JP2773883B2 - Melting method of ultra low carbon steel by vacuum degassing - Google Patents

Melting method of ultra low carbon steel by vacuum degassing

Info

Publication number
JP2773883B2
JP2773883B2 JP3488689A JP3488689A JP2773883B2 JP 2773883 B2 JP2773883 B2 JP 2773883B2 JP 3488689 A JP3488689 A JP 3488689A JP 3488689 A JP3488689 A JP 3488689A JP 2773883 B2 JP2773883 B2 JP 2773883B2
Authority
JP
Japan
Prior art keywords
gas
steel
low carbon
molten steel
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3488689A
Other languages
Japanese (ja)
Other versions
JPH02217412A (en
Inventor
康夫 岸本
公治 山口
嘉英 加藤
敏和 桜谷
徹也 藤井
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP3488689A priority Critical patent/JP2773883B2/en
Publication of JPH02217412A publication Critical patent/JPH02217412A/en
Application granted granted Critical
Publication of JP2773883B2 publication Critical patent/JP2773883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製鋼炉で溶製された未脱酸もしくは弱脱酸
溶鋼をRH法、DH法、VOD法等を用いて真空脱ガス処理槽
に装入し、極低炭素鋼を迅速にかつ装置の操業性を損な
うことなく得ることができる、真空脱ガス処理による極
低炭素鋼の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to vacuum degassing of undeoxidized or weakly deoxidized molten steel melted in a steelmaking furnace by using RH method, DH method, VOD method and the like. TECHNICAL FIELD The present invention relates to a method for producing ultra-low carbon steel by vacuum degassing, which can be charged into a tank and rapidly obtain ultra-low carbon steel without impairing the operability of the apparatus.

〔従来の技術〕[Conventional technology]

冷延鋼板の焼鈍プロセスの連続化、能率向上の観点か
ら、連続焼段設備の採用が近年盛んである。これに適合
する素材として炭素含有量10ppmないし数ppmの極低炭素
鋼が要求されるようになってきた。
From the viewpoint of continuation of the annealing process of a cold-rolled steel sheet and improvement of efficiency, adoption of a continuous annealing step equipment has been active in recent years. Ultra-low carbon steel with a carbon content of 10 ppm to several ppm has been required as a material suitable for this.

従来から極低炭素鋼は、転炉において、C:0.02〜0.05
重量%(以下%と略す)迄脱炭した溶鋼を、RH法などの
真空脱ガス装置を用いて、減圧下に脱炭する手法により
溶製されてきた。減圧下の脱炭プロセスに関する検討も
相当程度行われてきており、その主要な理論は、『鉄と
鋼vol.69(1983)A37』に示されるように、脱炭速度は
次の(1)式で示される。
Conventionally, extremely low carbon steel has been used in converters for C: 0.02-0.05.
2. Description of the Related Art Molten steel that has been decarburized to a weight percent (hereinafter abbreviated as%) has been produced by a technique of decarburizing under reduced pressure using a vacuum degassing apparatus such as an RH method. Considerable studies have been made on the decarburization process under reduced pressure. The main theory is that the decarburization rate is as follows (1), as shown in “Iron and steel vol. 69 (1983) A37”. It is shown by the formula.

d[C]/dt=[C]0exp(−Kct) …(1) また、その速度定数Kcは、次の(2)式で示される。d [C] / dt = [C] 0 exp (−Kct) (1) The rate constant Kc is expressed by the following equation (2).

Kc={Q′/v}{ak/(Q′+ak)} …(2) ここに、 [C]0:処理開始時間の[C)濃度 Kc:見かけの速度定数(min-1) ak:真空槽内の物質移動容量係数(m3/s) Q′:溶鋼の循環流量(m3/s) V:溶鋼量(m3) 従って脱炭効率を向上させようとする場合には、
Q′、akを増大せしめる対策をとるべきことが公知とな
っている。
Kc = {Q '/ v} {ak / (Q' + ak)} (2) where [C] 0 : [C] concentration at the processing start time Kc: Apparent rate constant (min -1 ) ak: Mass transfer capacity coefficient in vacuum chamber (m 3 / s) Q ': Circulating flow rate of molten steel (m 3 / s) V: molten steel amount (m 3 ) Therefore, when trying to improve decarburization efficiency,
It is known that measures should be taken to increase Q 'and ak.

溶鋼の環流量Q′を増大せしめるためには、環流管径
を拡大する方法、環流用に吹込むArガス量を増す方法が
採用されるが、前者には耐火れんが施工上の問題から、
環流管寿命が短いという問題点、後者には極低炭素域で
必要とされる高真空度を損なうという問題があり、さら
には吹き込むArガス量を増加させると、気泡と共に発生
するスプラッシュが多く槽内の地金の付着が多くなり、
自ずと操業上の制約から吹込めるガス量に制限がある。
また、脱炭速度が低下する低炭域では環流量の増加がそ
れほど効果的ではないことも既に明らかとなっている。
In order to increase the annular flow rate Q 'of the molten steel, a method of increasing the reflux pipe diameter and a method of increasing the amount of Ar gas blown for reflux are adopted.
The problem is that the life of the reflux tube is short, and the latter has the problem of impairing the degree of high vacuum required in the extremely low carbon region. The adhesion of the bullion inside increases,
Naturally, there is a limit to the amount of gas that can be injected due to operational restrictions.
It has also been shown that increasing the flow rate in the low-carbon region where the decarburization rate is low is not very effective.

一方、物質移動容量係数akを増大させるためには、C
≦50ppmの極低炭素域ではCの反応サイトへの物質移動
過程が反応を律速することになるので、反応界面積a
(m2)を増大させることが必須となる。反応サイトとし
ては、溶鋼内ガス気泡/溶鋼界面、真空槽内鋼浴表面、
ガス気泡が鋼浴を離脱する際に随伴するスプラッシュの
各々が想定されるが、その各々の寄与は必ずしも明確で
はなく、環流用Arガス量を増すことが、上記三点に有効
であろうとの観点から、5000Nl/分にも及ぶ大量のArガ
ス吹込みを行う技術が採用されている現状に留まる。
On the other hand, to increase the mass transfer capacity coefficient ak, C
In the ultra-low carbon region of ≤50 ppm, the mass transfer process to the reaction site of C controls the reaction.
It is essential to increase (m 2 ). As reaction sites, gas bubbles in molten steel / molten steel interface, steel bath surface in vacuum chamber,
Splashes accompanying gas bubbles leaving the steel bath are assumed, but the contribution of each is not necessarily clear, and increasing the amount of reflux Ar gas would be effective for the above three points. From the viewpoint, the technology that injects a large amount of Ar gas as much as 5000Nl / min is still used.

ところで、このように大量のArガスを吹込むと、大量
に発生するスプラッシュの真空槽内面への付着に対処す
る手段がなく、操業性を損うなどの問題があり、炭素含
有量が10ppm以下の迅速脱炭技術との観点からは、技術
的にまだ不十分な状況にある。
By the way, when such a large amount of Ar gas is blown, there is no means to cope with the adhesion of a large amount of splash to the inner surface of the vacuum tank, and there is a problem that the operability is impaired, and the carbon content is 10 ppm. From the viewpoint of the following rapid decarburization technology, it is still technically inadequate.

また非酸化性ガスであるArを上吹きランスから吹きつ
ける試みまたは真空槽内へArを吹込む試みが神戸製鋼技
報36(1986)、p.40に示されているが、環流用Arガスを
増加させる方法に比べて効果が小さいことが示されてい
る。
Attempts to blow Ar, a non-oxidizing gas, from the top blowing lance or to blow Ar into the vacuum chamber are shown in Kobe Steel Technical Report 36 (1986), p.40. It is shown that the effect is small compared to the method of increasing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は炭素含有量10ppm以下までの極低炭素域での
脱炭を迅速に行うと共に従来到達が困難であった10ppm
以下の超極低炭素鋼を安定的に得る技術を提供しようと
するものである。
The present invention quickly performs decarburization in an extremely low carbon region up to a carbon content of 10 ppm or less and 10 ppm which was difficult to reach conventionally.
It is intended to provide a technique for stably obtaining the following ultra-low carbon steel.

その際に、従来の環流用Arの増加等の手段に伴って生
じるスプラッシュの増加による真空槽内への地金付着の
問題を生じることなく上記課題を達成できる方法を提供
しようとするものである。
At this time, it is an object of the present invention to provide a method capable of achieving the above-mentioned problem without causing a problem of metal adhesion in a vacuum chamber due to an increase in splash caused by a conventional means such as an increase in reflux Ar. .

〔課題を解決するための手段〕[Means for solving the problem]

本発明の技術手段は、製鋼炉で溶製された未脱酸もし
くは弱脱酸溶鋼を真空脱ガス処理する方法において、真
空脱ガス槽内の溶鋼中へ真空槽炉壁側面に配設した羽口
より不活性ガスを吹込みつつ処理を行い、鋼浴中の炭素
濃度が30ppm以下になった時期に羽口先端での流速が150
0Nm/秒以上となるように不活性ガスを吹込むことを特徴
とする真空脱ガス処理による極低炭素鋼の溶製方法であ
る。その際に、鋼浴中の炭素濃度が30ppm以下になった
時期に真空槽内溶鋼トン当りの吹込みガス流量を0.1Nm3
/分以上に増加させることが好ましく、さらには、前記
真空槽炉壁側面に配設した羽口径を3mm以下とし、鋼浴
中の炭素濃度が30ppm以下となった時期の吹込みガスの
圧力を20kgf/cm2以上とすることが好ましい。
The technical means of the present invention is a method for vacuum degassing undeoxidized or weakly deoxidized molten steel melted in a steelmaking furnace, wherein the blades disposed on the side wall of the vacuum chamber furnace wall into molten steel in the vacuum degassing tank. The treatment is performed while blowing an inert gas from the mouth, and when the carbon concentration in the steel bath becomes 30 ppm or less, the flow velocity at the tuyere tip becomes 150 ppm.
This is a method for melting ultra-low carbon steel by vacuum degassing, characterized by blowing an inert gas at a rate of 0 Nm / sec or more. At that time, when the carbon concentration in the steel bath became 30 ppm or less, the blow gas flow per ton of molten steel in the vacuum chamber was increased to 0.1 Nm 3
/ Min or more, furthermore, the tuyere diameter arranged on the furnace wall side of the vacuum chamber is 3 mm or less, and the pressure of the blown gas at the time when the carbon concentration in the steel bath becomes 30 ppm or less. It is preferably at least 20 kgf / cm 2 .

〔作用〕[Action]

本発明者らは特に脱炭反応が停滞する[C]<50ppm
での脱炭反応の改善を試み、以下の知見を得た。[C]
<50ppmでの脱炭反応の低下に関してはCOガス発生量の
減少による溶鋼の撹拌力が不足することや脱炭反応が化
学反応律速(脱炭反応が気液界面反応で律速される)と
なることなどが理由とされているが、理由は明確にはな
っていない。しかしながら、いずれにせよ気液反応界面
積の増大が脱炭反応の向上には有効である。
The present inventors have found that the decarburization reaction is particularly stagnant [C] <50 ppm
Attempt to improve the decarburization reaction at the same time and obtained the following findings. [C]
Regarding the decrease in the decarburization reaction at <50 ppm, the stirring power of the molten steel is insufficient due to the decrease in the amount of generated CO gas, and the decarburization reaction is rate-controlled by the chemical reaction (the decarburization reaction is rate-controlled by the gas-liquid interface reaction). This is the reason, but the reason is not clear. However, in any case, an increase in the area of the gas-liquid reaction interface is effective for improving the decarburization reaction.

ところが単純に環流管より吹込む吹込みガス量を増加
させるだけではガス気泡の溶鋼離脱時の気泡径が単調に
大きくなってしまい、また気泡に随伴する溶鋼の液滴も
大径のものが大半を占めることとなることを本発明者ら
は見出した。またスプラッシュ量も大となり、真空槽の
地金付着が大となる。液滴が大径であれば極低炭素領域
では反応律速過程が溶鋼中のC拡散律速であり脱炭反応
に十分に寄与することができない。
However, simply increasing the amount of gas blown from the reflux tube monotonically increases the bubble diameter of gas bubbles when the molten steel leaves the molten steel, and most of the molten steel droplets accompanying the bubbles are also large in diameter. The present inventors have found that the ratio of Also, the amount of splash becomes large, and the adhesion of metal to the vacuum tank becomes large. If the diameter of the droplet is large, in the extremely low carbon region, the reaction rate-determining process is C rate-limiting in the molten steel and cannot sufficiently contribute to the decarburization reaction.

さらに高炭域での気液界面積を増加する一手段として
考えられるArを真空槽内へ吹き込む手段についても検討
したが、はやり過去の知見と同じく通常の脱炭反応では
環流用Arガスを増加させる方法に比べ効果が小さいこと
が確認された。その理由は高炭域では脱炭反応はRHは環
流量律速となっており、真空槽内に吹き込んだArによる
気液界面積の寄与は小さくむしろ吹き込む方法によって
は環流量を阻害するおそれがあるためである。
In addition, we examined a method of blowing Ar into the vacuum chamber, which is considered as a means to increase the gas-liquid boundary area in the high-carbon region. It was confirmed that the effect was small as compared with the method of causing the above. The reason is that in the high-carbon region, the decarburization reaction is controlled by the flow rate of RH. That's why.

さらにArを吹き込んだ場合、気液界面積の増加が小さ
い原因について調査をした結果、以下の点が明らかにな
った。すなわち、第2図(a)に示すように、溶鉄中に
ガスを横方向より吹き込んだ際は羽口よりすぐ浮上して
しまい、結果的にガスは真空槽炉壁を伝わって浮上する
ことになる。そのためガス吹込みによる気液界面積の増
加が期待できるほど得られない結果になっていた。
When Ar was further injected, the cause of the small increase in the gas-liquid interfacial area was investigated, and the following points became clear. That is, as shown in FIG. 2 (a), when gas is blown into the molten iron from the lateral direction, the gas immediately floats from the tuyere, and as a result, the gas travels along the vacuum chamber furnace wall and floats. Become. For this reason, an increase in the gas-liquid boundary area due to gas injection was not obtained as expected.

そこで本発明者らはガス吹込みによる手段として改
善、工夫を重ねたところ、ガス吹込みに用いる羽口6と
ガスの圧力に改善の余地があることがわかった。すなわ
ち、羽口6をさらに細径化すると共にガス吹込み圧力を
高くすることにより、すなわち同一ガス流量であれば羽
口先端での流速を高めると、第2図(b)に示すように
ガスの溶鉄への侵入距離が長くなり、溶鋼中での滞留時
間が長くなること、さらにはその結果により、吹き込ま
れたガスは真空槽内溶鋼中で細かな気泡に分散され、著
しい気液界面積の増加をもたらすことが明らかとなっ
た。このことにより細かな気泡を維持するためには吹込
み位置が深すぎるのは良くない。
Therefore, the present inventors have repeatedly improved and devised the means by gas injection, and found that there is room for improvement in the tuyere 6 used for gas injection and the gas pressure. That is, by further reducing the diameter of the tuyere 6 and increasing the gas injection pressure, that is, by increasing the flow velocity at the tip of the tuyere at the same gas flow rate, as shown in FIG. As a result, the injected gas is dispersed into small bubbles in the molten steel in the vacuum chamber, resulting in a significant gas-liquid interface area. It was found that the increase in For this reason, it is not good that the blowing position is too deep in order to maintain fine bubbles.

以上に述べた効果は、羽口径が細いほど、圧力が高い
ほど高いことが予想されるが、230tのRH真空脱ガス装置
を用いて第1図に示すように真空槽内にArを横吹きする
実験を行ったところ、第3図に示すように同一ガス流量
(本実験では6Nm3/分)でも羽口径とガス圧力を変更し
て羽口先端でのガスの線流速が1500Nm/秒以上で極低炭
域での脱炭速度定数Kcが向上することが見出された。こ
れは既に述べた真空槽内に吹き込まれたガスの軌跡の違
い、それに伴う著しい気液界面積の増加によるものであ
る。
The effect described above is expected to be higher as the tuyere diameter is smaller and the pressure is higher. However, as shown in Fig. 1, Ar is laterally blown into the vacuum chamber using a 230-ton RH vacuum degasser. As shown in Fig. 3, the gas flow rate at the tuyere tip was 1500 Nm / sec or more by changing the tuyere diameter and gas pressure at the same gas flow rate (6 Nm 3 / min in this experiment) as shown in Fig. 3. It was found that the decarburization rate constant Kc in the extremely low-carbon region was improved. This is due to the difference between the trajectories of the gas blown into the vacuum chamber and the remarkable increase in the gas-liquid boundary area.

ただし、この効果は真空槽内に吹き込まれるガス量に
よっても当然異なる。この点についても本発明者らは調
査を行い、その結果、第4図に示すように、極低炭素濃
度領域では真空槽内ガス吹込み量が真空槽内溶鋼量t当
り0.1Nm3/分以上であることが肝要であることが明らか
になった。ただし、第4図はガス線流速が2000Nm/秒の
一定値としている。
However, this effect naturally depends on the amount of gas blown into the vacuum chamber. The present inventors also investigated this point, and as a result, as shown in FIG. 4, in the extremely low carbon concentration region, the gas injection amount in the vacuum chamber was 0.1 Nm 3 / min per molten steel amount t in the vacuum chamber. It became clear that the above was essential. However, in FIG. 4, the gas flow velocity is a constant value of 2000 Nm / sec.

また、さらに本発明者らはこうしてガス吹込みの脱炭
に与える影響は鋼浴中炭素濃度と相関があることも見出
した。すなわち従来試みられていた[C]>50ppmとい
った領域では上記の不活性ガス吹込みは脱炭促進には有
効ではなく、むしろ環流方向に逆らう方向のガスを吹き
込むことは環流量を阻害する意味で脱炭反応に良くない
ことが明らかとなった。そこで本発明方法では環流量で
脱炭が律速される時期には不活性ガス吹込み量を低下さ
せ、極低炭素領域のみ不活性ガスを必要流量吹き込む。
この場合も本発明方法は従来法に比してはるかに有利で
ある。
Further, the present inventors have also found that the influence of the gas injection on the decarburization is correlated with the carbon concentration in the steel bath. In other words, in the range of [C]> 50 ppm, which has been conventionally attempted, the above-mentioned injection of the inert gas is not effective in promoting decarburization. It became clear that it was not good for the decarburization reaction. Therefore, in the method of the present invention, the amount of inert gas to be blown is reduced at a time when decarburization is rate-determined by the ring flow rate, and the required amount of inert gas is blown only to the extremely low carbon region.
Also in this case, the method of the present invention is much more advantageous than the conventional method.

すなわち従来法では極低炭素領域で必要とされる不活
性ガス量を確保しようとするとむしろ不活性ガス吹込み
が脱炭に阻害となるもっと炭素濃度が高い領域でガスを
低下させることができない。何故ならば、溶鋼侵入を防
止するのに、必要なガス線流速が確保できなくなるから
である。一方、本発明方法では羽口径を細くし、ガス流
量を大きくする場合は高圧でガスを吹き込む方法を用い
るためにガス流量を低下させることも容易である。
That is, in the conventional method, if an attempt is made to secure the amount of inert gas required in the extremely low carbon region, the gas cannot be reduced in a region having a higher carbon concentration where the injection of inert gas hinders decarburization. This is because it is not possible to secure a necessary gas line flow velocity in order to prevent molten steel from entering. On the other hand, in the method of the present invention, when the tuyere diameter is reduced and the gas flow rate is increased, the method of blowing gas at a high pressure is used, so that the gas flow rate can be easily reduced.

通常の製鋼プロセスでは上記の条件を満たす羽口径と
極低炭素領域での吹き込むガスの圧力をそれぞれ、3mm
φ以下、および20kgf/cm2以上とすることが望ましい。
In a normal steelmaking process, the tuyere diameter that satisfies the above conditions and the pressure of the gas to be blown in the ultra-low carbon region are each 3 mm.
It is desirable that the diameter be φ or less and 20 kgf / cm 2 or more.

また、炭素濃度が高い領域(COガス多発時)ではこう
した大流量のガスを吹き込むとスプラッシュ量も多く、
真空槽内への地金付着も大きいが、極低炭素領域では大
流量のArガス吹込みにおいてもスプラッシュは少なく、
地金付着も問題ないことも確認した。
In addition, in areas where the carbon concentration is high (when CO gas frequently occurs), injecting such a large flow rate of gas causes a large amount of splash,
Metal adhesion to the vacuum chamber is also large, but in the extremely low carbon region, there is little splash even when a large flow of Ar gas is injected,
It was confirmed that there was no problem with ingot adhesion.

〔実施例〕〔Example〕

230tのRH真空脱ガス処理槽を使用した場合の実施例を
示す。
An example in which a 230 t RH vacuum degassing tank is used is shown.

第1図に示すような、真空槽3の下端の環流管4を、
取鍋1内の230tの溶鋼2の上部に浸漬し、環流用Arガス
導入管5よりArガスを吹込み、リフトポンプ効果により
溶鋼を真空槽内に環流させる方法は周知のRH法である。
As shown in FIG. 1, the reflux tube 4 at the lower end of the vacuum chamber 3 is
A known RH method is a method in which the molten steel is immersed in the upper part of 230 tons of molten steel 2 in the ladle 1, blows Ar gas through the Ar gas introduction pipe 5 for reflux, and flows the molten steel into the vacuum chamber by the lift pump effect.

さて真空槽内に炉壁側面に3mmの羽口6を4本取り付
けた。[C]=400ppm、[O]=450ppmの溶鋼をこのRH
処理法でリムド脱炭を行った。高炭域では羽口からのガ
スを300Nl/分として操業を行った。
Now, four 3 mm tuyeres 6 were attached to the side of the furnace wall in the vacuum chamber. [C] = 400ppm, [O] = 450ppm molten steel
Rimed decarburization was performed by the treatment method. In the high coal area, gas was supplied from tuyeres at 300 Nl / min.

通常の脱炭処理を行い、排ガス中のCOおよびCO2の発
生速度より脱炭量を推定して[C]=30ppm相当となっ
たとき、吹込みガス圧力を25kg/cm2に増加させ、羽口6
からのAr吹込み量を4Nm3/分に増加して処理を継続し
た。
Normal decarburization treatment is performed, and when the decarburization amount is estimated from the generation rates of CO and CO 2 in the exhaust gas and it becomes equivalent to [C] = 30 ppm, the blow gas pressure is increased to 25 kg / cm 2 , Tuyere 6
The processing was continued by increasing the flow rate of Ar from the furnace to 4 Nm 3 / min.

第5図に処理中の[C]の時間推移を示す。従来の通
常処理に比較し、極低炭素領域での脱炭反応を迅速に進
行させることができることが明らかである。
FIG. 5 shows the time transition of [C] during processing. It is clear that the decarburization reaction in the extremely low carbon region can be advanced more quickly than the conventional ordinary treatment.

[発明の効果] 本発明方法によると、極低炭素域での脱炭を迅速に行
うことができ、かつ炭素含有量が10ppm以下の極低炭素
鋼を安定して得ることができ、また、真空槽内でのスプ
ラッシュ発生を少なくすることができ、従って真空槽内
への付着を防止することができる。
[Effects of the Invention] According to the method of the present invention, decarburization in an extremely low carbon region can be rapidly performed, and an extremely low carbon steel having a carbon content of 10 ppm or less can be stably obtained. Splash generation in the vacuum chamber can be reduced, and thus adhesion to the vacuum chamber can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施する設備の一態様を示す断面図、
第2図は羽口先端のガスの侵入距離を示す説明図、第3
図は羽口先端ガス線流速と脱炭速度定数との関係を示す
グラフ、第4図はガス吹込み量と速度定数との関係を例
示したグラフ、第5図は本発明の効果を説明するグラフ
である。 1……溶鋼取鍋 2……溶鋼 3……真空槽 4……環流管 5……環流用Arガス導入管 6……羽口
FIG. 1 is a cross-sectional view showing one embodiment of equipment for implementing the present invention,
FIG. 2 is an explanatory view showing the gas penetration distance at the tuyere tip, FIG.
Fig. 4 is a graph showing the relationship between the tuyere tip gas line flow velocity and the decarburization rate constant, Fig. 4 is a graph illustrating the relationship between the gas injection amount and the rate constant, and Fig. 5 illustrates the effect of the present invention. It is a graph. 1 ... Molten steel ladle 2 ... Molten steel 3 ... Vacuum tank 4 ... Reflux pipe 5 ... Reflux Ar gas inlet pipe 6 ... Tuyere

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜谷 敏和 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 藤井 徹也 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (56)参考文献 R&D神戸製鋼技報Vol.36,N o.1,(1986) PP.40−42 (58)調査した分野(Int.Cl.6,DB名) C21C 7/10 C22B 9/04──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toshikazu Sakuraya 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Research and Development Headquarters (72) Inventor Tetsuya Fujii 1-Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corp. (56) Reference R & D Kobe Steel Engineering Reports Vol. 36, No. 1, (1986) PP. 40-42 (58) Field surveyed (Int. Cl. 6 , DB name) C21C 7/10 C22B 9/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】製鋼炉で溶製された未脱酸もしくは弱脱酸
溶鋼を真空脱ガス処理する方法において、 真空脱ガス槽内の溶鋼中へ真空槽炉壁側面に配設した羽
口より不活性ガスを吹込みつつ処理を行い、鋼浴中の炭
素濃度が30ppm以下になった時期に羽口先端での流速が1
500Nm/秒以上となるように不活性ガスを吹込むことを特
徴とする真空脱ガス処理による極低炭素鋼の溶製方法。
1. A method for vacuum degassing undeoxidized or weakly deoxidized molten steel melted in a steelmaking furnace, comprising: forming a molten steel in a vacuum degassing tank through a tuyere disposed on a side of a vacuum tank furnace wall; The treatment was performed while blowing inert gas, and when the carbon concentration in the steel bath became 30 ppm or less, the flow velocity at the tuyere tip became 1
A method for melting ultra-low carbon steel by vacuum degassing, characterized by blowing an inert gas at a flow rate of 500 Nm / sec or more.
【請求項2】鋼浴中の炭素濃度が30ppm以下になった時
期に、真空槽内溶鋼トン当り吹込みガス流量を0.1Nm3/
分以上に増加させることを特徴とする請求項1記載の真
空脱ガス処理による極低炭素鋼の溶製方法。
2. When the carbon concentration in the steel bath becomes 30 ppm or less, the flow rate of the blown gas per ton of molten steel in the vacuum chamber is set to 0.1 Nm 3 /
The method for melting ultra-low carbon steel by vacuum degassing according to claim 1, wherein the amount is increased to at least one minute.
【請求項3】前記真空槽炉壁側面に配設した羽口径を3m
m以下とし、鋼浴中の炭素濃度が30ppm以下となった時期
の吹込みガスの圧力を20kgf/cm2以上とすることを特徴
とする請求項1又は2記載の真空脱ガス処理による極低
炭素鋼の溶製方法。
3. The tuyere diameter provided on the side of the vacuum chamber furnace wall is 3 m.
m or less, and the pressure of the blown gas at the time when the carbon concentration in the steel bath is 30 ppm or less is set to 20 kgf / cm 2 or more. Melting method of carbon steel.
JP3488689A 1989-02-16 1989-02-16 Melting method of ultra low carbon steel by vacuum degassing Expired - Fee Related JP2773883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3488689A JP2773883B2 (en) 1989-02-16 1989-02-16 Melting method of ultra low carbon steel by vacuum degassing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3488689A JP2773883B2 (en) 1989-02-16 1989-02-16 Melting method of ultra low carbon steel by vacuum degassing

Publications (2)

Publication Number Publication Date
JPH02217412A JPH02217412A (en) 1990-08-30
JP2773883B2 true JP2773883B2 (en) 1998-07-09

Family

ID=12426630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3488689A Expired - Fee Related JP2773883B2 (en) 1989-02-16 1989-02-16 Melting method of ultra low carbon steel by vacuum degassing

Country Status (1)

Country Link
JP (1) JP2773883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168214A (en) * 1990-11-01 1992-06-16 Nippon Steel Corp Method and apparatus for melting extremely low carbon steel
JPH04183814A (en) * 1990-11-16 1992-06-30 Nippon Steel Corp Production of extra-low carbon steel
JP2688309B2 (en) * 1992-08-26 1997-12-10 新日本製鐵株式会社 Vacuum decarburization treatment method for molten steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R&D神戸製鋼技報Vol.36,No.1,(1986) PP.40−42

Also Published As

Publication number Publication date
JPH02217412A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
CN111575446B (en) RH vacuum furnace calcium treatment process method
US5902374A (en) Vacuum refining method for molten steel
JP2773883B2 (en) Melting method of ultra low carbon steel by vacuum degassing
KR930011671B1 (en) Method of producting ultra-low-carbon steel
US4071356A (en) Method for refining a molten steel in vacuum
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JPH0420967B2 (en)
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP6726777B1 (en) Method for producing low carbon ferromanganese
JP2573876B2 (en) RH vacuum degassing method and apparatus
JPH01246314A (en) Production of extremely low carbon steel by vacuum degassing treatment
JP2767674B2 (en) Refining method of high purity stainless steel
JP3412269B2 (en) Manufacturing method of extremely low sulfur steel
JP3655659B2 (en) Blow acid sending method on converter with good yield
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2724030B2 (en) Melting method of ultra low carbon steel
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JPH04228515A (en) Production of dead soft steel
JPH0665625A (en) Desulphurization method for molten steel
JP2940358B2 (en) Melting method for clean steel
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JPS60181217A (en) Production of low-nitrogen high-chromium alloy steel
JPH1192814A (en) Converter blowing for restraining generation of dust
JP3070416B2 (en) Vacuum degassing method for molten steel
JP3153983B2 (en) Melting method for high purity stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees