JPH06228629A - Method for refining high purity stainless steel - Google Patents
Method for refining high purity stainless steelInfo
- Publication number
- JPH06228629A JPH06228629A JP1426893A JP1426893A JPH06228629A JP H06228629 A JPH06228629 A JP H06228629A JP 1426893 A JP1426893 A JP 1426893A JP 1426893 A JP1426893 A JP 1426893A JP H06228629 A JPH06228629 A JP H06228629A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- slag
- vacuum
- gas
- immersion tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、取鍋精錬炉による効率
的な高純度ステンレス鋼の精錬方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient method for refining high-purity stainless steel using a ladle refining furnace.
【0002】[0002]
【従来の技術】ステンレス鋼に代表されるクロム含有溶
鉄は、炭素濃度が低下した領域では脱炭反応に比べてク
ロムの酸化反応の方が起こりやすくなるため、クロムの
酸化損失を抑制して製品規格から要求される炭素濃度ま
で脱炭する方法が、種々提案されている。中でも、AO
DとVODは広く知られている。このうち、AODはA
rで希釈した酸素ガスを浴内に吹き込む方法であり、V
ODは真空下で酸素を上吹きする方法であるが、いずれ
の方法も、脱炭反応で生成するCOガスの分圧を低下さ
せ、クロムの酸化反応よりも脱炭反応を優先させること
を特徴としている。このうち、炭素濃度が100ppm
以下といった極低炭素鋼を溶製するためには、吹酸精錬
後の減圧処理が不可欠となるため、一般にはVODが用
いられている。この減圧処理は、溶鋼中の酸素により脱
炭を進めるものであり、自己脱炭期と称されるものであ
る。2. Description of the Related Art Molten iron containing chromium, typified by stainless steel, is more likely to undergo an oxidation reaction of chromium than a decarburization reaction in a region where the carbon concentration is low. Various methods have been proposed for decarburization to the carbon concentration required from the standard. Above all, AO
D and VOD are widely known. Of these, AOD is A
It is a method of blowing oxygen gas diluted with r into the bath.
OD is a method in which oxygen is blown upward under vacuum, but both methods reduce the partial pressure of CO gas generated in the decarburization reaction and give priority to the decarburization reaction over the oxidation reaction of chromium. I am trying. Of these, the carbon concentration is 100 ppm
VOD is generally used because the depressurization process after the smelting of blown acid is indispensable for producing the following ultra-low carbon steels. This depressurization process promotes decarburization by oxygen in the molten steel, and is called a self-decarburizing period.
【0003】しかし、VODは取鍋全体を真空容器内に
入れる方法、もしくは取鍋上部に蓋をして取鍋全体を真
空にする方法であるため、上部空間が狭く、攪拌用のガ
ス流量を増加させた場合には、鋼浴の揺動や底吹きガス
によるスプラッシュにより操業に支障が生じるという問
題があった。また、自己脱炭期においては、底吹き気泡
により激しく攪拌された自由表面積(気泡活性面積)を
確保することが重要であるが、VODでは吹酸脱炭中に
生成したスラグが表面を覆うため、この気泡活性面積が
確保できないという問題があった。そこで、従来は、川
崎製鉄技報,第12号(1980),561ページ以降
に記載されているように、酸化クロムを含む流動性の良
いスラグを強攪拌により浴内に懸濁させ、スラグ中の酸
化クロムと炭素との反応で脱炭を進行させていた。しか
し、この方法では浴内で反応が起こるために溶鋼静圧に
よりCO分圧が増大してしまう上に、酸化クロムと炭素
の反応は自由エネルギーから考えても容易にわかるよう
に進行しにくいため、極低炭素まで脱炭するには非常に
長時間を要していた。However, VOD is a method in which the entire ladle is placed in a vacuum container or a method in which the entire ladle is vacuumed by covering the upper part of the ladle, so that the upper space is narrow and the gas flow rate for stirring is small. If the amount is increased, there is a problem that the operation is hindered due to the rocking of the steel bath and the splash due to the gas blown from the bottom. In addition, during the self-decarburization period, it is important to secure a free surface area (bubble active area) that is vigorously agitated by bottom-blown air bubbles. However, there is a problem that this bubble active area cannot be secured. Therefore, conventionally, as described in Kawasaki Steel Technical Report, No. 12 (1980), page 561 and subsequent pages, a slag having good fluidity containing chromium oxide is suspended in a bath by vigorous stirring, The decarburization was promoted by the reaction between the chromium oxide and carbon. However, in this method, the CO partial pressure is increased due to the static pressure of molten steel because the reaction occurs in the bath, and the reaction between chromium oxide and carbon is difficult to proceed as can be easily understood from the viewpoint of free energy. It took a very long time to decarburize to extremely low carbon.
【0004】これに対して、特開昭61−37912号
公報においては、取鍋内の溶鋼を大径浸漬管を介して真
空槽内に吸い上げ、低部から攪拌用ガスを供給する方法
が開示されている。さらに、特開平1−156416号
公報においては、浸漬管中心に対して底吹き用ノズル位
置を適切な範囲に偏心させるとともに、上吹き酸素を底
吹きガスの浮上領域である、気泡活性面に衝突させる方
法が開示されている。これらの方法により、VODが有
する上部空間が狭いという問題は解決されたものの、極
低炭素鋼の溶製に関する記述はなく、この方法のみでは
浸漬管内にクロム酸化物が多量に生成するため、安定し
て極低炭素鋼を溶製することはできなかった。On the other hand, Japanese Patent Laid-Open No. 61-37912 discloses a method of sucking molten steel in a ladle into a vacuum tank through a large-diameter dip pipe and supplying a stirring gas from a lower portion. Has been done. Further, in JP-A-1-156416, the bottom blowing nozzle position is eccentric with respect to the center of the immersion pipe in an appropriate range, and the top blowing oxygen collides with the bubble activating surface, which is the floating region of the bottom blowing gas. A method of causing is disclosed. These methods have solved the problem that the VOD has a small upper space, but there is no description about the melting of ultra-low carbon steel, and only this method produces a large amount of chromium oxide in the dip tube, which results in stable stability. Then, it was not possible to melt the ultra low carbon steel.
【0005】[0005]
【発明が解決しようとする課題】本発明は、VODが有
している、上部空間が狭いため鋼浴の揺動や底吹きガス
によるスプラッシュにより操業に支障が生じるという問
題や、スラグが表面を覆うため気泡活性面積が確保でき
ないとう問題、及び特開昭61−37912号公報や、
特開平1−156416号公報に開示された方法が有す
る、安定して極低炭素鋼を溶製することができないとい
う問題を生じることなく、効率的に高純度ステンレス鋼
を精錬する方法を提供することを目的とするものであ
る。SUMMARY OF THE INVENTION The present invention has a problem that the VOD has a narrow upper space and causes problems such as rocking of the steel bath and splash due to bottom-blown gas which hinders the operation. The problem that the bubble active area cannot be secured because of the covering, and JP-A-61-37912 and
Provided is a method for efficiently refining high-purity stainless steel without the problem that the method disclosed in Japanese Patent Application Laid-Open No. 1-156416 has the inability to stably produce an extremely low carbon steel. That is the purpose.
【0006】[0006]
【課題を解決するための手段】本発明は、Crを5%以
上含む取鍋内溶鋼に直胴型浸漬管を浸漬し、該浸漬管内
を減圧するとともに取鍋低部より攪拌用ガスを供給する
ステンレス鋼の真空精錬において、溶鋼中のC量が0.
06〜0.01%までは酸素吹錬し、その後、送酸を停
止するとともに、真空度をP(Torr)、ガス吹き込
み位置の浴深をH(m)、吹き込みガス流量をQ(NL
/(分・ton))とした場合、(H/(5+P))×
Qを0.3以上とすることで、送酸吹錬中に生成した真
空表面にある酸化クロム含有スラグを浴内に巻き込ませ
た上で、浸漬管先端面と浸漬管外溶鋼湯面との間隔Z
(m)とQを、Z/Qとして0.25以下とすることに
より、巻き込まれたスラグを浸漬管外へ流出させ、気泡
活性面での脱炭を極限まで促進させることを特徴とする
高純度ステンレス鋼の精錬方法を要旨とする。According to the present invention, a straight barrel type immersion pipe is immersed in molten steel in a ladle containing 5% or more of Cr, the interior of the immersion pipe is decompressed, and a stirring gas is supplied from a lower portion of the ladle. In the vacuum refining of stainless steel, the amount of C in molten steel is 0.
Oxygen is blown up to 06 to 0.01%, then the oxygen supply is stopped, the degree of vacuum is P (Torr), the bath depth at the gas blowing position is H (m), and the flow rate of the blowing gas is Q (NL).
/ (Min · ton)), (H / (5 + P)) ×
By setting Q to 0.3 or more, the chromium oxide-containing slag on the vacuum surface generated during the acid-sending blowing is rolled into the bath, and then the tip surface of the immersion pipe and the molten steel surface outside the immersion pipe Interval Z
By setting (m) and Q to be 0.25 or less as Z / Q, the entrained slag is caused to flow out of the immersion pipe, and decarburization on the bubble activated surface is accelerated to the maximum. The main point is the refining method of pure stainless steel.
【0007】ここで、第1工程で生成するスラグ中のC
r2 O3 を25%以下、CaO/Al2 O3 を0.5〜
2.0とし、低粘性スラグとすることが望ましい。Here, C in the slag produced in the first step
r 2 O 3 is 25% or less, CaO / Al 2 O 3 is 0.5 to
It is desirable to set it to 2.0 and to make it a low viscosity slag.
【0008】[0008]
【作用】本発明は、高クロム溶鋼であっても、極低炭素
領域での脱炭反応は真空雰囲気に暴露されている自由表
面での反応が主体であるという新規な知見に基づいてい
る。これは、これまで、極低炭素化をするには、Cr2
O3 を含有し、かつ流動性の良いスラグと溶鋼の反応を
促進させなければならないとされていたこととは大きく
異なる事実である。さらに、この反応の速度を支配して
いる要因は、これまで各種の反応速度を支配すると考え
られていた、攪拌エネルギー密度ではなく、浴内の低部
から吹き込まれた不活性ガス気泡が浮上し、真空に暴露
されている自由表面で破裂する領域である気泡活性面の
面積と強度であることを、本発明者らは数多くの実験と
詳細なる解析に基づいて明らかにした。ここで、気泡活
性面積は、水モデル等の知見に基づけば、取鍋脱ガス装
置や、取鍋内溶鋼に直胴型浸漬管を浸漬し、該浸漬管内
を減圧する方式の場合には、低部から吹き込まれたガス
がノズルから上方に片側12度の角度で上昇すると仮定
することで計算される幾何学的面積として規定される。
また、気泡活性面の強度はガス流量、ガス吹き込み深
さ、真空度により規定されるものである。The present invention is based on the novel finding that even in high chromium molten steel, the decarburization reaction in the extremely low carbon region is mainly the reaction on the free surface exposed to the vacuum atmosphere. Up to now, it has been necessary to use Cr 2 for extremely low carbonization.
This is a very different fact from what was said to contain the O 3 and to promote the reaction between the slag with good fluidity and the molten steel. Furthermore, the factor that controls the reaction rate is not the stirring energy density, which was previously thought to control various reaction rates, but the inert gas bubbles blown from the lower part of the bath float up. The present inventors have clarified the area and strength of the bubble active surface, which is the region that bursts on the free surface exposed to vacuum, based on many experiments and detailed analysis. Here, the bubble active area, based on the knowledge of the water model and the like, in the case of a ladle degassing device or a method of immersing a straight barrel type immersion pipe in molten steel in the ladle and depressurizing the inside of the immersion pipe, It is defined as the geometric area calculated by assuming that the gas blown from the bottom rises upward from the nozzle at an angle of 12 degrees on each side.
Further, the strength of the bubble active surface is defined by the gas flow rate, the gas injection depth, and the degree of vacuum.
【0009】この気泡活性面積での脱炭反応を効果的に
成し遂げるには、自由表面にあるスラグを排除すること
が必須となる。ステンレス鋼に代表される高クロム鋼
は、炭素濃度が高い領域では真空下で吹酸脱炭されるた
め、クロム酸化物を含有する多量のスラグが生成され、
それが厚く自由表面を被覆している。このスラグを短時
間で排除することが本発明の必須条件となる。本発明者
らは、様々な試験や理論検討の結果、以下の要件を満た
すことにより、スラグが短時間で排出できることを明ら
かにした。In order to effectively achieve the decarburization reaction in the bubble active area, it is essential to eliminate the slag on the free surface. High-chromium steel, typified by stainless steel, is decarburized with propellant acid under vacuum in a high carbon concentration region, so a large amount of slag containing chromium oxide is generated,
It thickly covers the free surface. Eliminating this slag in a short time is an essential condition of the present invention. As a result of various tests and theoretical studies, the present inventors have revealed that the slag can be discharged in a short time by satisfying the following requirements.
【0010】 取鍋内溶鋼に直胴型浸漬管を浸漬し、
該浸漬管内を減圧するとともに取鍋低部より攪拌用ガス
を供給する真空精錬炉を用いること。 真空度をP(Torr)、ガス吹き込み位置の浴深
をH(m)、吹き込みガス流量をQ(NL/(分・to
n))とした場合、(H/(5+P))×Qを0.3以
上とすること。Immersing a straight barrel type immersion pipe in molten steel in a ladle,
Use a vacuum refining furnace that decompresses the inside of the dipping pipe and supplies a stirring gas from the bottom of the ladle. The degree of vacuum is P (Torr), the bath depth at the gas blowing position is H (m), and the flow rate of the blowing gas is Q (NL / (min · to.
n)), (H / (5 + P)) × Q should be 0.3 or more.
【0011】 の条件下で浸漬管先端面と浸漬管外
溶鋼湯面との間隔Z(m)とQを、Z/Qとして0.2
5以上とすること。 以下、前記各要件を必須とする理由を説明する。まず、
前記は、吹酸脱炭中に浸漬管内に生成したスラグを浸
漬管外へ排出することを目的としたもので、このような
装置構成にすることで初めて可能となるものである。Under the above conditions, the distances Z (m) and Q between the tip surface of the dip tube and the molten steel surface outside the dip tube are set to 0.2 as Z / Q.
Must be 5 or more. Hereinafter, the reason why each of the above requirements is essential will be described. First,
The above is intended to discharge the slag generated in the dip pipe during the decarburization of propellant acid to the outside of the dip pipe, and it becomes possible only with such a device configuration.
【0012】は、スラグの浴内への巻き込み促進のた
めの条件であるが、自由表面での流速を大きくし、表面
にあるスラグを浴内に巻き込ませるには、吹き込まれた
ガスの浮力によるエネルギーを最大限に高める必要があ
る。浮力のエネルギーは、吹き込み位置での静圧と表面
での真空度の比率とガス流量に依存し、水モデルや溶鋼
を用いた種々の実験により、図2に示す結果が得られ
た。つまり、静圧と真空度とガス流量の関係に対応する
指標である(H/(5+P))×Qを0.3以上とする
ことでスラグが浴内に巻き込まれることが発見された。
この条件は、単に圧力を低下させるだけでも満たすこと
は可能であるが、過大な排気能力を持った設備が必要と
なる。また、単にガス流量を増加させるだけで満たそう
とすると、過剰に大きなガス流量が必要となり、激しい
スプラッシュによる操業上の問題が生じる。従って、
(H/(5+P))×Qという指標を導入することで、
上記の問題を生じることなくスラグの巻き込みが可能な
条件を作ることができる。また、真空度の項を(5+
P)としたのは、自由表面ではなく、表面下1cmの深
さ位置での静圧を考えた方が、スラグ巻き込みのための
表面流速と良く対応するという実験結果に基づくもので
ある。[0012] is a condition for promoting the entrainment of the slag into the bath, but in order to increase the flow velocity on the free surface and cause the slag on the surface to be entrained in the bath, the buoyancy of the blown gas is required. You need to maximize your energy. The buoyancy energy depends on the ratio of the static pressure at the blowing position to the degree of vacuum at the surface and the gas flow rate, and the results shown in FIG. 2 were obtained by various experiments using a water model and molten steel. That is, it was discovered that the slag was caught in the bath by setting (H / (5 + P)) × Q, which is an index corresponding to the relationship between the static pressure, the degree of vacuum, and the gas flow rate, to 0.3 or more.
This condition can be satisfied by merely reducing the pressure, but a facility having an excessive exhaust capacity is required. Further, if the gas flow rate is simply increased to satisfy the requirement, an excessively high gas flow rate is required, which causes a problem in operation due to violent splash. Therefore,
By introducing the index (H / (5 + P)) × Q,
It is possible to create a condition in which the slag can be wound without causing the above problems. In addition, the degree of vacuum is (5+
P) is based on the experimental result that the static pressure at a depth position of 1 cm below the surface, rather than the free surface, better corresponds to the surface flow velocity for slag inclusion.
【0013】ここで、スラグを効率的に巻き込ませるに
はスラグの粘性を低くすることが望ましい。上記の(H
/(5+P))×Qの条件下では、スラグ中のCr2 O
3 を25%以下、CaO/Al2 O3 を0.5〜2.0
とし、1600℃での液相率を75%以上確保した低粘
性スラグとした場合に、より効果的である。一方、は
巻き込まれたスラグが浸漬管下端まで到達した後に、浸
漬管外へ排除されるための条件を示したものである。浸
漬管下端位置に巻き込まれたスラグが存在した場合、原
理的には、浸漬管内溶鋼から受ける静圧とスラグ粒子の
運動エネルギーの合計が、浸漬管外溶鋼から受ける静圧
よりも大きければスラグは浸漬管外へ排出されることに
なる。ここで、浸漬管内溶鋼湯面と浸漬管外溶鋼湯面と
の差をh、浸漬管下端と浸漬管外溶鋼湯面との間隔をZ
とすると、浸漬管内溶鋼から受ける静圧は、ほぼρgh
(ρ:溶鋼密度、g:重力加速度)となる。また、浸漬
管外溶鋼から受ける静圧は、ρgZ+P0(P0:大気
圧)となる。ここで、hは浸漬管内真空度によってのみ
決まる値のため、浸漬管内溶鋼から受ける静圧と浸漬管
外溶鋼から受ける静圧の比は、Zのみの関数となる。一
方、スラグ粒子の運動エネルギーは、溶鋼の循環流速と
等しくなり、それは、ほぼガス流量(Q)に依存する値
となる。図3は、スラグ排出条件を求めた実験結果であ
るが、浸漬管内溶鋼から受ける静圧と浸漬管外溶鋼から
受ける静圧との比を表すZと、スラグ粒子の運動エネル
ギーを表すQとの関係で整理した場合、Z/Qとして
0.25以下の場合にスラグが管外へ流出することがわ
かる。Here, it is desirable to reduce the viscosity of the slag in order to efficiently wind the slag. Above (H
/ (5 + P)) × Q, Cr 2 O in the slag
3 to 25% or less, CaO / Al 2 O 3 0.5 to 2.0
It is more effective when the low-viscosity slag has a liquid phase ratio of 1600 ° C. of 75% or more. On the other hand, (1) shows the conditions for removing the entrained slag from the immersion pipe after reaching the lower end of the immersion pipe. When there is slag caught at the lower end of the immersion pipe, in principle, if the total static pressure received from the molten steel inside the immersion pipe and the kinetic energy of the slag particles is greater than the static pressure received from the molten steel outside the immersion pipe, the slag will be It will be discharged to the outside of the immersion pipe. Here, the difference between the molten steel inside the immersion pipe and the molten steel outside the immersion pipe is h, and the distance between the lower end of the immersion pipe and the molten steel outside the immersion pipe is Z.
Then, the static pressure received from the molten steel in the immersion pipe is approximately ρgh.
(Ρ: molten steel density, g: gravitational acceleration). The static pressure received from the molten steel outside the immersion pipe is ρgZ + P0 (P0: atmospheric pressure). Here, since h is a value determined only by the degree of vacuum in the immersion pipe, the ratio of the static pressure received from the molten steel inside the immersion pipe to the static pressure received from the molten steel outside the immersion pipe is a function of Z only. On the other hand, the kinetic energy of the slag particles becomes equal to the circulation flow velocity of the molten steel, which has a value that almost depends on the gas flow rate (Q). FIG. 3 is an experimental result for obtaining the slag discharge condition. It shows a ratio Z between the static pressure received from the molten steel inside the immersion pipe and the static pressure received from the molten steel outside the immersion pipe, and Q representing the kinetic energy of the slag particles. When arranged in a relationship, it can be seen that slag flows out of the pipe when Z / Q is 0.25 or less.
【0014】本発明においては、炭素よりも優先的に酸
化するCrを含み、真空下で仕上精錬をする必要がある
溶鋼を目的としているため、Crは5%以上とする。ま
た、気泡活性面での脱炭反応は、溶鋼中の炭素と酸素の
反応であるため、酸素濃度は充分に高い必要がある。そ
のため、真空下での酸素吹錬は溶鋼中のC量が0.06
%以下まで実施する必要がある。しかし、溶鋼中のC量
を0.01%よりも低くなるまで酸素吹錬した場合には
吹酸中のクロムの酸化ロスが大きくなるという問題を生
じる。In the present invention, the purpose is to provide molten steel containing Cr which is preferentially oxidized over carbon and which needs to be subjected to finish refining under vacuum. Therefore, Cr is set to 5% or more. Further, since the decarburization reaction on the bubble activation surface is a reaction between carbon and oxygen in the molten steel, the oxygen concentration needs to be sufficiently high. Therefore, oxygen blowing under vacuum produces a C content of 0.06 in the molten steel.
It is necessary to carry out up to%. However, when oxygen blowing is performed until the amount of C in the molten steel becomes lower than 0.01%, there arises a problem that the oxidation loss of chromium in blowing acid increases.
【0015】さらに、スラグの巻き込みを促進させるた
めに必要なスラグ組成として定義した、スラグ中のCr
2 O3 を25%以下、CaO/Al2 O3 を0.5〜
2.0とし、1600℃での液相率を75%以上確保し
た低粘性スラグとするという条件のうち、Cr2 O3 の
濃度は、送酸を停止する炭素濃度に大きく依存し、C量
が0.01%よりも低い濃度になるまで吹酸脱炭した場
合には、必然的にCr2O3 の濃度は25%よりも高く
なる。このため、スラグが排出されにくく、気泡活性面
が露出しにくいため、同一条件で処理した場合でも脱炭
速度が低下する。一方、溶鋼中のC量が0.06%より
も高い濃度で吹酸脱炭を停止した場合には、Cr2 O3
は15%程度と少ないものの、温度が1600℃に到達
しないため、スラグの液相率で見ると75%よりも低
く、低粘性スラグにはなりえない。したがって、この場
合にもスラグが排出されにくく脱炭速度が低下する。Further, Cr in the slag, which is defined as the slag composition necessary for promoting the inclusion of the slag,
2 O 3 25% or less, CaO / Al 2 O 3 0.5-
Under the conditions of 2.0 and a low viscosity slag that secures a liquid phase ratio of 75% or more at 1600 ° C., the concentration of Cr 2 O 3 largely depends on the carbon concentration at which oxygen transfer is stopped, and the amount of C When the acid is decarburized to a concentration lower than 0.01%, the concentration of Cr 2 O 3 inevitably becomes higher than 25%. For this reason, the slag is difficult to be discharged and the air bubble active surface is hard to be exposed, so that the decarburization rate is reduced even when treated under the same conditions. On the other hand, when the blown acid decarburization is stopped at a concentration of C in the molten steel higher than 0.06%, Cr 2 O 3
However, since the temperature does not reach 1600 ° C., the liquid phase ratio of the slag is lower than 75%, and it cannot be a low viscosity slag. Therefore, also in this case, the slag is difficult to be discharged and the decarburization rate is reduced.
【0016】[0016]
【実施例】実施例は175トン規模の真空脱ガス装置を
用いて行った。転炉にて[C]が約0.5%、[Cr]
を5%以上(主には10〜25%)含まれる溶鋼を溶製
した後、図1に示した形状の真空脱ガス炉で精錬を実施
した。精錬は、第1期と第2期に分け、第1期では底吹
きのポーラス煉瓦よりArガスを供給して攪拌するとと
もに上吹きランスから酸素ガスを吹き付け、真空度が約
100Torrの条件下で脱炭した。第2期では、上吹
きランスからの送酸を停止するとともに真空度を10T
orr以下とし、Ar攪拌をして脱炭した。EXAMPLES The examples were carried out using a 175 ton scale vacuum degasser. About 0.5% of [C] in the converter, [Cr]
5% or more (mainly 10 to 25%) of molten steel was smelted, and then refined in a vacuum degassing furnace having the shape shown in FIG. Refining is divided into the first phase and the second phase. In the first phase, Ar gas is supplied from a bottom-blown porous brick to stir and oxygen gas is sprayed from a top-blown lance, and the degree of vacuum is about 100 Torr. Decarburized. In the second phase, the acid supply from the top blowing lance was stopped and the vacuum degree was set to 10T.
The temperature was adjusted to or or less, and Ar was stirred to decarburize.
【0017】表1、表2に結果を示すが、Pは真空度
(Torr)、Hはガス吹き込み位置の浴深(m)、Q
は攪拌用Arガス流量(NL/(分・ton))、Zは
浸漬管先端面と浸漬管外溶鋼湯面との間隔(m)を示
す。また、脱炭速度は第2期開始時と終了時の炭素濃度
をC1(%)、C2(%)とし、第2期の時間をt1
(分)とした場合、(1)式で定義されるものである。The results are shown in Tables 1 and 2, where P is the degree of vacuum (Torr), H is the bath depth (m) at the gas blowing position, and Q is
Is the Ar gas flow rate for stirring (NL / (min · ton)), and Z is the interval (m) between the tip surface of the immersion pipe and the molten steel surface outside the immersion pipe. The decarburization rate is C1 (%) and C2 (%) at the beginning and end of the second period, and the second period time is t1.
When it is set to (minutes), it is defined by the equation (1).
【0018】 KC=(lnC1−lnC2)/t1 ・・・・・・(1) 表1は、図1に示した形状の真空脱ガス炉で精錬を実施
した結果であり、試験番号の1から13までは本発明の
実施例である。番号14は第1期の吹き止め炭素濃度を
低下させた場合であるが、第1期のクロムロスが大きく
経済的でなく、逆に番号15のように第1期の吹き止め
炭素濃度が高い場合には、溶鋼中酸素が少ないため第2
期の脱炭速度が小さい。番号16、17は(H/(5+
P))×Qが小さい場合、番号18、19はZ/Qが大
きい場合であるが、いずれもスラグ排出が不良のため気
泡活性面を確保できず、脱炭速度が低いことがわかる。KC = (lnC1-lnC2) / t1 (1) Table 1 shows the results of refining in a vacuum degassing furnace having the shape shown in FIG. Up to 13 are examples of the present invention. No. 14 is the case where the blowout carbon concentration in the first period was lowered, but when the chromium loss in the first period is large and it is not economical, conversely when the blowout carbon concentration in the first period is high as in number 15. Second, because there is little oxygen in the molten steel
Decarburization rate is low. Numbers 16 and 17 are (H / (5+
P)) × Q is small, and Nos. 18 and 19 are large Z / Q, but it can be seen that the bubble activated surface cannot be secured and the decarburization rate is low due to poor slag discharge.
【0019】表2は、図1に示した形状の真空脱ガス炉
による精錬と、単純に取鍋上面の蓋をしてその中を排気
した取鍋脱ガス法(いわゆるVOD;b)と、酸素ガス
を供給できるRH法(いわゆるRH−OB;c)による
精錬とを比較した結果である。取鍋脱ガス法の場合に
は、スラグが排出できないため、気泡活性面が確保でき
ず脱炭速度が低く、RH法の場合には、Arガスが浸漬
管内に供給されるため気泡の広がりが小さく気泡活性面
積が十分に大きくとれないため脱炭速度が低い。Table 2 shows refining by a vacuum degassing furnace having the shape shown in FIG. 1 and a ladle degassing method (so-called VOD; b) in which the top of the ladle is simply covered and the inside is evacuated. It is the result of comparison with refining by the RH method (so-called RH-OB; c) capable of supplying oxygen gas. In the case of the ladle degassing method, since the slag cannot be discharged, the bubble active surface cannot be secured and the decarburization rate is low. The decarburization rate is low because it is small and the bubble active area is not large enough.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【発明の効果】本発明により、多量の底吹きガスによる
鋼浴の揺動やスプラッシュの発生という問題を生じるこ
となく、効率的に極低炭素濃度の高純度ステンレス鋼の
精錬が可能となった。According to the present invention, it is possible to efficiently smelt highly pure stainless steel having an extremely low carbon concentration without causing the problems of rocking of the steel bath and generation of splash due to a large amount of bottom-blown gas. .
【図1】真空脱ガス炉による本発明の実施の態様を示す
説明図である。FIG. 1 is an explanatory view showing an embodiment of the present invention by a vacuum degassing furnace.
イ:取鍋 ロ:浸漬管 ハ:溶鋼 ニ:酸素上吹き用ランス ホ:攪拌ガス供給用のポーラス煉瓦 A:気泡活性面 B:スラグ C:浴内に巻き込まれたスラグ D:浸漬管外へ排出されたスラグ H:ガス吹き込み深さ Z:浸漬管浸漬深さ h:浸漬管内外の湯面高さの間隔 A: Ladle b: Immersion pipe c: Molten steel d: Oxygen top blowing lance e: Porous brick for supplying stirring gas A: Bubble activated surface B: Slag C: Slag caught in the bath D: Outside the immersion pipe Discharged slag H: Gas injection depth Z: Immersion pipe immersion depth h: Distance between molten metal surface height inside and outside the immersion pipe
【図2】(H/(5+P))×Qとスラグの浴内巻き込
み指標との関係を示す図で、Pは真空度(Torr)、
Hはガス吹き込み位置の浴深(m)、Qは攪拌用Ar流
量(NL/(分・ton))を表す。FIG. 2 is a diagram showing a relationship between (H / (5 + P)) × Q and a slag entrainment index in a bath, where P is a vacuum degree (Torr),
H represents the bath depth (m) at the gas blowing position, and Q represents the Ar flow rate for stirring (NL / (min · ton)).
【図3】スラグ排出条件を求めた実験結果を示す図で、
Qは攪拌用ガス流量(NL/(分・ton))、Zは浸
漬管先端面と浸漬管外溶鋼湯面との間隔(m)を表す。FIG. 3 is a diagram showing an experimental result for obtaining a slag discharge condition,
Q represents the gas flow rate for stirring (NL / (min · ton)), and Z represents the interval (m) between the tip surface of the immersion pipe and the molten steel surface outside the immersion pipe.
Claims (1)
浸漬管を浸漬し、該浸漬管内を減圧するとともに取鍋低
部より攪拌用ガスを供給するステンレス鋼の真空精錬に
おいて、溶鋼中のC量が0.06〜0.01%までは酸
素吹錬し、その後、送酸を停止するとともに、真空度を
P(Torr)、ガス吹き込み位置の浴深をH(m)、
吹き込みガス流量をQ(NL/(分・ton))とした
場合、(H/(5+P))×Qを0.3以上とすること
で、送酸吹錬中に生成した真空表面にある酸化クロム含
有スラグを浴内に巻き込ませた上で、浸漬管先端面と浸
漬管外溶鋼湯面との間隔Z(m)とQを、Z/Qとして
0.25以下とすることにより、巻き込まれたスラグを
浸漬管外へ流出させ、気泡活性面での脱炭を極限まで促
進させることを特徴とする高純度ステンレス鋼の精錬方
法。1. Vacuum smelting of stainless steel in which a straight barrel type dip tube is immersed in molten steel in a ladle containing 5% or more of Cr, the pressure in the dip tube is reduced, and a stirring gas is supplied from the bottom of the ladle. Oxygen is blown until the amount of C in the molten steel is 0.06 to 0.01%, then the oxygen transfer is stopped, the degree of vacuum is P (Torr), the bath depth at the gas blowing position is H (m),
When the flow rate of the blown gas is Q (NL / (min · ton)), by setting (H / (5 + P)) × Q to 0.3 or more, the oxidation on the vacuum surface generated during the acid sending blowing can be performed. After the chromium-containing slag is rolled up in the bath, the gaps Z (m) and Q between the tip surface of the dipping pipe and the surface of the molten steel outside the dipping pipe are set to Z / Q of 0.25 or less so that the slag is drawn in A slag refining method for high-purity stainless steel, characterized in that the slag is allowed to flow out of the immersion pipe to accelerate the decarburization on the bubble activated surface to the maximum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1426893A JP2767674B2 (en) | 1993-01-29 | 1993-01-29 | Refining method of high purity stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1426893A JP2767674B2 (en) | 1993-01-29 | 1993-01-29 | Refining method of high purity stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06228629A true JPH06228629A (en) | 1994-08-16 |
JP2767674B2 JP2767674B2 (en) | 1998-06-18 |
Family
ID=11856348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1426893A Expired - Lifetime JP2767674B2 (en) | 1993-01-29 | 1993-01-29 | Refining method of high purity stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2767674B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998022627A1 (en) * | 1996-11-20 | 1998-05-28 | Nippon Steel Corporation | Method of vacuum decarburization/refining of molten steel and apparatus therefor |
US5902374A (en) * | 1995-08-01 | 1999-05-11 | Nippon Steel Corporation | Vacuum refining method for molten steel |
JP2016194125A (en) * | 2015-04-01 | 2016-11-17 | 新日鐵住金株式会社 | Finishing refining method of chromium-containing molten steel |
CN108866277A (en) * | 2018-08-27 | 2018-11-23 | 北京科技大学 | A kind of single-mouth refining furnace and refinery practice of smelting ultralow-carbon stainless steel |
CN115992302A (en) * | 2023-01-09 | 2023-04-21 | 北京科技大学 | Method for improving refining effect through bottom blowing in RH vacuum refining process |
-
1993
- 1993-01-29 JP JP1426893A patent/JP2767674B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902374A (en) * | 1995-08-01 | 1999-05-11 | Nippon Steel Corporation | Vacuum refining method for molten steel |
WO1998022627A1 (en) * | 1996-11-20 | 1998-05-28 | Nippon Steel Corporation | Method of vacuum decarburization/refining of molten steel and apparatus therefor |
US6190435B1 (en) | 1996-11-20 | 2001-02-20 | Nippon Steel Corporation | Method of vacuum decarburization/refining of molten steel |
CN1070927C (en) * | 1996-11-20 | 2001-09-12 | 新日本制铁株式会社 | Method of vacuum decarburization refining of molten steel and apparatus therefor |
US6468467B1 (en) | 1996-11-20 | 2002-10-22 | Nippon Steel Corporation | Method and apparatus for vacuum decarburization refining of molten steel |
JP2016194125A (en) * | 2015-04-01 | 2016-11-17 | 新日鐵住金株式会社 | Finishing refining method of chromium-containing molten steel |
CN108866277A (en) * | 2018-08-27 | 2018-11-23 | 北京科技大学 | A kind of single-mouth refining furnace and refinery practice of smelting ultralow-carbon stainless steel |
CN108866277B (en) * | 2018-08-27 | 2023-10-17 | 北京科技大学 | Single-nozzle refining furnace and refining process for smelting ultra-low carbon stainless steel |
CN115992302A (en) * | 2023-01-09 | 2023-04-21 | 北京科技大学 | Method for improving refining effect through bottom blowing in RH vacuum refining process |
CN115992302B (en) * | 2023-01-09 | 2024-04-19 | 北京科技大学 | Method for improving refining effect through bottom blowing in RH vacuum refining process |
Also Published As
Publication number | Publication date |
---|---|
JP2767674B2 (en) | 1998-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997005291A1 (en) | Process for vacuum refining of molten steel | |
JPH06228629A (en) | Method for refining high purity stainless steel | |
JP3843589B2 (en) | Melting method of high nitrogen stainless steel | |
JPH05239534A (en) | Method for melting non-oriented electric steel sheet | |
JP2582316B2 (en) | Melting method of low carbon steel using vacuum refining furnace | |
JPH08109410A (en) | Finish decarburization refining of stainless steel | |
JP2819440B2 (en) | Method for decarburizing molten steel containing extremely low carbon chromium | |
JP2808197B2 (en) | Vacuum refining of molten steel using large diameter immersion tube | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JPH0153329B2 (en) | ||
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JPH05214430A (en) | Method for vacuum-refining molten steel | |
JPH05311231A (en) | Refining method of high purity steel using circulating type vacuum degassing device | |
JP3153983B2 (en) | Melting method for high purity stainless steel | |
JPH09287016A (en) | Method for melting stainless steel | |
JP2648769B2 (en) | Vacuum refining method for molten steel | |
JPH08104914A (en) | Highly efficient production of high purity molten stainless steel | |
JPH01156416A (en) | Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure | |
JP3706451B2 (en) | Vacuum decarburization method for high chromium steel | |
JP3785257B2 (en) | Method for degassing stainless steel | |
JP2724030B2 (en) | Melting method of ultra low carbon steel | |
JP2001172715A (en) | Method of manufacturing molten ultra-low carbon stainless steel | |
JPH05311227A (en) | Reduced pressure-vacuum degassing refining method for molten metal | |
JPH0741835A (en) | Method for vacuum-refining molten steel by gas injection | |
JPH1129818A (en) | Method for decarburization-refining molten stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080410 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090410 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090410 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100410 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110410 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |