JP2767674B2 - Refining method of high purity stainless steel - Google Patents

Refining method of high purity stainless steel

Info

Publication number
JP2767674B2
JP2767674B2 JP1426893A JP1426893A JP2767674B2 JP 2767674 B2 JP2767674 B2 JP 2767674B2 JP 1426893 A JP1426893 A JP 1426893A JP 1426893 A JP1426893 A JP 1426893A JP 2767674 B2 JP2767674 B2 JP 2767674B2
Authority
JP
Japan
Prior art keywords
slag
molten steel
vacuum
gas
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1426893A
Other languages
Japanese (ja)
Other versions
JPH06228629A (en
Inventor
信也 北村
公久 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11856348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2767674(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1426893A priority Critical patent/JP2767674B2/en
Publication of JPH06228629A publication Critical patent/JPH06228629A/en
Application granted granted Critical
Publication of JP2767674B2 publication Critical patent/JP2767674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、取鍋精錬炉による効率
的な高純度ステンレス鋼の精錬方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently refining high-purity stainless steel using a ladle refining furnace.

【0002】[0002]

【従来の技術】ステンレス鋼に代表されるクロム含有溶
鉄は、炭素濃度が低下した領域では脱炭反応に比べてク
ロムの酸化反応の方が起こりやすくなるため、クロムの
酸化損失を抑制して製品規格から要求される炭素濃度ま
で脱炭する方法が、種々提案されている。中でも、AO
DとVODは広く知られている。このうち、AODはA
rで希釈した酸素ガスを浴内に吹き込む方法であり、V
ODは真空下で酸素を上吹きする方法であるが、いずれ
の方法も、脱炭反応で生成するCOガスの分圧を低下さ
せ、クロムの酸化反応よりも脱炭反応を優先させること
を特徴としている。このうち、炭素濃度が100ppm
以下といった極低炭素鋼を溶製するためには、吹酸精錬
後の減圧処理が不可欠となるため、一般にはVODが用
いられている。この減圧処理は、溶鋼中の酸素により脱
炭を進めるものであり、自己脱炭期と称されるものであ
る。
2. Description of the Related Art Chromium-containing molten iron typified by stainless steel is more susceptible to oxidation of chromium than decarburization in a region where the carbon concentration is low. Various methods have been proposed for decarburizing to a carbon concentration required by standards. Above all, AO
D and VOD are widely known. Of these, AOD is A
This is a method in which oxygen gas diluted with r is blown into the bath.
OD is a method in which oxygen is blown upward in a vacuum, but in any case, the partial pressure of CO gas generated in the decarburization reaction is reduced, and the decarburization reaction is prioritized over the chromium oxidation reaction. And Of these, the carbon concentration is 100 ppm
In order to melt ultra-low carbon steel as described below, decompression treatment after blowing acid refining is indispensable. Therefore, VOD is generally used. This decompression treatment promotes decarburization by oxygen in the molten steel, and is called a self-decarburization period.

【0003】しかし、VODは取鍋全体を真空容器内に
入れる方法、もしくは取鍋上部に蓋をして取鍋全体を真
空にする方法であるため、上部空間が狭く、攪拌用のガ
ス流量を増加させた場合には、鋼浴の揺動や底吹きガス
によるスプラッシュにより操業に支障が生じるという問
題があった。また、自己脱炭期においては、底吹き気泡
により激しく攪拌された自由表面積(気泡活性面積)を
確保することが重要であるが、VODでは吹酸脱炭中に
生成したスラグが表面を覆うため、この気泡活性面積が
確保できないという問題があった。そこで、従来は、川
崎製鉄技報,第12号(1980),561ページ以降
に記載されているように、酸化クロムを含む流動性の良
いスラグを強攪拌により浴内に懸濁させ、スラグ中の酸
化クロムと炭素との反応で脱炭を進行させていた。しか
し、この方法では浴内で反応が起こるために溶鋼静圧に
よりCO分圧が増大してしまう上に、酸化クロムと炭素
の反応は自由エネルギーから考えても容易にわかるよう
に進行しにくいため、極低炭素まで脱炭するには非常に
長時間を要していた。
However, VOD is a method in which the entire ladle is placed in a vacuum vessel, or a method in which the upper part of the ladle is evacuated by covering the upper part of the ladle, so that the upper space is narrow and the gas flow rate for stirring is reduced. When it is increased, there is a problem that the operation is hindered by the rocking of the steel bath or the splash by the bottom-blown gas. Also, in the self-decarburization period, it is important to secure a free surface area (bubble activated area) violently stirred by the bottom blown bubbles, but in VOD, slag generated during blown acid decarburization covers the surface. However, there is a problem that the bubble active area cannot be secured. Therefore, conventionally, as described in Kawasaki Steel Technical Report, No. 12, (1980), page 561 and thereafter, slag having good fluidity containing chromium oxide is suspended in a bath by vigorous stirring, and the slag in the slag is removed. The reaction between chromium oxide and carbon promoted decarburization. However, in this method, since the reaction takes place in the bath, the CO partial pressure increases due to the molten steel static pressure, and the reaction between chromium oxide and carbon hardly proceeds as easily understood from the free energy. It took a very long time to decarburize to extremely low carbon.

【0004】これに対して、特開昭61−37912号
公報においては、取鍋内の溶鋼を大径浸漬管を介して真
空槽内に吸い上げ、低部から攪拌用ガスを供給する方法
が開示されている。さらに、特開平1−156416号
公報においては、浸漬管中心に対して底吹き用ノズル位
置を適切な範囲に偏心させるとともに、上吹き酸素を底
吹きガスの浮上領域である、気泡活性面に衝突させる方
法が開示されている。これらの方法により、VODが有
する上部空間が狭いという問題は解決されたものの、極
低炭素鋼の溶製に関する記述はなく、この方法のみでは
浸漬管内にクロム酸化物が多量に生成するため、安定し
て極低炭素鋼を溶製することはできなかった。
On the other hand, Japanese Patent Application Laid-Open No. 61-37912 discloses a method in which molten steel in a ladle is sucked up into a vacuum chamber through a large-diameter immersion pipe, and a stirring gas is supplied from a lower part. Have been. Further, in Japanese Patent Application Laid-Open No. 1-156416, while the position of the bottom blowing nozzle is eccentric to an appropriate range with respect to the center of the immersion tube, the top blowing oxygen collides with the bubble active surface, which is the floating region of the bottom blowing gas. There is disclosed a method for causing this to occur. Although these methods have solved the problem that the head space of the VOD is narrow, there is no description about the production of ultra-low carbon steel, and this method alone generates a large amount of chromium oxide in the immersion tube, so that it is stable. Was unable to melt the ultra-low carbon steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は、VODが有
している、上部空間が狭いため鋼浴の揺動や底吹きガス
によるスプラッシュにより操業に支障が生じるという問
題や、スラグが表面を覆うため気泡活性面積が確保でき
ないとう問題、及び特開昭61−37912号公報や、
特開平1−156416号公報に開示された方法が有す
る、安定して極低炭素鋼を溶製することができないとい
う問題を生じることなく、効率的に高純度ステンレス鋼
を精錬する方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has a problem that the operation is hindered by the swing of the steel bath or the splash by the bottom-blown gas due to the small upper space of the VOD, The problem that the bubble active area cannot be secured for covering, and JP-A-61-37912,
A method for efficiently refining high-purity stainless steel without causing the problem that the method disclosed in Japanese Patent Application Laid-Open No. 1-156416 cannot stably produce ultra-low carbon steel. The purpose is to do so.

【0006】[0006]

【課題を解決するための手段】本発明は、Crを5%以
上含む取鍋内溶鋼に直胴型浸漬管を浸漬し、該浸漬管内
を減圧するとともに取鍋低部より攪拌用ガスを供給する
ステンレス鋼の真空精錬において、溶鋼中のC量が0.
06〜0.01%までは酸素吹錬し、その後、送酸を停
止するとともに、真空度をP(Torr)、ガス吹き込
み位置の浴深をH(m)、吹き込みガス流量をQ(NL
/(分・ton))とした場合、(H/(5+P))×
Qを0.3以上とすることで、送酸吹錬中に生成した真
空表面にある酸化クロム含有スラグを浴内に巻き込ませ
た上で、浸漬管先端面と浸漬管外溶鋼湯面との間隔Z
(m)とQを、Z/Qとして0.25以下とすることに
より、巻き込まれたスラグを浸漬管外へ流出させ、気泡
活性面での脱炭を極限まで促進させることを特徴とする
高純度ステンレス鋼の精錬方法を要旨とする。
SUMMARY OF THE INVENTION According to the present invention, a straight-body immersion pipe is immersed in molten steel in a ladle containing 5% or more of Cr, the inside of the immersion pipe is depressurized, and a stirring gas is supplied from a lower part of the ladle. In vacuum refining of stainless steel, the amount of C in molten steel is reduced to 0.
Oxygen blowing from 06 to 0.01% was performed, and then the acid supply was stopped, the degree of vacuum was set to P (Torr), the bath depth at the gas blowing position was set to H (m), and the flow rate of the blown gas was set to Q (NL).
/(Min.ton)), (H / (5 + P)) ×
By setting Q to be 0.3 or more, the chromium oxide-containing slag on the vacuum surface generated during the acid feeding and blowing is drawn into the bath, and then the immersion pipe tip surface and the molten steel surface outside the immersion pipe are melted. Interval Z
By setting (m) and Q to 0.25 or less as Z / Q, the entrained slag is allowed to flow out of the immersion tube, and decarburization on the bubble activated surface is promoted to the utmost. The refining method for high purity stainless steel is summarized.

【0007】ここで、第1工程で生成するスラグ中のC
2 3 を25%以下、CaO/Al2 3 を0.5〜
2.0とし、低粘性スラグとすることが望ましい。
Here, C in the slag generated in the first step
The r 2 O 3 25% or less, 0.5 the CaO / Al 2 O 3
It is desirable that the slag be 2.0 and the viscosity is low.

【0008】[0008]

【作用】本発明は、高クロム溶鋼であっても、極低炭素
領域での脱炭反応は真空雰囲気に暴露されている自由表
面での反応が主体であるという新規な知見に基づいてい
る。これは、これまで、極低炭素化をするには、Cr2
3 を含有し、かつ流動性の良いスラグと溶鋼の反応を
促進させなければならないとされていたこととは大きく
異なる事実である。さらに、この反応の速度を支配して
いる要因は、これまで各種の反応速度を支配すると考え
られていた、攪拌エネルギー密度ではなく、浴内の低部
から吹き込まれた不活性ガス気泡が浮上し、真空に暴露
されている自由表面で破裂する領域である気泡活性面の
面積と強度であることを、本発明者らは数多くの実験と
詳細なる解析に基づいて明らかにした。ここで、気泡活
性面積は、水モデル等の知見に基づけば、取鍋脱ガス装
置や、取鍋内溶鋼に直胴型浸漬管を浸漬し、該浸漬管内
を減圧する方式の場合には、低部から吹き込まれたガス
がノズルから上方に片側12度の角度で上昇すると仮定
することで計算される幾何学的面積として規定される。
また、気泡活性面の強度はガス流量、ガス吹き込み深
さ、真空度により規定されるものである。
The present invention is based on the novel finding that the decarburization reaction in the extremely low carbon region is mainly a reaction on a free surface exposed to a vacuum atmosphere even in a high chromium molten steel. This is because, in order to achieve ultra-low carbon, Cr 2
This is a very different fact from the fact that the reaction between molten steel and slag containing O 3 and having good fluidity must be promoted. Furthermore, the factor that governs the rate of this reaction is not the stirring energy density, which was thought to govern various reaction rates until now, but the inert gas bubbles blown from the lower part of the bath rise. The present inventors have clarified based on a number of experiments and detailed analysis that the area and strength of the bubble active surface, which is a region that ruptures on the free surface exposed to the vacuum, are determined. Here, the bubble active area is based on the knowledge of the water model, etc., in the case of a ladle degassing device, or a method of immersing a straight-body immersion pipe in molten steel in a ladle and depressurizing the immersion pipe, It is defined as the geometric area calculated by assuming that the gas blown from the bottom rises upward from the nozzle at an angle of 12 degrees on one side.
Further, the strength of the bubble active surface is defined by the gas flow rate, the gas blowing depth, and the degree of vacuum.

【0009】この気泡活性面積での脱炭反応を効果的に
成し遂げるには、自由表面にあるスラグを排除すること
が必須となる。ステンレス鋼に代表される高クロム鋼
は、炭素濃度が高い領域では真空下で吹酸脱炭されるた
め、クロム酸化物を含有する多量のスラグが生成され、
それが厚く自由表面を被覆している。このスラグを短時
間で排除することが本発明の必須条件となる。本発明者
らは、様々な試験や理論検討の結果、以下の要件を満た
すことにより、スラグが短時間で排出できることを明ら
かにした。
In order to effectively achieve the decarburization reaction in the bubble active area, it is essential to remove slag on the free surface. High chromium steel represented by stainless steel is decarburized under a vacuum in the region with high carbon concentration, so a large amount of slag containing chromium oxide is generated,
It is thick and covers the free surface. Eliminating this slag in a short time is an essential condition of the present invention. As a result of various tests and theoretical studies, the present inventors have clarified that slag can be discharged in a short time by satisfying the following requirements.

【0010】 取鍋内溶鋼に直胴型浸漬管を浸漬し、
該浸漬管内を減圧するとともに取鍋低部より攪拌用ガス
を供給する真空精錬炉を用いること。 真空度をP(Torr)、ガス吹き込み位置の浴深
をH(m)、吹き込みガス流量をQ(NL/(分・to
n))とした場合、(H/(5+P))×Qを0.3以
上とすること。
[0010] A straight-body-type immersion pipe is immersed in molten steel in a ladle,
A vacuum refining furnace for reducing the pressure in the immersion tube and supplying a stirring gas from the lower part of the ladle is used. The degree of vacuum is P (Torr), the bath depth at the gas injection position is H (m), and the flow rate of the injected gas is Q (NL / (minute · to).
n)), (H / (5 + P)) × Q should be 0.3 or more.

【0011】 の条件下で浸漬管先端面と浸漬管外
溶鋼湯面との間隔Z(m)とQを、Z/Qとして0.2
5以上とすること。 以下、前記各要件を必須とする理由を説明する。まず、
前記は、吹酸脱炭中に浸漬管内に生成したスラグを浸
漬管外へ排出することを目的としたもので、このような
装置構成にすることで初めて可能となるものである。
Under the conditions described above, the distances Z (m) and Q between the tip surface of the immersion tube and the molten steel surface outside the immersion tube are 0.2
5 or more. Hereinafter, the reason why each of the above requirements is required will be described. First,
The purpose of the above is to discharge the slag generated in the immersion tube during the blowing acid decarburization to the outside of the immersion tube, and this is only possible with such an apparatus configuration.

【0012】は、スラグの浴内への巻き込み促進のた
めの条件であるが、自由表面での流速を大きくし、表面
にあるスラグを浴内に巻き込ませるには、吹き込まれた
ガスの浮力によるエネルギーを最大限に高める必要があ
る。浮力のエネルギーは、吹き込み位置での静圧と表面
での真空度の比率とガス流量に依存し、水モデルや溶鋼
を用いた種々の実験により、図2に示す結果が得られ
た。つまり、静圧と真空度とガス流量の関係に対応する
指標である(H/(5+P))×Qを0.3以上とする
ことでスラグが浴内に巻き込まれることが発見された。
この条件は、単に圧力を低下させるだけでも満たすこと
は可能であるが、過大な排気能力を持った設備が必要と
なる。また、単にガス流量を増加させるだけで満たそう
とすると、過剰に大きなガス流量が必要となり、激しい
スプラッシュによる操業上の問題が生じる。従って、
(H/(5+P))×Qという指標を導入することで、
上記の問題を生じることなくスラグの巻き込みが可能な
条件を作ることができる。また、真空度の項を(5+
P)としたのは、自由表面ではなく、表面下1cmの深
さ位置での静圧を考えた方が、スラグ巻き込みのための
表面流速と良く対応するという実験結果に基づくもので
ある。
The conditions for promoting the entrainment of slag into the bath are as follows. To increase the flow velocity on the free surface and entrain the slag on the surface into the bath, the buoyancy of the blown gas is used. Energy needs to be maximized. The buoyancy energy depends on the ratio of the static pressure at the blowing position to the degree of vacuum at the surface and the gas flow rate, and the results shown in FIG. 2 were obtained by various experiments using a water model and molten steel. That is, it was discovered that slag was caught in the bath by setting (H / (5 + P)) × Q, which is an index corresponding to the relationship between the static pressure, the degree of vacuum, and the gas flow rate, to 0.3 or more.
Although this condition can be satisfied simply by lowering the pressure, equipment having an excessive exhaust capacity is required. In addition, simply trying to increase the gas flow rate requires an excessively large gas flow rate, which causes an operational problem due to a severe splash. Therefore,
By introducing the index of (H / (5 + P)) × Q,
It is possible to create conditions under which slag can be involved without causing the above problems. The term of the degree of vacuum is (5+
The reason for P) is based on the experimental result that the static pressure at a depth of 1 cm below the surface corresponds better to the surface flow velocity for slag entrainment, rather than the free surface.

【0013】ここで、スラグを効率的に巻き込ませるに
はスラグの粘性を低くすることが望ましい。上記の(H
/(5+P))×Qの条件下では、スラグ中のCr2
3 を25%以下、CaO/Al2 3 を0.5〜2.0
とし、1600℃での液相率を75%以上確保した低粘
性スラグとした場合に、より効果的である。一方、は
巻き込まれたスラグが浸漬管下端まで到達した後に、浸
漬管外へ排除されるための条件を示したものである。浸
漬管下端位置に巻き込まれたスラグが存在した場合、原
理的には、浸漬管内溶鋼から受ける静圧とスラグ粒子の
運動エネルギーの合計が、浸漬管外溶鋼から受ける静圧
よりも大きければスラグは浸漬管外へ排出されることに
なる。ここで、浸漬管内溶鋼湯面と浸漬管外溶鋼湯面と
の差をh、浸漬管下端と浸漬管外溶鋼湯面との間隔をZ
とすると、浸漬管内溶鋼から受ける静圧は、ほぼρgh
(ρ:溶鋼密度、g:重力加速度)となる。また、浸漬
管外溶鋼から受ける静圧は、ρgZ+P0(P0:大気
圧)となる。ここで、hは浸漬管内真空度によってのみ
決まる値のため、浸漬管内溶鋼から受ける静圧と浸漬管
外溶鋼から受ける静圧の比は、Zのみの関数となる。一
方、スラグ粒子の運動エネルギーは、溶鋼の循環流速と
等しくなり、それは、ほぼガス流量(Q)に依存する値
となる。図3は、スラグ排出条件を求めた実験結果であ
るが、浸漬管内溶鋼から受ける静圧と浸漬管外溶鋼から
受ける静圧との比を表すZと、スラグ粒子の運動エネル
ギーを表すQとの関係で整理した場合、Z/Qとして
0.25以下の場合にスラグが管外へ流出することがわ
かる。
Here, it is desirable to lower the viscosity of the slag in order to efficiently involve the slag. The above (H
/ (5 + P)) × Q, Cr 2 O in the slag
3 25% or less, the CaO / Al 2 O 3 0.5~2.0
It is more effective when a low-viscosity slag which secures a liquid phase ratio at 1600 ° C. of 75% or more is used. On the other hand, the figure shows conditions for removing the slag that has been caught up to the outside of the dip tube after reaching the lower end of the dip tube. If there is slag entrained at the lower end of the immersion tube, in principle, if the sum of the static pressure received from the molten steel inside the immersion tube and the kinetic energy of the slag particles is greater than the static pressure received from the molten steel outside the immersion tube, It will be discharged out of the dip tube. Here, the difference between the molten steel surface inside the dip tube and the molten steel surface outside the dip tube is h, and the distance between the lower end of the dip tube and the molten steel surface outside the dip tube is Z.
Then, the static pressure received from the molten steel in the immersion tube is almost ρgh
(Ρ: molten steel density, g: gravitational acceleration). Further, the static pressure received from the molten steel outside the immersion pipe is ρgZ + P0 (P0: atmospheric pressure). Here, since h is a value determined only by the degree of vacuum inside the immersion tube, the ratio of the static pressure received from the molten steel inside the immersion tube to the static pressure received from the molten steel outside the immersion tube is a function of only Z. On the other hand, the kinetic energy of the slag particles is equal to the circulation velocity of the molten steel, which is a value substantially dependent on the gas flow rate (Q). FIG. 3 shows the experimental results obtained for the slag discharge conditions. Z represents the ratio of the static pressure received from the molten steel inside the immersion pipe to the static pressure received from the molten steel outside the immersion pipe, and Q represents the kinetic energy of the slag particles. When the relationship is arranged, it is understood that the slag flows out of the tube when the Z / Q is 0.25 or less.

【0014】本発明においては、炭素よりも優先的に酸
化するCrを含み、真空下で仕上精錬をする必要がある
溶鋼を目的としているため、Crは5%以上とする。ま
た、気泡活性面での脱炭反応は、溶鋼中の炭素と酸素の
反応であるため、酸素濃度は充分に高い必要がある。そ
のため、真空下での酸素吹錬は溶鋼中のC量が0.06
%以下まで実施する必要がある。しかし、溶鋼中のC量
を0.01%よりも低くなるまで酸素吹錬した場合には
吹酸中のクロムの酸化ロスが大きくなるという問題を生
じる。
In the present invention, the content of Cr is set to 5% or more because it is intended for molten steel that contains Cr that oxidizes preferentially over carbon and that needs to be refined and refined under vacuum. In addition, since the decarburization reaction on the bubble activated surface is a reaction between carbon and oxygen in the molten steel, the oxygen concentration needs to be sufficiently high. For this reason, oxygen blowing under vacuum has a C content of 0.06 in molten steel.
%. However, when oxygen is blown until the C content in the molten steel becomes lower than 0.01%, there is a problem that oxidization loss of chromium in the blowing acid increases.

【0015】さらに、スラグの巻き込みを促進させるた
めに必要なスラグ組成として定義した、スラグ中のCr
2 3 を25%以下、CaO/Al2 3 を0.5〜
2.0とし、1600℃での液相率を75%以上確保し
た低粘性スラグとするという条件のうち、Cr2 3
濃度は、送酸を停止する炭素濃度に大きく依存し、C量
が0.01%よりも低い濃度になるまで吹酸脱炭した場
合には、必然的にCr23 の濃度は25%よりも高く
なる。このため、スラグが排出されにくく、気泡活性面
が露出しにくいため、同一条件で処理した場合でも脱炭
速度が低下する。一方、溶鋼中のC量が0.06%より
も高い濃度で吹酸脱炭を停止した場合には、Cr2 3
は15%程度と少ないものの、温度が1600℃に到達
しないため、スラグの液相率で見ると75%よりも低
く、低粘性スラグにはなりえない。したがって、この場
合にもスラグが排出されにくく脱炭速度が低下する。
Further, Cr in the slag, which is defined as a slag composition necessary to promote slag entrainment,
2 O 3 25% or less, CaO / Al 2 O 3 0.5 to
2.0, the concentration of Cr 2 O 3 under the condition of a low-viscosity slag having a liquid phase ratio of 75% or more at 1600 ° C. greatly depends on the concentration of carbon at which acid supply is stopped. If the deoxidation is performed until the concentration becomes lower than 0.01%, the concentration of Cr 2 O 3 necessarily becomes higher than 25%. Therefore, the slag is hardly discharged and the bubble activated surface is hardly exposed, so that the decarburization speed is reduced even when the treatment is performed under the same conditions. On the other hand, when the blowing acid decarburization was stopped at a concentration of C in the molten steel higher than 0.06%, Cr 2 O 3
Is as low as about 15%, but since the temperature does not reach 1600 ° C., the slag is lower than 75% in terms of the liquid phase ratio of the slag, and cannot be a low-viscosity slag. Therefore, also in this case, the slag is hardly discharged, and the decarburization speed is reduced.

【0016】[0016]

【実施例】実施例は175トン規模の真空脱ガス装置を
用いて行った。転炉にて[C]が約0.5%、[Cr]
を5%以上(主には10〜25%)含まれる溶鋼を溶製
した後、図1に示した形状の真空脱ガス炉で精錬を実施
した。精錬は、第1期と第2期に分け、第1期では底吹
きのポーラス煉瓦よりArガスを供給して攪拌するとと
もに上吹きランスから酸素ガスを吹き付け、真空度が約
100Torrの条件下で脱炭した。第2期では、上吹
きランスからの送酸を停止するとともに真空度を10T
orr以下とし、Ar攪拌をして脱炭した。
EXAMPLES Examples were carried out using a 175-ton vacuum degassing apparatus. [C] is about 0.5% in the converter, [Cr]
Of molten steel containing 5% or more (mainly 10 to 25%) was refined in a vacuum degassing furnace having the shape shown in FIG. Refining is divided into the first stage and the second stage. In the first stage, Ar gas is supplied from the bottom blown porous brick, stirred and oxygen gas is blown from the top blow lance, and the degree of vacuum is about 100 Torr. Decarburized. In the second stage, the supply of acid from the top blowing lance was stopped and the degree of vacuum was reduced to 10T.
orr or less, and decarbonized by stirring with Ar.

【0017】表1、表2に結果を示すが、Pは真空度
(Torr)、Hはガス吹き込み位置の浴深(m)、Q
は攪拌用Arガス流量(NL/(分・ton))、Zは
浸漬管先端面と浸漬管外溶鋼湯面との間隔(m)を示
す。また、脱炭速度は第2期開始時と終了時の炭素濃度
をC1(%)、C2(%)とし、第2期の時間をt1
(分)とした場合、(1)式で定義されるものである。
Tables 1 and 2 show the results, where P is the degree of vacuum (Torr), H is the bath depth at the gas blowing position (m), and Q is
Represents the flow rate of the Ar gas for stirring (NL / (minute · ton)), and Z represents the distance (m) between the tip surface of the immersion tube and the molten steel surface outside the immersion tube. The decarburization rate is defined as C1 (%) and C2 (%) at the start and end of the second period, and the time of the second period is t1.
In the case of (minute), it is defined by the expression (1).

【0018】 KC=(lnC1−lnC2)/t1 ・・・・・・(1) 表1は、図1に示した形状の真空脱ガス炉で精錬を実施
した結果であり、試験番号の1から13までは本発明の
実施例である。番号14は第1期の吹き止め炭素濃度を
低下させた場合であるが、第1期のクロムロスが大きく
経済的でなく、逆に番号15のように第1期の吹き止め
炭素濃度が高い場合には、溶鋼中酸素が少ないため第2
期の脱炭速度が小さい。番号16、17は(H/(5+
P))×Qが小さい場合、番号18、19はZ/Qが大
きい場合であるが、いずれもスラグ排出が不良のため気
泡活性面を確保できず、脱炭速度が低いことがわかる。
KC = (lnC1-lnC2) / t1 (1) Table 1 shows the results of refining performed in a vacuum degassing furnace having the shape shown in FIG. 13 are examples of the present invention. No. 14 is the case where the first-stage blow-off carbon concentration is reduced, but the first-stage chromium loss is large and not economical, and conversely, as in the case of No. 15, the first-stage blow-off carbon concentration is high. Has a low oxygen content in molten steel
Decarburization rate is low. Numbers 16 and 17 are (H / (5+
When P)) × Q is small, Nos. 18 and 19 are cases where Z / Q is large, but it can be seen that the slag discharge is inadequate and the bubble activated surface cannot be secured, and the decarburization rate is low.

【0019】表2は、図1に示した形状の真空脱ガス炉
による精錬と、単純に取鍋上面の蓋をしてその中を排気
した取鍋脱ガス法(いわゆるVOD;b)と、酸素ガス
を供給できるRH法(いわゆるRH−OB;c)による
精錬とを比較した結果である。取鍋脱ガス法の場合に
は、スラグが排出できないため、気泡活性面が確保でき
ず脱炭速度が低く、RH法の場合には、Arガスが浸漬
管内に供給されるため気泡の広がりが小さく気泡活性面
積が十分に大きくとれないため脱炭速度が低い。
Table 2 shows the refining by the vacuum degassing furnace having the shape shown in FIG. 1, the ladle degassing method in which the upper surface of the ladle was simply covered and the inside thereof was evacuated (so-called VOD; b). It is a result of comparison with refining by the RH method (so-called RH-OB; c) which can supply oxygen gas. In the case of the ladle degassing method, the slag cannot be discharged, so that the bubble activated surface cannot be secured and the decarburization rate is low. In the case of the RH method, the expansion of the bubbles is caused because Ar gas is supplied into the immersion tube. The decarburization rate is low because the bubble active area is small and cannot be sufficiently large.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明により、多量の底吹きガスによる
鋼浴の揺動やスプラッシュの発生という問題を生じるこ
となく、効率的に極低炭素濃度の高純度ステンレス鋼の
精錬が可能となった。
According to the present invention, high-purity stainless steel with an extremely low carbon concentration can be efficiently refined without causing the problem of rocking of the steel bath and generation of splash due to a large amount of bottom-blown gas. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空脱ガス炉による本発明の実施の態様を示す
説明図である。
FIG. 1 is an explanatory view showing an embodiment of the present invention using a vacuum degassing furnace.

【符号の説明】[Explanation of symbols]

イ:取鍋 ロ:浸漬管 ハ:溶鋼 ニ:酸素上吹き用ランス ホ:攪拌ガス供給用のポーラス煉瓦 A:気泡活性面 B:スラグ C:浴内に巻き込まれたスラグ D:浸漬管外へ排出されたスラグ H:ガス吹き込み深さ Z:浸漬管浸漬深さ h:浸漬管内外の湯面高さの間隔 A: Ladle B: Immersion tube C: Molten steel D: Lance for oxygen top blowing E: Porous brick for supplying stirring gas A: Bubble activated surface B: Slag C: Slag caught in bath D: Outside of immersion tube Discharged slag H: depth of gas injection Z: immersion pipe immersion depth h: gap between the inside and outside of the immersion pipe

【図2】(H/(5+P))×Qとスラグの浴内巻き込
み指標との関係を示す図で、Pは真空度(Torr)、
Hはガス吹き込み位置の浴深(m)、Qは攪拌用Ar流
量(NL/(分・ton))を表す。
FIG. 2 is a diagram showing a relationship between (H / (5 + P)) × Q and an index of slag entrainment in a bath, where P is a degree of vacuum (Torr),
H represents the bath depth (m) at the gas blowing position, and Q represents the Ar flow rate for stirring (NL / (minute · ton)).

【図3】スラグ排出条件を求めた実験結果を示す図で、
Qは攪拌用ガス流量(NL/(分・ton))、Zは浸
漬管先端面と浸漬管外溶鋼湯面との間隔(m)を表す。
FIG. 3 is a diagram showing an experimental result of obtaining slag discharge conditions.
Q represents the gas flow rate for stirring (NL / (minute · ton)), and Z represents the distance (m) between the tip surface of the immersion tube and the molten steel surface outside the immersion tube.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21C 7/10 C21C 7/068Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C21C 7/10 C21C 7/068

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Crを5%以上含む取鍋内溶鋼に直胴型
浸漬管を浸漬し、該浸漬管内を減圧するとともに取鍋低
部より攪拌用ガスを供給するステンレス鋼の真空精錬に
おいて、溶鋼中のC量が0.06〜0.01%までは酸
素吹錬し、その後、送酸を停止するとともに、真空度を
P(Torr)、ガス吹き込み位置の浴深をH(m)、
吹き込みガス流量をQ(NL/(分・ton))とした
場合、(H/(5+P))×Qを0.3以上とすること
で、送酸吹錬中に生成した真空表面にある酸化クロム含
有スラグを浴内に巻き込ませた上で、浸漬管先端面と浸
漬管外溶鋼湯面との間隔Z(m)とQを、Z/Qとして
0.25以下とすることにより、巻き込まれたスラグを
浸漬管外へ流出させ、気泡活性面での脱炭を極限まで促
進させることを特徴とする高純度ステンレス鋼の精錬方
法。
In a vacuum refining of stainless steel, a straight-body type immersion pipe is immersed in molten steel in a ladle containing 5% or more of Cr, and the inside of the immersion pipe is depressurized and a stirring gas is supplied from a lower part of the ladle. Oxygen blowing is performed until the C content in the molten steel is 0.06 to 0.01%, and then the acid supply is stopped, the degree of vacuum is set to P (Torr), the bath depth at the gas injection position is set to H (m),
When the flow rate of the blown gas is Q (NL / (minute · ton)), by setting (H / (5 + P)) × Q to 0.3 or more, the oxidation on the vacuum surface generated during the acid blowing is performed. After the chromium-containing slag is rolled into the bath, the slag is rolled up by setting the distance Z (m) and Q between the tip surface of the dip tube and the molten steel surface outside the dip tube to 0.25 or less as Z / Q. A method for refining high-purity stainless steel, characterized in that slag is flowed out of a dip tube to promote decarburization on the bubble activated surface to the utmost.
JP1426893A 1993-01-29 1993-01-29 Refining method of high purity stainless steel Expired - Lifetime JP2767674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1426893A JP2767674B2 (en) 1993-01-29 1993-01-29 Refining method of high purity stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1426893A JP2767674B2 (en) 1993-01-29 1993-01-29 Refining method of high purity stainless steel

Publications (2)

Publication Number Publication Date
JPH06228629A JPH06228629A (en) 1994-08-16
JP2767674B2 true JP2767674B2 (en) 1998-06-18

Family

ID=11856348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1426893A Expired - Lifetime JP2767674B2 (en) 1993-01-29 1993-01-29 Refining method of high purity stainless steel

Country Status (1)

Country Link
JP (1) JP2767674B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9606545A (en) * 1995-08-01 1997-12-30 Nippon Steel Corp Vacuum refining method for cast steel
US6190435B1 (en) 1996-11-20 2001-02-20 Nippon Steel Corporation Method of vacuum decarburization/refining of molten steel
JP6600968B2 (en) * 2015-04-01 2019-11-06 日本製鉄株式会社 Finish refining method for chromium-containing molten steel
CN108866277B (en) * 2018-08-27 2023-10-17 北京科技大学 Single-nozzle refining furnace and refining process for smelting ultra-low carbon stainless steel

Also Published As

Publication number Publication date
JPH06228629A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JP2767674B2 (en) Refining method of high purity stainless steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JP3777630B2 (en) Method for heat refining of molten steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JPH08109410A (en) Finish decarburization refining of stainless steel
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JPH09287016A (en) Method for melting stainless steel
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
JPH01156416A (en) Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure
JP2724030B2 (en) Melting method of ultra low carbon steel
JP3153983B2 (en) Melting method for high purity stainless steel
JP3785257B2 (en) Method for degassing stainless steel
JPH03153816A (en) Smelting method for high purity steel
JP3297765B2 (en) Desulfurization method of molten steel
JPH0565528A (en) Melting production of high cleanliness steel
JPH04318119A (en) Production of high clean steel
JPH08104914A (en) Highly efficient production of high purity molten stainless steel
JPH0243315A (en) Method and device for reflux type degassing treatment of molten steel
JPH08283828A (en) Method for vacuum-refining dead-soft steel
JPH0135887B2 (en)
JPH08120325A (en) Production of high cleanness extra low carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 15

EXPY Cancellation because of completion of term