JP2582316B2 - Melting method of low carbon steel using vacuum refining furnace - Google Patents
Melting method of low carbon steel using vacuum refining furnaceInfo
- Publication number
- JP2582316B2 JP2582316B2 JP3189533A JP18953391A JP2582316B2 JP 2582316 B2 JP2582316 B2 JP 2582316B2 JP 3189533 A JP3189533 A JP 3189533A JP 18953391 A JP18953391 A JP 18953391A JP 2582316 B2 JP2582316 B2 JP 2582316B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- gas
- inert gas
- molten steel
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は取鍋内溶鋼の真空精錬に
よる低炭素鋼の溶製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low carbon steel by vacuum refining of molten steel in a ladle.
【0002】[0002]
【従来の技術】従来、極低炭素鋼を溶製するためには、
転炉等で炭素濃度をある程度まで脱炭させた溶鋼を取鍋
等の容器に受鋼した後RH法やDH法といった真空脱ガ
ス装置等の排気装置を有するプロセスを用い、溶鋼の一
部分を減圧雰囲気中に配置し、気体側の圧力を低下させ
ることで溶鋼中の炭素を低下させる方法が用いられてい
る。しかし、炭素濃度をより低下させる場合には、脱炭
速度が停滞し、長時間の処理を要するという問題があっ
た。これを解決するために、通常、RHにおける環流用
ガス流量の増加や浸漬管径の増大、あるいはDH法にお
ける槽昇降速度の増加等による溶鋼環流速度の増大とい
った方法がとられている。しかしながら、環流量の増大
は設備上限界があり、槽昇降速度の増加も溶鋼の追従性
からの限界がある。これらの問題に対して、脱炭速度を
高めるために真空槽内へのO2吹き込み法が提案され、
特開昭51−151212号公報のように、真空槽側壁
部の溶鋼に浸される浴面下近傍に酸化性ガス吹き込み用
多重管羽口を設け、減圧下の循環溶鋼内に直接酸化性ガ
スを吹き込むRH脱ガス装置により脱炭を有効に行うと
するものや、特開昭60−184619号公報のよう
に、転炉にて溶製した炭素濃度0.1%以上の溶鋼に減
圧下で気体酸素を上吹きして、これを脱炭せしめこのと
き生ずる脱窒を促進させることにより低窒素鋼を製造す
る方法、また、特開平1−52016号公報のように、
高クロム鋼を真空取鍋精錬炉で取鍋底部から不活性ガス
を吹き込んで強撹拌しつゝ上吹ランスから酸素ガスを取
鍋内鋼浴表面に吹き付けて脱炭する真空取鍋精錬におい
て上吹ランスから酸素ガスにアルゴンガス或いは窒素ガ
スを混合して上吹混合ガス流量を酸素ガス限界流量以上
とするものが開示されている。更には特開昭61−37
912号公報には、浸漬管の内径と取鍋の内径との比を
特定範囲の値とすると共に、該浸漬管の投影面下の取鍋
内の下位から吹き込み管を介して特定の深さの吹き込み
位置から不活性ガスを吹き込み、かつ真空槽内の溶鋼表
面に上吹ランスを介して酸化性ガスを吹き付けることに
より、高速度真空脱炭をするというものが示されてい
る。2. Description of the Related Art Conventionally, in order to melt ultra-low carbon steel,
The molten steel decarbonized to a certain degree in a converter etc. receives steel in a vessel such as a ladle and then depressurizes a part of the molten steel using a process with an exhaust device such as a vacuum degassing device such as RH method or DH method. A method of reducing carbon in molten steel by disposing in a gas atmosphere and reducing the pressure on the gas side has been used. However, when the carbon concentration is further reduced, there has been a problem that the decarburization speed is stagnant and a long time treatment is required. In order to solve this, a method of increasing the recirculation gas flow rate in RH, increasing the diameter of the immersion pipe, or increasing the recirculation velocity of molten steel due to an increase in the ascending and descending speed of the tank in the DH method, etc., are usually taken. However, the increase in the ring flow rate has a limit in terms of equipment, and the increase in the tank elevating speed also has a limit due to the followability of molten steel. To solve these problems, a method of blowing O 2 into a vacuum chamber has been proposed to increase the decarburization rate.
As disclosed in Japanese Patent Application Laid-Open No. 51-152212, a multi-tube tuyere for blowing oxidizing gas is provided near the bath surface immersed in the molten steel on the side wall of the vacuum tank, and the oxidizing gas is directly introduced into the circulating molten steel under reduced pressure. RH degassing equipment that blows gas into the furnace, or as described in Japanese Patent Application Laid-Open No. 60-184819, molten steel with a carbon concentration of 0.1% or more melted in a converter under reduced pressure. A method for producing low-nitrogen steel by blowing up gaseous oxygen and decarburizing it to promote the denitrification that occurs at this time, and as disclosed in JP-A-1-52016,
Inert high-chromium steel in a vacuum ladle refining furnace by blowing inert gas from the bottom of the ladle with vigorous stirring.Oxygen gas is blown from the top blowing lance onto the steel bath surface in the ladle to decarbonize. There is disclosed an apparatus in which an argon gas or a nitrogen gas is mixed with an oxygen gas from a blowing lance so that a flow rate of an upper blown mixed gas is equal to or higher than a limit flow rate of an oxygen gas. Further, JP-A-61-37
No. 912 discloses that the ratio between the inner diameter of the immersion pipe and the inner diameter of the ladle is set to a value within a specific range, and that the specific depth is set via a blowing pipe from below the ladle below the projection plane of the immersion pipe. In this method, high-speed vacuum decarburization is performed by blowing an inert gas from a blowing position of an inert gas and blowing an oxidizing gas onto a surface of molten steel in a vacuum chamber through an upper blowing lance.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述し
た特開昭51−151212号公報による方法ではRH
のために真空度を300Torr以下の強い真空度にし
ないと環流が開始せず、この状態で急激に脱炭反応が開
始するので激しいスプラッシュが発生し、高炭素からの
処理は出来ない。また、特開昭60−184619号公
報のRH真空槽内への酸素上吹きによる脱窒素にあって
は酸化鉄の生成が激しく極めて低い送酸速度に抑制する
必要がある。また、RHを前提とする限りは、ある程度
真空度が上がらない限り環流が開始しないため、この状
態で急激に脱炭反応が開始するため、スプラッシュが激
しいという問題と撹拌、環流が弱いため送酸速度を上げ
られないという問題がある。次に、特開平1−5201
6号公報であるVODでの酸素とアルゴン上吹きによる
ステンレス鋼の製造方法にあっては、取鍋脱ガスの場合
には、気泡活性面が小さいため表面の撹拌が小さく、更
に転炉スラグが常に表面に存在するため酸素ガスが溶鋼
と接触する面積が小さく脱炭効果が極めて悪いという問
題がある。更に特開昭61−37912号公報の浸漬管
の投影面下の取鍋内に下位から吹き込み管を介して不活
性ガスを吹き込む方法であるが、確かに取鍋内の溶鋼深
さと不活性ガスの吹き込み位置を溶鋼表面からの深さと
して不活性ガス吹き込み位置を定めていることは、溶鋼
環流速度の増大並びに不活性ガスの滞留時間の増加に伴
う脱炭反応の促進という発想であっても、気泡活性面積
という新しい知見は何ら開示されていない。この方法は
溶鋼の環流改善を積極的に図るものであり、この方法で
は安定して極低炭素域まで脱炭することが出来ない上
に、処理中のスプラッシュの発生も安定して抑制でき
ず、また、高清浄度鋼の安定した溶製も難しいという問
題がある。そこで、これら問題を解消し、酸化鉄生成の
少ない鉄の歩留の高い、しかもスプラッシュの発生の少
ない状態で効率的な低炭素鋼の溶製が可能な方法を目的
とするものである。However, according to the method disclosed in Japanese Patent Laid-Open No. 51-151212, RH
Therefore, the reflux does not start unless the degree of vacuum is set to a strong degree of vacuum of 300 Torr or less. In this state, the decarburization reaction starts abruptly, so that a violent splash is generated and the treatment from high carbon cannot be performed. Further, in the case of denitrification by blowing oxygen into an RH vacuum chamber disclosed in Japanese Patent Application Laid-Open No. 60-184819, it is necessary to suppress the acid supply rate to an extremely low level because the production of iron oxide is severe. In addition, as long as RH is assumed, reflux does not start unless the degree of vacuum rises to a certain degree, so that the decarburization reaction starts rapidly in this state. There is a problem that the speed cannot be increased. Next, JP-A-1-5201
In the method of producing stainless steel by blowing oxygen and argon over VOD, which is disclosed in Japanese Unexamined Patent Publication No. 6, the stirring of the surface is small due to the small bubble active surface in the case of ladle degassing. Since it is always present on the surface, there is a problem that the area where the oxygen gas contacts the molten steel is small and the decarburizing effect is extremely poor. Further, Japanese Patent Application Laid-Open No. 61-37912 discloses a method in which an inert gas is blown into a ladle below a projection surface of an immersion tube from below through a blowing tube. Determining the inert gas injection position as the depth of injection from the surface of the molten steel is considered to be the idea of accelerating the decarburization reaction due to an increase in the reflux velocity of the molten steel and an increase in the residence time of the inert gas. No new knowledge of the bubble active area is disclosed. This method is intended to positively improve the reflux of molten steel.This method cannot stably decarburize to the extremely low carbon region, and cannot stably suppress the generation of splash during processing. In addition, there is a problem that it is difficult to smelt highly clean steel stably. Accordingly, it is an object of the present invention to solve these problems and to provide a method capable of efficiently producing low-carbon steel in a state in which iron with low iron oxide production is high and splash is less generated.
【0004】[0004]
【課題を解決するための手段】本発明者らは、これら従
来の真空下での浸漬管内にO2上吹き並びに取鍋内に下
部から吹込管を介して不活性ガスを吹き込む方法につい
ての試験を実施したが安定した極低炭素領域までの脱炭
を行うことができなかった。そこで、更に研究を続けた
ところ、減圧下での脱炭を促進するための基本的な要因
は、従来提唱されていた溶鋼の還流速度や吹き込まれた
不活性ガスの滞留時間ではなく、気泡活性面積であると
いう新しい知見を得た。本発明はこの知見に基づいてな
されたものである。その要旨とするところは、転炉にて
炭素濃度を0.1〜1.0%に精錬した取鍋内の溶鋼に
単一の直胴形状の浸漬管を浸漬し、該浸漬管内の真空度
を復圧することなく連続的に100Torr以上の低真
空度とすると共に、該浸漬管内に不活性ガスを供給して
吹き込まれたガス気泡が表面に浮上する領域(気泡活性
面)の形成とガスリフトによる溶鋼還流を併用し、前記
気泡活性面積を浸漬管内の真空表面の15〜95%と
し、一方、浸漬管内の真空度(P)と浸漬管上部から吹
き込む酸素ガス(O)と不活性ガス(N)の総流量に対
する不活性ガスの比率(R)の関係を下記式で表わした
時、常数aが一定の範囲900〜2500となるよう
に、刻々と変化する浸漬管内の真空度(P)に応じて、
上部から吹込む酸素ガス(O)と不活性ガス(N)の混
合比(R)を変化させることを特徴とする真空精錬炉を
用いた低炭素鋼の溶製法。 The present inventors have SUMMARY OF THE INVENTION, the test for a method of blowing these conventional immersion tube under vacuum O 2 top-blown and from the bottom into the ladle through the blowing tubes inert gas However, it was not possible to perform decarburization to a stable extremely low carbon region. Therefore, as a result of further research, the basic factors for promoting decarburization under reduced pressure are not the flow rate of molten steel and the residence time of the injected inert gas, but the bubble activation. I got a new finding that it is an area. The present invention has been made based on this finding. The point is that a single straight-body-shaped immersion pipe is immersed in molten steel in a ladle refined to a carbon concentration of 0.1 to 1.0% by a converter, and the degree of vacuum in the immersion pipe is reduced. Is continuously reduced to a low vacuum of 100 Torr or more without restoring pressure, and an inert gas is supplied into the immersion tube to form a region (bubble activated surface) in which the gas bubbles blown rise on the surface and the gas lift is used. Using the molten steel reflux, the bubble active area is set to 15 to 95% of the vacuum surface in the immersion tube, while the degree of vacuum (P) in the immersion tube, oxygen gas (O) blown from the upper portion of the immersion tube, and inert gas (N ) Is expressed by the following equation .
In such a case, the constant a is in a certain range of 900 to 2500.
Then, according to the degree of vacuum (P) in the immersion tube that changes every moment,
Mixing of oxygen gas (O) and inert gas (N) blown from above
A method for melting low carbon steel using a vacuum refining furnace, wherein the ratio (R) is changed.
【0005】[0005]
【作用】以下本発明について図面に従って詳細に説明す
る。図1は本発明に係る真空精錬装置の断面図であり、
溶鋼4は取鍋1に収容され、また、浸漬管2は取鍋1内
の溶鋼4に浸漬静止される。浸漬管2は排気管と連通
し、浸漬管2内の真空度に応じて、浸漬管2内に溶鋼4
が吸い上げられる。そして浸漬管2の下部断面が垂直下
方に当る取鍋1の底部に配設されたポ−ラスプラグ3よ
り不活性ガス5が溶鋼中に吹き込まれ、溶鋼4が撹拌混
合される。一方、浸漬管2の上方からは酸素上吹きラン
ス6を設け、この酸素上吹きランスからO2及び不活性
ガスを混合されたガスが浸漬管真空槽表面に吹き込まれ
る。この場合に取鍋内溶鋼の深い位置からのガス撹拌下
での流動状況について、水モデルや水銀モデルによる実
験を重ねて詳細に検討した結果、溶鋼ヘッドが高いと気
泡の浮力による溶鋼循環力が極めて大きく、また表面の
気泡浮上領域で最も強い上向きの流れとなる。これに対
して気泡浮上領域以外の表面では表面に水平方向の炉壁
へ向かう流れになり、この流れが炉壁へ衝突して下向き
の流れへと変化している。これらの流動の内、水平方向
の炉壁へ向かう流れの速さは本発明者らによる研究の結
果、いわゆる撹拌エネルギ−や環流速度と対応すること
が明らかになった。The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of a vacuum refining apparatus according to the present invention,
The molten steel 4 is accommodated in the ladle 1, and the immersion pipe 2 is immersed and stopped in the molten steel 4 in the ladle 1. The immersion pipe 2 communicates with the exhaust pipe, and depending on the degree of vacuum in the immersion pipe 2, molten steel 4
Is sucked up. Then, an inert gas 5 is blown into the molten steel from a porous plug 3 disposed at the bottom of the ladle 1 in which the lower section of the immersion pipe 2 is vertically downward, and the molten steel 4 is stirred and mixed. On the other hand, an oxygen blowing lance 6 is provided from above the immersion tube 2, and a mixed gas of O 2 and an inert gas is blown into the surface of the immersion tube vacuum tank from the oxygen blowing lance. In this case, the flow condition of the molten steel in the ladle from the deep position under gas agitation was examined in detail by repeating experiments using water models and mercury models.As a result, when the molten steel head was high, the molten steel circulation force due to the buoyancy of bubbles was It is extremely large and has the strongest upward flow in the bubble floating region on the surface. On the other hand, on the surface other than the bubble floating region, the flow is directed toward the furnace wall in a direction horizontal to the surface, and this flow collides with the furnace wall and changes to a downward flow. Of these flows, the speed of the flow toward the furnace wall in the horizontal direction has been found by the present inventors to correspond to the so-called stirring energy and the reflux speed.
【0006】しかも、真空下での脱炭反応に対しては、
水平方向の炉壁へ向かう流れの速さよりも、吹き込まれ
たガスが浮上する領域での大きな上向きの流れが圧倒的
に重要であることが明らかになり、さらに、種々の実験
結果により、この脱炭特性を支配する要因は、次のよう
な定義による気泡活性面積であることが明らかになっ
た。すなわち、この気泡活性面積とは、吹き込まれたガ
ス気泡が表面に浮上する領域であると定義される。この
気泡活性面積については、水モデルや水銀モデル、ある
いは実機での観察結果により、垂直方向に吹き込まれた
ガスに対する気泡活性面積(An)は(1)式で、水平
方向に吹き込まれたガスに対する気泡活性面積(Au)
は(2)式で与えられる。 An=3.14×(0.212×H)2 ‥‥‥‥(1) Au=3.14×(7×Q0・67)2/2 ‥‥‥‥(2) ここで、Hは吹き込み位置から溶鋼面までの距離(m)
であり、Qはノズル1個当りのガス吹き込み量(Nm3
/s)である。In addition, for the decarburization reaction under vacuum,
The large upward flow in the area where the injected gas floats is overwhelmingly more important than the velocity of the flow toward the horizontal furnace wall. It has been clarified that the factor controlling the charcoal properties is the bubble active area defined as follows. That is, the bubble active area is defined as a region where the blown gas bubbles float on the surface. Regarding the bubble active area, the bubble active area (An) for the gas blown in the vertical direction is expressed by the formula (1) according to the observation result of the water model, the mercury model, or the actual machine. Bubble active area (Au)
Is given by equation (2). An = 3.14 × (0.212 × H ) 2 ‥‥‥‥ (1) Au = 3.14 × (7 × Q 0 · 67) 2/2 ‥‥‥‥ (2) where, H is Distance from injection position to molten steel surface (m)
And Q is the gas blowing amount per nozzle (Nm 3
/ S).
【0007】そして、この(1)式で定義される気泡活
性面積が脱炭速度を支配する主要な因子である。その理
由は以下のように考えられる。 1)脱炭反応の起こる自由表面は、スラグが存在しない
ためにメタルの流動に対する抵抗が殆どない。そのた
め、スラグとメタルの間の反応に比較してメタル相表面
の流動は極めて容易である。従って、表面流速に大きく
影響される物質移動速度は、少量のガスにより撹拌する
のみで充分に大きく出来、これを更に大きくしても反応
速度に対する影響は小さい。このことが、撹拌エネルギ
−や環流速度といった水平方向の炉壁へ向かう流れの速
さで決定される指標と脱炭反応速度が関係しない理由で
ある。 2)脱炭反応の速度を増大させるためには、物質移動速
度の増加ではなく、反応表面積の増加が最も重要な要因
となる。ところで、気泡が浮上し表面で破泡するという
一連の過程を考えると、気泡が溶鋼との密着差により浮
上した後、表面で破裂し、次いで、周囲の溶鋼表面が波
立つという過程をとる。このうち、気泡が表面で破裂し
た瞬間が最も大きな表面積を形成し、その後周囲に生成
される波では表面積は殆ど増加されない。一方、気泡が
浮上することにより形成される最表面での上向きの流れ
の速度はガス吹き込み速度や撹拌エネルギ−に影響され
るが、それは液滴を高くまで飛散させる運動エネルギ−
を与えるものであり、個々の気泡が表面で破裂した瞬間
の自由表面の形態には大きくは影響しない。従って、個
々の気泡が表面で破裂する時に形成する自由表面はほぼ
一定であり、反応容器全体の表面積を有効に増大させる
ためには、表面で破裂する気泡の数を多くすることが重
要となる。このためには、気泡の合体を可能な限り抑制
出きるように広い面積にわたって気泡を浮上させること
が必要となり、よって気泡活性面の大きさが重要とな
る。The bubble active area defined by the equation (1) is a major factor that governs the decarburization rate. The reason is considered as follows. 1) The free surface where the decarburization reaction occurs has little resistance to metal flow due to the absence of slag. Therefore, the flow on the metal phase surface is extremely easy as compared with the reaction between the slag and the metal. Therefore, the mass transfer rate which is greatly affected by the surface flow rate can be sufficiently increased only by stirring with a small amount of gas, and even if it is further increased, the influence on the reaction rate is small. This is the reason why the index determined by the speed of the flow toward the furnace wall in the horizontal direction, such as the stirring energy and the recirculation speed, does not relate to the decarburization reaction speed. 2) In order to increase the speed of the decarburization reaction, the most important factor is not the increase in the mass transfer rate but the increase in the reaction surface area. By the way, considering a series of processes in which bubbles rise and break on the surface, the bubbles float on the surface after floating due to the difference in adhesion with the molten steel, and then the surrounding molten steel surface is wavy. Among them, the moment when the bubble bursts on the surface, the largest surface area is formed, and the surface area is hardly increased by the waves generated afterwards. On the other hand, the speed of the upward flow at the outermost surface formed by the floating of the bubbles is affected by the gas blowing speed and the stirring energy, which is the kinetic energy that causes the droplet to scatter to a high level.
And does not significantly affect the morphology of the free surface at the moment when an individual bubble bursts on the surface. Therefore, the free surface formed when each bubble bursts on the surface is almost constant, and it is important to increase the number of bubbles bursting on the surface in order to effectively increase the surface area of the entire reaction vessel. . For this purpose, it is necessary to float the bubbles over a wide area so that the coalescence of the bubbles can be suppressed as much as possible. Therefore, the size of the bubble active surface is important.
【0008】図2は種々の断面積を有する浸漬管を用い
て脱炭速度定数を気泡活性面積が真空表面積に占める割
合で整理したものである。この図より気泡活性面が真空
表面積の95%を超えると脱炭速度が低下することがわ
かる。これは真空下表面の全体に気泡が浮上した場合に
は、下降流の生成が阻害されるため還流が極めて悪化し
真空下表面で脱炭された溶鋼と取鍋内部の溶鋼との入れ
替わりが不充分となることに起因する。また、気泡活性
面が真空表面の15%未満の場合についても、脱炭速度
の低下が見られるが、これは気泡活性面積が小さくなり
有効な反応表面積が確保出来ないためである。FIG. 2 is a graph in which the decarburization rate constants are arranged by the ratio of the bubble active area to the vacuum surface area using dip tubes having various cross-sectional areas. From this figure, it is understood that the decarburization rate decreases when the bubble active surface exceeds 95% of the vacuum surface area. This is because if air bubbles float on the entire surface under vacuum, the generation of a downward flow is hindered, and the reflux is extremely deteriorated, so that the molten steel decarburized on the surface under vacuum and the molten steel inside the ladle cannot be replaced. This is due to being sufficient. Also, when the bubble active surface is less than 15% of the vacuum surface, the decarburization rate decreases, but this is because the bubble active area becomes small and an effective reaction surface area cannot be secured.
【0009】更に、気泡活性面積を真空表面の15〜9
5%とする条件に加えて、転炉にて炭素濃度を0.1〜
1.0%に精錬された溶鋼を用いる必要がある。この理
由は転炉での吹き止め炭素濃度が1.0%超える場合に
は2次精錬炉での精錬時間が長くなり連々鋳が不可能に
なり生産性を低下させるという問題があり、仮に精錬時
間を短縮するために上吹き酸素ガスの供給速度を増加さ
せると、スプラッシュの発生や酸化鉄の生成という問題
が生じる。また、転炉での吹き止め炭素濃度が0.1%
未満の場合には転炉での酸化鉄生成が激しくなるため、
鉄歩留の低下、急速な温度上昇による耐火物溶損及び窒
素吸収の増加といった問題が生じる。Further, the active area of the bubble is adjusted to 15 to 9 of the vacuum surface.
In addition to the condition of 5%, the carbon concentration in the converter is 0.1 ~
It is necessary to use molten steel refined to 1.0%. The reason for this is that if the blow-off carbon concentration in the converter exceeds 1.0%, there is a problem that the refining time in the secondary refining furnace becomes longer, casting becomes impossible one after another, and the productivity is reduced. If the supply rate of the top-blown oxygen gas is increased in order to shorten the time, problems such as generation of splash and generation of iron oxide occur. Also, the blow-off carbon concentration in the converter is 0.1%.
If it is less than the above, iron oxide generation in the converter becomes intense,
Problems such as a decrease in iron yield, refractory erosion due to a rapid temperature rise, and an increase in nitrogen absorption occur.
【0010】次に、本発明に係る浸漬管上部より酸素ガ
ス及び不活性ガスの混合気体の吹き込みとしたことは、
酸素ガスを単独で上吹きした場合には、酸化鉄の生成は
避け難く、さらに、窒素の低下挙動も不充分であり、酸
素ガスと不活性ガスの混合気体を吹き付けることによ
り、この問題は解決されるからである。この理由は次の
ように考えられる。 1)同一の真空度であっても、酸素ガス上吹きの場合に
は発生したCOガスとリ−ク空気量とのバランスで決ま
っている値のため浸漬管槽内雰囲気の窒素分圧は高い。
これに対して、不活性ガスとの混合ガスを吹き付けた場
合には、多量の不活性ガスが界面に吹き付けられるため
雰囲気の窒素分圧が低く抑えられ、脱窒素が促進され
る。 2)同一流量の酸素ガスを吹き付けた場合でも、不活性
ガスと混合させることにより、上吹きノズルから出る全
ガス流量が増加するため、溶鋼面でのガスの動圧が強く
なるため火点の温度が上がり酸化鉄の生成が抑制され、
脱炭反応が促進される。一方、酸素の供給が必要となる
ような高い炭素濃度域では、高真空雰囲気は必要とせ
ず、脱炭反応が酸化鉄の生成反応に優先するための平衡
関係から決定される必要最低限の真空度であればよい。
この値は炭素濃度域にもよるが最低でも100Torr
であり、これよりも高真空にした場合には、COガス発
生時の体積膨張が大きくなるため、スプラッシュの発生
が激しく、かつ、発生したガスの浸漬管槽上昇流速が速
いため、発生したスプラッシュが高い位置まで上がると
いう問題が生じる。これらのことから浸漬管上部より酸
素ガス及び不活性ガスの混合気体を吹き込むこと並びに
浸漬管上槽内の真空度を100Torr以上の低真空度
と定めた。Next, the fact that the mixed gas of the oxygen gas and the inert gas is blown from the upper part of the dip tube according to the present invention is as follows.
If oxygen gas is blown alone, the formation of iron oxide is unavoidable and the nitrogen lowering behavior is also inadequate. This problem can be solved by blowing a mixed gas of oxygen gas and inert gas. Because it is done. The reason is considered as follows. 1) Even when the degree of vacuum is the same, in the case of oxygen gas top blowing, the nitrogen partial pressure of the atmosphere in the immersion tube is high because the value is determined by the balance between the generated CO gas and the amount of leak air. .
On the other hand, when a mixed gas with an inert gas is blown, a large amount of the inert gas is blown to the interface, so that the nitrogen partial pressure of the atmosphere is kept low, and denitrification is promoted. 2) Even when the same flow rate of oxygen gas is blown, mixing with the inert gas increases the total gas flow rate coming out of the upper blow nozzle, so that the dynamic pressure of the gas on the molten steel surface is increased, so that the ignition point The temperature rises and the production of iron oxide is suppressed,
The decarburization reaction is promoted. On the other hand, in a high carbon concentration region where supply of oxygen is required, a high vacuum atmosphere is not required, and the minimum necessary vacuum determined from an equilibrium relationship in which the decarburization reaction has priority over the iron oxide formation reaction. Degree is fine.
This value depends on the carbon concentration range, but at least 100 Torr
If the vacuum is higher than this, the volume expansion at the time of generation of CO gas becomes large, so that the splash is generated intensely, and the generated gas rises rapidly in the immersion tube tank, so that the generated splash is generated. Is raised to a high position. From these facts, the mixed gas of oxygen gas and inert gas was blown from the upper part of the immersion tube, and the degree of vacuum in the upper tank of the immersion tube was determined to be a low degree of vacuum of 100 Torr or more.
【0011】更に、圧力(P)と酸素ガス(O)と不活
性ガス(N)の総流量に対する不活性ガス(N)の比率
(R)の関係について、P=760−a×Rとする。た
だしaは900〜2500となるように、不活性ガスの
混合比を変化させることが望ましい。ここで、この比率
よりも不活性ガスが少ない場合には酸化鉄の生成が生じ
鉄歩留の低下を招く上に表面に酸化鉄からなるスラグが
生成するため、以後の酸素ガスと溶鋼の接触が阻害され
脱炭速度も低くなる。逆にこの比率よりも不活性ガスが
多い場合には酸素供給不足となり脱炭が進行しないこと
になる。すなわち、溶鋼への酸化性ガス吹き付け時の脱
炭反応機構としては、周知のように、以下の(1)、
(2)式の連鎖によって成り立っている。 Fe+1/2O 2 → FeO …… (1) FeO+C → Fe+CO …… (2) このとき、平衡炭素濃度([%C]´)は、(3)式で
表される。 [%C]´=Pco/K …… (3) (Kは平衡定数であり、温度によって一義的に決定され
る定数)さらに、脱炭反応速度式は以下の(4)式で表
される。 −d[C]/dt=(A・k・/V)・([%C]−[%C]´)… (4) (Aは有効反応界面積、kは物質係数、Vは溶鋼体積)
従って、脱炭反応を促進させる(脱炭速度を高位に保
つ)ためには、有効反応界面積を大きくすること、
物質移動係数を大きくすること、および、反応の駆動
力項である([%C]−[%C] ´)の値を大きく保
つことが重要である。 ここで、、の有効反応界面積
及び物質移動係数を大きく保つためには、上記(2)式
の反応サイトを気泡活性面上として置くことが非常に有
効である。これは、上述の通り、気泡が破裂することに
よって有効反応界面積の増大が著しく増大することによ
り、(4)式で表される脱炭速度が、高速で進行するこ
とになる。さらに、の駆動力項に関しては、反応の進
行とともに、炭素濃度そのものが低下するため、脱炭反
応の進行に伴って低下することになる。従って、反応速
度そのものを高位に保つことのみを考えた場合、平衡炭
素濃度([%C]´)は 常に低位に保つ。すなわち、P
coを低位に保つことが重要である。このPcoを低位
に保つ有効な手段の一つとしては、真空度を極力高位に
保つことが考えられる。しかしながら、前述に記載の通
り、特に処理開始〜処理中期の比較的炭素濃度の高い領
域では、100Torr以上の高真空下においては、ス
プラッシュの発生が激しく、著しく操業を阻害してしま
うなどの問題を生じる。従って、スプラッシュの発生を
抑制しつつ、脱炭を促進させるには、「ある真空度以上
の条件で、その時点での真空度及び炭素濃度に応じた適
正なPcoに制御する」ことが重要である。これは、実
際の駆動力項([%C]−[%C]´)における炭素濃
度([%C])とその時点での平衡炭素濃度([%C]
´) の比率([%C]/[%C]´)をある一定範囲
に制御することにより、スプラッシュの過剰発生の抑制
と脱炭速度の高位維持を両立させるものである。 このた
めの有効な手段が、(4)式の反応サイトに吹き付ける
酸化性ガス中に不活性ガスを混合させる(酸化性ガスを
希釈する)ことにより、反応界面でのPcoを低下させ
る方法である。しかしながら、実際には、Pcoは真空
度の影響を大きく受ける因子であるため、具体的な制御
手段としては、酸素ガスと不活性ガスの混合比を前述の
ように変化させることが必要となる。 さらに、この混合
比の範囲に関して、記述の比率よりも不活性ガスが少な
いときには、酸化鉄(FeO)の生成が生じ鉄歩留の低
下を招く上に表面に酸化鉄からなるスラグが生成するた
め、以後の酸素ガスと溶鋼の接触が阻害され、脱炭速度
の低下を招く。逆にこの比率よりも不活性ガスが多い場
合には、酸素供給不足となり脱炭が進行しないことにな
る。 Furthermore, the relationship between the ratio (R) of the pressure (P) and oxygen gas (O) and an inert gas to the total flow rate of the inert gas (N) (N), and P = 760-a × R I do. However, it is desirable to change the mixing ratio of the inert gas so that a becomes 900 to 2500. Here, when the inert gas is smaller than this ratio, iron oxide is generated and the iron yield is reduced, and slag composed of iron oxide is generated on the surface. And the rate of decarburization is reduced. Conversely, if the amount of inert gas is larger than this ratio, the supply of oxygen becomes insufficient, and decarburization will not proceed. In other words, when oxidizing gas is blown onto molten steel,
As the charcoal reaction mechanism, as is well known, the following (1),
It is established by the chain of equation (2). Fe + 1 / 2O 2 → FeO (1) FeO + C → Fe + CO (2) At this time, the equilibrium carbon concentration ([% C] ′) is expressed by the equation (3).
expressed. [% C] '= Pco / K (3) (K is an equilibrium constant and is uniquely determined by temperature.
The decarburization reaction rate equation is expressed by the following equation (4).
Is done. −d [C] / dt = (A · k · / V) · ([% C] − [% C] ′) (4) (A is the effective reaction area, k is the material coefficient, and V is the volume of molten steel )
Therefore, the decarburization reaction is promoted (the decarburization rate is kept at a high level).
To increase the effective reaction area,
Increasing the mass transfer coefficient and driving the reaction
The value of the force term ([% C]-[% C] ') is kept large.
It is important that Where the effective reaction area of
In order to keep the mass transfer coefficient large, the above equation (2)
It is very useful to place the reaction site of
It is effective. This is because, as mentioned above, the bubbles burst.
Therefore, the effective reaction area is significantly increased.
Therefore, the decarburization rate expressed by the equation (4) can progress at a high speed.
And Furthermore, regarding the driving force
As the carbon concentration itself decreases with
It will decrease as the response progresses. Therefore, the reaction speed
When considering only keeping the degree itself high,
The elemental concentration ([% C] ') is always kept low. That is, P
It is important to keep co low. Lower this Pco
One of the effective means to keep
It is possible to keep. However, the communication described above
Especially in areas where the carbon concentration is relatively high between the start of treatment and the middle of treatment.
Under high vacuum of 100 Torr or more.
The occurrence of the splash is severe, and the operation is severely hindered.
And other problems. Therefore, the occurrence of splash
To suppress decarbonization and promote decarburization, "
Under the conditions of
It is important to control to positive Pco ". This is actually
Carbon concentration in the driving force term ([% C]-[% C] ')
Degree ([% C]) and the equilibrium carbon concentration at that time ([% C]
)) ([% C] / [% C] ') within a certain range
Control to prevent excessive splash
And maintain a high decarburization rate at the same time. others
Effective means for spraying the reaction site of equation (4)
Mix an inert gas into the oxidizing gas.
Dilution) to reduce Pco at the reaction interface
It is a method. However, in practice, Pco is a vacuum
Because it is a factor greatly affected by the degree, specific control
As means, the mixing ratio of oxygen gas and inert gas is
It is necessary to change as follows. Furthermore, this mixed
For the range of ratios, there is less inert gas than the stated ratio.
In this case, iron oxide (FeO) is produced, and the iron yield is low.
A slag of iron oxide is generated on the surface on the lower side
The subsequent contact between oxygen gas and molten steel is impeded,
Causes a decrease in Conversely, if there is more inert gas than this ratio
In this case, the supply of oxygen will be insufficient and decarburization will not proceed.
You.
【0012】[0012]
実施例1 酸素上吹き転炉にて炭素濃度0.1〜1.0%に精錬し
た溶鋼を175トン取鍋を用いて、図1に示す真空精錬
炉において実施した。そのときの条件について表1に示
す。Rは酸素ガス供給速度(O)と不活性ガス供給速度
(N)とにおいてN/(O+N)で表わし、O+Nを3
〜9Nm3/(Hr・ton)で吹き込んだ。また、表
中のBは(気泡活性面積)/(真空表面積)×100を
表わす。この場合に本発明の条件を満しているものに対
して、気泡活性面積比Bを満たしていない比較例8、9
はいずれも、脱炭速度定数が低く脱炭効率の悪いことを
示している。また、R値が0または1.0である比較例
6、7すなわち酸素ガス吹き込みのみ及び不活性ガス吹
き込みのみの場合も同様、脱炭速度定数が低くこれも脱
炭効率の悪いことを示している。Example 1 Molten steel refined to a carbon concentration of 0.1 to 1.0% in an oxygen top-blowing converter was carried out in a vacuum refining furnace shown in FIG. 1 using a 175-ton ladle. Table 1 shows the conditions at that time. R is represented by N / (O + N) at the oxygen gas supply rate (O) and the inert gas supply rate (N), and O + N is 3
99 Nm 3 / (Hr · ton). B in the table represents (bubble active area) / (vacuum surface area) × 100. In this case, Comparative Examples 8 and 9 which do not satisfy the bubble active area ratio B to those satisfying the conditions of the present invention.
Indicate that the decarburization rate constant is low and the decarburization efficiency is poor. Similarly, Comparative Examples 6 and 7 in which the R value is 0 or 1.0, ie, only oxygen gas blowing and only inert gas blowing, have low decarburization rate constants, which also indicate poor decarburization efficiency. I have.
【0013】[0013]
【表1】 [Table 1]
【0014】実施例2 実施例1と同様に、酸素上吹き転炉にて炭素濃度0.1
〜1.0%に精錬した溶鋼を175トン取鍋を用いて、
図1に示す真空精錬炉において実施した。そのときの条
件について表2に示す。表2の真空パタ−ンについて
は、図3に示す。本図は真空度P(Torr)と酸素ガ
ス(O)と不活性ガス(N)の総流量に対する不活性ガ
ス(N)の比率(R)との関係図であり、真空度100
Torr以上を前提として、斜線領域Aは本発明の範囲
を示している。直線BはR値が低い場合の真空度との関
係であり、表2の比較例7に該当する。また、直線Cは
R値の高い不活性ガスが極めて多い吹き込みの場合を示
すもので比較例8に該当する。これらは、いずれも、脱
炭速度定数が低く脱炭効率の悪いことを意味している。
なお、実施例を示すA領域の内で直線A1は実施例1、
3、4、5、6に該当し、直線A2は実施例2に該当す
る。これらはいずれも速度定数が高いことがわかる。こ
れは極めて脱炭効率の良いことを意味している。Example 2 As in Example 1, a carbon concentration of 0.1 in an oxygen top-blowing converter was used.
Using a 175-ton ladle, molten steel refined to ~ 1.0%
It carried out in the vacuum refining furnace shown in FIG. Table 2 shows the conditions at that time. The vacuum patterns in Table 2 are shown in FIG. This figure is a relationship diagram between the degree of vacuum P (Torr) and the ratio (R) of the inert gas (N) to the total flow rate of the oxygen gas (O) and the inert gas (N).
Assuming that the pressure is equal to or higher than Torr, the hatched area A indicates the range of the present invention. The straight line B indicates the relationship with the degree of vacuum when the R value is low, and corresponds to Comparative Example 7 in Table 2. Further, a straight line C indicates a case in which the inert gas having a high R value is extremely large, and corresponds to Comparative Example 8. These all indicate that the decarburization rate constant is low and the decarburization efficiency is poor.
Note that a straight line A 1 in the region A indicating the embodiment is the same as that of the first embodiment.
3, 4, 5, and 6, and the straight line A2 corresponds to the second embodiment. It can be seen that all of these have high rate constants. This means that the decarburization efficiency is extremely high.
【0015】[0015]
【表2】 [Table 2]
【0016】[0016]
【発明の効果】以上述べたように、本発明を実施するこ
とによって、激しいスプラッシュの発生や酸化鉄の生成
による操業上の問題は全く生ずることなく、極めて効率
的に高純度鋼の精錬が可能となり工業上極めて優れた効
果を奏するものである。As described above, the practice of the present invention enables extremely efficient refining of high-purity steel without causing any operational problems due to generation of severe splashes and generation of iron oxide. Thus, an industrially excellent effect is obtained.
【図1】本発明に係る真空精錬装置の断面図、FIG. 1 is a cross-sectional view of a vacuum refining apparatus according to the present invention,
【図2】本発明に係る脱炭速度定数に対する気泡活性面
積と真空下表面積の比を示した図、FIG. 2 is a diagram showing a ratio of a bubble active area to a surface area under vacuum with respect to a decarburization rate constant according to the present invention;
【図3】真空度と酸素ガスと不活性ガスの総流量に対す
る不活性ガスの比率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the degree of vacuum and the ratio of inert gas to the total flow rate of oxygen gas and inert gas.
1 取鍋、 2 浸漬管、 3 ポ−ラスプラグ、 4 溶鋼、 5 不活性ガス、 6 酸素及び不活性ガス吹込みランス。 1 Ladle, 2 Dipping tube, 3 Porous plug, 4 Molten steel, 5 Inert gas, 6 Oxygen and inert gas injection lance.
フロントページの続き (56)参考文献 特開 昭52−52110(JP,A) 特開 平2−194116(JP,A) 特公 昭59−19967(JP,B2)Continuation of front page (56) References JP-A-52-52110 (JP, A) JP-A-2-194116 (JP, A) JP-B-59-19967 (JP, B2)
Claims (1)
精錬した取鍋内の溶鋼に単一の直胴形状の浸漬管を浸漬
し、該浸漬管内の真空度を復圧することなく連続的に1
00Torr以上の低真空度とすると共に、該浸漬管内
に不活性ガスを供給して吹き込まれたガス気泡が表面に
浮上する領域(気泡活性面)の形成とガスリフトによる
溶鋼還流を併用し、前記気泡活性面積を浸漬管内の真空
表面の15〜95%とし、一方、浸漬管内の真空度
(P)と浸漬管上部から吹き込む酸素ガス(O)と不活
性ガス(N)の総流量に対する不活性ガスの比率(R)
の関係を下記式で表わした時、常数aが一定の範囲90
0〜2500となるように、刻々と変化する浸漬管内の
真空度(P)に応じて、上部から吹込む酸素ガス(O)
と不活性ガス(N)の混合比(R)を変化させることを
特徴とする真空精錬炉を用いた低炭素鋼の溶製法。 1. A single straight-body-shaped immersion pipe is immersed in molten steel in a ladle refined in a converter to a carbon concentration of 0.1 to 1.0%, and the degree of vacuum in the immersion pipe is restored. 1 continuously without pressure
A low vacuum of at least 00 Torr is supplied, and an inert gas is supplied into the immersion tube to form a region (bubble active surface) in which the gas bubbles blown and float on the surface, and the molten steel is recirculated by gas lift. The active area is 15 to 95% of the vacuum surface in the dip tube, while the inert gas is based on the degree of vacuum (P) in the dip tube and the total flow rate of oxygen gas (O) and inert gas (N) blown from the top of the dip tube. Ratio (R)
Is expressed by the following equation , the constant a is within a certain range 90
0 to 2500 in the dip tube that changes every moment
Oxygen gas (O) blown from above according to the degree of vacuum (P)
A method of melting low carbon steel using a vacuum refining furnace, wherein the mixing ratio (R) of nitrogen and inert gas (N) is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3189533A JP2582316B2 (en) | 1991-07-04 | 1991-07-04 | Melting method of low carbon steel using vacuum refining furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3189533A JP2582316B2 (en) | 1991-07-04 | 1991-07-04 | Melting method of low carbon steel using vacuum refining furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06116626A JPH06116626A (en) | 1994-04-26 |
JP2582316B2 true JP2582316B2 (en) | 1997-02-19 |
Family
ID=16242896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3189533A Expired - Lifetime JP2582316B2 (en) | 1991-07-04 | 1991-07-04 | Melting method of low carbon steel using vacuum refining furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2582316B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997005291A1 (en) * | 1995-08-01 | 1997-02-13 | Nippon Steel Corporation | Process for vacuum refining of molten steel |
DE69716582T2 (en) * | 1996-11-20 | 2003-06-12 | Nippon Steel Corp., Tokio/Tokyo | METHOD AND DEVICE FOR VACUUM DECOLARING / FINISHING LIQUID STEEL |
CN104004887B (en) * | 2014-06-13 | 2016-02-10 | 中天钢铁集团有限公司 | A kind of method reducing RH vacuum chamber elevated oxygen level |
CN105018681A (en) * | 2015-08-21 | 2015-11-04 | 内蒙古包钢钢联股份有限公司 | Temperature adjusting method for smelting silicon steel with RH refining |
CN106893800A (en) * | 2017-04-06 | 2017-06-27 | 首钢总公司 | A kind of method of deoxidation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5252110A (en) * | 1975-10-24 | 1977-04-26 | Nippon Steel Corp | Equipment for refining molten metal outside furnace |
JPS5919967A (en) * | 1982-07-26 | 1984-02-01 | Fujitsu Ltd | Direct recording device |
-
1991
- 1991-07-04 JP JP3189533A patent/JP2582316B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06116626A (en) | 1994-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5902374A (en) | Vacuum refining method for molten steel | |
JP2582316B2 (en) | Melting method of low carbon steel using vacuum refining furnace | |
JP2004156083A (en) | Oxygen-containing gas blower in rh degasser and method for refining low-carbon steel high-manganese steel | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
JPH05239534A (en) | Method for melting non-oriented electric steel sheet | |
JP2808197B2 (en) | Vacuum refining of molten steel using large diameter immersion tube | |
JP2773883B2 (en) | Melting method of ultra low carbon steel by vacuum degassing | |
JP2648769B2 (en) | Vacuum refining method for molten steel | |
JP3377325B2 (en) | Melting method of high cleanness ultra low carbon steel | |
EP1111073A1 (en) | Refining method and refining apparatus of molten steel | |
JP3293023B2 (en) | Vacuum blowing method for molten steel | |
JPH08109410A (en) | Finish decarburization refining of stainless steel | |
JP2915631B2 (en) | Vacuum refining of molten steel in ladle | |
JPH05214430A (en) | Method for vacuum-refining molten steel | |
JP3706451B2 (en) | Vacuum decarburization method for high chromium steel | |
JP2819440B2 (en) | Method for decarburizing molten steel containing extremely low carbon chromium | |
JP2724030B2 (en) | Melting method of ultra low carbon steel | |
JP3153983B2 (en) | Melting method for high purity stainless steel | |
JPH07238312A (en) | Production of ultra low carbon steel and vacuum degassing equipment | |
JPH07331315A (en) | Refining method for extra-low carbon steel in converter | |
JPH0436414A (en) | Smelting method of extralow carbon and extralow nitrogen steel | |
GB1569158A (en) | Methods of and apparatus for vacuum refining molten steel | |
JPH04228515A (en) | Production of dead soft steel | |
JPH04168214A (en) | Method and apparatus for melting extremely low carbon steel | |
JPH06116627A (en) | Production of ultra low nitrogen steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960903 |