JP2728184B2 - Oxygen top-blowing vacuum decarburization of molten steel - Google Patents
Oxygen top-blowing vacuum decarburization of molten steelInfo
- Publication number
- JP2728184B2 JP2728184B2 JP40300090A JP40300090A JP2728184B2 JP 2728184 B2 JP2728184 B2 JP 2728184B2 JP 40300090 A JP40300090 A JP 40300090A JP 40300090 A JP40300090 A JP 40300090A JP 2728184 B2 JP2728184 B2 JP 2728184B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- slag
- vacuum
- ladle
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、取鍋溶鋼の減圧脱炭
法、特に真空槽内に溶鋼を吸い上げて、少なくとも上吹
きランスから酸素ガスを吹きつける溶鋼の減圧脱炭法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of vacuum decarburization of molten steel in a ladle, and more particularly to a method of vacuum decarburization of molten steel in which molten steel is sucked into a vacuum chamber and oxygen gas is blown from at least an upper blowing lance. .
【0002】[0002]
【従来の技術】ステンレス鋼の脱炭、あるいは普通鋼の
極低炭域までの脱炭では、減圧下での脱炭が広く利用さ
れているが、また減圧下で酸素吹精を行うことも一般的
である。しかしながら、これら減圧下の仕上脱炭法の問
題は、酸素供給律速で脱炭反応が進行する高炭素域での
脱炭速度を上げるため上吹き酸素の供給速度を増加する
と、真空槽内でのスプラッシュの発生が激しく、また通
常真空槽内の溶鋼はスラグで覆われていない裸の状態で
あるため、上吹き酸素によるCOガスの2次燃焼熱の溶鋼
への効率よい着熱を得ることが困難であるという問題が
あった。2. Description of the Related Art Decarburization under reduced pressure is widely used for decarburizing stainless steel or decarburizing ordinary steel to an extremely low-carbon region. General. However, the problem of the decarburization method under reduced pressure is that if the supply rate of top-blown oxygen is increased in order to increase the decarburization rate in a high-carbon region where the decarburization reaction proceeds with the oxygen supply rate being controlled, the inside of the vacuum chamber Splash generation is severe, and the molten steel in the vacuum chamber is usually bare and not covered with slag. There was a problem that it was difficult.
【0003】これらに対し、特開昭61−136613号公報に
はスプラッシュ防止と脱炭促進を目的に、上吹き酸素と
ともに酸化鉄あるいは酸化ニッケルを含む粉体を吹き付
ける技術が開示されている。この技術は固体酸素と気体
酸素の和として必要酸素量を得ることによって、気体酸
素供給量を抑制あるいは減少させ、気体酸素ジェットに
よるスプラッシュの発生を増加させることなく脱炭速度
を向上しようというものである。しかしながら、本技術
はスプラッシュ防止という点で優れてはいるが、脱炭速
度に関しては溶鋼中へ侵入した酸化物と溶鋼中の炭素と
の反応のみを期待しているため脱炭速度の向上効果は未
だ不十分であり、また上吹き酸素による鋼浴の熱補償を
考えた場合、溶鋼面上にスラグが存在せずスラグより熱
吸収率の小さい鋼浴面に槽内雰囲気ガスが接触している
ため著しく不利である。On the other hand, Japanese Patent Application Laid-Open No. 61-136613 discloses a technique for spraying a powder containing iron oxide or nickel oxide together with top-blown oxygen for the purpose of preventing splash and accelerating decarburization. This technology seeks to reduce or reduce the supply of gaseous oxygen by obtaining the required amount of oxygen as the sum of solid oxygen and gaseous oxygen, and to improve the decarburization rate without increasing the generation of splash by the gaseous oxygen jet. is there. However, although this technology is excellent in preventing splash, the effect of improving the decarburization rate is expected only for the reaction between the oxides that have penetrated into the molten steel and the carbon in the molten steel. Insufficient, and considering the thermal compensation of the steel bath by top-blown oxygen, there is no slag on the molten steel surface and the atmosphere gas in the tank is in contact with the steel bath surface with a lower heat absorption rate than the slag This is a significant disadvantage.
【0004】また、前記のように減圧下で脱炭する場
合、鉄、マンガン等が一部酸化されて、取鍋スラグ内に
鉄酸化物、 MnO等の酸化性成分が蓄積され減圧脱炭終了
後これ等の酸化性成分から溶鋼へ酸素が供給され溶鋼中
の溶存酸素や非金属介在物が多くなるという問題があっ
た。When decarburization is performed under reduced pressure as described above, iron, manganese and the like are partially oxidized, and oxidizing components such as iron oxide and MnO are accumulated in the ladle slag, and the decarburization under reduced pressure is completed. Thereafter, there is a problem that oxygen is supplied to the molten steel from these oxidizing components and dissolved oxygen and nonmetallic inclusions in the molten steel increase.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、前記
従来技術の欠点を解消し、少なくとも上吹き酸素ガスを
利用し得る減圧脱炭法において、スプラッシュを防止
し、かつCOガスの2次燃焼による熱を鋼浴に有効に着熱
させることによって、脱炭と温度補償を効果的に行い、
さらに溶存酸素、非金属介在物等の鋼浴中不純物濃度を
低減し得る技術を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to prevent a splash and at least a secondary gas of CO gas in a vacuum decarburization method using at least top-blown oxygen gas. By effectively heating the heat from the combustion to the steel bath, decarburization and temperature compensation are effectively performed.
It is another object of the present invention to provide a technique capable of reducing the concentration of impurities such as dissolved oxygen and nonmetallic inclusions in a steel bath.
【0006】[0006]
【課題を解決するための手段】本発明は、取鍋内の溶鋼
中に環流式脱ガス装置の真空槽下部環流管の一部を浸漬
し、前記真空槽内を減圧して溶鋼を吸い上げると共に、
槽内溶鋼に上吹きランスを介して酸素ガスを吹付け減圧
脱炭した後、引き続き酸素ガスの吹付けを停止して減圧
脱炭を行い所定の溶鋼中炭素濃度を得る溶鋼の減圧脱炭
法において、真空槽内溶鋼面上に造滓剤および/または
スラグを添加して酸化性のスラグを造滓し、酸素ガスを
吹付け、次いで酸素ガス吹付け後、真空槽内溶鋼面上あ
るいは取鍋溶鋼面上に還元性フラックスを添加し、減圧
脱炭処理することを特徴とする溶鋼の酸素上吹き減圧脱
炭法であり、また取鍋内の溶鋼中に筒状真空槽の下部を
形成する耐火物浸漬管の一部を浸漬し、前記浸漬管内部
を減圧して溶鋼を吸い上げ、前記取鍋底部より不活性ガ
スを吹込むと共に、槽内溶鋼に上吹きランスを介して酸
素ガスを吹付け減圧脱炭した後、引き続き酸素ガスの吹
付けを停止して減圧脱炭を行い所定の溶鋼中炭素濃度を
得る溶鋼の減圧脱炭法において、真空槽内溶鋼面上に造
滓剤および/またはスラグを添加して酸化性のスラグを
造滓し、酸素ガスを吹付け、次いで酸素ガス吹付け後、
筒状真空槽内溶鋼面上あるいは取鍋溶鋼面上に還元性フ
ラックスを添加し、減圧脱炭処理することを特徴とする
溶鋼の酸素上吹き減圧脱炭法であり、さらに望ましくは
還元性フラックスの添加の際、減圧処理を中断し、溶鋼
及び造滓剤のほとんどを取鍋に排出した後、該フラック
スを取鍋に添加し、引続き減圧脱炭処理を行うことを特
徴とする溶鋼の酸素上吹き減圧脱炭法である。SUMMARY OF THE INVENTION According to the present invention, a part of a lower reflux pipe of a vacuum tank of a reflux degassing apparatus is immersed in molten steel in a ladle, and the vacuum tank is depressurized to suck up the molten steel. ,
Oxygen gas is blown to the molten steel in the tank via an upper blowing lance to depressurize and decarburize.Then, the blowing of oxygen gas is stopped and degassing is performed to obtain a predetermined carbon concentration in the molten steel. In the above, a slag-making agent and / or slag is added to the molten steel surface in the vacuum chamber to slag the oxidizing slag, and oxygen gas is blown. This is a vacuum decarburization method of blowing molten oxygen on oxygen, characterized by adding a reducing flux to the molten steel surface of the ladle and performing vacuum decarburization treatment.The lower part of the cylindrical vacuum tank is formed in the molten steel in the ladle A part of the refractory immersion pipe to be immersed, the inside of the immersion pipe is depressurized to suck up molten steel, an inert gas is blown from the bottom of the ladle, and an oxygen gas is blown into the molten steel in the tank via a top blowing lance. After decompression and decarburization, stop blowing oxygen gas and reduce In the vacuum decarburization method of molten steel to obtain a predetermined carbon concentration in molten steel by performing decarburization, a slag-making agent and / or slag is added to the molten steel surface in a vacuum chamber to form oxidized slag, and oxygen gas is discharged. After spraying and then oxygen gas,
A vacuum decarburization method for blowing molten oxygen on oxygen, characterized by adding a reducing flux to the molten steel surface or the ladle molten steel surface in a cylindrical vacuum tank and subjecting it to a vacuum decarburization treatment, and more preferably a reducing flux. When the addition of steel, the vacuum treatment is interrupted, most of the molten steel and the slag-making agent are discharged into a ladle, and then the flux is added to the ladle, followed by a vacuum decarburization treatment. This is a top blow vacuum decarburization method.
【0007】[0007]
【作 用】本発明では、減圧下の溶鋼表面に造滓するた
め、上吹き酸素によるスロッピングが減少する。これ
は、酸素ジェットの勢いがカバースラグ中で減衰し、鋼
浴スプラッシュが生じにくくなるためである。因みに図
3にカバースラグの体積分率とスプラッシュ指数(カバ
ースラグ無しを 1.0とした)との関係を示す。この図か
ら5%程度のカバースラグでスプラッシュ防止効果が得
られることが明らかである。[Operation] In the present invention, slag is formed on the surface of molten steel under reduced pressure, so that slopping due to oxygen blown upward is reduced. This is because the momentum of the oxygen jet is attenuated in the cover slag, and the steel bath splash is less likely to occur. FIG. 3 shows the relationship between the volume fraction of cover slag and the splash index (1.0 without cover slag). From this figure, it is clear that a splash prevention effect can be obtained with a cover slag of about 5%.
【0008】また、カバースラグによる溶鋼+スラグ面
の輻射熱吸収率がスラグ無しに比べ約2倍になること
で、上吹き酸素によるCOガスの2次燃焼熱の鋼浴への着
熱量が飛躍的に増加する。因みに図4にカバースラグ体
積分率と10分間処理中の溶鋼の温度上昇量との関係を示
す。カバースラグ体積分率が30%程度までは溶鋼の温度
上昇は増え、それ以上では飽和する。これは鋼浴流動が
あっても30%以上では鋼浴表面の全面がカバーされたた
めである。In addition, since the radiant heat absorption rate of the molten steel + slag surface by the cover slag is about twice as large as that without the slag, the amount of heat of secondary combustion of CO gas by the top-blown oxygen to the steel bath is remarkably increased. To increase. FIG. 4 shows the relationship between the volume fraction of the cover slag and the temperature rise of the molten steel during the 10-minute treatment. The temperature rise of the molten steel increases up to a cover slag volume fraction of about 30%, and saturates above that. This is because the entire surface of the steel bath surface was covered at 30% or more even if the steel bath flow was present.
【0009】さらに図5にカバースラグ体積分率と脱炭
速度との関係を示す。カバースラグの量の増加により脱
炭速度は向上していることが明らかである。上述した特
性は酸化性造滓剤の効果であるが、しかしながら、減圧
処理中のスラグ及びスラグ中の鉄酸化物、 MnOの存在は
溶鋼の清浄化の点では不都合である。従って本発明では
脱炭、着熱及びスプラッシュ防止を必要としなくなった
時よりスラグ中に還元性フラックスを投入し、鋼浴上の
スラグ中のトータルFeを下げ無害化している。その結
果、最終的に清浄溶鋼が得られる。FIG. 5 shows the relationship between the volume fraction of the cover slag and the decarburization rate. It is clear that the decarburization rate has been improved by increasing the amount of cover slag. The properties described above are the effect of the oxidizing slag-making agent, however, the presence of slag during the vacuum treatment and the presence of iron oxides and MnO in the slag is disadvantageous in terms of cleaning the molten steel. Therefore, in the present invention, a reducing flux is introduced into the slag from the time when decarburization, heat generation and splash prevention are no longer required, thereby reducing the total Fe in the slag on the steel bath to make it harmless. As a result, clean molten steel is finally obtained.
【0010】また減圧容器内のスラグの存在すら好まし
くない超清浄溶鋼の場合は、一度処理を中断し減圧下の
スラグを取鍋に全量流出させ、取鍋でスラグを還元して
から、再度減圧脱炭を行う方が溶鋼品質上有利である。
還元性フラックスとしては、含Al、含Si、含Tiなどの C
aCO3、 Ca(OH)2、 CaO、 MgOの1種以上との混合物から
なるフラックスが利用できる。In the case of ultra-clean molten steel which is not desirable even in the presence of slag in the vacuum vessel, the treatment is interrupted once, the slag under reduced pressure is entirely discharged into the ladle, the slag is reduced in the ladle, and the pressure is reduced again. Decarburization is more advantageous for molten steel quality.
Examples of reducing flux include C containing Al, Si, Ti, etc.
A flux consisting of a mixture with at least one of aCO 3 , Ca (OH) 2 , CaO and MgO can be used.
【0011】図1は、本発明の実施に好適な装置構成例
とそれによる本発明の実施状況を示す模式図である。1
aは取鍋2に収容された溶鋼で、この溶鋼中にRH式環
流脱ガス装置の真空槽3の下部に取り付けられた環流管
(上昇管)10aおよび環流管(下降管)10bの一部を浸
漬し、図示しない真空ポンプによって排気管6から真空
槽3の内部を減圧すると、取鍋内溶鋼1aの一部が1b
(槽内溶鋼)に示すように真空槽内に吸い上げられる。FIG. 1 is a schematic diagram showing an example of an apparatus configuration suitable for carrying out the present invention and the state of implementation of the present invention. 1
a is a molten steel housed in a ladle 2 in which a part of a reflux pipe (rising pipe) 10a and a reflux pipe (downcoming pipe) 10b attached to the lower part of a vacuum tank 3 of an RH type reflux degassing device. Is immersed and the inside of the vacuum chamber 3 is depressurized from the exhaust pipe 6 by a vacuum pump (not shown).
(Molten steel in the tank) as shown in the vacuum tank.
【0012】前記上昇管10aには、溶鋼の環流用Arガス
導入管7が取り付けられており、この導管を通して上昇
管10a内の溶鋼中にArガスを吹き込むと、ガスリフトポ
ンプの原理により取鍋内溶鋼は第1図の矢印に示すよう
に上昇管10aを通って真空槽3内に吸い上げられ、真空
槽内溶鋼1bは下降管10bを通って取鍋2内に戻る。真
空槽3の上方から酸素ランス8を介して酸素ガスジェッ
ト12を槽内溶鋼1bの表面に吹き付けるとともに、造滓
剤ホッパー4aから造滓剤投入シュート4bを介して前
記槽内溶鋼1b表面に造滓剤および/またはスラグが添
加されカバースラグ9を形成する。An Ar gas introducing pipe 7 for circulating molten steel is attached to the riser pipe 10a. When Ar gas is blown into the molten steel in the riser pipe 10a through this conduit, the inside of the ladle is introduced by the principle of a gas lift pump. The molten steel is sucked up into the vacuum chamber 3 through the rising pipe 10a as shown by the arrow in FIG. 1, and the molten steel 1b in the vacuum tank returns to the ladle 2 through the down pipe 10b. An oxygen gas jet 12 is sprayed onto the surface of the molten steel 1b in the tank from above the vacuum tank 3 via an oxygen lance 8, and is formed on the surface of the molten steel 1b in the tank via a slag forming hopper 4a from a slag forming hopper 4a. Slag and / or slag is added to form cover slag 9.
【0013】図2は本発明の実施に好適な別の装置構成
例とそれによる本発明の実施状況を示す模式図である。
2は取鍋、13は浸漬管であって、取鍋2内の溶鋼1aに
筒状真空槽3はその開口下端部が浸漬されるように配設
される。浸漬管13はその内面を耐火物で内張りされ、他
の開口部は排気管6を介して図示せぬ真空ポンプに連結
される。14はAr底吹きポーラスプラグであって、この実
施例では取鍋2の底面中央部に配設され、Arガスを取鍋
内溶鋼1a内に吹込み、その気泡11によって溶鋼を攪拌
するのに用いられる。8は上吹きランスであって、浸漬
管13内に上昇した溶鋼1bの表面に指向して酸素含有ガ
スを吹付けるべく機能する。浸漬管13には造滓剤投入シ
ュート4bと造滓剤ホッパー4aが付設されていること
は図1の場合と同様であり、これらの装置から槽内溶鋼
1bの表面に造滓剤5が投入されカバースラグ9が形成
される。FIG. 2 is a schematic diagram showing another example of the apparatus configuration suitable for carrying out the present invention and the state of implementation of the present invention.
Reference numeral 2 denotes a ladle and 13 denotes an immersion tube. The cylindrical vacuum tank 3 is disposed in the molten steel 1a in the ladle 2 so that the lower end of the opening is immersed. The inner surface of the immersion pipe 13 is lined with a refractory, and the other opening is connected to a vacuum pump (not shown) through the exhaust pipe 6. Reference numeral 14 denotes an Ar bottom blown porous plug, which is disposed at the center of the bottom surface of the ladle 2 in this embodiment. The Ar gas is blown into the molten steel 1a in the ladle, and the molten steel is stirred by the bubbles 11 thereof. Used. Reference numeral 8 denotes an upper blowing lance, which functions to blow an oxygen-containing gas toward the surface of the molten steel 1b that has risen into the immersion pipe 13. The immersion tube 13 is provided with a slag-making agent feeding chute 4b and a slag-making agent hopper 4a as in the case of FIG. 1, and the slag-making agent 5 is injected from these devices into the surface of the molten steel 1b in the tank. Then, a cover slug 9 is formed.
【0014】そして、本発明では、酸化性スラグ利用
後、すなわち酸素上吹き脱炭がほぼ完了した時点で、例
えば造滓剤ホッパー4a内の銘柄を還元フラックスに切
り換え、投入することにより、酸化性スラグの無害化を
達成する。また還元性フラックスの投入は取鍋2の浴面
に直接投入してもよいし、あるいは減圧処理を中止し槽
内若しくは浸漬管内溶鋼をほぼ全量取鍋2に排出し、添
加しても良い。According to the present invention, after the oxidizing slag is used, that is, at the time point when the decarburization of oxygen is almost completed, the brand in the slag hopper 4a is switched to the reducing flux, and the oxidizing slag is introduced. Achieve slag detoxification. The reducing flux may be charged directly into the bath surface of the ladle 2, or the reduced pressure treatment may be stopped and almost all of the molten steel in the tank or in the immersion pipe may be discharged to the ladle 2 and added.
【0015】そして、その後減圧脱炭処理することによ
り、溶鋼の清浄化がより一層達成される。[0015] Then, by performing the decarburization treatment under reduced pressure, the cleaning of the molten steel is further achieved.
【0016】[0016]
【実施例】実施例1及び従来例1 図1に示すRHタイプの環流式脱ガス装置の減圧処理用
の真空槽3を用いて 230Tの溶鋼を減圧処理した。その
際上吹きランス8にて酸素ガスをC濃度が100ppmまで下
る間吹精した。酸素吹精後C濃度が 20ppmになるまで減
圧脱炭処理し次工程へ供した。Example 1 and Conventional Example 1 230T molten steel was subjected to decompression treatment using a vacuum tank 3 for decompression treatment of a RH type reflux degassing apparatus shown in FIG. At that time, oxygen gas was blown in the upper blowing lance 8 while the C concentration was lowered to 100 ppm. After oxygen blowing, the mixture was decarburized under reduced pressure until the C concentration became 20 ppm, and was supplied to the next step.
【0017】本発明法を実施するにあたり真空槽3の側
壁に造滓剤ホッパー4aおよび造滓剤投入シュート4b
を設け固体スラグなどを投入できるようにした。また、
ホッパー4a内の銘柄は切り換え可能となるようにし
た。従来法及び本発明法とも出鋼C濃度520ppm、真空処
理前O濃度300ppmにコントロールした溶鋼を用いて酸素
上吹き減圧脱炭処理を行った。In carrying out the method of the present invention, the slag forming hopper 4a and the slag forming chute 4b are provided on the side wall of the vacuum chamber 3.
Was installed so that solid slag and the like could be charged. Also,
Brands in the hopper 4a can be switched. In both the conventional method and the method of the present invention, the oxygen deblunting and decarburization treatment was performed using molten steel controlled at a tapping C concentration of 520 ppm and an O concentration of 300 ppm before vacuum treatment.
【0018】実施例では、上吹き減圧処理中転炉スラグ
(T. Fe 10 %)を真空槽内体積分率で10%添加した。
そして、さらに上吹吹精処理終了後、 Si 70%含有フラ
ックスを真空槽内に体積分率で 2.5%投入し、減圧容器
内及び取鍋スラグを還元処理し、スラグ中トータルFe
(T・Fe)濃度を3%以下とした。この結果を表1に示
す。 酸素上吹きは、実施例、従来例ともC=100ppmまで行っ
たが、本発明法では、100ppmまでの到達時間が従来法に
比べて2min 短縮された。すなわち、脱炭速度は 1.7倍
に上昇した。しかも上吹き時間が短いにもかかわらず、
鋼浴着熱は従来法に比べ4℃上昇し、カバースラグの着
熱効率向上への寄与が明らかである。In the embodiment, 10% of converter slag (T. Fe 10%) was added in a vacuum tank during the top blowing decompression treatment.
Then, after the end of the upper-blowing process, a 70% Si-containing flux is injected into the vacuum chamber at a volume fraction of 2.5%, and the reduced pressure vessel and ladle slag are reduced, and the total Fe in the slag is reduced.
The (T.Fe) concentration was 3% or less. Table 1 shows the results. The oxygen blowing was performed up to C = 100 ppm in both the examples and the conventional example. However, in the method of the present invention, the arrival time up to 100 ppm was shortened by 2 minutes as compared with the conventional method. That is, the decarburization rate increased by 1.7 times. Moreover, despite the short blowing time,
The heat of heating the steel bath is increased by 4 ° C. as compared with the conventional method, and it is clear that the contribution to the improvement of the heating efficiency of the cover slag.
【0019】減圧処理時間(RH処理時間)は2min 短
縮され、低炭素域での脱炭効果も向上した。またスロッ
ピングは処理後槽内観察の結果では半減していた。溶鋼
歩留りはスロッピングの減少とスラグ中鉄分の回収によ
り 1.5%向上した。RH処理中の溶鋼温度降下は時間短
縮により8℃少なくなった。処理後の溶鋼清浄度の指標
として次工程である連鋳でのイマージョンノズル詰まり
指数を示したがほぼ半減と観察された。The reduced pressure treatment time (RH treatment time) was reduced by 2 minutes, and the decarburizing effect in the low carbon region was improved. In addition, the slopping was halved as a result of the observation in the tank after the treatment. Molten steel yield improved by 1.5% due to reduced slopping and recovery of iron in slag. The temperature drop of the molten steel during the RH treatment was reduced by 8 ° C. by shortening the time. As an index of the cleanliness of the molten steel after the treatment, the immersion nozzle clogging index in the next step, continuous casting, was shown, but it was observed that it was almost halved.
【0020】実施例2及び従来例2 図2に示した浸漬管13を用いて 230Tの溶鋼を減圧処理
した。その際上吹きランス8にて酸素ガスをC濃度10
0ppmまでの間吹精した。酸素吹精後C濃度 20ppmま
で減圧脱炭処理し次工程へ供した。本発明法を実施する
にあたり浸漬管13の側壁に造滓剤ホッパー4aおよび造
滓剤投入シュート4bを設け、固体スラグを投入できる
ようにした。従来法及び本発明法とも出鋼C濃度520pp
m、真空処理前O濃度300ppmにコントロールした溶鋼を
用いて酸素上吹き減圧脱炭処理を行った。Example 2 and Conventional Example 2 Using a dip tube 13 shown in FIG. At this time, the oxygen gas is supplied to the upper blowing lance 8 at a C concentration of 10%.
It was blown up to 0 ppm. After oxygen sparging, the mixture was decarburized under reduced pressure to a C concentration of 20 ppm and supplied to the next step. In carrying out the method of the present invention, a slag-making agent hopper 4a and a slag-making agent charging chute 4b are provided on the side wall of the immersion tube 13 so that solid slag can be charged. Both the conventional method and the present invention have a tapping C concentration of 520pp.
m, vacuum over-pressure decarburization treatment was performed using molten steel controlled to an O concentration of 300 ppm before vacuum treatment.
【0021】実施例2では、上吹き減圧処理中転炉スラ
グ(T. Fe 10 %)を真空槽内体積分率で10%添加し
た。そしてさらに上吹吹精処理終了後 Al 70%含有フラ
ックスを真空槽内に体積分率で 2.4%投入し、減圧容器
内及び取鍋スラグを還元処理し、スラグ中T・Feを3%
以下とした。実施例3 実施例2と同一の方法をとったが、還元性フラックスに
Al 70%含有フラックスを使用し、上吹吹精終了時に一
度常圧に戻し、浸漬管内溶鋼及びスラグをほぼ全量取鍋
にもどし、該フラックスを添加した。その後引き続き減
圧処理を行った。In Example 2, converter slag (T. Fe 10%) was added at 10% by volume fraction in the vacuum tank during top-blowing decompression treatment. Further, after the end of the upper blowing treatment, a flux containing 70% of Al is injected into the vacuum chamber at a volume fraction of 2.4%, and the reduced pressure vessel and the ladle slag are reduced, and T / Fe in the slag is reduced to 3%.
It was as follows. Example 3 The same method as in Example 2 was used, except that a reducing flux was used.
At the end of the upper blowing, the pressure was returned to normal once, and almost all of the molten steel and slag in the immersion tube was returned to the ladle using the flux containing 70% Al, and the flux was added. Thereafter, the pressure reduction treatment was continuously performed.
【0022】これらの結果を表2に示す。 酸素上吹きは実施例、従来例ともC濃度100ppmまで行
ったが、100ppmまでの到達時間が従来法に比べて2min
短縮された。すなわち、脱炭速度は 1.6倍に上昇した。
上吹き時間が短いにもかかわらず、鋼浴着熱は従来法に
比べ4℃上昇し、カバースラグの着熱効率向上への寄与
が明らかである。The results are shown in Table 2. In the embodiment and the conventional example, the oxygen blowing was performed up to a C concentration of 100 ppm, but the arrival time up to 100 ppm was 2 min compared to the conventional method.
Shortened. That is, the decarburization rate increased 1.6 times.
Despite the short top blow time, the heat of steel bath heating increased by 4 ° C. as compared with the conventional method, and it is clear that the contribution to the improvement of the heat transfer efficiency of the cover slag is apparent.
【0023】減圧処理時間は実施例で2〜4min 短縮さ
れ、低炭素域での脱炭効果も向上した。スロッピングは
処理後槽内観察の結果では半減した。溶鋼歩留りはスロ
ッピングの減少とスラグ中T・Fe回収により 1.0〜1.2
%向上した。減圧処理中の溶鋼温度降下は時間短縮によ
り6〜10℃少なくなった。処理後の溶鋼清浄度の指標と
して次工程である連鋳でのイマージョンノズル詰まり指
数を示したが実施例2で半減、実施例3では1/5と激
減した。The reduced pressure treatment time was shortened by 2 to 4 minutes in the embodiment, and the decarburizing effect in the low carbon region was improved. The slopping was reduced by half as a result of observation in the tank after the treatment. The molten steel yield is 1.0 to 1.2 due to the decrease in slopping and T / Fe recovery in slag.
% Improved. The temperature drop of the molten steel during the decompression treatment was reduced by 6 to 10 ° C. by shortening the time. As an index of the degree of cleanliness of the molten steel after the treatment, the clogging index of the immersion nozzle in the continuous casting, which is the next step, was shown, but it was halved in Example 2 and sharply reduced to 1/5 in Example 3.
【0024】[0024]
【発明の効果】本発明方法によると、真空槽内溶鋼面上
を造滓することによってスロッピングを防止でき、溶鋼
着熱が増加した。また、造滓剤として転炉スラグを利用
することにより造滓コストが安価であるのに加えて、ス
ラグ中鉄酸化物の脱炭への寄与により脱炭速度が大幅に
向上した。According to the method of the present invention, slapping can be prevented by forming slag on the surface of molten steel in the vacuum chamber, and the heat of molten steel deposition is increased. In addition to using the converter slag as a slag-making agent, the slag-making cost was low, and the decarburization rate was greatly improved due to the contribution of iron oxide in the slag to decarburization.
【0025】また、スラグ中鉄酸化物が金属鉄として溶
鋼中に回収でき歩留りが向上した。さらに溶鋼の清浄度
が向上し、連続鋳造中のイマージョンノズルの脱酸生成
物による詰まりが減少した。Further, the iron oxide in the slag was recovered as metallic iron in the molten steel, and the yield was improved. Furthermore, the cleanliness of the molten steel was improved, and the clogging of the immersion nozzle due to deoxidation products during continuous casting was reduced.
【図1】RH式環流脱ガス装置を用いた本発明の実施状
況を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention using an RH type reflux degassing apparatus.
【図2】本発明の実施に好適な別の装置を用いた実施状
況を示す説明図である。FIG. 2 is an explanatory diagram showing an implementation state using another device suitable for implementing the present invention.
【図3】カバースラグ体積分率とスプラッシュ指数との
関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between a cover slag volume fraction and a splash index.
【図4】カバースラグ体積分率と溶鋼の温度上昇量との
関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between a cover slag volume fraction and a temperature rise of molten steel.
【図5】カバースラグ体積分率をパラメータとして真空
処理時間と溶鋼中C濃度との関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between vacuum processing time and C concentration in molten steel using a cover slag volume fraction as a parameter.
1a 取鍋内溶鋼 1b 槽内溶鋼 2 取鍋 3 真空槽 4a 造滓剤ホッパー 4b 造滓剤投入シュート 5 投入剤(造滓剤) 6 排気管 7 環流用Arガス導入管 8 上吹きランス 9 カバースラグ 10a 環流管(上昇管) 10b 環流管(下降管) 11 気泡 12 酸素ガスジェット 13 浸漬管 14 Ar底吹きポーラスプラグ 1a Molten steel in ladle 1b Molten steel in tank 2 Ladle 3 Vacuum tank 4a Slag hopper 4b Slag hopper chute 5 Charge agent (slag maker) 6 Exhaust pipe 7 Ar gas inlet pipe for reflux 8 Upper lance 9 Cover Slag 10a Reflux pipe (rising pipe) 10b Reflux pipe (downcoming pipe) 11 Bubbles 12 Oxygen gas jet 13 Immersion pipe 14 Ar bottom blown porous plug
フロントページの続き (56)参考文献 特開 平2−30711(JP,A) 特開 昭62−146213(JP,A) 特開 昭59−56514(JP,A) 特開 平4−80316(JP,A)Continuation of the front page (56) References JP-A-2-30711 (JP, A) JP-A-62-146213 (JP, A) JP-A-59-56514 (JP, A) JP-A-4-80316 (JP) , A)
Claims (3)
空槽下部環流管の一部を浸漬し、前記真空槽内を減圧し
て溶鋼を吸い上げると共に、槽内溶鋼に上吹きランスを
介して酸素ガスを吹付け減圧脱炭した後、引き続き酸素
ガスの吹付けを停止して減圧脱炭を行い所定の溶鋼中炭
素濃度を得る溶鋼の減圧脱炭法において、真空槽内溶鋼
面上に造滓剤および/またはスラグを添加して酸化性の
スラグを造滓し、酸素ガスを吹付け、次いで酸素ガス吹
付け後、真空槽内溶鋼面上あるいは取鍋溶鋼面上に還元
性フラックスを添加し、減圧脱炭処理することを特徴と
する溶鋼の酸素上吹き減圧脱炭法。1. A part of a lower reflux tube of a vacuum tank of a reflux degassing apparatus is immersed in molten steel in a ladle, and the vacuum tank is depressurized to suck up the molten steel. In the vacuum decarburization method for molten steel to obtain a predetermined carbon concentration in the molten steel by continuously blowing the oxygen gas and performing vacuum decarburization after blowing oxygen gas through the Add slag-forming agent and / or slag to make oxidized slag, spray oxygen gas, and then spray oxygen gas, then reduce on the molten steel surface in the vacuum chamber or ladle molten steel surface. A vacuum decarburization method for blowing molten oxygen on oxygen, characterized by adding a flux and performing a vacuum decarburization treatment.
成する耐火物浸漬管の一部を浸漬し、前記浸漬管内部を
減圧して溶鋼を吸い上げ、前記取鍋底部より不活性ガス
を吹込むと共に、槽内溶鋼に上吹きランスを介して酸素
ガスを吹付け減圧脱炭した後、引き続き酸素ガスの吹付
けを停止して減圧脱炭を行い所定の溶鋼中炭素濃度を得
る溶鋼の減圧脱炭法において、真空槽内溶鋼面上に造滓
剤および/またはスラグを添加して酸化性のスラグを造
滓し、酸素ガスを吹付け、次いで酸素ガス吹付け後、筒
状真空槽内溶鋼面上あるいは取鍋溶鋼面上に還元性フラ
ックスを添加し、減圧脱炭処理することを特徴とする溶
鋼の酸素上吹き減圧脱炭法。2. A part of a refractory immersion pipe forming a lower portion of a cylindrical vacuum tank is immersed in molten steel in a ladle, and the inside of the immersion pipe is depressurized to suck up the molten steel, and the molten steel is removed from the bottom of the ladle. After blowing active gas and blowing oxygen gas into the molten steel in the tank through an upper blowing lance to decompress and decarbonize, then continuously stop blowing oxygen gas and decompress to reduce the carbon concentration in the specified molten steel. In the vacuum decarburization method of the obtained molten steel, a slag-making agent and / or slag is added to the molten steel surface in the vacuum chamber to produce oxidized slag, oxygen gas is blown, and then oxygen gas is blown. A method of decarburizing oxygen-blown molten steel by adding reducing flux to the molten steel surface or ladle molten steel surface in a vacuum tank and subjecting it to vacuum decarburization treatment.
を中断し、溶鋼及び造滓剤のほとんどを取鍋に排出した
後、該フラックスを取鍋に添加し、引続き減圧脱炭処理
を行うことを特徴とする請求項1又は2記載の溶鋼の酸
素上吹き減圧脱炭法。3. When adding a reducing flux, the depressurization treatment is interrupted, most of the molten steel and the slag-making agent are discharged to a ladle, and then the flux is added to the ladle, followed by a vacuum decarburization treatment. 3. The method of claim 1 or 2, wherein the molten steel is blown under oxygen under reduced pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40300090A JP2728184B2 (en) | 1990-12-18 | 1990-12-18 | Oxygen top-blowing vacuum decarburization of molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40300090A JP2728184B2 (en) | 1990-12-18 | 1990-12-18 | Oxygen top-blowing vacuum decarburization of molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04218612A JPH04218612A (en) | 1992-08-10 |
JP2728184B2 true JP2728184B2 (en) | 1998-03-18 |
Family
ID=18512754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40300090A Expired - Lifetime JP2728184B2 (en) | 1990-12-18 | 1990-12-18 | Oxygen top-blowing vacuum decarburization of molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2728184B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100334947B1 (en) * | 1996-11-20 | 2002-06-20 | 아사무라 타카싯 | Method of vacuum decarburization /refining of molten steel and apparatus thereor |
CN103276155B (en) * | 2013-06-07 | 2016-08-03 | 鞍钢股份有限公司 | Method for shortening VD (vacuum distillation) vacuum treatment pre-pumping time |
CN109136471A (en) * | 2018-08-13 | 2019-01-04 | 林州凤宝管业有限公司 | A kind of VD vacuum takes out method in advance |
-
1990
- 1990-12-18 JP JP40300090A patent/JP2728184B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04218612A (en) | 1992-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3176374B2 (en) | Method for producing low carbon molten steel by vacuum degassing decarburization | |
JP2018016843A (en) | Method for melting extra-low-sulfur low-nitrogen steel | |
JP2009263783A (en) | Method for refining molten steel in rh vacuum degassing apparatus | |
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JPH05239534A (en) | Method for melting non-oriented electric steel sheet | |
JP3843589B2 (en) | Melting method of high nitrogen stainless steel | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
JP5505432B2 (en) | Melting method of ultra low sulfur low nitrogen steel | |
JPH05287358A (en) | Method for melting extremely low carbon steel having high cleanliness | |
JP3370349B2 (en) | Melting method of high cleanness ultra low carbon steel | |
JP2002030330A (en) | Method for heating molten steel in vacuum refining furnace | |
JP2962163B2 (en) | Melting method of high clean ultra low carbon steel | |
JP2897639B2 (en) | Refining method for extremely low sulfur steel | |
JP3300014B2 (en) | Refining method of molten steel by vacuum degassing | |
JP3127733B2 (en) | Manufacturing method of ultra clean ultra low carbon steel | |
JP3706451B2 (en) | Vacuum decarburization method for high chromium steel | |
JP2724030B2 (en) | Melting method of ultra low carbon steel | |
JP2795597B2 (en) | Vacuum degassing and decarburization of molten stainless steel | |
JP4020125B2 (en) | Method of melting high cleanliness steel | |
JP3297765B2 (en) | Desulfurization method of molten steel | |
JPH08302419A (en) | Refining method of molten steel | |
JPH05247522A (en) | Refining method of highly clean stainless steel | |
JPH0243315A (en) | Method and device for reflux type degassing treatment of molten steel | |
JPH04318119A (en) | Production of high clean steel |