きつけることを特徴とする高清浄度極低炭素鋼の溶製方
法。
1. When melting ultra-low carbon steel in an RH vacuum degassing apparatus, first, the molten steel decarburized in a refining furnace is placed in a ladle, and tapped on the bath surface in the ladle. A reducing agent was added during or after tapping to form a slag adjusted so that the total concentration of FeO and MnO was 5 wt% or less, and then the RH vacuum degassing device was installed in the ladle. , On the surface of the molten steel bath introduced into the vacuum tank of the apparatus, for at least a part of the RH vacuum degassing process, an oxidizing gas is blown from the top blowing lance, and then after the RH vacuum degassing process is completed. After adding Al to the molten steel, 50 wt% of CaO was continuously added to the molten steel bath surface from the above-mentioned top blowing lance.
A method for smelting a high cleanliness ultra-low carbon steel, which comprises spraying 3 kg or more of the flux powder contained above per ton of molten steel.
JP03945492A 1991-12-24 1992-02-26 Melting method of high cleanness ultra low carbon steel Expired - Fee Related JP3370349B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP03945492A JP3370349B2 (en) 1992-02-26 1992-02-26 Melting method of high cleanness ultra low carbon steel
US07/993,388 US5304231A (en) 1991-12-24 1992-12-18 Method of refining of high purity steel
EP92121682A EP0548868B1 (en) 1991-12-24 1992-12-21 Method of refining of high purity steel
DE69227014T DE69227014T2 (en) 1991-12-24 1992-12-21 Process for refining very pure steel
KR1019920025275A KR960009168B1 (en) 1991-12-24 1992-12-23 Method of refining of high purity steel
BR9205155A BR9205155A (en) 1991-12-24 1992-12-23 METHOD OF REFINING A HIGH PURITY STEEL
CA002086193A CA2086193C (en) 1991-12-24 1992-12-23 Method of refining of high purity steel
CN92115273A CN1061381C (en) 1991-12-24 1992-12-24 Method of refining of high purity steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03945492A JP3370349B2 (en) 1992-02-26 1992-02-26 Melting method of high cleanness ultra low carbon steel

Publications (2)

Publication Number Publication Date
JPH05239537A true JPH05239537A (en) 1993-09-17
JP3370349B2 JP3370349B2 (en) 2003-01-27

Family

ID=12553494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03945492A Expired - Fee Related JP3370349B2 (en) 1991-12-24 1992-02-26 Melting method of high cleanness ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP3370349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129338A (en) * 1998-10-22 2000-05-09 Sumitomo Metal Ind Ltd Melting method for extra-low carbon steel excellent in cleanliness
KR100434735B1 (en) * 2002-08-27 2004-06-07 주식회사 포스코 Method for manufacturing ultra-low C steel having phosphorous
US7247211B2 (en) * 2000-11-27 2007-07-24 Sumitomo Metal Industries, Ltd. Method of manufacture of ultra-low carbon steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129338A (en) * 1998-10-22 2000-05-09 Sumitomo Metal Ind Ltd Melting method for extra-low carbon steel excellent in cleanliness
US7247211B2 (en) * 2000-11-27 2007-07-24 Sumitomo Metal Industries, Ltd. Method of manufacture of ultra-low carbon steel
KR100434735B1 (en) * 2002-08-27 2004-06-07 주식회사 포스코 Method for manufacturing ultra-low C steel having phosphorous

Also Published As

Publication number Publication date
JP3370349B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
CN1258607C (en) Ladle refining of steel
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
JPH06240338A (en) Method for desulfurizing molten steel
JP2008169407A (en) Method for desulfurizing molten steel
JPH09165615A (en) Denitrifying method for molten metal
JP3002593B2 (en) Melting method of ultra low carbon steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
KR970004990B1 (en) Decarburizing method of stainless steel
JPH0153329B2 (en)
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JPH0741824A (en) Production of high cleanliness steel
JPS6063307A (en) Converter steel making method of dead soft steel
JPH0488114A (en) Method for producing high manganese steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JPH05287358A (en) Method for melting extremely low carbon steel having high cleanliness
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JP2006152368A (en) Method for melting low carbon high manganese steel
JP3279142B2 (en) Refining method of ultra clean low carbon steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JP3297765B2 (en) Desulfurization method of molten steel
JPH0941028A (en) Production of high purity ultra-low carbon steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees