JP2009263783A - Method for refining molten steel in rh vacuum degassing apparatus - Google Patents
Method for refining molten steel in rh vacuum degassing apparatus Download PDFInfo
- Publication number
- JP2009263783A JP2009263783A JP2009080772A JP2009080772A JP2009263783A JP 2009263783 A JP2009263783 A JP 2009263783A JP 2009080772 A JP2009080772 A JP 2009080772A JP 2009080772 A JP2009080772 A JP 2009080772A JP 2009263783 A JP2009263783 A JP 2009263783A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- gas
- nitrogen
- decarburization
- vacuum degassing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 143
- 239000010959 steel Substances 0.000 title claims abstract description 143
- 238000007670 refining Methods 0.000 title claims abstract description 45
- 238000009849 vacuum degassing Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 158
- 239000007789 gas Substances 0.000 claims abstract description 90
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 62
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 48
- 238000005261 decarburization Methods 0.000 claims description 68
- 229910052760 oxygen Inorganic materials 0.000 claims description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- 239000001301 oxygen Substances 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 238000010992 reflux Methods 0.000 claims description 28
- 230000014509 gene expression Effects 0.000 claims 1
- 230000001174 ascending effect Effects 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 238000007654 immersion Methods 0.000 abstract description 3
- 238000005262 decarbonization Methods 0.000 abstract 2
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 19
- 238000007664 blowing Methods 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、RH真空脱ガス装置における溶鋼の精錬方法に関し、詳しくは、RH真空脱ガス装置の上昇側浸漬管から吹き込む環流用ガスとして、窒素ガスを使用した精錬方法に関するものである。 The present invention relates to a method for refining molten steel in an RH vacuum degassing apparatus, and more particularly to a refining method using nitrogen gas as a recirculation gas blown from a rising side dip tube of an RH vacuum degassing apparatus.
近年、鋼の高純度化並びに高清浄度化が従来にも増して要求されており、この要求に対処するべく、鋼の精錬工程では、RH真空脱ガス装置を始めとする真空脱ガス設備を用いた精錬が増加している。真空脱ガス設備を用いることで、水素や窒素などのガス成分が除去されるのみならず、溶鋼を強攪拌することによって溶鋼中に懸濁する酸化物の浮上・分離が促進される、或いは、極低炭素鋼の製造が可能となるなどの理由からである。 In recent years, higher purity and higher cleanliness of steel have been demanded more than ever, and in order to meet this demand, in the steel refining process, vacuum degassing equipment such as RH vacuum degassing equipment has been installed. The refining used is increasing. By using vacuum degassing equipment, not only gas components such as hydrogen and nitrogen are removed, but also the floating and separation of oxides suspended in the molten steel are promoted by vigorously stirring the molten steel, or This is because extremely low carbon steel can be produced.
真空脱ガス設備には種々の型式があるが、鋼の精錬工程で現在最も一般的に利用されている装置はRH真空脱ガス装置である。このRH真空脱ガス装置は、真空槽の下部に配置された上昇側浸漬管及び下降側浸漬管を取鍋内の溶鋼中に浸漬させ、真空槽内を減圧するとともに上昇側浸漬管にArガスなどを還流用ガスとして吹き込み、環流用ガスによるガスリフトポンプ効果によって取鍋内の溶鋼を真空槽に導入し、真空槽内で溶鋼を減圧化に曝し、その後、下降側浸漬管を介して取鍋に溶鋼を戻すことで、溶鋼に真空脱ガス精錬を施す装置である。取鍋から真空槽内に流入し、真空槽内から取鍋に戻る溶鋼の流れを「環流」と呼んでいる。 There are various types of vacuum degassing equipment, but the most commonly used apparatus in the steel refining process is the RH vacuum degassing apparatus. In this RH vacuum degassing apparatus, an ascending-side dip tube and a descending-side dip tube disposed at the lower part of a vacuum tank are immersed in molten steel in a pan, the inside of the vacuum tank is decompressed, and Ar gas is added to the ascending-side dip pipe. Etc. as recirculation gas, the molten steel in the ladle is introduced into the vacuum tank by the gas lift pump effect of the recirculation gas, the molten steel is exposed to reduced pressure in the vacuum tank, and then the ladle is introduced through the descending dip tube It is a device that applies vacuum degassing to the molten steel by returning the molten steel to the position. The flow of molten steel that flows from the ladle into the vacuum chamber and returns to the ladle from inside the vacuum chamber is called “circular flow”.
この場合に、上昇側浸漬管から吹き込む環流用ガスとしては、一般的にArガスが使用されている(例えば、特許文献1を参照)。Arガスは不活性ガスであるので、溶鋼は酸化されず、また、溶鋼中に溶解しないので所定のガスリフトポンプ効果が得られるからである。Arガスに比較して安価である窒素ガスや圧搾空気は環流用ガスとして使用されない。空気は溶鋼を酸化させ、窒素ガスは溶鋼中に溶解するので、溶鋼中の窒素濃度を上昇させ、鋼材の特性を劣化させるからである。窒素ガスは溶鋼に溶解するので、ガスリフトポンプ効果が低下して溶鋼の環流量が減少するという問題もある。但し、窒素を化学成分として必要とする鋼では、溶鋼中の窒素含有量を高めるために、窒素ガスとArガスとの混合ガスを、環流用ガスとして上昇側浸漬管から吹き込むこともある(例えば、特許文献2を参照)。 In this case, Ar gas is generally used as the recirculation gas blown from the ascending-side dip tube (see, for example, Patent Document 1). Since Ar gas is an inert gas, the molten steel is not oxidized and does not dissolve in the molten steel, so that a predetermined gas lift pump effect can be obtained. Nitrogen gas and compressed air, which are less expensive than Ar gas, are not used as the reflux gas. This is because air oxidizes the molten steel and nitrogen gas dissolves in the molten steel, thereby increasing the nitrogen concentration in the molten steel and degrading the properties of the steel material. Since nitrogen gas dissolves in molten steel, there is also a problem that the gas lift pump effect is reduced and the flow rate of the molten steel is reduced. However, in steels that require nitrogen as a chemical component, in order to increase the nitrogen content in the molten steel, a mixed gas of nitrogen gas and Ar gas may be blown from the rising side dip tube as a recirculation gas (for example, , See Patent Document 2).
上記説明のように、RH真空脱ガス装置の環流用ガスとしては、高濃度の窒素を含有する特殊鋼の精錬を除き、窒素ガスを環流用ガスとして使用することはない。しかしながら、Arガスは窒素ガスの5〜6倍の価格であり、環流用ガスとしてArガスを使用することは、RH真空脱ガス装置における処理コストを高くする一因であった。 As described above, as a recirculation gas for the RH vacuum degassing apparatus, nitrogen gas is not used as the recirculation gas except for refining of special steel containing high concentration of nitrogen. However, the price of Ar gas is 5 to 6 times that of nitrogen gas, and the use of Ar gas as the recirculation gas is one factor that increases the processing cost of the RH vacuum degassing apparatus.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、RH真空脱ガス装置で溶鋼を精錬するにあたり、溶鋼中への窒素のピックアップを抑制し、しかも、溶鋼の環流量を減少させることなく、安価な窒素ガスを環流用ガスとして使用することのできる、RH真空脱ガス装置における溶鋼の精錬方法を提供することである。 The present invention has been made in view of the above circumstances. The purpose of the present invention is to suppress the pickup of nitrogen into the molten steel when refining the molten steel with the RH vacuum degassing apparatus, and to reduce the ring flow rate of the molten steel. It is an object of the present invention to provide a method for refining molten steel in an RH vacuum degassing apparatus that can use inexpensive nitrogen gas as a recirculation gas without reducing it.
上記課題を解決するための第1の発明に係るRH真空脱ガス装置における溶鋼の精錬方法は、取鍋とRH真空脱ガス装置の真空槽との間で溶鋼を環流させながら、未脱酸溶鋼を減圧下で脱炭処理し、該脱炭処理の終了後に脱酸剤を添加して溶鋼を脱酸処理する、RH真空脱ガス装置における溶鋼の精錬方法において、上昇側浸漬管から吹き込む環流用ガスとして窒素ガスを単独で使用して前記脱炭処理を実施し、環流用ガスを窒素ガスからArガスへと切り替えた後に、脱酸剤を添加して溶鋼を脱酸処理することを特徴とするものである。 The method for refining molten steel in the RH vacuum degassing apparatus according to the first aspect of the present invention for solving the above-mentioned problem is the non-deoxidized molten steel while circulating the molten steel between the ladle and the vacuum tank of the RH vacuum degassing apparatus. In the refining method of molten steel in the RH vacuum degassing apparatus, the decarburization treatment is performed by adding a deoxidizer after completion of the decarburization treatment, and the molten steel is refined in the RH vacuum degassing apparatus. The decarburization treatment is carried out using nitrogen gas alone as a gas, and after switching the reflux gas from nitrogen gas to Ar gas, the deoxidizer is added to deoxidize the molten steel. To do.
第2の発明に係るRH真空脱ガス装置における溶鋼の精錬方法は、第1の発明において、環流用ガスとして窒素ガスを単独で使用したときの環流時間(tN2)が下記の(1)式の範囲を満足することを特徴とするものである。
ΔN≧[(1-Kc)/1.2]×[3.15×10-0.0014/(1.776+300×10α)]×tN2 …(1)
ここで、αは下記の(2)式で示される。
α=-0.002-0.17×[%O]+log[%O] …(2)
但し、(1)式及び(2)式において、ΔNは、窒素濃度の規格上限値と脱炭処理前の溶鋼中窒素濃度との差分値(ppm)、Kcは、脱炭反応速度定数(0.1〜0.5)、tN2は、窒素ガス単独の環流時間(分)、[%O]は、脱炭反応終了時の溶鋼中のフリー酸素濃度(質量%)である。
The method for refining molten steel in the RH vacuum degassing apparatus according to the second invention is the following formula (1) in which the reflux time (t N2 ) when nitrogen gas is used alone as the reflux gas in the first invention is: It satisfies the following range.
ΔN ≧ [(1-Kc) /1.2 ] × [3.15 × 10 −0.0014 /(1.776+300×10 α )] × t N2 (1)
Here, α is expressed by the following equation (2).
α = -0.002-0.17 × [% O] + log [% O] (2)
However, in the equations (1) and (2), ΔN is the difference value (ppm) between the standard upper limit value of the nitrogen concentration and the nitrogen concentration in the molten steel before decarburization treatment, and Kc is the decarburization reaction rate constant (0 0.1 to 0.5), t N2 is the reflux time (minutes) of nitrogen gas alone, and [% O] is the free oxygen concentration (mass%) in the molten steel at the end of the decarburization reaction.
本発明によれば、溶鋼が未脱酸状態であり、溶鋼中のフリー酸素濃度が高い脱炭処理の時期に限って、環流用ガスとして窒素ガスを使用するので、溶鋼中のフリー酸素が表面活性元素として機能し、窒素ガスの溶鋼への溶解を阻止するので、窒素ガスの溶鋼への溶解は極めて少なく、溶鋼中の窒素濃度のピックアップが抑制されるとともに、Arガスを環流用ガスとして使用した場合と同等に溶鋼を環流させることができる。その結果、窒素ガスはArガスに比較して安価であるので、RH真空脱ガス装置における処理コストを大幅に削減することが可能となる。 According to the present invention, the molten steel is in a non-deoxidized state, and nitrogen gas is used as the recirculation gas only during the decarburization process when the free oxygen concentration in the molten steel is high. Since it functions as an active element and prevents the dissolution of nitrogen gas in molten steel, the dissolution of nitrogen gas in molten steel is extremely low, and the concentration of nitrogen in the molten steel is suppressed, and Ar gas is used as the recirculation gas. The molten steel can be circulated in the same manner as the above. As a result, since nitrogen gas is cheaper than Ar gas, it is possible to greatly reduce the processing cost in the RH vacuum degassing apparatus.
以下、本発明を説明する。本発明者等は、RH真空脱ガス装置の環流用ガスとして窒素ガスを使用することを検討した。 The present invention will be described below. The present inventors examined the use of nitrogen gas as the reflux gas for the RH vacuum degassing apparatus.
溶鋼中にフリー酸素(「溶存酸素」ともいう)が存在する場合、フリー酸素は、表面活性元素であるので、溶鋼中への窒素ガスの溶解を阻害することは知られており、低窒素鋼溶製の製造プロセスでも、転炉からの出鋼時に大気からの窒素ガスのピックアップを抑止する目的で、未脱酸のまま出鋼することが採用されている。そこで、溶鋼への吸窒が抑止できる条件であるならば、環流用ガスとして安価な窒素ガスが適用可能ではないかと考えた。 When free oxygen (also referred to as “dissolved oxygen”) is present in the molten steel, it is known that free oxygen is a surface active element and thus inhibits the dissolution of nitrogen gas in the molten steel. Even in the manufacturing process of smelting, for the purpose of suppressing the pick-up of nitrogen gas from the atmosphere at the time of steel output from a converter, it is adopted that the steel is left undeoxidized. Then, if it was the conditions which can suppress nitrogen absorption to molten steel, I thought that cheap nitrogen gas was applicable as a recirculation gas.
炭素濃度が0.003質量%以下の極低炭素鋼や、大気圧下での転炉脱炭精錬だけでは溶製困難な炭素濃度が0.03質量%以下の低炭素鋼では、RH真空脱ガス装置において未脱酸の状態で脱炭精錬が行われている。この脱炭精錬においては、溶鋼中にフリー酸素が存在することから窒素の溶解が阻害されること、また、仮に窒素ガスが溶解したとしても、脱炭反応により生ずるCOガス気泡によって脱窒反応が期待できることから、RH真空脱ガス装置における脱炭精錬時には、環流用ガスとして窒素ガスの使用が可能と考え、試験を実施した。 For ultra-low carbon steel with a carbon concentration of 0.003% by mass or less, or low carbon steel with a carbon concentration of 0.03% by mass or less that is difficult to be melted only by converter decarburization under atmospheric pressure, RH vacuum desorption Decarburization refining is performed in a gas device in an undeoxidized state. In this decarburization refining, the dissolution of nitrogen is inhibited due to the presence of free oxygen in the molten steel, and even if nitrogen gas is dissolved, the denitrification reaction is caused by CO gas bubbles generated by the decarburization reaction. Since it can be expected, at the time of decarburization refining in the RH vacuum degassing apparatus, it was considered that nitrogen gas could be used as a recirculation gas, and a test was conducted.
RH真空脱ガス装置における脱炭精錬時、窒素ガスを環流用ガスとして使用する時間を変化させて溶鋼中の窒素濃度の上昇量を調査した。その結果、脱炭精錬時、溶鋼中にフリー酸素が150ppm以上確保されていれば、溶鋼中の窒素濃度はほとんど上昇しないことが確認できた。尚、極低炭素鋼などを減圧下で脱炭処理する場合、溶鋼中のフリー酸素濃度を150ppm以上とすることは、脱炭反応を安定化するための一般的な制御手法であり、何ら特別のことではなく、通常行われていることである。また、フリー酸素が150ppm以下の場合でも、フリー酸素が存在することから窒素の上昇量は少なく、窒素規格の上限値が高い、或いは窒素規格の上限値までには余裕があり、或る程度の窒素の上昇が許容できる場合には、環流用ガスとして窒素ガスを適用可能である。 At the time of decarburization refining in the RH vacuum degassing apparatus, the amount of increase in the nitrogen concentration in the molten steel was investigated by changing the time during which nitrogen gas was used as the reflux gas. As a result, at the time of decarburization refining, it was confirmed that the nitrogen concentration in the molten steel hardly increased if 150 ppm or more of free oxygen was secured in the molten steel. In addition, when decarburizing a very low carbon steel or the like under reduced pressure, setting the free oxygen concentration in the molten steel to 150 ppm or more is a general control method for stabilizing the decarburization reaction. It is not a matter of what is being done. Even when free oxygen is 150 ppm or less, the amount of increase in nitrogen is small because free oxygen is present, the upper limit value of the nitrogen standard is high, or there is a margin to the upper limit value of the nitrogen standard. If the increase in nitrogen is acceptable, nitrogen gas can be used as the reflux gas.
また、環流用ガスとして窒素ガスを使用しても、Arガスを環流用ガスとして行った脱炭処理と比較して脱炭反応速度は同一レベルであることを確認した。 Moreover, even if nitrogen gas was used as the recirculation gas, it was confirmed that the decarburization reaction rate was at the same level as compared with the decarburization treatment performed using Ar gas as the recirculation gas.
本発明は、これらの検討結果に基づいてなされたものであり、RH真空脱ガス装置において、未脱酸溶鋼を減圧下で脱炭処理し、この脱炭処理の終了後に脱酸剤を添加して溶鋼を脱酸処理して溶鋼を溶製するにあたり、脱炭処理の期間は、上昇側浸漬管から吹き込む環流用ガスとして窒素ガスを単独で使用し、環流用ガスを窒素ガスからArガスへと切り替えた後に、脱酸剤を添加して溶鋼を脱酸処理することを特徴とする。 The present invention has been made on the basis of these examination results. In the RH vacuum degassing apparatus, the deoxidized molten steel is decarburized under reduced pressure, and a deoxidizer is added after the decarburization process is completed. In deoxidizing the molten steel and melting the molten steel, during the decarburization process, nitrogen gas is used alone as the recirculation gas blown from the ascending side dip tube, and the recirculation gas is changed from nitrogen gas to Ar gas. After switching, the deoxidizer is added to deoxidize the molten steel.
以下、本発明を具体的に説明する。 The present invention will be specifically described below.
高炉から出銑された溶銑を転炉において、酸素ガスの上吹き、底吹き、或いは上底吹きにより脱炭精錬し、得られた溶鋼を転炉から取鍋に出鋼する。本発明で対象とする鋼種は、炭素濃度が0.003質量%以下の極低炭素鋼、及び、大気圧下での転炉脱炭精錬だけでは溶製困難な炭素濃度が0.03質量%以下の低炭素鋼であり、従って、転炉においては0.03〜0.08質量%まで脱炭精錬する。0.03質量%未満まで転炉で脱炭すると、鉄の酸化が著しく、歩留りの低下や清浄性の低下を招くので好ましくなく、一方、0.08質量%を越えると次工程のRH真空脱ガス装置での脱炭精錬に長時間を費やすので好ましくない。 In the converter, the hot metal discharged from the blast furnace is decarburized and refined by top blowing, bottom blowing, or top bottom blowing of oxygen gas, and the resulting molten steel is discharged from the converter to a ladle. The steel types targeted by the present invention are extremely low carbon steel having a carbon concentration of 0.003 mass% or less, and a carbon concentration of 0.03 mass%, which is difficult to be melted only by converter decarburization and refining at atmospheric pressure. It is the following low carbon steel, therefore, decarburization refining to 0.03-0.08 mass% in the converter. Decarburization to less than 0.03% by mass in a converter is not preferable because iron oxidation is remarkable, resulting in a decrease in yield and cleanliness. On the other hand, when it exceeds 0.08% by mass, RH vacuum desorption in the next step is not preferable. It is not preferable because it takes a long time for decarburization refining with a gas device.
得られた溶鋼を、図1に示すRH真空脱ガス装置に搬送し、RH真空脱ガス装置にて減圧下での脱炭精錬を実施する。尚、図1は、本発明を実施する際に用いたRH真空脱ガス装置の概略断面図である。 The obtained molten steel is conveyed to the RH vacuum degassing apparatus shown in FIG. 1, and decarburization refining is performed under reduced pressure by the RH vacuum degassing apparatus. FIG. 1 is a schematic sectional view of an RH vacuum degassing apparatus used in carrying out the present invention.
図1に示すように、RH真空脱ガス装置1は、上部槽6及び下部槽7からなる真空槽5と、下部槽7の下部に設けられた上昇側浸漬管8及び下降側浸漬管9とを備え、上部槽6には、排気装置(図示せず)と接続するダクト11と、原料投入口12と、真空槽5の内部を上下方向に移動可能な上吹きランス13とが備えられ、また、上昇側浸漬管8には環流用ガス吹込管10が設けられている。環流用ガス吹込管10からは窒素ガスまたはArガスが環流用ガスとして上昇側浸漬管8の内部に吹き込まれる構造となっている。上吹きランス13は、その先端に設置されたラバールノズル(図示せず)から真空槽5を環流する溶鋼3に向けて酸素ガス、空気、酸素富化空気、Arガスで希釈した酸素ガスなどの酸素含有ガスを吹き付けて溶鋼3のフリー酸素濃度を高め、減圧下での脱炭精錬(以下、「真空脱炭精錬」とも記す)を促進させるための装置であるが、上吹きランス13が設置されていなくても、溶鋼中に含有されるフリー酸素だけでも溶鋼3の真空脱炭精錬を行うことができることから、本発明を実施する上では、必ずしも必要な装置ではない。このようにしてRH真空脱ガス装置1が構成されている。
As shown in FIG. 1, the RH vacuum degassing apparatus 1 includes a vacuum tank 5 including an
ここで、真空脱炭精錬は、溶鋼中の炭素と溶鋼中のフリー酸素とが反応(C+O=CO)して起こることから、溶鋼中のフリー酸素濃度が高いほど真空脱炭精錬の反応速度が速くなる。そのため、転炉で脱炭精錬した後の溶鋼3にAlやSiなどの脱酸剤を添加せず、未脱酸状態のままRH真空脱ガス装置1に搬送する。AlやSiなどの脱酸剤で脱酸しても、真空脱炭精錬によって溶鋼中のAl及びSiは酸化・除去されてしまうために無意味である。
Here, vacuum decarburization refining occurs when carbon in molten steel reacts with free oxygen in molten steel (C + O = CO), so the higher the free oxygen concentration in molten steel, the higher the reaction rate of vacuum decarburization refining. Get faster. Therefore, a deoxidizer such as Al or Si is not added to the
RH真空脱ガス装置1において、先ず、溶鋼3を収納する取鍋2を真空槽5の直下に搬送し、取鍋2を昇降装置(図示せず)によって上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋2に収容された溶鋼3に浸漬させる。次いで、環流用ガス吹込管10から上昇側浸漬管8の内部に窒素ガスを環流用ガスとして吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋2に収容された溶鋼3は、環流用ガス吹込管10から吹き込まれる窒素ガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を介して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が施される。取鍋2の内部には転炉精錬で発生したスラグ4が一部混入し、溶鋼3の湯面を覆っている。
In the RH vacuum degassing apparatus 1, first, the ladle 2 containing the
溶鋼3の環流が始まり、溶鋼3が真空槽5の内部に流入すると、真空槽5の内部の圧力は大気圧よりも低いので、溶鋼中における炭素とフリー酸素との平衡状態は、大気圧の場合に比べて炭素濃度とフリー酸素濃度との積が小さくなる方向に移り、溶鋼3が未脱酸の状態であることから、溶鋼中の炭素とフリー酸素との反応つまり脱炭反応が進行する。その際、溶鋼中のフリー酸素濃度を高めるために、或いは、真空脱炭精錬中のフリー酸素濃度を150ppm以上に確保するために、上吹きランス13から酸素含有ガスを真空槽5の内部を還流する溶鋼3に向けて吹き付けてもよい。
When the reflux of the
このようにして溶鋼3の環流を継続することで真空脱炭精錬が進行し、真空脱炭精錬によって発生したCOガスは排ガスとともにダクト11を経由して排気される。真空脱炭精錬によって溶鋼中の炭素濃度が所定値まで低減したなら、環流用ガスを窒素ガス単独からArガス単独へと切り替える。切り替えの際の一時期に、窒素ガスとArガスとの混合ガスが吹き込まれるが何ら問題ない。
By continuing the reflux of the
環流用ガスをArガスに切り替えた後、数秒〜十数秒経過したなら、つまり環流する溶鋼3に懸濁する窒素ガスが真空槽5に放出されたと推定されたなら、原料投入口12から脱酸剤として金属Alを添加して溶鋼3を脱酸する。この脱酸剤の添加により、溶鋼中のフリー酸素濃度は実質的にゼロになり、真空脱炭精錬が終了する。Al脱酸後、必要に応じて原料投入口12から合金鉄などを投入して溶鋼成分の微調整を実施した後に、RH真空脱ガス装置1における精錬を終了する。尚、本発明で対象とする極低炭素鋼及び低炭素鋼はAlキルド鋼であり、脱酸剤としては金属Alが使用される。
If several to ten or more seconds have elapsed after switching the reflux gas to Ar gas, that is, if it is estimated that the nitrogen gas suspended in the circulating
ここで、窒素ガスの溶鋼3への溶解速度について考察する。溶鋼3への窒素ガスの溶解反応は下記の(3)式で表される。
N2(gas)=2[N] …(3)
この(3)式で示す窒素ガスの溶鋼への溶解反応(吸窒反応)は、速度論的に一次反応であり(但し、脱窒反応は二次反応)、下記の(4)式で表されることが知られている。
dN/dt=A×KN’ …(4)
ここで、(4)式において、Aは、反応界面積の影響を含む変数、KN’は、見掛けの反応速度定数である。
Here, the dissolution rate of nitrogen gas into the
N 2 (gas) = 2 [N] (3)
The dissolution reaction (nitrogen absorption reaction) of nitrogen gas in the molten steel shown by the equation (3) is a kinetic primary reaction (however, the denitrification reaction is a secondary reaction) and is expressed by the following equation (4). It is known that
dN / dt = A x K N '(4)
Here, in the formula (4), A is a variable including the influence of the reaction interface area, and K N ′ is an apparent reaction rate constant.
溶鋼中に酸素(O)、硫黄(S)などの界面活性元素が多量に含まれる場合、脱窒反応及び吸窒反応は著しく阻害されることが知られており、そのような場合は、KN’は下記の(5)式で表わされる。
KN’=3.15×fN 2×[1/(1+300aO+130aS)] …(5)
但し、(5)式において、fNは、溶鉄中の窒素の活量係数、aOは、溶鉄中の酸素の活量、aSは、溶鉄中の硫黄の活量である。尚、溶鉄中の或る成分(=成分iとする)の活量ai及び活量係数fiは、下記の(6)式及び(7)式で表される。
ai=fi×[%i] …(6)
log fi=Σei j×[%j] …(7)
但し、(6)式及び(7)式において、ei jは、成分jが成分iに及ぼす成分iの相互作用助係数、[%i]は、成分iの濃度(質量%)、[%j]は、成分jの濃度(質量%)である。表1に、溶鋼中の窒素、酸素、硫黄に及ぼす成分jの相互作用助係数を示す。
It is known that the denitrification reaction and the nitrogen absorption reaction are remarkably inhibited when molten steel contains a large amount of surface active elements such as oxygen (O) and sulfur (S). N ′ is expressed by the following equation (5).
K N '= 3.15 × f N 2 × [1 / (1 + 300a O + 130a S )] (5)
However, in (5), f N is the activity coefficient of nitrogen in molten iron, a O is the activity of oxygen in the molten iron, a S is a activity of sulfur in the molten iron. The activity a i and the activity coefficient f i of a certain component (= component i) in the molten iron are expressed by the following equations (6) and (7).
a i = f i × [% i] (6)
log f i = Σe i j × [% j] (7)
However, in the formulas (6) and (7), e i j is an interaction coefficient of the component i that the component j exerts on the component i, [% i] is the concentration (mass%) of the component i, [% j] is the concentration (mass%) of component j. Table 1 shows the interaction coefficient of component j affecting nitrogen, oxygen, and sulfur in molten steel.
表1に示す相互作用助係数と脱炭処理中の対象溶鋼の成分から、溶鋼中の窒素の活量係数fN、硫黄の活量aS、酸素の活量aOを求めると、logfN=−0.0007、logaS=−2.236、logaO=−0.002−0.17×[%O]+log[%O]となり、その結果、KN’は下記の(8)式で表わされる。
KN’=3.15×10-0.0014/(1.776+300×10α) …(8)
但し、(8)式において、αは下記の(2)式で表される。
α=-0.002-0.17×[%O]+log[%O] …(2)
一方、(4)式における変数Aは、溶鋼中の脱炭反応により生じるCOガス気泡の影響を強く受け、脱炭反応速度Kcとの間に下記の(9)式の相関が得られた。
A=(1-Kc)/1.2 …(9)
但し、脱炭反応速度Kcは下記の(10)式で表される。
Kc=ln([%C]t-[%C]0)/t (0.1≦Kc≦0.5) …(10)
ここで、tは、脱炭処理時間(分)、[%C]tは、脱炭反応終了時の溶鋼中の炭素濃度(質量%)、[%C]0は、脱炭反応開始時の溶鋼中の炭素濃度(質量%)である。
When the activity coefficient f N , the sulfur activity a S , and the oxygen activity a O in the molten steel are obtained from the interaction aid coefficient shown in Table 1 and the components of the target molten steel being decarburized, logf N = −0.0007, loga S = −2.236, loga O = −0.002−0.17 × [% O] + log [% O], and as a result, K N ′ is the following formula (8) It is represented by
K N '= 3.15 × 10 -0.0014 /(1.776+300×10 α ) (8)
However, in the formula (8), α is represented by the following formula (2).
α = -0.002-0.17 × [% O] + log [% O] (2)
On the other hand, the variable A in the equation (4) was strongly influenced by the CO gas bubbles generated by the decarburization reaction in the molten steel, and the following equation (9) correlation was obtained with the decarburization reaction rate Kc.
A = (1-Kc) /1.2 (9)
However, the decarburization reaction rate Kc is represented by the following formula (10).
Kc = ln ([% C] t -[% C] 0 ) / t (0.1 ≦ Kc ≦ 0.5) (10)
Here, t is the decarburization time (minutes), [% C] t is the carbon concentration (mass%) in the molten steel at the end of the decarburization reaction, and [% C] 0 is the time at the start of the decarburization reaction. This is the carbon concentration (mass%) in the molten steel.
(4)式、(8)式、(9)式から、溶鋼中の窒素上昇速度は下記の(11)式で表される。
UN2=dN/dt=[(1-Kc)/1.2]×[3.15×10-0.0014/(1.776+300×10α)] …(11)
但し、(11)式において、UN2は、溶鋼中の窒素上昇速度(ppm/分)、Kcは、脱炭反応速度定数(0.1〜0.5)、[%O]は、脱炭反応終了時の溶鋼中のフリー酸素濃度(質量%)である。
From the equations (4), (8), and (9), the rate of nitrogen increase in the molten steel is expressed by the following equation (11).
U N2 = dN / dt = [(1-Kc) /1.2 ] × [3.15 × 10 −0.0014 /(1.776+300×10 α )] (11)
However, in the formula (11), U N2 is the rate of nitrogen increase in molten steel (ppm / min), Kc is the decarburization reaction rate constant (0.1 to 0.5), and [% O] is decarburization. This is the free oxygen concentration (mass%) in the molten steel at the end of the reaction.
図2は、窒素ガスを環流用ガスとして使用した際に、脱炭反応終了時の溶鋼中フリー酸素濃度を変化させたときの溶鋼中窒素濃度の上昇速度を、上記の(11)式から算出したものである。 FIG. 2 shows the rate of increase of the nitrogen concentration in the molten steel when the concentration of free oxygen in the molten steel at the end of the decarburization reaction is changed from the above equation (11) when nitrogen gas is used as the reflux gas. It is a thing.
図2に示すように、脱炭反応終了時の溶鋼中フリー酸素濃度が高くなるほど窒素の上昇速度は遅く、脱炭反応終了時のフリー酸素濃度が150ppm以上になると、窒素上昇速度は0.4ppm/分以下となる。但し、脱炭反応終了時の溶鋼中フリー酸素濃度が高くなるほど窒素の上昇速度は遅くなるので、好ましくは、真空脱炭精錬時の溶鋼中フリー酸素濃度を300ppm以上確保することである。尚、図2では、Kc=0、つまり脱炭反応が進行しない場合のデータを示しているが、実際には、Kc=0となることはなく、このデータは、仮に脱炭反応が進行しない場合でも窒素上昇速度は限られた値であることを示すデータである。脱炭反応速度定数が大きくなるほど窒素上昇速度は抑制されることが分かる。 As shown in FIG. 2, the higher the free oxygen concentration in the molten steel at the end of the decarburization reaction, the slower the increase rate of nitrogen. When the free oxygen concentration at the end of the decarburization reaction is 150 ppm or more, the nitrogen increase rate is 0.4 ppm. / Min or less. However, as the free oxygen concentration in the molten steel at the end of the decarburization reaction becomes higher, the rate of increase of nitrogen becomes slower. Therefore, preferably, the free oxygen concentration in the molten steel at the time of vacuum decarburization refining is secured at 300 ppm or more. Note that FIG. 2 shows data when Kc = 0, that is, when the decarburization reaction does not proceed. However, actually, Kc = 0 does not occur, and this data does not cause the decarburization reaction to proceed. Even in this case, the data indicates that the rate of increase in nitrogen is a limited value. It can be seen that as the decarburization reaction rate constant increases, the nitrogen rise rate is suppressed.
このように、窒素ガスを環流用ガスとして使用した場合の溶鋼中窒素濃度の上昇量は少ないものであるが、本発明で対象とする極低炭素鋼及び低炭素鋼の窒素濃度の上限値は様々であり、窒素ガスを環流用ガスとして使用すると、窒素の上限値を超える恐れもある。 Thus, although the amount of increase in nitrogen concentration in molten steel when nitrogen gas is used as the recirculation gas is small, the upper limit of the nitrogen concentration of the ultra-low carbon steel and low carbon steel targeted in the present invention is When nitrogen gas is used as a recirculation gas, the upper limit of nitrogen may be exceeded.
(11)式より求まる窒素上昇速度(UN2)と、窒素濃度の規格上限値と脱炭処理前の溶鋼中窒素濃度との差分値(ΔN)とから、溶鋼中窒素濃度が上限値を超えないようにするための窒素ガス単独の環流時間(tN2)は、下記の(1)式によって定まる。即ち、窒素ガス単独の環流時間(tN2)は、下記の(1)式の範囲を満足することが好ましい。
ΔN≧[(1-Kc)/1.2]×[3.15×10-0.0014/(1.776+300×10α)]×tN2 …(1)
但し、(1)式において、ΔNは、窒素濃度の規格上限値と脱炭処理前の溶鋼中窒素濃度との差分値(ppm)、Kcは、脱炭反応速度定数(0.1〜0.5)、tN2は、窒素ガス単独の環流時間(分)である。
The nitrogen concentration in the molten steel exceeds the upper limit value from the rate of increase in nitrogen (U N2 ) obtained from the equation (11) and the difference value (ΔN) between the standard upper limit value of the nitrogen concentration and the nitrogen concentration in the molten steel before decarburization treatment. The recirculation time (t N2 ) of nitrogen gas alone for preventing it is determined by the following equation (1). That is, it is preferable that the reflux time (t N2 ) of nitrogen gas alone satisfies the range of the following formula (1).
ΔN ≧ [(1-Kc) /1.2 ] × [3.15 × 10 −0.0014 /(1.776+300×10 α )] × t N2 (1)
However, in the equation (1), ΔN is a difference value (ppm) between the standard upper limit value of the nitrogen concentration and the nitrogen concentration in the molten steel before the decarburization treatment, and Kc is a decarburization reaction rate constant (0.1 to 0. 0. 5), t N2 is the reflux time (minutes) of nitrogen gas alone.
以上説明したように、本発明によれば、溶鋼が未脱酸状態であり、溶鋼中のフリー酸素濃度が高い脱炭処理の時期に限って環流用ガスとして窒素ガスを使用するので、溶鋼中のフリー酸素が表面活性元素として機能し、窒素ガスの溶鋼への溶解を阻止するので、窒素ガスの溶鋼への溶解は極めて少なく、溶鋼中の窒素濃度のピックアップが抑制されるとともに、Arガスを環流用ガスとして使用した場合と同等に溶鋼を環流させることが可能となる。 As described above, according to the present invention, the molten steel is in a non-deoxidized state, and nitrogen gas is used as a recirculation gas only during the decarburization process when the free oxygen concentration in the molten steel is high. Free oxygen functions as a surface active element and prevents the dissolution of nitrogen gas into the molten steel. Therefore, the dissolution of nitrogen gas into the molten steel is extremely low, and the pickup of the nitrogen concentration in the molten steel is suppressed, and Ar gas is reduced. It is possible to recirculate molten steel in the same manner as when used as a recirculation gas.
図1に示すRH真空脱ガス装置を用い、約350トンの取鍋内の極低炭素溶鋼に本発明を適用した。 The present invention was applied to ultra-low carbon molten steel in a ladle of about 350 tons using the RH vacuum degassing apparatus shown in FIG.
転炉から出鋼された、炭素濃度が0.03〜0.06質量%の未脱酸の溶鋼をRH真空脱ガス装置に搬送し、窒素ガスのみを環流用ガスとして真空脱炭精錬した。この脱炭処理中、溶鋼中炭素濃度が0.003質量%以下になった時点で、還流用ガスを窒素ガスからArガスに切り替え、Arガスに切り替えた後、15秒経過した時点で金属Alを原料投入口から溶鋼に添加してAl脱酸し、その後、必要に応じて成分調整を施し、極低炭素溶鋼を溶製した。 Undeoxidized molten steel having a carbon concentration of 0.03 to 0.06% by mass, which was produced from the converter, was transported to an RH vacuum degassing apparatus, and vacuum decarburized and refined using only nitrogen gas as a recirculation gas. During the decarburization treatment, when the carbon concentration in the molten steel becomes 0.003 mass% or less, the reflux gas is switched from nitrogen gas to Ar gas, and after switching to Ar gas, the metal Al is added when 15 seconds elapses. Was added to the molten steel from the raw material charging port to deoxidize Al, and then the components were adjusted as necessary to melt extremely low carbon molten steel.
表2に、環流用ガスとしての窒素ガスの吹き込み流量、吹き込み時間、そのときの脱炭速度、窒素ガス吹き込み終了時の溶鋼中酸素濃度、窒素ガス吹き込み中の溶鋼中窒素濃度の上昇量(実測値)を示す。また、表2には、(1)式の右辺により算出される窒素ガス吹き込み中の溶鋼中窒素濃度の上昇量(計算値)を併せて示す。 Table 2 shows the flow rate of nitrogen gas as the recirculation gas, the blowing time, the decarburization speed at that time, the oxygen concentration in the molten steel at the end of the nitrogen gas blowing, and the increase in the nitrogen concentration in the molten steel during the nitrogen gas blowing (actual measurement) Value). Table 2 also shows the increase amount (calculated value) of the nitrogen concentration in the molten steel during nitrogen gas blowing calculated by the right side of the equation (1).
表2に示すように、環流用ガスとして、毎分1600NLの窒素ガスを16分間吹き込んで極低炭素鋼の真空脱炭精錬を実施しても、溶鋼中の窒素のピックアップは高々4ppm程度であり、真空脱炭精錬時においては、窒素ガスを環流用ガスとしても問題のないことが確認できた。また、(1)式の右辺により算出される窒素のピックアップ量(計算値)と実測値とは良く一致しており、(1)式を用いることで、窒素ガスによる環流時の窒素のピックアップ量を制度良く推定できることも確認できた。 As shown in Table 2, even if the vacuum decarburization refining of ultra-low carbon steel was performed by bubbling 1600 NL of nitrogen gas per minute for 16 minutes as the reflux gas, the pickup of nitrogen in the molten steel was about 4 ppm at most. At the time of vacuum decarburization refining, it was confirmed that there was no problem even if nitrogen gas was used as the reflux gas. Further, the nitrogen pickup amount (calculated value) calculated by the right side of the equation (1) is in good agreement with the actual measurement value, and by using the equation (1), the amount of nitrogen pickup at the time of reflux by nitrogen gas is used. It was also confirmed that the system can be estimated systematically.
従来、極低炭素鋼の真空脱炭精錬には、環流用ガスとしてArガスを使用しており、本発明を適用することにより、極低炭素鋼の製造コストを大幅に削減することが可能となった。 Conventionally, vacuum gas decarburization refining of ultra-low carbon steel uses Ar gas as a recirculation gas. By applying the present invention, it is possible to significantly reduce the production cost of ultra-low carbon steel. became.
1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹込管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2
Claims (2)
ΔN≧[(1-Kc)/1.2]×[3.15×10-0.0014/(1.776+300×10α)]×tN2 …(1)
ここで、αは下記の(2)式で示される。
α=-0.002-0.17×[%O]+log[%O] …(2)
但し、(1)式及び(2)式において、
ΔN:窒素濃度の規格上限値と脱炭処理前の溶鋼中窒素濃度との差分値(ppm)
Kc:脱炭反応速度定数(0.1〜0.5)
tN2:窒素ガス単独の環流時間(分)
[%O]:脱炭反応終了時の溶鋼中のフリー酸素濃度(質量%) 2. The molten steel in the RH vacuum degassing apparatus according to claim 1, wherein the reflux time (t N2 ) when nitrogen gas is used alone as the reflux gas satisfies the range of the following formula (1): Refining method.
ΔN ≧ [(1-Kc) /1.2 ] × [3.15 × 10 −0.0014 /(1.776+300×10 α )] × t N2 (1)
Here, α is expressed by the following equation (2).
α = -0.002-0.17 × [% O] + log [% O] (2)
However, in the expressions (1) and (2),
ΔN: Difference value (ppm) between the standard upper limit value of nitrogen concentration and the nitrogen concentration in molten steel before decarburization
Kc: Decarburization reaction rate constant (0.1-0.5)
t N2 : Nitrogen gas recirculation time (min)
[% O]: Free oxygen concentration (% by mass) in molten steel at the end of the decarburization reaction
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009080772A JP5428447B2 (en) | 2008-03-31 | 2009-03-30 | Method for refining molten steel in RH vacuum degassing equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008089114 | 2008-03-31 | ||
JP2008089114 | 2008-03-31 | ||
JP2009080772A JP5428447B2 (en) | 2008-03-31 | 2009-03-30 | Method for refining molten steel in RH vacuum degassing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009263783A true JP2009263783A (en) | 2009-11-12 |
JP5428447B2 JP5428447B2 (en) | 2014-02-26 |
Family
ID=41389983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009080772A Active JP5428447B2 (en) | 2008-03-31 | 2009-03-30 | Method for refining molten steel in RH vacuum degassing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5428447B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446216C1 (en) * | 2010-10-11 | 2012-03-27 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Method of metal degassing in ladle |
CN103866091A (en) * | 2014-03-31 | 2014-06-18 | 中冶南方工程技术有限公司 | Method and device for supplying nitrogen and argon gases by virtue of RH (Ruhrstahl Heraeus) vacuum chamber insert tube |
CN111944955A (en) * | 2020-08-27 | 2020-11-17 | 湖南华菱涟源钢铁有限公司 | RH vacuum refining method |
CN114703342A (en) * | 2022-04-15 | 2022-07-05 | 北京科技大学 | Method for removing impurities from molten steel and metallurgical method |
WO2022249798A1 (en) * | 2021-05-26 | 2022-12-01 | Jfeスチール株式会社 | Method for refining molten iron |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617113A (en) * | 1992-06-30 | 1994-01-25 | Kawasaki Steel Corp | Vacuum degrassing treating method of molten steel |
JPH06192724A (en) * | 1992-12-25 | 1994-07-12 | Kawasaki Steel Corp | Method for controlling carbon concentration at end point in rh degassing treatment |
JPH08100211A (en) * | 1994-09-30 | 1996-04-16 | Nkk Corp | Nitrogen control method for rh vacuum degassing equipment |
JPH08311529A (en) * | 1995-05-12 | 1996-11-26 | Sumitomo Metal Ind Ltd | Gas bubbling method in rh vacuum vessel |
JPH1192821A (en) * | 1997-09-12 | 1999-04-06 | Nkk Corp | Production of clean steel in rh degassing apparatus |
-
2009
- 2009-03-30 JP JP2009080772A patent/JP5428447B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617113A (en) * | 1992-06-30 | 1994-01-25 | Kawasaki Steel Corp | Vacuum degrassing treating method of molten steel |
JPH06192724A (en) * | 1992-12-25 | 1994-07-12 | Kawasaki Steel Corp | Method for controlling carbon concentration at end point in rh degassing treatment |
JPH08100211A (en) * | 1994-09-30 | 1996-04-16 | Nkk Corp | Nitrogen control method for rh vacuum degassing equipment |
JPH08311529A (en) * | 1995-05-12 | 1996-11-26 | Sumitomo Metal Ind Ltd | Gas bubbling method in rh vacuum vessel |
JPH1192821A (en) * | 1997-09-12 | 1999-04-06 | Nkk Corp | Production of clean steel in rh degassing apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446216C1 (en) * | 2010-10-11 | 2012-03-27 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Method of metal degassing in ladle |
CN103866091A (en) * | 2014-03-31 | 2014-06-18 | 中冶南方工程技术有限公司 | Method and device for supplying nitrogen and argon gases by virtue of RH (Ruhrstahl Heraeus) vacuum chamber insert tube |
CN111944955A (en) * | 2020-08-27 | 2020-11-17 | 湖南华菱涟源钢铁有限公司 | RH vacuum refining method |
WO2022249798A1 (en) * | 2021-05-26 | 2022-12-01 | Jfeスチール株式会社 | Method for refining molten iron |
JPWO2022249798A1 (en) * | 2021-05-26 | 2022-12-01 | ||
JP7384294B2 (en) | 2021-05-26 | 2023-11-21 | Jfeスチール株式会社 | Molten iron refining method |
CN114703342A (en) * | 2022-04-15 | 2022-07-05 | 北京科技大学 | Method for removing impurities from molten steel and metallurgical method |
CN114703342B (en) * | 2022-04-15 | 2022-11-08 | 北京科技大学 | Method for removing impurities from molten steel and metallurgical method |
Also Published As
Publication number | Publication date |
---|---|
JP5428447B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5904237B2 (en) | Melting method of high nitrogen steel | |
JP5428447B2 (en) | Method for refining molten steel in RH vacuum degassing equipment | |
JP2018016843A (en) | Method for melting extra-low-sulfur low-nitrogen steel | |
JP2011208170A (en) | Method of producing manganese-containing low carbon steel | |
JP5601132B2 (en) | Melting method of low carbon aluminum killed steel with excellent cleanability | |
JP4207820B2 (en) | How to use vacuum degassing equipment | |
JP5509876B2 (en) | Melting method of low carbon high manganese steel | |
JP5979029B2 (en) | Method for producing ultra low sulfur low nitrogen steel | |
JP2776118B2 (en) | Melting method for non-oriented electrical steel sheet | |
JP2009191290A (en) | Method for producing ingot of extra-low carbon steel | |
JP3843589B2 (en) | Melting method of high nitrogen stainless steel | |
JP4844552B2 (en) | Melting method of low carbon high manganese steel | |
JP5505432B2 (en) | Melting method of ultra low sulfur low nitrogen steel | |
JP3241910B2 (en) | Manufacturing method of extremely low sulfur steel | |
JP4404025B2 (en) | Melting method of low nitrogen steel | |
JP2724035B2 (en) | Vacuum decarburization of molten steel | |
JP5131827B2 (en) | Method for heating molten steel and method for producing rolled steel | |
JP2728184B2 (en) | Oxygen top-blowing vacuum decarburization of molten steel | |
JP2005015890A (en) | Method for producing low-carbon high-manganese steel | |
JP2985720B2 (en) | Vacuum refining method for ultra low carbon steel | |
JP2012012681A (en) | Method for desulfurizing and denitrogenizing molten steel at high speed | |
JP4035904B2 (en) | Method for producing ultra-low carbon steel with excellent cleanability | |
JP2962163B2 (en) | Melting method of high clean ultra low carbon steel | |
JP4020125B2 (en) | Method of melting high cleanliness steel | |
JPH08120325A (en) | Production of high cleanness extra low carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5428447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |