JP2819440B2 - Method for decarburizing molten steel containing extremely low carbon chromium - Google Patents

Method for decarburizing molten steel containing extremely low carbon chromium

Info

Publication number
JP2819440B2
JP2819440B2 JP3265053A JP26505391A JP2819440B2 JP 2819440 B2 JP2819440 B2 JP 2819440B2 JP 3265053 A JP3265053 A JP 3265053A JP 26505391 A JP26505391 A JP 26505391A JP 2819440 B2 JP2819440 B2 JP 2819440B2
Authority
JP
Japan
Prior art keywords
molten steel
chromium
gas
ladle
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3265053A
Other languages
Japanese (ja)
Other versions
JPH05105936A (en
Inventor
健一郎 宮本
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3265053A priority Critical patent/JP2819440B2/en
Publication of JPH05105936A publication Critical patent/JPH05105936A/en
Application granted granted Critical
Publication of JP2819440B2 publication Critical patent/JP2819440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は極低炭素領域まで少ない
クロム酸化量での効率的な精錬を可能とすることを特徴
とする極低炭素クロム含有溶鋼の脱炭方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decarburizing molten steel containing extremely low carbon chromium, which enables efficient refining with a small amount of chromium oxidation up to the extremely low carbon region.

【0002】[0002]

【従来の技術】ステンレス鋼に代表されるクロム含有溶
鉄は、炭素濃度が低下した領域では脱炭反応に比べてク
ロムの酸化反応の方が起こりやすくなるため、クロムの
酸化損失を抑制して製品規格から要求される炭素濃度ま
で脱炭する方法が、種々、提案されている。中でもAO
DとVODは広く用いられている。このうちAODはA
rで希釈した酸素ガスを浴内に吹込む方法であり、VO
Dは真空下で酸素を上吹きする方法であるが、いずれの
場合も脱炭反応により生成するCOガスの分圧を低下さ
せ、クロムの酸化反応よりも脱炭反応を優先させること
を特徴としている。このうち、炭素濃度が200ppm 以
下といった極低炭素鋼を溶製するためには、減圧精錬が
不可欠となるため、一般的にはVODが用いられてい
る。
2. Description of the Related Art Chromium-containing molten iron typified by stainless steel is more susceptible to oxidation of chromium than decarburization in a region where the carbon concentration is low. Various methods for decarburizing to the carbon concentration required by the standards have been proposed. Above all, AO
D and VOD are widely used. AOD is A
This is a method of blowing oxygen gas diluted with r into the bath.
D is a method in which oxygen is blown upward under vacuum, but in any case, the partial pressure of CO gas generated by the decarburization reaction is reduced, and the decarburization reaction is prioritized over the chromium oxidation reaction. I have. Of these, in order to melt ultra-low carbon steel having a carbon concentration of 200 ppm or less, vacuum refining is indispensable. Therefore, VOD is generally used.

【0003】しかし、VODは取鍋全体を真空容器内に
入れる方法、もしくは取鍋上部に蓋をして取鍋全体を真
空にする方法であるため、上部空間が狭く、酸素上吹き
時に発生するスプラッシュにより操業が阻害されるとい
う問題がある上、クロム酸化を抑制した脱炭を進行させ
るために攪拌用のガス量を増大した場合にも、鋼浴の揺
動や底吹きガスによるスプラッシュが増加し、操業に支
障が生じ、さらにはクロム歩留り、鉄分歩留りの低下を
招くという問題があった。
However, VOD is a method in which the entire ladle is placed in a vacuum vessel, or a method in which the upper part of the ladle is evacuated by covering the ladle with a lid. In addition to the problem that the operation is hindered by splash, even if the amount of gas for stirring is increased to promote decarburization while suppressing chromium oxidation, the splash due to rocking of the steel bath and bottom blow gas increases. However, there is a problem in that the operation is hindered, and further, the chromium yield and the iron yield are reduced.

【0004】これに対して、特開昭61−37912号
公報においては、取鍋内の溶鋼を大径浸漬管を介して真
空槽内に吸い上げ、低部から攪拌用ガスを供給する方法
が開示されている。さらに、特開平1−156416号
公報においては、浸漬管中心に対して底吹き用ノズル位
置を適切な範囲に偏心させるとともに、上吹き酸素を底
吹きガスの浮上領域である、後述するところの気泡活性
面に衝突させる方法が開示されている。これらの方法に
より、VODが有する上部空間が狭いという問題は解決
されたものの、極低炭素鋼の溶製に関する記述はなく、
この方法のみでは浸漬管内にクロム酸化物が多量に生成
するため、安定して極低炭素鋼を溶製することはできな
かった。
On the other hand, Japanese Patent Application Laid-Open No. 61-37912 discloses a method in which molten steel in a ladle is sucked up into a vacuum chamber through a large-diameter immersion pipe, and a stirring gas is supplied from a lower part. Have been. Further, in Japanese Unexamined Patent Publication No. 1-156416, the position of the bottom-blowing nozzle is eccentric to an appropriate range with respect to the center of the immersion tube, and the above-described bubble is a floating region of the bottom-blown gas. A method for impacting an active surface is disclosed. Although these methods have solved the problem that the head space of the VOD has a small space, there is no description regarding the production of ultra-low carbon steel.
With this method alone, a large amount of chromium oxide was generated in the immersion tube, so that it was not possible to stably produce ultra-low carbon steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は、VODが有
している上部空間が狭いため溶鋼の揺動やスプラッシュ
により操業に支障が生じるという問題や、特開昭61−
37912号公報や、特開平1−156416号公報に
示された方法が有する、安定して極低炭素鋼を溶製する
ことができないという問題を生じることなく、極低炭素
領域まで少ないクロム酸化量での効率的な精錬を可能と
する脱炭方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to the problem that the operation is hindered by the swinging or splashing of molten steel due to the narrow upper space of the VOD,
No problem that the method disclosed in Japanese Patent Application Laid-Open No. 37912 or JP-A-1-156416 has a problem that a very low carbon steel cannot be melted stably, and the chromium oxidation amount is small to an extremely low carbon region. The present invention provides a decarburization method that enables efficient refining at a low temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、取鍋内のCr
濃度が5%以上の溶鋼に対して浸漬管を浸漬し、該浸漬
管内を減圧するとともに、取鍋低部より攪拌用ガスを供
給する真空精錬法に関するものであり、以下の技術要素
から成り立つ。第一に炭素濃度が1〜0.02%の範囲
で、酸素ガスを気泡活性面積当り0.04〜0.40Nm
3 /(Hr・cm2 )の速度で吹付けることであり、第二
に、引き続いて、気泡活性面積を全溶鋼表面積の10%
以上、かつ酸素吹付け面の100%以上とする条件で攪
拌し、炭素濃度0.02%以下から吹酸を停止し、5To
rr以下の高真空下で攪拌することにより脱炭処理を行う
ことにあり、第三に、さらに引き続いて、複圧して浸漬
管を溶鋼面より上方に引き上げ、還元用合金を投入し、
脱炭中に生成したクロム酸化物を還元することにある。
SUMMARY OF THE INVENTION The present invention relates to a method for forming a Cr in a ladle.
The present invention relates to a vacuum refining method in which a dip tube is immersed in molten steel having a concentration of 5% or more, the pressure in the dip tube is reduced, and a stirring gas is supplied from a lower part of a ladle. First, when the carbon concentration is in the range of 1 to 0.02%, oxygen gas is supplied in an amount of 0.04 to 0.40 Nm per bubble active area.
3 / (Hr · cm 2 ). Secondly, the cell active area is subsequently reduced to 10% of the total molten steel surface area.
Stirring is performed under the conditions described above and the oxygen spraying surface is 100% or more, and the blowing acid is stopped when the carbon concentration is 0.02% or less.
The decarburization treatment is performed by stirring under a high vacuum of rr or less.Third, further successively, the double pressure is applied to pull up the immersion tube above the molten steel surface, and the reducing alloy is charged,
It is to reduce chromium oxide generated during decarburization.

【0007】[0007]

【作用】図1は本発明に係わる真空精錬装置の断面図で
あり、クロム含有溶鋼4は取鍋1に収容され、また浸漬
管2は取鍋1内のクロム含有溶鋼4中に浸漬静止され
る。浸漬管2は排気管(図示せず)と連通し、浸漬管2
内の真空度に応じて、浸漬管2内にクロム含有溶鋼4が
吸い上げられる。そして、浸漬管2内の下部断面が垂直
下方に当たる取鍋1の低部に設置されたポーラスプラグ
3より不活性ガス5が溶鋼中に吹込まれ、浸漬管2の上
方に設置された上吹きランス6より酸素ガス7が供給さ
れる。
FIG. 1 is a sectional view of a vacuum refining apparatus according to the present invention, in which a chromium-containing molten steel 4 is accommodated in a ladle 1, and a dip tube 2 is immersed and stationary in the chromium-containing molten steel 4 in the ladle 1. You. The immersion pipe 2 communicates with an exhaust pipe (not shown).
The chromium-containing molten steel 4 is sucked into the immersion pipe 2 according to the degree of vacuum in the inside. Then, an inert gas 5 is blown into the molten steel from a porous plug 3 installed at a lower portion of the ladle 1 where a lower cross section in the immersion pipe 2 is vertically downward, and an upper blowing lance installed above the immersion pipe 2 An oxygen gas 7 is supplied from 6.

【0008】クロム含有溶鋼を極低炭素化するために
は、炭素濃度が0.02%以上までは酸素ガスを吹付け
て脱炭し、その後は酸素ガスの供給を停止し、高真空下
で攪拌することが必要であるが、特に重要な点は、高真
空下で攪拌する際の脱炭を効率的に実施することであ
る。本発明者は詳細な試験の結果、この際の脱炭を効率
的に実施するためには、スラグが存在しない真空にさら
される溶鋼自由表面積を大きくし、かつ自由表面におけ
る気泡活性面積を増大させることが重要であることを見
出した。これは、炭素を溶鋼中に含まれる酸素と結合さ
せて除去しようとするものであり、クロム酸化物を含む
スラグを溶融状態にして、スラグ中のクロム酸化物によ
り脱炭するという従来の思想とは大きく異なるものであ
る。
In order to reduce the carbon content of the chromium-containing molten steel to extremely low carbon, oxygen gas is blown until the carbon concentration reaches 0.02% or more to decarburize the carbon steel. It is necessary to stir, but a particularly important point is to efficiently perform decarburization when stirring under high vacuum. As a result of detailed tests, the inventor has found that in order to efficiently perform decarburization at this time, the molten steel free surface area exposed to vacuum without slag is increased, and the cell active area on the free surface is increased. Is important. This is intended to remove carbon by combining carbon with oxygen contained in molten steel, to make slag containing chromium oxide in a molten state, and to decarbonize with chromium oxide in slag. Are very different.

【0009】ここで、気泡活性面積は、水モデルや水銀
モデル、あるいは実機での観察結果より、垂直方向に吹
込まれたガスに対する気泡活性面積(An)は(1)式
で、水平方向に吹込まれたガスに対する気泡活性面積
(Au)は(2)式で与えられる。 An=3.14×(0.212×H)2 ・・・・・(1) Au=3.14×(7×Q0.87)/2 ・・・・・(2) ここで、Hは吹込み位置から浴面までの距離(m)であ
り、Qはノズル1個当りのガス吹込み量(Nm3 /s)で
ある。
Here, the bubble active area is obtained from a water model, a mercury model, or a result of observation with an actual machine. The bubble active area (Au) for the supplied gas is given by equation (2). An = 3.14 × (0.212 × H) 2 ... (1) Au = 3.14 × (7 × Q 0.87 ) / 2 (2) where H is blowing It is the distance (m) from the injection position to the bath surface, and Q is the gas injection amount per nozzle (Nm 3 / s).

【0010】この気泡活性面による自由表面脱炭を効率
的に実施するためには、次の2点が重要となる。 酸素ガス吹付け中のクロム酸化物生成量を少なくする
とともに、生成したクロム酸化物を粗大化させずに微細
分散させる。 酸素ガス吹付け停止後の攪拌により、酸素ガス供給中
に生成したクロム酸化物を鋼浴内へ巻き込ませ、浸漬管
外へ流出させる。
In order to efficiently perform free surface decarburization using the bubble activated surface, the following two points are important. The amount of chromium oxide generated during oxygen gas blowing is reduced, and the generated chromium oxide is finely dispersed without coarsening. By stirring after stopping the oxygen gas blowing, the chromium oxide generated during the supply of the oxygen gas is drawn into the steel bath, and flows out of the immersion tube.

【0011】ここでについては気泡活性面上に酸素ガ
スを吹付けることにより、生成したクロム酸化物を微細
化し、吹酸火点でのクロム酸化物の還元を促進させるこ
とにある。クロム酸化物は生成と同時に固体状態となる
ために還元が非常に困難である。よって還元を促進する
ためにはクロム酸化物を微細化し、溶鋼中〔C〕との接
触面積を増大させる必要がある。
Here, the purpose is to spray the oxygen gas onto the bubble activated surface to make the generated chromium oxide finer and to promote the reduction of the chromium oxide at the blowing acid fire point. Chromium oxide is very difficult to reduce because it is in a solid state at the same time as its formation. Therefore, in order to promote the reduction, it is necessary to make chromium oxide finer and increase the contact area with [C] in the molten steel.

【0012】また、に示した点は、溶鋼中に浸漬管を
浸漬し、該浸漬管内を減圧するとともに、取鍋低部より
攪拌用ガスを供給する真空精錬に特有の現象であり、浸
漬管内で生成した酸化物が、取鍋低部より供給される攪
拌ガスにより形成される大きな下降流に乗り浴内に巻き
込まれ、浸漬管下端部を通過して管の外部に流出するも
のである。従って、適宜時間攪拌を行うことにより、浸
漬管内に存在していたクロム酸化物はほとんどすべて浸
漬管外へ流出し、真空下にさらされる浸漬管内溶鋼表面
はスラグの存在しない状態が生み出される。この効果を
効率的に実施するには、浸漬管内の溶鋼高さ(h)に対
して0.5hよりも深い位置から0.6Nl/(min・ton)
以上とすることが望ましい。
Further, the point indicated by is a phenomenon peculiar to vacuum refining in which a dip tube is immersed in molten steel, the pressure in the dip tube is reduced, and a stirring gas is supplied from a lower part of a ladle. The oxides produced in step (1) are entrained in the bath in a large downward flow formed by the stirring gas supplied from the lower part of the ladle, and flow out of the pipe through the lower end of the immersion pipe. Therefore, by stirring for an appropriate period of time, almost all of the chromium oxide existing in the immersion tube flows out of the immersion tube, and the surface of the molten steel in the immersion tube exposed to a vacuum is free from slag. In order to efficiently implement this effect, 0.6 Nl / (min · ton) from a position deeper than 0.5 h with respect to the molten steel height (h) in the immersion tube.
It is desirable to make the above.

【0013】さらに、これらの効果を実現するために
は、酸素ガス供給中に生成されるクロム酸化物の量と形
態が重要となる。つまり、酸化物の巻き込みを容易にす
るためには、少なくとも1cm程度より小さい、微細な状
態を維持することが重要であり、例えば大量のクロム酸
化物を生成した場合には合体成長し、さらに一部は浸漬
管壁面に付着し、溶鋼内への巻き込みがほとんど生じな
い場合すらある。クロム酸化物の生成量を少なくし、か
つ微細化するためには、酸素ガスを供給する炭素濃度範
囲と、気泡活性面当りの酸素ガス吹付け流量が重要とな
る。特に、気泡活性面当りの酸素ガス吹付け流量は、全
く新しい概念である。これは、吹付けられた酸素ガスが
クロムの酸化を引き起こさずに脱炭に消費されるために
は溶鋼全体の攪拌ではなく、酸素ガスが接触する溶鋼表
面の局部的な攪拌が重要であるということを示してお
り、それを表す指標はガス流量ではなく気泡活性面積で
あることを意味している。つまり低部より供給された気
泡が表面まで浮上し破裂する際に、大きなエネルギーの
開放があり、それにより鋼浴表面に微細な液滴が多数生
成される。これが、有効な反応表面として作用し、クロ
ムの酸化に優先した脱炭を生じさせると同時に、生成す
るクロム酸化物を微細な粒子として形成させ、より微細
に分裂させる役割を果している。
Further, in order to realize these effects, the amount and form of chromium oxide generated during the supply of oxygen gas are important. In other words, in order to facilitate the entrapment of the oxide, it is important to maintain a fine state of at least less than about 1 cm. The part adheres to the wall surface of the immersion tube, and there is even a case where almost no entrainment occurs in the molten steel. In order to reduce the amount of chromium oxide produced and to make it finer, the range of the carbon concentration for supplying the oxygen gas and the flow rate of the oxygen gas spray per bubble active surface are important. In particular, the oxygen gas blowing flow rate per bubble active surface is a completely new concept. This means that in order for the sprayed oxygen gas to be consumed for decarburization without causing oxidation of chromium, local stirring of the surface of the molten steel contacted by the oxygen gas is important rather than stirring of the entire molten steel. This means that the index indicating this is not the gas flow rate but the bubble active area. That is, when the bubbles supplied from the lower part float to the surface and burst, a large amount of energy is released, and thereby a large number of fine droplets are generated on the surface of the steel bath. This serves as an effective reaction surface and causes decarburization in preference to chromium oxidation, and at the same time, plays a role of forming the resulting chromium oxide as fine particles and splitting them more finely.

【0014】具体的には、炭素濃度が1〜0.02%の
範囲で、酸素ガスを気泡活性面積当り0.04〜0.4
0Nm3 /(Hr・cm2 )の速度で上方より吹付け、引き続
いて、気泡活性面積を全溶鋼表面積の10%以上、かつ
酸素吹付け面の100%以上とする条件で攪拌すること
にある。この内、図2に示すように酸素ガスの気泡活性
面当りの吹付け速度が0.04Nm3 /(Hr・cm2 )未満
の場合には酸素供給速度が遅いため処理時間が長くなり
生産性を著しく阻害するという問題があり、0.40Nm
3 /(Hr・cm2 )超の場合には酸素供給速度が過剰なた
めクロム酸化物の生成量が増大し、次工程以降での真空
表面脱炭や還元が困難になるという問題が生じる。また
図3に示すように気泡活性面積が全溶鋼表面積の10%
より小さい場合には酸素ガス供給中に生成したクロム酸
化物が微細に分裂せず、下降流により浴内に巻き込まれ
ず浸漬管外へ流出しにくいため、真空表面の大きな面積
部分を強固なクロム酸化物皮膜で被覆されるため表面脱
炭が生じにくいという問題がある。さらに、炭素濃度が
1%以上の領域から真空処理をした場合には処理時間が
極めて長くなるために生産性を著しく阻害するという問
題があり、逆に0.02%以下まで酸素ガスを供給した
場合には、クロム酸化物の生成量が加速度的に増加し、
次工程以降での真空表面脱炭や還元が困難になるという
問題が生じる。さらに、気泡活性面積が酸素吹付け面積
の100%未満であるとクロム酸化物の生成サイトが気
泡活性面外となる領域が生じ、生成したクロム酸化物は
微細化せず合体成長し、吹酸火点での還元効率が悪化す
る。さらに、クロム酸化物が粗大化することにより、浸
漬管外への流出が困難となり、その結果として吹酸停止
後の表面脱炭が阻害されるという結果となる。
More specifically, when the carbon concentration is in the range of 1 to 0.02%, oxygen gas is supplied in an amount of 0.04 to 0.4 per bubble active area.
Spraying from above at a speed of 0 Nm 3 / (Hr · cm 2 ), followed by stirring under the condition that the cell active area is 10% or more of the total molten steel surface area and 100% or more of the oxygen spraying surface. . Of these, as shown in FIG. 2, when the blowing rate of oxygen gas per bubble active surface is less than 0.04 Nm 3 / (Hr · cm 2 ), the oxygen supply rate is low, so that the processing time becomes longer and the productivity is increased. 0.40 Nm
If the ratio is more than 3 / (Hr · cm 2 ), the oxygen supply rate is excessive, so that the amount of chromium oxide generated increases, which causes a problem that it becomes difficult to decarburize or reduce the vacuum surface in the subsequent steps. As shown in FIG. 3, the bubble active area is 10% of the total molten steel surface area.
If it is smaller, the chromium oxide generated during the supply of oxygen gas will not be finely divided, and will not be caught in the bath due to the downward flow and will not easily flow out of the immersion tube. There is a problem that surface decarburization does not easily occur because it is covered with an object film. Further, when vacuum processing is performed from the region where the carbon concentration is 1% or more, the processing time becomes extremely long, and there is a problem that productivity is significantly impaired. Conversely, oxygen gas is supplied to 0.02% or less. In that case, the amount of chromium oxide generated increases at an accelerating rate,
There is a problem that it becomes difficult to decarburize and reduce the vacuum surface after the next step. Further, if the bubble active area is less than 100% of the oxygen spraying area, a region where the chromium oxide generation site is out of the bubble active surface is generated, and the generated chromium oxide grows unitedly without miniaturization, and The reduction efficiency at the fire point deteriorates. Further, the coarsening of the chromium oxide makes it difficult to flow out of the immersion tube, and as a result, the surface decarburization after the stop of the blowing acid is inhibited.

【0015】一方、このようにして、極低炭素鋼を溶製
した状態では酸素ガス吹付け中に生成したクロム酸化物
が浸漬管外に堆積しており、このままでの状態で、還元
用合金であるSiやAlを添加しても、浸漬管外部の溶
鋼はほとんど攪拌されないため、クロム酸化物の還元は
行われない。従って、さらに引き続いて、複圧して浸漬
管を溶鋼面より上方に引き上げた後に還元用合金を投入
し、脱炭中に生成したクロム酸化物を還元する工程が必
須となる。この場合、脱炭中に生成したクロム酸化物は
微細化しているので還元も非常に効率的に行うことが可
能である。
On the other hand, in the state where the ultra-low carbon steel is melted, the chromium oxide generated during the blowing of the oxygen gas is deposited outside the immersion tube. Even if Si or Al is added, the molten steel outside the immersion tube is hardly agitated, so that chromium oxide is not reduced. Therefore, it is essential to perform a step of reducing the chromium oxide generated during the decarburization by adding the reducing alloy after raising the immersion tube above the molten steel surface by applying a double pressure. In this case, since the chromium oxide generated during the decarburization is refined, the reduction can be performed very efficiently.

【0016】ここで、処理中に取鍋および浸漬管の淵に
スラグが付着する場合があるが、複圧により取鍋内の湯
面が上昇するため、この付着スラグは溶鋼熱により半溶
融状態となって取鍋内溶鋼面上に再浮上する。従って、
スラグはすべて効率よく還元することが可能である。ま
た、現状のVODでは脱炭速度が遅く、特に極低炭素ク
ロム含有鋼の溶製に際しては転炉工程での脱炭精錬の過
負荷やVODでの処理時間延長による耐火物原単位の増
大およびクロム歩留り、鉄分歩留りの低下を招いてい
る。これはVODではフリーボード制約による底吹きガ
ス量が上げられないこと、また転炉出鋼時のスラグが全
量VODに持ち込まれるため、表面脱炭の効果が小さい
ことに起因している。
Here, slag sometimes adheres to the ladle and the edge of the immersion pipe during the treatment, but since the molten metal level in the ladle rises due to double pressure, the slag adheres to the semi-molten state due to the heat of the molten steel. As a result, it resurfaces on the molten steel surface in the ladle. Therefore,
All the slag can be efficiently reduced. In addition, the decarburization rate is slow in the current VOD, and especially in the melting of extremely low carbon chromium-containing steel, the overload of decarburization smelting in the converter process and the increase in the refractory basic unit due to the extension of the processing time in the VOD and This has led to lower chromium and iron yields. This is due to the fact that the amount of bottom blown gas cannot be increased due to free board restrictions in VOD, and the effect of surface decarburization is small because the entire amount of slag during tapping from the converter is brought into VOD.

【0017】本発明では、フリーボード制約がないた
め、底吹きガス量の増加による攪拌力の増大が可能であ
り、かつ浸漬管内のスラグはほぼ完全に排出されるため
吹酸時の火点においてもスラグの影響がなく、脱炭反応
の促進に有利であり、また自由表面積が大きいため、吹
酸停止後の表面脱炭の効果が極めて大きく、従来法に比
べて非常に大きな脱炭速度を得ることができるため、転
炉工程での負荷が大幅に軽減され、その結果としてトー
タルのクロム歩留り、鉄分歩留りが向上する。
In the present invention, since there is no free board restriction, it is possible to increase the stirring force by increasing the amount of bottom blown gas, and the slag in the immersion tube is almost completely discharged. Also has no effect of slag, is advantageous for accelerating the decarburization reaction, and has a large free surface area, so the effect of surface decarburization after blowing acid is stopped is extremely large, and a very high decarburization rate compared to the conventional method. As a result, the load in the converter step is greatly reduced, and as a result, the total chromium yield and iron yield are improved.

【0018】[0018]

【実施例】表1に175ton 規模の真空精錬装置を用い
た実施例を示す。この場合、底吹きArガス流量として
は105〜1000Nl/minにて行った。まず、転炉精
錬によりCr濃度が10〜19%でCが適宜濃度
(C1 )の粗溶鋼を溶製した後、図1に示した精錬容器
へ供給し、まず炭素濃度がCB まで約200Torrの真空
雰囲気下で酸素ガスを上吹きしつつ脱炭精錬を行い、引
き続いて酸素ガスを供給せずに5〜15分間、約5Torr
以下の真空雰囲気下で攪拌した。その後、本発明に従っ
て、複圧して浸漬管を溶鋼面より上方に引き上げた後に
還元用合金を投入した。このときの底吹きガス流量は一
律200Nl/min で行った。また、比較例においては複
圧せずに浸漬管を入れた状態で還元用合金を投入した例
も実施した。
EXAMPLE Table 1 shows an example using a 175-ton vacuum refining apparatus. In this case, the flow rate of the bottom-blown Ar gas was set at 105 to 1000 Nl / min. First, approximately after C in Cr concentration from 10 to 19% were smelted crude molten steel suitable concentration (C 1) by converter refining, and supplies to the refining vessel as shown in FIG. 1, first, the carbon concentration to C B Decarburization and refining are performed while blowing oxygen gas upward in a vacuum atmosphere of 200 Torr.
The mixture was stirred under the following vacuum atmosphere. After that, according to the present invention, the dip tube was raised above the molten steel surface by double pressure, and then the reducing alloy was charged. At this time, the flow rate of the bottom blown gas was uniformly 200 Nl / min. Moreover, in the comparative example, an example in which the reducing alloy was charged in a state in which the dip tube was inserted without performing double pressure was also performed.

【0019】表1から明らかなように本発明が処理時
間、クロム歩留り、到達〔C〕ともに優れていることが
わかる。
As is clear from Table 1, the present invention is excellent in processing time, chromium yield and reaching [C].

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上述べた如く、本発明によればクロム
酸化を抑制しつつ効率的に脱炭を行うことが可能である
から、極低炭素クロム含有溶鋼の溶製に関して本発明は
極めて有効な方法である。
As described above, according to the present invention, it is possible to carry out decarburization efficiently while suppressing chromium oxidation. Therefore, the present invention is extremely effective for smelting extremely low carbon chromium-containing molten steel. It is a way.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による含クロム溶鋼の減圧脱炭法の実施
の態様の一例を示す図である。
FIG. 1 is a diagram showing an example of an embodiment of a vacuum decarburization method for chromium-containing molten steel according to the present invention.

【図2】気泡活性面当りの酸素吹付け速度と処理時間・
クロム酸化物生成量の関係を示す図である。
[Fig. 2] Oxygen spray rate per cell active surface and processing time
It is a figure which shows the relationship of the chromium oxide production amount.

【図3】吹酸停止後(〔C〕≦200ppm )での(気泡
活性面積/全溶鋼表面積)比率と脱炭速度の関係を示す
図である。
FIG. 3 is a graph showing the relationship between the ratio of (cell activation area / total surface area of molten steel) and the decarburization rate after the termination of blowing acid ([C] ≦ 200 ppm).

【符号の説明】[Explanation of symbols]

1 取鍋 2 浸漬管 3 ポーラスプラグ 4 含クロム粗溶鋼 5 不活性ガス 6 上吹きランス 7 酸素ガス DESCRIPTION OF SYMBOLS 1 Ladle 2 Immersion pipe 3 Porous plug 4 Cr-containing crude steel 5 Inert gas 6 Top blowing lance 7 Oxygen gas

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21C 7/10 C21C 7/00 C21C 7/04 C21C 7/068──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C21C 7/10 C21C 7/00 C21C 7/04 C21C 7/068

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 取鍋内溶鋼に浸漬管を浸漬し、該浸漬管
内を減圧するとともに、取鍋低部より攪拌用ガスを供給
する真空精錬において、Cr濃度が5%以上の溶鋼に対
して炭素濃度が1〜0.02%の範囲で、酸素ガスを気
泡活性面積当り0.04〜0.40Nm3 /(Hr・cm2
の速度で上方より吹付け、かつ気泡活性面積を全溶鋼表
面積の10%以上、かつ酸素吹付け面の100%以上と
する条件で攪拌し、炭素濃度0.02%以下から吹酸を
停止し、5Torr以下の高真空下で取鍋低部からの不活性
ガスのみの供給で攪拌することにより脱炭処理を行い、
次いで複圧して浸漬管を溶鋼面より上方に引き上げ、還
元用合金を投入し、脱炭中に生成したクロム酸化物を還
元することを特徴とする極低炭素クロム含有溶鋼の脱炭
方法。
In a vacuum refining process, wherein a dipping tube is immersed in molten steel in a ladle, the pressure in the dipping tube is reduced, and a stirring gas is supplied from a lower portion of the ladle. When the carbon concentration is in the range of 1 to 0.02%, oxygen gas is supplied in an amount of 0.04 to 0.40 Nm 3 / (Hr · cm 2 ) per bubble active area.
Of spraying from above at a rate, and more than 10% of the total molten steel surface bubbles active area, and was stirred under the condition that the 100% or more of oxygen blowing plane, the吹酸carbon concentration of 0.02% or less
Stop and inactive from the lower part of the ladle under high vacuum of 5 Torr or less
Degassing treatment is performed by stirring with the supply of gas only,
A method for decarburizing molten steel containing ultra-low carbon chromium, comprising subjecting the dip tube to a pressure above the molten steel surface by applying a double pressure, charging a reducing alloy, and reducing chromium oxide generated during decarburization.
JP3265053A 1991-10-14 1991-10-14 Method for decarburizing molten steel containing extremely low carbon chromium Expired - Lifetime JP2819440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265053A JP2819440B2 (en) 1991-10-14 1991-10-14 Method for decarburizing molten steel containing extremely low carbon chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265053A JP2819440B2 (en) 1991-10-14 1991-10-14 Method for decarburizing molten steel containing extremely low carbon chromium

Publications (2)

Publication Number Publication Date
JPH05105936A JPH05105936A (en) 1993-04-27
JP2819440B2 true JP2819440B2 (en) 1998-10-30

Family

ID=17411931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265053A Expired - Lifetime JP2819440B2 (en) 1991-10-14 1991-10-14 Method for decarburizing molten steel containing extremely low carbon chromium

Country Status (1)

Country Link
JP (1) JP2819440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2181905T3 (en) * 1995-08-01 2003-03-01 Nippon Steel Corp METHOD FOR EMPTY STEEL CAST.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156416A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure

Also Published As

Publication number Publication date
JPH05105936A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JP2767674B2 (en) Refining method of high purity stainless steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP3300014B2 (en) Refining method of molten steel by vacuum degassing
JP2773883B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2724035B2 (en) Vacuum decarburization of molten steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JP3153983B2 (en) Melting method for high purity stainless steel
JP3706451B2 (en) Vacuum decarburization method for high chromium steel
JP3785257B2 (en) Method for degassing stainless steel
JPH01156416A (en) Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JPH09143545A (en) Vacuum oxygen-blowing method of molten steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JPH07331315A (en) Refining method for extra-low carbon steel in converter
JPH11293331A (en) Refining of molten steel
JP3167902B2 (en) Decarburization refining method for Cr-containing molten steel
JPH03153816A (en) Smelting method for high purity steel
JPH08283828A (en) Method for vacuum-refining dead-soft steel
JPH06240341A (en) Method for smelting extra-low carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630