JPH06192724A - Method for controlling carbon concentration at end point in rh degassing treatment - Google Patents

Method for controlling carbon concentration at end point in rh degassing treatment

Info

Publication number
JPH06192724A
JPH06192724A JP4345909A JP34590992A JPH06192724A JP H06192724 A JPH06192724 A JP H06192724A JP 4345909 A JP4345909 A JP 4345909A JP 34590992 A JP34590992 A JP 34590992A JP H06192724 A JPH06192724 A JP H06192724A
Authority
JP
Japan
Prior art keywords
exhaust gas
decarburization
carbon
carbon concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4345909A
Other languages
Japanese (ja)
Other versions
JP3293674B2 (en
Inventor
Ryusuke Yamaguchi
竜介 山口
Masato Mizufuji
政人 水藤
Shoichi Hiwasa
章一 日和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34590992A priority Critical patent/JP3293674B2/en
Publication of JPH06192724A publication Critical patent/JPH06192724A/en
Application granted granted Critical
Publication of JP3293674B2 publication Critical patent/JP3293674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten decarburizing treatment time by quickly and precisely estimating the carbon concn. attainment in an extra low carbon steel having a specific value or lower of carbon concn. CONSTITUTION:Exhaust gas quantity is measured by using a gas flow meter 8 arranged an exhaust gas duct 7 during the decarburizing treatment of the molten steel 2 in a vacuum vessel 5. From the exhaust gas flowing difference between this measured exhaust gas quantity and the actual exhaust gas quantity at the completion of the decarburization by RH gas treatment in immediate neighborhood, the carbon concn. is estimated at this point. After confirming that this estimated carbon concn. has attained the aimed carbon concn., the decarburizing treatment is completed. By this method, since the carbon concn. can directly be estimated from the exhaust gas quantity, quick refining is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、RH脱ガス装置を用いて
炭素濃度が50ppm 以下である極低炭素鋼を溶製する際
に、溶鋼の到達炭素濃度を精度よく推定して脱炭終了時
の炭素濃度を制御する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention accurately estimates the ultimate carbon concentration of molten steel and finishes decarburization when smelting ultra-low carbon steel having a carbon concentration of 50 ppm or less using an RH degasser. The present invention relates to a method for controlling the time carbon concentration.

【0002】[0002]

【従来の技術】一般にRH脱ガス等の真空精錬において炭
素濃度が50ppm 以下の極低炭素鋼を溶製する際に、脱炭
処理の終了時点を正確に判定できないときには、過剰な
脱炭処理が必要となり、合理化促進にとっては妨げとな
る。また、製品の深絞り性または強度等を精密に制御し
ようとする場合には、到達炭素濃度を高精度に制御する
ことが必要である。このことから真空精錬における溶鋼
の炭素濃度を制御する方法として、様々な制御方法が提
案されている。
2. Description of the Related Art Generally, when melting extremely low carbon steel having a carbon concentration of 50 ppm or less in vacuum refining such as RH degassing, if the end point of decarburization cannot be accurately determined, excessive decarburization is required. It will be necessary and hinder the promotion of rationalization. Further, in order to precisely control the deep drawability or strength of the product, it is necessary to control the ultimate carbon concentration with high accuracy. From this, various control methods have been proposed as methods for controlling the carbon concentration of molten steel in vacuum refining.

【0003】これらの方法は2通りに大別され、一方は
脱炭速度を一次式とおいて操業要因の影響を回帰式等で
規定して〔C〕推定を行う(例えば特開昭61−195913号
公報参照)やり方で、もう一方は排ガス流量と排ガス中
のガス分析による CO(CO2)測定により脱炭量を積分し鋼
中炭素量の残量を求める、または(CO+CO2 )濃度から
脱炭速度を推定し、あらかじめ推定しておいた相関式か
ら〔C〕値を予測するというもの(例えば、特開平3−
180424号、特開平3−199306号公報参照)である。
[0003] These methods are roughly classified into two types. One is to set the decarburization rate as a primary equation and to specify the influence of operating factors by a regression equation or the like to perform [C] estimation (for example, JP-A-61-195913). The other method is to determine the residual amount of carbon content in steel by integrating the decarburization amount by measuring CO (CO 2 ) by analyzing the exhaust gas flow rate and gas in the exhaust gas, or removing from the (CO + CO 2 ) concentration. Estimating the charcoal speed and predicting the [C] value from the correlation equation estimated in advance (for example, Japanese Patent Laid-Open No.
No. 180424 and JP-A-3-199306).

【0004】[0004]

【発明が解決しようとする課題】前述した各方法にあっ
ては、次に述べるような問題点がある。まず操業要因の
影響を回帰式で規定する方法には、精錬中における条件
の変化を制御条件に盛込まないスタティック(静的)制
御であり、終点判定はばらつく。また、積分により脱炭
量を求め〔C〕値を求める方法は、計測誤差を累積する
ことになる。
The above-mentioned methods have the following problems. First, the method of defining the influence of operating factors by a regression equation is static control in which changes in conditions during refining are not included in control conditions, and end point determination varies. Further, in the method of obtaining the decarburization amount by integration and obtaining the [C] value, measurement errors are accumulated.

【0005】さらに(CO+CO2 )の濃度変化から脱炭速
度を求める方法は、測定が高精度であることが要求され
るが、分析計設置位置は真空精錬炉から比較的離れた位
置であるため排ガスの移動にかかる時間のおくれが存在
し精度に欠けることになる。精錬炉直近に設置した場合
は、ダスト等による配管の詰まり等からの設備管理が非
常に困難で、実操業レベルの技術にはなり得ない。
Further, in the method of obtaining the decarburization rate from the change in the concentration of (CO + CO 2 ), the measurement is required to be highly accurate, but the analyzer installation position is relatively far from the vacuum refining furnace. There is a delay in the time it takes for the exhaust gas to move, resulting in a lack of accuracy. If it is installed near the refining furnace, it will be very difficult to manage the equipment due to clogging of pipes due to dust, etc., and it will not be a technology at the actual operation level.

【0006】本発明は、炭素濃度が50ppm 以下である極
低炭素鋼の溶製において、より正確に、また確実に脱炭
の終了時点を断定でき、過剰な脱炭を避け、かつ目標範
囲以下に炭素濃度が下がったことを確認して脱ガス処理
を終了するRH脱ガス処理における終点炭素濃度制御方法
を提供することを目的とするものである。
The present invention is capable of more accurately and reliably determining the end point of decarburization in the melting of ultra-low carbon steel having a carbon concentration of 50 ppm or less, avoiding excessive decarburization, and less than the target range. It is an object of the present invention to provide a method for controlling the end-point carbon concentration in RH degassing treatment, which confirms that the carbon concentration has dropped and finishes the degassing treatment.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明は、RH脱ガス装置を用いて炭素濃度が50ppm以
下である低炭素鋼を溶製する際に、脱炭終了時の炭素濃
度を制御する方法であって、RH脱ガス装置による溶鋼の
脱炭処理中に排ガス量を測定し、この測定排ガス量と直
近のRH脱ガス処理による脱炭終了時の実績排ガス量との
差である排ガス流量差から、その時点の炭素濃度を推定
し、この推定炭素濃度が目標炭素濃度に到達したことを
確認して溶鋼の脱炭処理を終了することを特徴とするRH
脱ガス処理における終点炭素濃度制御方法である。
Means for Solving the Problems The present invention for achieving the above-mentioned object is to provide a carbon at the end of decarburization when smelting a low carbon steel having a carbon concentration of 50 ppm or less using an RH degasser. A method of controlling the concentration, in which the amount of exhaust gas is measured during the decarburization treatment of molten steel by the RH degasser, and the difference between this measured exhaust gas amount and the actual exhaust gas amount at the end of decarburization by the latest RH degassing process The RH characterized by terminating the decarburization treatment of molten steel by estimating the carbon concentration at that point in time from the exhaust gas flow rate difference and confirming that the estimated carbon concentration has reached the target carbon concentration.
It is a method of controlling the end point carbon concentration in the degassing process.

【0008】[0008]

【作用】低炭素成(炭素濃度が400ppm以下程度)におけ
る脱炭反応は、見かけ上一次反応式に従うので下記
(1)式が成り立つ。
[Function] Since the decarburization reaction in low carbon formation (carbon concentration is about 400 ppm or less) apparently follows the first-order reaction equation, the following equation (1) is established.

【0009】[0009]

【数1】 [Equation 1]

【0010】ところが、係数KC は正確には〔C〕値に
依存して変化し、下記(2)式と示される。
However, to be exact, the coefficient K C changes depending on the [C] value, and is expressed by the following equation (2).

【0011】[0011]

【数2】 [Equation 2]

【0012】(1)、(2)式を連立させると、If the equations (1) and (2) are combined,

【0013】[0013]

【数3】 [Equation 3]

【0014】なる関係が成り立ち、変形して、The following relation holds and is transformed,

【0015】[0015]

【数4】 [Equation 4]

【0016】と表される。ここで、真空精錬ではガスの
出入りは厳密に管理されており、排ガスの正確な情報は
リアルタイムに得られる。さらに入側ガスとしては環流
ガス、脱炭により発生するCOガスがあるが、このうち環
流ガスは一定であるので排ガス量の変化はCOガス発生量
の変化と考えられる。すなわち、一定時間内の排ガス量
変化(すなわち排ガス速度)は、COガス発生速度=脱炭
速度を意味することになる。(4)式右辺のd〔C〕/
dtは脱炭速度であり、排ガス量変化から脱炭速度d
〔C〕/dtが求まれば係数αはほぼ一定とみなせるの
で、鋼中炭素濃度〔C〕 (ppm)を求めることができる。
It is expressed as Here, in vacuum refining, gas inflow and outflow are strictly controlled, and accurate information on exhaust gas can be obtained in real time. Further, as the inlet gas, there are reflux gas and CO gas generated by decarburization. Of these, the reflux gas is constant, so the change in the exhaust gas amount is considered to be the change in the CO gas generation amount. That is, the change in the amount of exhaust gas within a certain period of time (that is, the exhaust gas velocity) means the CO gas generation rate = the decarburization rate. D [C] / on the right side of equation (4)
dt is the decarburization rate, and the decarburization rate d is calculated from the change in the amount of exhaust gas
If [C] / dt is obtained, the coefficient α can be regarded as almost constant, so that the carbon concentration in steel [C] (ppm) can be obtained.

【0017】以上のように、排ガス量の変化を測定する
ことで〔C〕≦50ppm の〔C〕値の判断は精度よく可能
である。したがって、排ガス分析等に頼ることなく精度
よく推定できばらつきを低減することができる。
As described above, it is possible to accurately determine the [C] value of [C] ≦ 50 ppm by measuring the change in the amount of exhaust gas. Therefore, it is possible to perform accurate estimation without using exhaust gas analysis or the like, and reduce variations.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。図
1は本発明のRH脱ガス装置による制御方法の実施状態を
示す模式図であり、取鍋1内には溶鋼2が収容されてお
り、取鍋1の上方には2本の浸漬管3、4を備えた真空
槽5が設けられている。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a schematic view showing an implementation state of a control method by the RH degassing apparatus of the present invention, in which molten steel 2 is contained in a ladle 1, and two dipping pipes 3 are provided above the ladle 1. A vacuum chamber 5 having 4 is provided.

【0019】2本の浸漬管3、4はその先端部が取鍋1
内の溶鋼2中に浸漬されている。また一方の浸漬管3に
は管内に環流Arガスを導入するためガス供給管6が接続
されている。また真空槽5は排気ダクト7を介して真空
排気装置(図示せず)に接続され、真空槽5内が真空状
態に保持される。排ガスダクト7の途中には排ガス量を
測定するガス流量計8が設置されている。さらに溶鋼の
脱炭処理時間を測定するタイマ(図示せず)が設けてあ
る。
The tips of the two dipping tubes 3 and 4 are ladle 1.
It is immersed in the molten steel 2 inside. Further, a gas supply pipe 6 is connected to one of the dip pipes 3 for introducing a reflux Ar gas into the pipe. Further, the vacuum chamber 5 is connected to a vacuum exhaust device (not shown) via an exhaust duct 7, and the inside of the vacuum chamber 5 is maintained in a vacuum state. A gas flow meter 8 for measuring the amount of exhaust gas is installed in the exhaust gas duct 7. Further, a timer (not shown) for measuring the decarburization treatment time of the molten steel is provided.

【0020】そしてガス供給管6から一方の浸漬管3内
にArガスを吹き込んでガスリフトポンプの原理で取鍋1
内の溶鋼2を矢印で示すように循環させ、真空槽5内に
て溶鋼2を真空にさらして真空脱炭処理を行う。本実施
例では、処理条件を処理溶鋼量=250 トン、浸漬管3、
4の内径=750 mm、環流ガス量2000〜4000Nl/分として
脱炭終了時の炭素濃度の制御値を50ppm 以下とした。
Ar gas is blown from the gas supply pipe 6 into one of the dipping pipes 3 and the ladle 1 is operated on the principle of the gas lift pump.
The molten steel 2 inside is circulated as shown by the arrow, and the molten steel 2 is exposed to vacuum in the vacuum tank 5 to perform a vacuum decarburization treatment. In the present embodiment, the treatment conditions are as follows: amount of treated molten steel = 250 tons, immersion pipe 3,
The inner diameter of 4 was 750 mm, the amount of circulating gas was 2000 to 4000 Nl / min, and the control value of the carbon concentration at the end of decarburization was 50 ppm or less.

【0021】RH脱ガス装置による〔C〕50ppm 以下の低
炭素鋼溶製に際し、脱ガス処理終点まじかの安定期では
COガスの発生は極めて少なく無視できるので環流用Arガ
スのみが排ガスの入側ガスになると考えられる。しかる
に実際には、真空槽5のいくつかの接合点から槽内に侵
入するリークがあり、この影響を受けて真空脱ガス処理
安定期の排ガス量はヒートごとに一定ではなくリークに
応じて変動することになる。
When the [C] low carbon steel of less than 50 ppm is melted by the RH degasser, in the stable period just before the end point of the degassing process.
Since the generation of CO gas is extremely small and can be neglected, it is considered that only Ar gas for reflux is the inlet gas of the exhaust gas. However, in reality, there are leaks that enter the tank from some junctions of the vacuum tank 5, and under this influence, the amount of exhaust gas during the stable period of the vacuum degassing process is not constant for each heat but changes according to the leak. Will be done.

【0022】図2はRH脱ガス装置を用いて極低炭素鋼を
溶製する際における今回チャージの直近チャージにおけ
る脱ガス処理時間(分)に対するガス流量計8で測定し
た排ガス流量kg/hrのトレンドの一例を示している。図
2に曲線で示すように排ガス流量は高炭素領域では多い
が、脱炭の進行と共に排ガス流量は急激に減少し極低炭
素領域の脱ガス処理末期ではCOガスの発生はなくなるの
で、排ガス流量はリークガスを包含する環流ガス(Ar)
に相当する安定期の流量に収れんし、ほぼ一定の流量と
なる。
FIG. 2 shows the exhaust gas flow rate kg / hr measured by the gas flow meter 8 with respect to the degassing treatment time (minutes) in the latest charge of the current charge when smelting ultra-low carbon steel using the RH degasser. An example of a trend is shown. As shown by the curve in Fig. 2, the exhaust gas flow rate is high in the high carbon region, but as the decarburization progresses, the exhaust gas flow rate decreases sharply and CO gas is not generated at the end of the degassing process in the extremely low carbon region. Is a circulating gas (Ar) containing leak gas
The flow rate in the stable period is equivalent to, and the flow rate is almost constant.

【0023】本発明では、たとえば30ppm 以下の極低炭
素鋼を溶製できる処理時間20分におけるリークガスを包
含する環流ガス量(Ar)を脱ガス処理による脱炭終了時
の実績排ガス量として用いる。図2において、たとえば
曲線上のA点における排ガス量とリークガスを包含する
環流ガス量(Ar)との差、すなわち脱炭による排ガス流
量差を、その時点AでのCOガス発生量とみなす。
In the present invention, the amount of recirculating gas (Ar) containing leak gas at a treatment time of 20 minutes capable of producing an extremely low carbon steel of 30 ppm or less is used as the actual exhaust gas amount at the end of decarburization by the degassing process. In FIG. 2, for example, the difference between the exhaust gas amount at the point A on the curve and the recirculating gas amount (Ar) containing the leak gas, that is, the exhaust gas flow amount difference due to decarburization is regarded as the CO gas generation amount at the time point A.

【0024】ところで前記の式(4)を実際に利用する
ためには係数αを求めなければならないが、これは図3
に示すように前記のようにして求めた脱炭処理時の排ガ
ス流量(kg/hr)の差分と〔C〕の実績値との関係を予
め求めておくことにより、排ガス流量から〔C〕値を求
めることができる。すなわちたとえば図3から排ガス量
の差分(kg/hr)が 100kg/hrの時点で脱炭処理を終了
することにより目標〔C〕≦30ppm に確実に脱炭処理す
ることができる。
By the way, in order to actually use the equation (4), the coefficient α must be obtained, which is shown in FIG.
As shown in, the relationship between the difference between the exhaust gas flow rate (kg / hr) at the time of decarburization treatment obtained as described above and the actual value of [C] is obtained in advance to obtain the [C] value from the exhaust gas flow rate. Can be asked. That is, for example, as shown in FIG. 3, the decarburization process can be reliably performed to the target [C] ≦ 30 ppm by ending the decarburization process when the difference (kg / hr) in the exhaust gas amount is 100 kg / hr.

【0025】本発明の排ガス流量による脱炭判定を用い
ない脱炭判定方法としては、脱炭中のサンプリングによ
り目標炭素値であることを確認するか、または脱炭処理
時間を時間管理することが考えられるがサンプリングの
場合、分析値判明には少なくとも5〜6分必要で、この
時間は過脱炭となる。また時間管理する場合、脱炭速度
が各チャージで脱炭前の炭素濃度や鋼中酸素濃度等の初
期条件に差があるためにばらつきがあり、過脱炭する時
間設定となる。
As a decarburization determination method that does not use the decarburization determination based on the exhaust gas flow rate of the present invention, it is possible to confirm that the target carbon value is obtained by sampling during decarburization or to control the decarburization treatment time on a time basis. Conceivably, in the case of sampling, at least 5 to 6 minutes are required for the analysis value to be determined, and this time is overdecarburization. In the case of time management, the decarburization rate varies depending on the initial conditions such as the carbon concentration before decarburization and the oxygen concentration in steel for each charge, and therefore there is variation, and the time for overdecarburization is set.

【0026】表1に時間管理した本発明の脱炭判定実施
前の場合と、本発明の排ガス量を利用した脱炭判定を行
う実施後の場合の到達炭素濃度を比較して示す。
Table 1 shows a comparison of the reached carbon concentrations before and after the time-controlled decarburization determination of the present invention and after the decarburization determination utilizing the amount of exhaust gas of the present invention.

【0027】[0027]

【表1】 [Table 1]

【0028】このように本発明によれば、過脱炭は解消
され、到達炭素濃度のばらつきも小さくなり、脱炭処理
時間も短縮された。なお、排ガス流量差 100kg/hrで脱
炭終了して平均C=21.0ppm であるのは脱酸剤(Al)投
入中もなおある程度の脱炭が進行するためであると考え
られる。
As described above, according to the present invention, the excessive decarburization is eliminated, the variation in the reached carbon concentration is reduced, and the decarburization treatment time is shortened. It should be noted that the reason that the average C = 21.0 ppm after completion of decarburization with an exhaust gas flow rate difference of 100 kg / hr is considered to be that decarburization still proceeds to some extent while the deoxidizer (Al) is being added.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、RH
脱ガス装置を用いて50ppm 以下である極低炭素鋼を溶製
する際に、溶鋼の脱炭処理中に発生する排ガス量を用い
てその時点の炭素濃度を正確にかつ迅速に推定すること
ができるので、判定遅れによる過脱炭が防止され、到達
炭素濃度の的中率が向上すると共に脱ガス処理時間の短
縮が達成できる。
As described above, according to the present invention, the RH
When melting ultra-low carbon steel with a degasser of 50 ppm or less, it is possible to accurately and quickly estimate the carbon concentration at that time using the amount of exhaust gas generated during decarburization of molten steel. As a result, excessive decarburization due to a delay in determination can be prevented, the hit rate of the ultimate carbon concentration can be improved, and the degassing treatment time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る制御方法に使用するRH真空脱ガス
装置の模式図である。
FIG. 1 is a schematic diagram of an RH vacuum degassing apparatus used in a control method according to the present invention.

【図2】排ガス流量の推移を示すグラフである。FIG. 2 is a graph showing changes in exhaust gas flow rate.

【図3】排ガス量(kg/hr)の差分と〔C〕(ppm)との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the difference in exhaust gas amount (kg / hr) and [C] (ppm).

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 3 浸漬管(上昇側) 4 浸漬管(下降側) 5 真空槽 6 供給管 7 排ガスダクト 8 ガス流量計 1 Ladle 2 Molten Steel 3 Immersion Pipe (Upward Side) 4 Immersion Pipe (Downward Side) 5 Vacuum Tank 6 Supply Pipe 7 Exhaust Duct 8 Gas Flow Meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス装置を用いて炭素濃度が50ppm
以下である極低炭素鋼を溶製する際に、脱炭終了時の炭
素濃度を制御する方法であって、RH脱ガス装置による溶
鋼の脱炭処理中に排ガス量を測定し、この測定排ガス量
と直近のRH脱ガス処理による脱炭終了時の実績排ガス量
との差である排ガス流量差から、その時点の炭素濃度を
推定し、この推定炭素濃度が目標炭素濃度に到達したこ
とを確認して溶鋼の脱炭処理を終了することを特徴とす
るRH脱ガス処理における終点炭素濃度制御方法。
1. The carbon concentration is 50 ppm using an RH degasser.
A method of controlling the carbon concentration at the end of decarburization when melting ultra-low carbon steel, which is the following, by measuring the amount of exhaust gas during the decarburization treatment of molten steel by the RH degasser, and measuring this exhaust gas The amount of carbon dioxide at the time is estimated from the difference between the amount of exhaust gas and the actual amount of exhaust gas at the end of decarburization by the latest RH degassing process, and it is confirmed that this estimated carbon concentration has reached the target carbon concentration. A method for controlling the end point carbon concentration in RH degassing treatment, which comprises terminating the decarburization treatment of molten steel.
JP34590992A 1992-12-25 1992-12-25 Control method of end point carbon concentration in RH degassing process Expired - Fee Related JP3293674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34590992A JP3293674B2 (en) 1992-12-25 1992-12-25 Control method of end point carbon concentration in RH degassing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34590992A JP3293674B2 (en) 1992-12-25 1992-12-25 Control method of end point carbon concentration in RH degassing process

Publications (2)

Publication Number Publication Date
JPH06192724A true JPH06192724A (en) 1994-07-12
JP3293674B2 JP3293674B2 (en) 2002-06-17

Family

ID=18379821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34590992A Expired - Fee Related JP3293674B2 (en) 1992-12-25 1992-12-25 Control method of end point carbon concentration in RH degassing process

Country Status (1)

Country Link
JP (1) JP3293674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263783A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for refining molten steel in rh vacuum degassing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263783A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for refining molten steel in rh vacuum degassing apparatus

Also Published As

Publication number Publication date
JP3293674B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JPH06192724A (en) Method for controlling carbon concentration at end point in rh degassing treatment
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
JPH03134114A (en) Method for estimating carbon concentration in molten steel in rh refining
KR970005385B1 (en) Control method of carbon concentration with low carbon steel
JPH11279625A (en) Manufacture of super-low carbon steel
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
RU2348699C2 (en) Method of vacuum refinement of liquid steel in ladle
JPH06330150A (en) Method for estimating and controlling carbon concentration in molten steel in vacuum degassing apparatus
JP3126374B2 (en) Vacuum decarburization control method for molten steel
JPH02101110A (en) Method for assuming carbon concentration in vacuum degassing refining
JP2005517812A (en) Method for deep decarburization of molten steel
JPH0312127B2 (en)
JPH06306443A (en) Method for melting extra low carbon steel by vacuum refining
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees