JP6007887B2 - Vacuum degassing apparatus and method for decarburizing molten steel using the same - Google Patents

Vacuum degassing apparatus and method for decarburizing molten steel using the same Download PDF

Info

Publication number
JP6007887B2
JP6007887B2 JP2013241385A JP2013241385A JP6007887B2 JP 6007887 B2 JP6007887 B2 JP 6007887B2 JP 2013241385 A JP2013241385 A JP 2013241385A JP 2013241385 A JP2013241385 A JP 2013241385A JP 6007887 B2 JP6007887 B2 JP 6007887B2
Authority
JP
Japan
Prior art keywords
molten steel
decarburization
concentration
carbon
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241385A
Other languages
Japanese (ja)
Other versions
JP2015101742A (en
Inventor
裕介 橿棒
裕介 橿棒
富山 伸司
伸司 富山
健太郎 岡崎
健太郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013241385A priority Critical patent/JP6007887B2/en
Publication of JP2015101742A publication Critical patent/JP2015101742A/en
Application granted granted Critical
Publication of JP6007887B2 publication Critical patent/JP6007887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼の脱炭処理を行う真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法に関するものである。   The present invention relates to a vacuum degassing apparatus for decarburizing molten steel and a method for decarburizing molten steel using the same.

従来から、製鋼プロセスにおいて、溶鋼の脱炭処理を行う真空脱ガス装置が用いられている。例えば、RH真空脱ガス装置は、真空槽内に通じる2本の浸漬管を取鍋内の溶鋼中に浸漬し、これら2本の浸漬管を介して取鍋内と真空槽内との間で溶鋼を環流させつつ、真空槽内の減圧空間(真空)に溶鋼を曝す。これにより、RH真空脱ガス装置は、溶鋼中の炭素濃度を低減する脱炭処理を行う。   Conventionally, in a steelmaking process, a vacuum degassing apparatus that performs decarburization processing of molten steel has been used. For example, the RH vacuum degassing apparatus immerses two dip tubes leading to the inside of the vacuum vessel in molten steel in the ladle, and between these ladles and the vacuum vessel via these two dip tubes. The molten steel is exposed to a reduced pressure space (vacuum) in the vacuum chamber while circulating the molten steel. Thereby, a RH vacuum degassing apparatus performs the decarburization process which reduces the carbon concentration in molten steel.

このような溶鋼の脱炭処理に関する従来技術として、例えば、溶鋼の脱炭処理に伴い真空槽から排出される排ガスの情報等を用いて、脱炭処理中の溶鋼に含まれる炭素濃度(以下、溶鋼炭素濃度という)を推定し、得られた溶鋼炭素濃度の推定値が目標値に達している場合に溶鋼の脱炭処理を終了するRH真空脱ガス装置がある(特許文献1,2参照)。また、排ガスの情報等をもとに溶鋼炭素濃度の推定を行う間に溶鋼試料を採取し、採取した溶鋼試料の分析値に基づき、情報の検出および分析の遅れ時間を考慮した溶鋼炭素濃度の推定値を求め、この推定値が溶鋼炭素濃度の目標値となった時点に溶鋼の脱炭処理を終了するRH真空脱ガス装置がある(特許文献3参照)。   As a conventional technique related to the decarburization treatment of molten steel, for example, by using information on exhaust gas discharged from a vacuum tank accompanying decarburization treatment of molten steel, the carbon concentration contained in the molten steel during decarburization treatment (hereinafter, There is an RH vacuum degassing device that estimates the molten steel carbon concentration and terminates the decarburization treatment of the molten steel when the estimated value of the obtained molten carbon concentration reaches a target value (see Patent Documents 1 and 2). . Also, a molten steel sample is collected during the estimation of the molten steel carbon concentration based on the exhaust gas information, etc., and based on the analytical value of the collected molten steel sample, the molten steel carbon concentration is considered in consideration of information detection and analysis delay time. There is an RH vacuum degassing apparatus that obtains an estimated value and terminates the decarburization process of the molten steel when the estimated value reaches the target value of the molten steel carbon concentration (see Patent Document 3).

特開平9−202913号公報JP-A-9-202913 特許第2985643号公報Japanese Patent No. 2985643 特開平11−279625号公報JP 11-279625 A

一方、溶鋼の脱炭処理の実操業においては、取鍋内と真空槽内との間で繰り返し行われる溶鋼の環流に伴い、取鍋内と真空槽内とを連通する浸漬管の内壁の磨耗や内壁への合金付着が進行し、これにより、溶鋼の脱炭処理中に浸漬管の内径が変化する場合が多い。しかしながら、上述した従来技術では、溶鋼の脱炭処理中に浸漬管の内径が変化した場合、溶鋼炭素濃度の推定精度が低下してしまい、この結果、規格を満たす溶鋼炭素濃度が得られる適切なタイミングに溶鋼の脱炭処理を終了することが困難になる。また、特許文献3に開示されるように、採取した溶鋼試料の分析値に基づいて溶鋼炭素濃度を推定する場合、溶鋼試料の分析結果を得るまでに要する時間分、溶鋼の脱炭処理時間が過度に長くなる可能性がある。   On the other hand, in the actual operation of the decarburization treatment of molten steel, the inner wall of the dip tube that communicates between the ladle and the vacuum chamber is worn due to the recirculation of the molten steel between the ladle and the vacuum chamber. In many cases, the adhesion of the alloy to the inner wall proceeds and the inner diameter of the dip tube changes during the decarburization treatment of the molten steel. However, in the above-described conventional technology, when the inner diameter of the dip tube changes during the decarburization treatment of the molten steel, the estimation accuracy of the molten steel carbon concentration is lowered, and as a result, an appropriate molten steel carbon concentration satisfying the standard is obtained. It becomes difficult to finish the decarburization process of the molten steel at the timing. Further, as disclosed in Patent Document 3, when the molten steel carbon concentration is estimated based on the analysis value of the collected molten steel sample, the time required for obtaining the analysis result of the molten steel sample is the time required for decarburizing the molten steel. May be excessively long.

本発明は、上記の事情に鑑みてなされたものであって、溶鋼炭素濃度の推定精度を向上することができ、溶鋼炭素濃度の推定値に基づいて溶鋼の脱炭処理を適切なタイミングに終了することが可能な真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法を提供することを目的とする。   This invention is made | formed in view of said situation, Comprising: The estimation precision of molten steel carbon concentration can be improved, and the decarburization process of molten steel is complete | finished at an appropriate timing based on the estimated value of molten steel carbon concentration An object of the present invention is to provide a vacuum degassing apparatus that can be used and a method for decarburizing a molten steel using the same.

上述した課題を解決し、目的を達成するために、本発明にかかる真空脱ガス装置は、取鍋内の溶鋼に浸漬する浸漬管を有し、大気圧よりも低い減圧下で前記浸漬管を通じ前記取鍋から前記溶鋼を吸引して前記溶鋼の脱炭処理を行う真空槽と、前記脱炭処理の際に前記浸漬管を通じ前記取鍋と前記真空槽との間で環流する前記溶鋼の環流量を、前記溶鋼の環流に伴う前記浸漬管の内径変化を加味して算出し、算出した前記溶鋼の環流量と、前記脱炭処理における前記溶鋼中の炭素に関する物質収支式と、前記溶鋼の脱炭速度と、前記真空槽内における前記溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、前記溶鋼中の炭素濃度を推定し、推定した前記炭素濃度が所定の目標値に達したタイミングに前記脱炭処理を終了させる制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a vacuum degassing apparatus according to the present invention has a dip tube immersed in molten steel in a ladle, and passes through the dip tube under a reduced pressure lower than atmospheric pressure. A vacuum chamber that sucks the molten steel from the ladle to decarburize the molten steel, and a ring of the molten steel that circulates between the ladle and the vacuum chamber through the dip tube during the decarburization process. The flow rate is calculated by taking into account the inner diameter change of the dip tube accompanying the reflux of the molten steel, the calculated annular flow rate of the molten steel, the material balance equation regarding the carbon in the molten steel in the decarburization treatment, and the molten steel Based on the decarburization rate and the reaction model equation in the tank representing the decarburization reaction of the molten steel in the vacuum tank, the carbon concentration in the molten steel is estimated, and the estimated carbon concentration becomes a predetermined target value. And a controller that terminates the decarburization process at a timing reached. Characterized in that was.

また、本発明にかかる真空脱ガス装置は、上記の発明において、前記溶鋼の温度と前記溶鋼中の酸素濃度とを計測する温度濃度計測部をさらに備え、前記制御部は、前記物質収支式と前記脱炭速度の演算式と前記槽内反応モデル式とをもとに導出した前記溶鋼中の炭素濃度の推定式に基づき、前記溶鋼の温度と前記酸素濃度と前記溶鋼の環流量とを用いて前記溶鋼中の炭素濃度を推定することを特徴とする。   Further, the vacuum degassing apparatus according to the present invention further includes a temperature concentration measuring unit that measures the temperature of the molten steel and the oxygen concentration in the molten steel in the above invention, and the control unit includes the mass balance equation Based on the estimation formula of the carbon concentration in the molten steel derived based on the calculation formula of the decarburization rate and the reaction model equation in the tank, the temperature of the molten steel, the oxygen concentration, and the ring flow rate of the molten steel are used. The carbon concentration in the molten steel is estimated.

また、本発明にかかる真空脱ガス装置は、上記の発明において、前記脱炭処理の際に前記真空槽から排出される排ガスの流量を計測する排ガス流量計と、前記排ガスの成分分析を行って、前記排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測する排ガス成分分析計と、をさらに備え、前記制御部は、前記排ガスの流量と前記一酸化炭素濃度と前記二酸化炭素濃度とを用いて、前記溶鋼の脱炭速度を算出し、算出した前記脱炭速度が所定速度以下であるか否かを判断し、前記脱炭速度が前記所定速度以下である場合、前記溶鋼中の炭素濃度を推定することを特徴とする。   Further, the vacuum degassing apparatus according to the present invention, in the above invention, performs an exhaust gas flow meter for measuring a flow rate of exhaust gas discharged from the vacuum tank during the decarburization process, and performs component analysis of the exhaust gas. An exhaust gas component analyzer that measures the carbon monoxide concentration and the carbon dioxide concentration in the exhaust gas, and the control unit uses the flow rate of the exhaust gas, the carbon monoxide concentration, and the carbon dioxide concentration. Calculating the decarburization speed of the molten steel, determining whether the calculated decarburization speed is equal to or lower than a predetermined speed, and if the decarburization speed is equal to or lower than the predetermined speed, the carbon concentration in the molten steel is calculated. It is characterized by estimating.

また、本発明にかかる溶鋼の脱炭処理方法は、取鍋内の溶鋼に真空槽の浸漬管を浸漬し、大気圧よりも低い減圧下において前記浸漬管を通じ前記取鍋と前記真空槽との間で前記溶鋼を環流させつつ前記溶鋼の脱炭処理を行う真空脱ガス装置を用いた溶鋼の脱炭処理方法において、前記取鍋と前記真空槽との間における前記溶鋼の環流量を、前記溶鋼の環流に伴う前記浸漬管の内径変化を加味して算出し、算出した前記溶鋼の環流量と、前記脱炭処理における前記溶鋼中の炭素に関する物質収支式と、前記溶鋼の脱炭速度と、前記真空槽内における前記溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、前記溶鋼中の炭素濃度を推定する溶鋼炭素濃度推定ステップと、前記溶鋼炭素濃度推定ステップによって推定した前記炭素濃度が所定の目標値に達したタイミングに前記脱炭処理を終了する脱炭処理終了ステップと、を含むことを特徴とする。   Moreover, the decarburization processing method for molten steel according to the present invention includes immersing a dip tube of a vacuum tank in molten steel in a ladle, and the ladle and the vacuum tank through the dip tube under a reduced pressure lower than atmospheric pressure. In the molten steel decarburization processing method using a vacuum degassing apparatus that performs decarburization processing of the molten steel while circulating the molten steel between, the annular flow rate of the molten steel between the ladle and the vacuum tank is Calculated by taking into account the inner diameter change of the dip tube accompanying the circulating flow of molten steel, the calculated annular flow rate of the molten steel, the material balance equation regarding the carbon in the molten steel in the decarburization treatment, the decarburization rate of the molten steel, Based on the reaction model equation in the tank representing the decarburization reaction of the molten steel in the vacuum tank, the molten steel carbon concentration estimation step for estimating the carbon concentration in the molten steel and the molten steel carbon concentration estimation step were estimated. The carbon concentration is a predetermined value. Characterized in that it comprises a decarburization end step to end the decarburization to the timing value has been reached, the.

また、本発明にかかる溶鋼の脱炭処理方法は、上記の発明において、前記溶鋼の温度と前記溶鋼中の酸素濃度とを計測する温度濃度計測ステップをさらに含み、前記溶鋼炭素濃度推定ステップは、前記物質収支式と前記脱炭速度の演算式と前記槽内反応モデル式とをもとに導出した前記溶鋼中の炭素濃度の推定式に基づき、前記溶鋼の温度と前記酸素濃度と前記溶鋼の環流量とを用いて前記溶鋼中の炭素濃度を推定することを特徴とする。   Moreover, the decarburization treatment method for molten steel according to the present invention further includes a temperature concentration measuring step for measuring the temperature of the molten steel and the oxygen concentration in the molten steel in the above invention, and the molten steel carbon concentration estimating step includes: Based on the estimation formula for the carbon concentration in the molten steel derived based on the mass balance equation, the decarburization rate calculation equation, and the reaction model equation in the tank, the temperature of the molten steel, the oxygen concentration, and the molten steel The carbon concentration in the molten steel is estimated using the ring flow rate.

また、本発明にかかる溶鋼の脱炭処理方法は、上記の発明において、前記脱炭処理の際に前記真空槽から排出される排ガスの流量を計測する排ガス流量計測ステップと、前記排ガスの成分分析を行って、前記排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測する排ガス成分濃度計測ステップと、前記排ガスの流量と前記一酸化炭素濃度と前記二酸化炭素濃度とを用いて、前記溶鋼の脱炭速度を算出する脱炭速度算出ステップと、前記脱炭速度算出ステップによって算出した前記脱炭速度が所定速度以下であるか否かを判断する判断ステップと、をさらに含み、前記溶鋼炭素濃度推定ステップは、前記脱炭速度が前記所定速度以下である場合に前記溶鋼中の炭素濃度を推定することを特徴とする。   Moreover, the decarburization treatment method for molten steel according to the present invention includes, in the above invention, an exhaust gas flow rate measuring step for measuring a flow rate of exhaust gas discharged from the vacuum tank during the decarburization treatment, and component analysis of the exhaust gas. Using the exhaust gas component concentration measuring step for measuring the carbon monoxide concentration and the carbon dioxide concentration in the exhaust gas, and the flow rate of the exhaust gas, the carbon monoxide concentration, and the carbon dioxide concentration. A decarburization speed calculation step for calculating a charcoal speed; and a determination step for determining whether or not the decarburization speed calculated by the decarburization speed calculation step is equal to or lower than a predetermined speed, and the molten steel carbon concentration estimation The step is characterized by estimating a carbon concentration in the molten steel when the decarburization speed is equal to or lower than the predetermined speed.

本発明によれば、溶鋼炭素濃度の推定精度を向上することができ、溶鋼炭素濃度の推定値に基づいて溶鋼の脱炭処理を適切なタイミングに終了することができるという効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the estimation precision of molten steel carbon concentration can be improved and there exists an effect that the decarburization process of molten steel can be complete | finished at an appropriate timing based on the estimated value of molten steel carbon concentration.

図1は、本発明の実施の形態にかかる真空脱ガス装置の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a vacuum degassing apparatus according to an embodiment of the present invention. 図2は、溶鋼の脱炭処理における溶鋼炭素濃度の推定値と真空槽の浸漬管内径との相関を例示する図である。FIG. 2 is a diagram illustrating the correlation between the estimated value of the molten steel carbon concentration in the decarburization treatment of molten steel and the inner diameter of the dip tube in the vacuum chamber. 図3は、本発明の実施の形態にかかる溶鋼の脱炭処理方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of a method for decarburizing molten steel according to the embodiment of the present invention.

以下に、添付図面を参照して、本発明にかかる真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。また、各図面において、同一構成部分には同一符号を付している。   Exemplary embodiments of a vacuum degassing apparatus and a method for decarburizing molten steel using the same according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiment. Moreover, in each drawing, the same code | symbol is attached | subjected to the same component.

(真空脱ガス装置)
まず、本発明の実施の形態にかかる真空脱ガス装置について説明する。図1は、本発明の実施の形態にかかる真空脱ガス装置の一構成例を示す図である。本実施の形態にかかる真空脱ガス装置1は、溶鋼16に浸漬する2つの浸漬管を有するRH方式の真空脱ガス装置である。具体的には、図1に示すように、真空脱ガス装置1は、溶鋼16を収容する取鍋2と、取鍋2内の溶鋼16に浸漬する上昇側浸漬管3aおよび下降側浸漬管3bを有する真空槽3と、真空槽3内の圧力を減圧する真空排気装置4とを備える。また、真空脱ガス装置1は、取鍋2と真空槽3との間における溶鋼16の環流のための環流用ガス供給管5と、環流用ガスのガス弁6と、環流用ガス流量計7と、溶鋼16の脱炭処理を終了するための脱酸材投入部8とを備える。さらに、真空脱ガス装置1は、真空槽3内の圧力を計測する槽内真空度計9と、真空槽3からの排ガス流量を計測する排ガス流量計10と、排ガスの成分分析を行う排ガス成分分析計11と、溶鋼16の温度および溶鋼16中の酸素濃度を測定する測定プローブ12と、入力部13と、記憶部14と、制御部15とを備える。
(Vacuum degasser)
First, a vacuum degassing apparatus according to an embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a configuration example of a vacuum degassing apparatus according to an embodiment of the present invention. The vacuum degassing apparatus 1 according to the present embodiment is an RH type vacuum degassing apparatus having two dip tubes immersed in molten steel 16. Specifically, as shown in FIG. 1, the vacuum degassing apparatus 1 includes a ladle 2 that contains molten steel 16, and an ascending-side dip tube 3 a and a descending-side dip tube 3 b that are immersed in the molten steel 16 in the ladle 2. And a vacuum exhaust device 4 for reducing the pressure in the vacuum chamber 3. Further, the vacuum degassing apparatus 1 includes a circulating gas supply pipe 5 for circulating the molten steel 16 between the ladle 2 and the vacuum tank 3, a circulating gas gas valve 6, and a circulating gas flow meter 7. And a deoxidizing material charging unit 8 for ending the decarburization process of the molten steel 16. Furthermore, the vacuum degassing apparatus 1 includes an in-vessel vacuum gauge 9 that measures the pressure in the vacuum chamber 3, an exhaust gas flow meter 10 that measures the exhaust gas flow rate from the vacuum chamber 3, and an exhaust gas component that performs exhaust gas component analysis. The analyzer 11 includes a measurement probe 12 that measures the temperature of the molten steel 16 and the oxygen concentration in the molten steel 16, an input unit 13, a storage unit 14, and a control unit 15.

取鍋2は、転炉(図示せず)等によって精錬された溶鋼16を収容する。溶鋼16を収容した取鍋2は、真空槽3の下部側の位置に移動し、真空槽3に向かって上昇する等して、真空槽3の上昇側浸漬管3aおよび下降側浸漬管3bをこの溶鋼16中に浸漬させる。なお、本実施の形態において、溶鋼16は、真空脱ガス装置1による溶鋼16の脱炭処理に必要な酸素が溶存酸素として含有している。すなわち、この溶鋼16を脱炭処理するに際し、真空槽3内の溶鋼16の表面に酸素を吹き付けて供給する必要はない。また、溶鋼16を脱炭処理するための酸素が不足する場合は、上吹きランス等の酸素供給機構(図示せず)から溶鋼16に酸素を供給してもよい。   The ladle 2 accommodates the molten steel 16 refined by a converter (not shown) or the like. The ladle 2 containing the molten steel 16 moves to a position on the lower side of the vacuum chamber 3 and rises toward the vacuum chamber 3 so that the ascending-side dip tube 3a and the descending-side dip tube 3b of the vacuum chamber 3 are moved. It is immersed in this molten steel 16. In the present embodiment, the molten steel 16 contains oxygen necessary for decarburizing the molten steel 16 by the vacuum degassing apparatus 1 as dissolved oxygen. That is, when the molten steel 16 is decarburized, it is not necessary to blow and supply oxygen to the surface of the molten steel 16 in the vacuum chamber 3. Further, when oxygen for decarburizing the molten steel 16 is insufficient, oxygen may be supplied to the molten steel 16 from an oxygen supply mechanism (not shown) such as an upper blowing lance.

真空槽3は、大気圧よりも低い減圧下で溶鋼16の脱炭処理を行うためのものである。具体的には、図1に示すように、真空槽3は、取鍋2内の溶鋼16に浸漬する2つの浸漬管すなわち上昇側浸漬管3aおよび下降側浸漬管3bを下部に有し、排ガスを排出する排気管3cを上部に有する。真空槽3は、真空引き等によって排気管3cから真空槽3内のガスを排出し、これにより、大気圧よりも低い減圧空間を形成する。この減圧空間は、例えば、所定値以上の真空度を有する略真空状態の空間である。真空槽3は、上昇側浸漬管3aおよび下降側浸漬管3bを取鍋2内の溶鋼16に浸漬した状態において、この減圧空間を形成し、この減圧空間の圧力状態下(減圧下)で上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2から溶鋼16を吸引する。ついで、真空槽3は、上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2との間で溶鋼16を環流させつつ、この減圧空間に溶鋼16を曝すことにより、溶鋼16の脱炭処理を行う。   The vacuum chamber 3 is for performing the decarburization process of the molten steel 16 under a reduced pressure lower than the atmospheric pressure. Specifically, as shown in FIG. 1, the vacuum chamber 3 has two dip pipes immersed in the molten steel 16 in the ladle 2, that is, an ascending-side dip pipe 3 a and a descending-side dip pipe 3 b at the lower part. Has an exhaust pipe 3c at the top. The vacuum chamber 3 discharges the gas in the vacuum chamber 3 from the exhaust pipe 3c by evacuation or the like, thereby forming a decompressed space lower than the atmospheric pressure. This decompression space is, for example, a substantially vacuum space having a degree of vacuum equal to or greater than a predetermined value. The vacuum chamber 3 forms this decompression space when the ascending-side dip tube 3a and the descending-side dip tube 3b are immersed in the molten steel 16 in the pan 2, and rises under the pressure state of this decompression space (under decompression). The molten steel 16 is sucked from the ladle 2 through the side dip tube 3a and the descending side dip tube 3b. Next, the vacuum tank 3 decarburizes the molten steel 16 by exposing the molten steel 16 to the reduced pressure space while circulating the molten steel 16 to and from the ladle 2 through the rising side dip tube 3a and the descending side dip tube 3b. I do.

真空排気装置4は、真空槽3からガスを排出する装置である。具体的には、図1に示すように、真空排気装置4は、真空槽3の排気管3cに設けられる。真空排気装置4は、排気管3cを通じて真空槽3内を真空引きし、これにより、真空槽3内を上述した減圧状態(略真空状態)にする。また、真空排気装置4は、吸引動作等により、排気管3cを通じて真空槽3内から排ガスを真空脱ガス装置1の外部に排出する。この排ガスは、真空槽3内において行われる溶鋼16の脱炭処理の際に発生するガスを含む混合ガスである。この脱炭処理の際の発生ガスは、脱炭処理によって溶鋼16から離脱した炭素成分を含有するガス、例えば一酸化炭素(CO)および二酸化炭素(CO2)等である。 The vacuum exhaust device 4 is a device that discharges gas from the vacuum chamber 3. Specifically, as shown in FIG. 1, the vacuum exhaust device 4 is provided in the exhaust pipe 3 c of the vacuum chamber 3. The vacuum exhaust device 4 evacuates the vacuum chamber 3 through the exhaust pipe 3c, and thereby brings the vacuum chamber 3 into the above-described reduced pressure state (substantially vacuum state). The vacuum exhaust device 4 discharges exhaust gas from the vacuum chamber 3 to the outside of the vacuum degassing device 1 through the exhaust pipe 3c by a suction operation or the like. This exhaust gas is a mixed gas containing a gas generated during the decarburization process of the molten steel 16 performed in the vacuum chamber 3. The generated gas in the decarburization process is a gas containing a carbon component separated from the molten steel 16 by the decarburization process, such as carbon monoxide (CO) and carbon dioxide (CO 2 ).

環流用ガス供給管5は、取鍋2と真空槽3との間において溶鋼16を環流させるための環流用ガスの供給管である。具体的には、図1に示すように、環流用ガス供給管5は、その出口端を真空槽3の上昇側浸漬管3aに接続する態様に配置される。環流用ガス供給管5は、上昇側浸漬管3a内の溶鋼16に環流用ガスを吹き込み、これによって生じるエアリフトポンプ作用により、上昇側浸漬管3a内の溶鋼16を取鍋2側から真空槽3側へ上昇させる(図1に示す破線矢印参照)。これに伴い、真空槽3内の溶鋼16は、減圧下で脱炭処理された後に下降側浸漬管3bを通じて真空槽3側から取鍋2側へ下降する(図1に示す破線矢印参照)。溶鋼16は、このように上昇側浸漬管3aおよび下降側浸漬管3bを通じて、取鍋2と真空槽3との間で環流(循環)する。なお、上述したように環流用ガス供給管5から上昇側浸漬管3a内に供給される環流用ガスとして、例えば、アルゴンガス等の不活性ガスが用いられる。   The recirculation gas supply pipe 5 is a recirculation gas supply pipe for recirculating the molten steel 16 between the ladle 2 and the vacuum chamber 3. Specifically, as shown in FIG. 1, the recirculation gas supply pipe 5 is arranged in such a manner that its outlet end is connected to the rising side dip pipe 3 a of the vacuum chamber 3. The recirculation gas supply pipe 5 blows recirculation gas into the molten steel 16 in the ascending-side dip pipe 3a, and the molten steel 16 in the ascending-side dip pipe 3a is taken from the ladle 2 side by the air lift pump action generated thereby. (See the broken line arrow shown in FIG. 1). Along with this, the molten steel 16 in the vacuum chamber 3 is decarburized under reduced pressure and then descends from the vacuum chamber 3 side to the ladle 2 side through the descending side dip tube 3b (see the broken line arrow shown in FIG. 1). The molten steel 16 circulates (circulates) between the ladle 2 and the vacuum chamber 3 through the ascending-side dip tube 3a and the descending-side dip tube 3b. As described above, for example, an inert gas such as argon gas is used as the reflux gas supplied from the reflux gas supply pipe 5 into the ascending-side dip pipe 3a.

ガス弁6は、図1に示すように環流用ガス供給管5に設けられ、制御部15によって弁開閉動作を制御される自動開閉弁である。ガス弁6は、制御部15の制御に基づいて弁開動作を行い、これにより、環流用ガス供給管5から上昇側浸漬管3a内への環流用ガスの供給を可能にする。また、ガス弁6は、制御部15の制御に基づいて弁閉動作を行い、これにより、この環流用ガスの供給を停止する。   As shown in FIG. 1, the gas valve 6 is an automatic open / close valve that is provided in the circulating gas supply pipe 5 and whose valve opening / closing operation is controlled by the control unit 15. The gas valve 6 performs a valve opening operation based on the control of the control unit 15, thereby enabling the supply of the recirculation gas from the recirculation gas supply pipe 5 into the ascending-side immersing pipe 3 a. Further, the gas valve 6 performs a valve closing operation based on the control of the control unit 15, thereby stopping the supply of the circulating gas.

環流用ガス流量計7は、環流用ガス供給管5の所定の位置、例えば図1に示すように環流用ガス供給管5の出口端(上昇側浸漬管3aとの接続端)からガス弁6との間の位置に設けられる。環流用ガス流量計7は、環流用ガス供給管5を通じて上昇側浸漬管3a内に供給される環流用ガスの流量(以下、環流用ガス流量という)を計測し、その都度、計測した環流用ガス流量を示す電気信号を制御部15に送信する。   The recirculation gas flow meter 7 is connected to the gas valve 6 from a predetermined position of the recirculation gas supply pipe 5, for example, from the outlet end of the recirculation gas supply pipe 5 (connection end to the ascending side immersion pipe 3a) as shown in FIG. Between the two. The recirculation gas flow meter 7 measures the flow rate of the recirculation gas (hereinafter referred to as recirculation gas flow rate) supplied into the ascending-side dip tube 3a through the recirculation gas supply tube 5 and measures the recirculation flow for each time. An electric signal indicating the gas flow rate is transmitted to the control unit 15.

脱酸材投入部8は、溶鋼16の脱炭処理を終了させるための脱酸材を溶鋼16に投入するものである。具体的には、図1に示すように、脱酸材投入部8は、取鍋2の開口部近傍に配置される。脱酸材投入部8は、制御部15によって脱酸材の投入タイミングを制御され、制御部15から指示された投入タイミングに、溶鋼16の脱炭処理の終了に要する量の脱酸材を取鍋2内の溶鋼16に投入する。なお、この脱酸材として、例えば、アルミニウム(Al)等が用いられる。   The deoxidizing material charging unit 8 inputs a deoxidizing material for ending the decarburization processing of the molten steel 16 into the molten steel 16. Specifically, as shown in FIG. 1, the deoxidizing material charging unit 8 is disposed in the vicinity of the opening of the ladle 2. The deoxidizing material charging unit 8 is controlled by the control unit 15 at the timing of supplying the deoxidizing material. The molten steel 16 in the pan 2 is charged. As this deoxidizing material, for example, aluminum (Al) or the like is used.

槽内真空度計9は、真空槽3内の真空度を計測する。具体的には、図1に示すように、槽内真空度計9は、真空槽3の上部内壁の所定位置(例えば排気管3cの近傍)に設けられる。槽内真空度計9は、上述した真空排気装置4の作用によって減圧される真空槽3内の圧力(以下、真空槽内圧力という)を真空度として計測し、その都度、計測した真空槽内圧力を示す電気信号を制御部15に送信する。   The tank vacuum gauge 9 measures the degree of vacuum in the vacuum tank 3. Specifically, as shown in FIG. 1, the in-vessel vacuum gauge 9 is provided at a predetermined position (for example, in the vicinity of the exhaust pipe 3 c) on the upper inner wall of the vacuum chamber 3. The tank vacuum gauge 9 measures the pressure in the vacuum tank 3 (hereinafter referred to as “vacuum tank pressure”), which is reduced by the action of the vacuum exhaust device 4 described above, as the degree of vacuum, and each time, An electric signal indicating the pressure is transmitted to the control unit 15.

排ガス流量計10は、真空槽3から排出される排ガスの流量を計測する。具体的には、図1に示すように、排ガス流量計10は、真空槽3の排気管3cの所定位置に設けられる。排ガス流量計10は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの流量(以下、排ガス流量という)(排ガス流量は標準状態とする。)を計測し、その都度、計測した排ガス流量を示す電気信号を制御部15に送信する。   The exhaust gas flow meter 10 measures the flow rate of the exhaust gas discharged from the vacuum chamber 3. Specifically, as shown in FIG. 1, the exhaust gas flow meter 10 is provided at a predetermined position of the exhaust pipe 3 c of the vacuum chamber 3. The exhaust gas flow meter 10 measures the flow rate of exhaust gas discharged from the vacuum chamber 3 to the outside through the exhaust pipe 3c during the decarburization process of the molten steel 16 (hereinafter referred to as exhaust gas flow rate). In each case, an electric signal indicating the measured exhaust gas flow rate is transmitted to the control unit 15.

排ガス成分分析計11は、真空槽3から排出される排ガス中の炭素成分含有のガス濃度を計測する。具体的には、図1に示すように、排ガス成分分析計11は、真空槽3の排気管3cの所定位置(例えば排ガス流量計10の近傍)に設けられる。排ガス成分分析計11は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの成分分析を行う。これにより、排ガス成分分析計11は、この排ガス中の炭素成分含有のガス濃度、詳細には一酸化炭素濃度および二酸化炭素濃度を計測する。その都度、排ガス成分分析計11は、計測した排ガス中の一酸化炭素濃度(以下、排ガスCO濃度という)および二酸化炭素濃度(以下、排ガスCO2濃度という)を示す電気信号を制御部15に送信する。 The exhaust gas component analyzer 11 measures the concentration of carbon component-containing gas in the exhaust gas discharged from the vacuum chamber 3. Specifically, as shown in FIG. 1, the exhaust gas component analyzer 11 is provided at a predetermined position (for example, in the vicinity of the exhaust gas flow meter 10) of the exhaust pipe 3 c of the vacuum chamber 3. The exhaust gas component analyzer 11 performs component analysis of exhaust gas discharged from the vacuum chamber 3 through the exhaust pipe 3c when the molten steel 16 is decarburized. Thereby, the exhaust gas component analyzer 11 measures the carbon component-containing gas concentration in the exhaust gas, specifically, the carbon monoxide concentration and the carbon dioxide concentration. Each time, the exhaust gas component analyzer 11 transmits an electrical signal indicating the measured carbon monoxide concentration (hereinafter referred to as exhaust gas CO concentration) and carbon dioxide concentration (hereinafter referred to as exhaust gas CO 2 concentration) to the control unit 15. To do.

測定プローブ12は、溶鋼16の温度と溶鋼16中の酸素濃度とを計測する温度濃度計測部として機能する。具体的には、測定プローブ12は、プローブ形状の筐体内に温度検出器と酸素濃度検出器とを内蔵したプローブ型測定器である。測定プローブ12は、図1に示すように、取鍋2内の溶鋼16中に適宜浸漬し、この溶鋼16の温度(以下、溶鋼温度という)および溶鋼16中の酸素濃度(以下、溶鋼酸素濃度という)を計測する。その都度、測定プローブ12は、計測した溶鋼温度および溶鋼酸素濃度を示す電気信号を制御部15に送信する。   The measurement probe 12 functions as a temperature concentration measuring unit that measures the temperature of the molten steel 16 and the oxygen concentration in the molten steel 16. Specifically, the measurement probe 12 is a probe-type measuring instrument in which a temperature detector and an oxygen concentration detector are incorporated in a probe-shaped housing. As shown in FIG. 1, the measurement probe 12 is appropriately immersed in the molten steel 16 in the ladle 2, and the temperature of the molten steel 16 (hereinafter referred to as molten steel temperature) and the oxygen concentration in the molten steel 16 (hereinafter referred to as molten steel oxygen concentration). Measure). Each time, the measurement probe 12 transmits an electrical signal indicating the measured molten steel temperature and molten steel oxygen concentration to the control unit 15.

入力部13は、脱炭処理対象の溶鋼16中の炭素濃度を推定するための演算処理に必要な各種情報を制御部15に入力する。例えば、入力部13は、取鍋2内に収容された1チャージ分の溶鋼16を真空脱ガス装置1が受け入れる都度、この受け入れた1チャージ分の溶鋼16の全重量(以下、溶鋼重量という)を示す電気信号を制御部15に入力する。また、入力部13は、真空槽3の浸漬管内径、演算処理に用いる定数等の各種情報を制御部15に入力する。本実施の形態において、真空槽3の浸漬管内径は、未使用または設備仕様上の浸漬管の内径等、浸漬管本来の内径である。このような浸漬管内径は、真空槽3の上昇側浸漬管3aおよび下降側浸漬管3bのうちの少なくとも一方の内径であってもよいし、これら上昇側浸漬管3aおよび下降側浸漬管3bの各内径の平均値、最大値、あるいは最小値であってもよい。   The input unit 13 inputs various types of information necessary for arithmetic processing for estimating the carbon concentration in the molten steel 16 to be decarburized to the control unit 15. For example, every time the vacuum degassing apparatus 1 receives the molten steel 16 for one charge accommodated in the ladle 2, the input unit 13 receives the total weight of the molten steel 16 for the received one charge (hereinafter referred to as molten steel weight). Is input to the control unit 15. Further, the input unit 13 inputs various information such as the inner diameter of the dip tube of the vacuum chamber 3 and constants used for calculation processing to the control unit 15. In the present embodiment, the inner diameter of the dip tube of the vacuum chamber 3 is the original inner diameter of the dip tube, such as an unused or inner diameter of the dip tube in equipment specifications. Such an inner diameter of the dip tube may be an inner diameter of at least one of the ascending-side dip tube 3a and the descending-side dip tube 3b of the vacuum chamber 3, or the ascending-side dip tube 3a and the descending-side dip tube 3b. It may be an average value, a maximum value, or a minimum value of each inner diameter.

記憶部14は、脱炭処理対象の溶鋼16中の炭素濃度を推定するための演算処理に必要な各種情報を記憶する。例えば、記憶部14は、過去に真空脱ガス装置1を用いて繰り返し行われた各種溶鋼の脱炭処理の操業によって蓄積した溶鋼炭素濃度の過去実績データから求めた補正係数等を記憶する。なお、上記の溶鋼炭素濃度は、脱炭処理対象の溶鋼16中の炭素濃度である。記憶部14は、これら記憶した各種情報の中から、制御部15によって読み出し指示された情報を制御部15に送信する。   The memory | storage part 14 memorize | stores the various information required for the arithmetic processing for estimating the carbon concentration in the molten steel 16 of the decarburization process object. For example, the memory | storage part 14 memorize | stores the correction coefficient etc. which were calculated | required from the past performance data of the molten steel carbon concentration accumulated by the operation of the decarburization process of the various molten steel repeatedly performed in the past using the vacuum degassing apparatus 1. The molten steel carbon concentration is the carbon concentration in the molten steel 16 to be decarburized. The storage unit 14 transmits the information instructed to be read out by the control unit 15 to the control unit 15 from the various pieces of stored information.

制御部15は、真空脱ガス装置1による溶鋼16の脱炭処理の終了タイミングを制御する。具体的には、制御部15は、演算パラメータ等の各種情報を記憶するメモリおよび予め設定されたプログラムを実行するCPU等を用いて構成される。脱炭処理対象の溶鋼16中の炭素濃度(溶鋼炭素濃度)を推定するための演算式として、制御部15には、溶鋼16中の炭素に関する系全体の物質収支を表す物質収支式と、溶鋼16の脱炭処理における脱炭速度を表す演算式とが予めプログラム設定される。また、制御部15には、溶鋼16の脱炭処理の際における溶鋼16の環流量を表す演算式と、真空槽3からの排ガス中の炭素流量を表す演算式と、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式とが予めプログラム設定される。さらに、制御部15には、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数を表す演算式と、溶鋼炭素濃度の推定式と、チャージ毎の浸漬管内径の変化量を表す演算式とが予めプログラム設定される。制御部15は、上述した環流用ガス流量計7、槽内真空度計9、排ガス流量計10、排ガス成分分析計11、および測定プローブ12からの各入力信号と、入力部13からの入力情報と、記憶部14から読み出した情報とを用い、上述した各演算式に基づいて演算処理を行う。   The control unit 15 controls the end timing of the decarburization process of the molten steel 16 by the vacuum degassing apparatus 1. Specifically, the control unit 15 is configured using a memory that stores various types of information such as calculation parameters, a CPU that executes a preset program, and the like. As an arithmetic expression for estimating the carbon concentration (molten steel carbon concentration) in the molten steel 16 to be decarburized, the control unit 15 includes a material balance expression that represents the material balance of the entire system related to carbon in the molten steel 16, and the molten steel. An arithmetic expression representing the decarburization speed in the 16 decarburization process is preset. Further, the control unit 15 includes an arithmetic expression representing the ring flow rate of the molten steel 16 during the decarburization treatment of the molten steel 16, an arithmetic expression representing the carbon flow rate in the exhaust gas from the vacuum chamber 3, and the molten steel in the vacuum chamber 3. A tank reaction model formula representing 16 decarburization reactions is preset. Further, the control unit 15 includes an arithmetic expression that represents an equilibrium constant of the reaction between carbon and oxygen in the decarburization treatment of the molten steel 16, an estimation expression for the molten steel carbon concentration, and an arithmetic expression that represents the amount of change in the dip tube inner diameter for each charge. Expressions are programmed in advance. The control unit 15 includes input signals from the above-described reflux gas flow meter 7, in-vessel vacuum meter 9, exhaust gas flow meter 10, exhaust gas component analyzer 11, and measurement probe 12, and input information from the input unit 13. And the information read from the storage unit 14 are used to perform arithmetic processing based on each arithmetic expression described above.

詳細には、制御部15は、溶鋼16の脱炭処理の際に上昇側浸漬管3aおよび下降側浸漬管3bを通じ取鍋2と真空槽3との間で環流する溶鋼16の環流量(以下、溶鋼環流量という)を、この溶鋼16の環流に伴う浸漬管内径の変化を加味して算出する。また、制御部15は、真空槽3からの排ガス流量と排ガスCO濃度と排ガスCO2濃度とを用いて、溶鋼16の脱炭速度を算出し、この算出した脱炭速度が所定速度以下であるか否かを判断する。この脱炭速度が所定速度以下である場合、制御部15は、上述したように浸漬管内径の変化を加味して算出した溶鋼環流量と、溶鋼16の脱炭処理における溶鋼16中の炭素に関する物質収支式と、溶鋼16の脱炭速度と、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式とをもとに、溶鋼炭素濃度を推定する。この際、制御部15は、予め設定された物質収支式と脱炭速度の演算式と槽内反応モデル式とをもとに導出した溶鋼炭素濃度の推定式に基づき、溶鋼16の溶鋼温度と溶鋼酸素濃度と溶鋼環流量とを用いて溶鋼炭素濃度を推定する。制御部15は、このように推定した溶鋼炭素濃度が所定の目標値に達したタイミングに、真空脱ガス装置1による溶鋼16の脱炭処理を終了させる。 Specifically, the control unit 15 performs an annular flow rate of the molten steel 16 that flows between the ladle 2 and the vacuum chamber 3 through the ascending-side dip tube 3a and the descending-side dip tube 3b during the decarburization process of the molten steel 16 (hereinafter referred to as “flow rate”). , The flow rate of the molten steel ring) is calculated in consideration of the change in the inner diameter of the dip tube accompanying the circulating flow of the molten steel 16. Further, the control unit 15 calculates the decarburization speed of the molten steel 16 using the exhaust gas flow rate from the vacuum chamber 3, the exhaust gas CO concentration, and the exhaust gas CO 2 concentration, and the calculated decarburization speed is equal to or less than a predetermined speed. Determine whether or not. When the decarburization speed is equal to or lower than the predetermined speed, the control unit 15 relates to the molten steel ring flow rate calculated by taking into account the change in the inner diameter of the dip tube and the carbon in the molten steel 16 in the decarburization process of the molten steel 16 as described above. The molten steel carbon concentration is estimated based on the material balance equation, the decarburization rate of the molten steel 16, and the reaction model equation in the tank representing the decarburization reaction of the molten steel 16 in the vacuum chamber 3. At this time, the control unit 15 calculates the molten steel temperature of the molten steel 16 based on the estimation formula of the molten carbon concentration derived from the preset mass balance equation, the decarburization rate calculation equation, and the reaction model equation in the tank. The molten steel carbon concentration is estimated using the molten steel oxygen concentration and the molten steel ring flow rate. The control unit 15 ends the decarburization processing of the molten steel 16 by the vacuum degassing apparatus 1 at the timing when the estimated molten steel carbon concentration reaches a predetermined target value.

(溶鋼炭素濃度の推定に要する演算処理)
つぎに、本発明における溶鋼炭素濃度の推定に要する演算処理について説明する。本実施の形態にかかる真空脱ガス装置1の制御部15には、上述したように、脱炭処理対象の溶鋼16中の炭素濃度(溶鋼炭素濃度)を推定するために要する各種演算式が予め設定されている。これら各種演算式のうち、溶鋼16中の炭素に関する系全体の物質収支を表す物質収支式は、溶鋼炭素濃度[C]と、溶鋼環流量Qと、溶鋼重量Wと、下降管側溶鋼炭素濃度[C]*とを用い、次式(1)によって表される。
(Calculation processing required to estimate molten steel carbon concentration)
Next, a calculation process required for estimating the molten steel carbon concentration in the present invention will be described. In the controller 15 of the vacuum degassing apparatus 1 according to the present embodiment, as described above, various arithmetic expressions required for estimating the carbon concentration (molten steel carbon concentration) in the molten steel 16 to be decarburized are previously stored. Is set. Among these various calculation formulas, the mass balance equation representing the mass balance of the entire system related to carbon in the molten steel 16 is the molten steel carbon concentration [C], the molten steel flow rate Q, the molten steel weight W, and the downcomer side molten steel carbon concentration. [C] * and is expressed by the following formula (1).

Figure 0006007887
Figure 0006007887

上式(1)において、d[C]/dtは、単位時間当りの溶鋼炭素濃度[C]の変化量であり、脱炭処理される溶鋼16の脱炭速度に相当する。また、下降管側溶鋼炭素濃度[C]*は、図1に示した真空槽3から取鍋2への溶鋼16の下降経路を形成する下降側浸漬管3b内の溶鋼16中の炭素濃度である。 In the above formula (1), d [C] / dt is the amount of change in the molten steel carbon concentration [C] per unit time, and corresponds to the decarburization rate of the molten steel 16 to be decarburized. Further, the downcomer side molten steel carbon concentration [C] * is the carbon concentration in the molten steel 16 in the downside dip tube 3b that forms the descending path of the molten steel 16 from the vacuum chamber 3 to the ladle 2 shown in FIG. is there.

一方、上述した制御部15に設定された各種演算式のうち、溶鋼16の脱炭処理における脱炭速度を表す演算式は、真空槽3からの排ガス中に含まれる炭素成分の流量(以下、排ガス炭素流量という)GCと、溶鋼重量Wとを用い、次式(2)によって表される。また、溶鋼16の脱炭処理の際における溶鋼環流量Qを表す演算式は、環流用ガス流量Fと、真空槽3の浸漬管内径dと、チャージ毎の浸漬管内径dの変化量(以下、浸漬管内径変化量という)dgNと、大気圧Pa(=1[atm])と、真空槽内圧力Pとを用い、次式(3)によって表される。 On the other hand, among the various arithmetic expressions set in the control unit 15 described above, the arithmetic expression representing the decarburization speed in the decarburization process of the molten steel 16 is the flow rate of the carbon component contained in the exhaust gas from the vacuum chamber 3 (hereinafter, It is expressed by the following equation (2) using G C (referred to as exhaust gas carbon flow rate) and molten steel weight W. Moreover, the arithmetic expression showing the molten steel ring flow rate Q at the time of the decarburization treatment of the molten steel 16 is the flow rate F of the recirculation gas, the dip tube inner diameter d of the vacuum chamber 3, and the change amount of the dip tube inner diameter d for each charge (hereinafter referred to as the flow rate). D gN ), atmospheric pressure Pa (= 1 [atm]), and vacuum chamber pressure P, and are expressed by the following equation (3).

Figure 0006007887
Figure 0006007887

Figure 0006007887
Figure 0006007887

また、上式(2)に含まれる排ガス炭素流量GCは、真空槽3からの排ガス流量Gと、排ガスCO濃度[CO]と、排ガスCO2濃度[CO2]と、定数aとを用い、次式(4)によって表される。

C=a・G・([CO]+[CO2]) ・・・(4)
The exhaust gas carbon flow rate G C included in the above equation (2) uses the exhaust gas flow rate G from the vacuum chamber 3, the exhaust gas CO concentration [CO], the exhaust gas CO 2 concentration [CO 2 ], and a constant a. Is expressed by the following equation (4).

G C = a · G · ([CO] + [CO 2 ]) (4)

他方、上述した制御部15に設定された各種演算式のうち、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式は、下降管側溶鋼炭素濃度[C]*と、真空槽内圧力Pと、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数Kと、溶鋼酸素濃度[O]と、補正係数Bと、溶鋼炭素濃度[C]とを用い、次式(5)によって表される。 On the other hand, among the various arithmetic expressions set in the control unit 15 described above, the reaction model expression in the tank representing the decarburization reaction of the molten steel 16 in the vacuum tank 3 is the downcomer-side molten steel carbon concentration [C] * and the vacuum. Using the pressure P in the tank, the equilibrium constant K of the reaction between carbon and oxygen in the decarburization treatment of the molten steel 16, the molten steel oxygen concentration [O], the correction coefficient B, and the molten steel carbon concentration [C], It is represented by (5).

Figure 0006007887
Figure 0006007887

上式(5)において、補正係数Bは、過去に真空脱ガス装置1を用いて繰り返し行われた各種溶鋼の脱炭処理の操業によって蓄積した溶鋼炭素濃度[C]の過去実績データから求めた補正係数である。この補正係数Bは、図1に示した記憶部14に保存される。また、平衡定数Kは、溶鋼温度Tを用い、次式(6)によって表される。

K=exp(2671/T+4.612) ・・・(6)
In the above equation (5), the correction coefficient B was obtained from past performance data of the molten steel carbon concentration [C] accumulated by the operation of decarburization treatment of various molten steels repeatedly performed using the vacuum degassing apparatus 1 in the past. Correction coefficient. This correction coefficient B is stored in the storage unit 14 shown in FIG. Further, the equilibrium constant K is expressed by the following equation (6) using the molten steel temperature T.

K = exp (2671 / T + 4.612) (6)

また、上述した溶鋼炭素濃度[C]の推定式は、式(1)のような物質収支式と、式(2)のような脱炭速度の演算式と、式(5)のような槽内反応モデル式とをもとに導出され、次式(7)のように表される。   Moreover, the estimation formula of the above-mentioned molten steel carbon concentration [C] includes a mass balance equation such as equation (1), a decarburization rate calculation equation such as equation (2), and a tank such as equation (5). It is derived on the basis of the internal reaction model equation and is expressed as the following equation (7).

Figure 0006007887
Figure 0006007887

本実施の形態にかかる真空脱ガス装置1において、制御部15は、環流用ガス流量計7、槽内真空度計9、排ガス流量計10、排ガス成分分析計11、および測定プローブ12からの各入力信号と、入力部13からの入力情報と、記憶部14から読み出した情報とを用い、上述した式(1)〜(7)に基づいて演算処理を行う。特に、制御部15は、式(3)の演算処理において、溶鋼16の環流に伴う浸漬管内壁の磨耗または金属付着に起因する浸漬管内径dの変化を加味する。すなわち、制御部15は、真空槽3の本来の浸漬管内径dに溶鋼16の環流に伴う浸漬管内径変化量dgNを加えた値を、溶鋼16の脱炭処理の実操業における浸漬管内径推定値とし、この実操業上の浸漬管内径推定値等を用い、式(3)に基づいて溶鋼環流量Qを算出する。制御部15は、このように算出した溶鋼環流量Qを、溶鋼16の脱炭処理の実操業における溶鋼環流量推定値として取得する。また、制御部15は、式(4)に基づいて、真空槽3からの排ガス炭素流量GCを算出し、この算出した排ガス炭素流量GCを、溶鋼16の脱炭処理の実操業における排ガス炭素流量推定値として取得する。制御部15は、このように取得した溶鋼環流量Qおよび排ガス炭素流量GCと、槽内真空度計9からの真空槽内圧力Pと、式(6)による平衡定数Kと、測定プローブ12からの溶鋼酸素濃度[O]と、記憶部14から読み出した補正係数Bとを用い、式(7)に基づいて溶鋼炭素濃度[C]を算出する。すなわち、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して溶鋼炭素濃度[C]を算出する。制御部15は、このように算出した溶鋼炭素濃度[C]を、溶鋼16の脱炭処理の実操業における溶鋼炭素濃度推定値として取得する。 In the vacuum degassing apparatus 1 according to the present embodiment, the control unit 15 includes the recirculation gas flow meter 7, the in-tank vacuum meter 9, the exhaust gas flow meter 10, the exhaust gas component analyzer 11, and the measurement probe 12. Using the input signal, the input information from the input unit 13, and the information read from the storage unit 14, arithmetic processing is performed based on the above-described equations (1) to (7). In particular, the control unit 15 takes into account the change in the inner diameter d of the dip tube due to the wear of the inner wall of the dip tube or the adhesion of metal due to the circulation of the molten steel 16 in the calculation process of the equation (3). That is, the control unit 15 uses the value obtained by adding the dip tube inner diameter change d gN accompanying the reflux of the molten steel 16 to the original dip tube inner diameter d of the vacuum chamber 3 as the dip tube inner diameter in the actual operation of the decarburization treatment of the molten steel 16. Using the estimated value of the dip tube inner diameter in actual operation and the like as an estimated value, the molten steel ring flow rate Q is calculated based on the equation (3). The control unit 15 acquires the molten steel ring flow rate Q calculated in this way as an estimated value of the molten steel ring flow rate in the actual operation of the decarburization process of the molten steel 16. Further, the control unit 15 calculates the exhaust gas carbon flow rate G C from the vacuum chamber 3 based on the formula (4), and uses the calculated exhaust gas carbon flow rate G C for the exhaust gas in the actual operation of the decarburization treatment of the molten steel 16. Obtained as an estimate of carbon flow rate. The control unit 15 includes the molten steel ring flow rate Q and the exhaust gas carbon flow rate G C acquired in this way, the vacuum chamber pressure P from the vacuum gauge 9 in the chamber, the equilibrium constant K according to the equation (6), and the measurement probe 12. The molten steel carbon concentration [C] is calculated on the basis of the equation (7) using the molten steel oxygen concentration [O] from No. 1 and the correction coefficient B read from the storage unit 14. That is, the control unit 15 calculates the molten steel carbon concentration [C] in consideration of the change of the dip tube inner diameter d accompanying the reflux of the molten steel 16. The control unit 15 acquires the molten steel carbon concentration [C] calculated as described above as an estimated value of the molten steel carbon concentration in the actual operation of the decarburization process of the molten steel 16.

(溶鋼の環流に伴う浸漬管内径の変化)
つぎに、溶鋼16の環流に伴う浸漬管内径dの変化について説明する。図1に示した真空脱ガス装置1を用いて溶鋼16の脱炭処理を行う際、脱炭処理対象である1チャージ分の溶鋼16は、上述したように、上昇側浸漬管3aおよび下降側浸漬管3b(以下、2つの浸漬管と適宜いう)を通じて取鍋2と真空槽3との間で環流する。この脱炭処理の実操業中において、これら2つの浸漬管の各内径は、溶鋼16の環流に伴って増減変化する。
(Changes in the inner diameter of the dip tube with the flow of molten steel)
Next, a change in the inner diameter d of the dip tube accompanying the reflux of the molten steel 16 will be described. When performing the decarburization process of the molten steel 16 using the vacuum degassing apparatus 1 shown in FIG. 1, the molten steel 16 for one charge, which is the decarburization target, is, as described above, the ascending-side dip tube 3 a and the descending side. It circulates between the ladle 2 and the vacuum chamber 3 through the dip tube 3b (hereinafter referred to as two dip tubes as appropriate). During the actual operation of the decarburization process, the inner diameters of these two dip pipes increase and decrease with the circulation of the molten steel 16.

具体的には、取鍋2と真空槽3との間で溶鋼16が環流する際、溶鋼16は、上昇側浸漬管3a内を通って上昇し、また、下降側浸漬管3b内を通って下降する。この際、これら2つの浸漬管の各内壁には、溶鋼16の通過(流通)による磨耗、環流時の溶鋼16に添加された合金鉄の付着等の現象が発生する。この溶鋼16の浸漬管内通過による浸漬管内壁の磨耗(以下、溶鋼環流による浸漬管内磨耗という)は、真空槽3の浸漬管内径dを増加させる。一方、この溶鋼16の浸漬管内通過時における浸漬管内壁への合金鉄の付着(以下、溶鋼環流時の添加合金鉄の浸漬管内付着という)は、真空槽3の浸漬管内径dを減少させる。   Specifically, when the molten steel 16 circulates between the ladle 2 and the vacuum chamber 3, the molten steel 16 rises through the ascending side dip tube 3a and also passes through the descending side dip tube 3b. Descend. At this time, phenomena such as wear due to passage (circulation) of the molten steel 16 and adhesion of alloy iron added to the molten steel 16 during circulation occur on the inner walls of these two dip tubes. The wear of the inner wall of the dip tube due to the passage of the molten steel 16 through the dip tube (hereinafter referred to as wear in the dip tube due to the molten steel recirculation) increases the inner diameter d of the dip tube of the vacuum chamber 3. On the other hand, the adhesion of the alloy iron to the inner wall of the dip tube when the molten steel 16 passes through the dip tube (hereinafter referred to as the adhesion of the added alloy iron in the dip tube when the molten steel circulates) reduces the dip tube inner diameter d of the vacuum chamber 3.

上述した溶鋼16の環流に伴う浸漬管内径dの増減変化は、溶鋼16の脱炭処理における溶鋼炭素濃度[C]の推定に影響する。図2は、溶鋼の脱炭処理における溶鋼炭素濃度の推定値と真空槽の浸漬管内径との相関を例示する図である。溶鋼16の脱炭処理において、溶鋼炭素濃度[C]の推定値は、図2に示すように、真空槽3の浸漬管内径dの変化に応じて変化する。したがって、溶鋼16の脱炭処理における溶鋼炭素濃度[C]は、溶鋼16の環流に伴う浸漬管内径dの変化すなわち浸漬管内径変化量dgNを加味して推定されるべきである。 The increase / decrease change in the inner diameter d of the dip tube accompanying the circulating flow of the molten steel 16 described above affects the estimation of the molten steel carbon concentration [C] in the decarburization treatment of the molten steel 16. FIG. 2 is a diagram illustrating the correlation between the estimated value of the molten steel carbon concentration in the decarburization treatment of molten steel and the inner diameter of the dip tube in the vacuum chamber. In the decarburization process of the molten steel 16, the estimated value of the molten steel carbon concentration [C] changes according to the change of the dip tube inner diameter d of the vacuum chamber 3, as shown in FIG. Therefore, the molten steel carbon concentration [C] in the decarburization treatment of the molten steel 16 should be estimated in consideration of the change of the dip tube inner diameter d accompanying the reflux of the molten steel 16, that is, the dip tube inner diameter change amount d gN .

本発明において、溶鋼16の環流に伴う浸漬管内径変化量dgNは、溶鋼16の環流の際に浸漬管内壁に生じる2つの現象、具体的には、溶鋼環流による浸漬管内磨耗と、溶鋼環流時の添加合金鉄の浸漬管内付着と、に着目して算出される。すなわち、浸漬管内径変化量dgNは、溶鋼16の環流による単位時間当りの浸漬管内磨耗量daと、溶鋼16の合金鉄添加による単位時間当りの浸漬管内径減少量dbと、溶鋼環流時間tNと、溶鋼16の環流時の合金鉄添加量JNとを用い、次式(8)によって表される。なお、溶鋼環流時間tNは、溶鋼16が取鍋2と真空槽3との間で環流している時間である。

gN=da×tN−db×JN ・・・(8)
In the present invention, the dip tube inner diameter change d gN accompanying the circulation of the molten steel 16 is two phenomena that occur on the inner wall of the dip tube during the circulation of the molten steel 16, specifically, the wear in the dip tube due to the molten steel circulation and the molten steel circulation. It is calculated paying attention to the adhesion of the added alloy iron in the dip tube. That is, the dip tube inner diameter change d gN is the dip tube wear amount d a per unit time due to the circulating flow of the molten steel 16, the dip tube inner diameter reduction amount d b per unit time due to the addition of the alloy iron of the molten steel 16, and the molten steel reflux. Using the time t N and the alloy iron addition amount J N during the reflux of the molten steel 16, it is expressed by the following equation (8). The molten steel reflux time t N is the time during which the molten steel 16 is circulating between the ladle 2 and the vacuum chamber 3.

d gN = d a × t N −d b × J N (8)

上式(8)の各項のうち、浸漬管内径変化量dgN、溶鋼環流時間tN、および合金鉄添加量JNは、真空脱ガス装置1を用いた溶鋼16の脱炭処理の実操業データと、溶鋼16のチャージ毎に交換する2つの浸漬管(上昇側浸漬管3aおよび下降側浸漬管3b)の交換前後の各内径測定値とを用いることにより、求めることが可能である。具体的には、前回の溶鋼16の脱炭処理が終了した後に交換した2つの浸漬管の未使用状態(交換直後の状態)における各内径測定値と、今回の溶鋼16の脱炭処理が終了した後に交換を予定する2つの浸漬管の使用済み状態(交換直前の状態)における各内径測定値とを用い、これら各内径測定値の差をとることにより、浸漬管内径変化量dgNの実測値が得られる。また、今回の2つの浸漬管を溶鋼16の環流に使用し始めてから使用し終わるまでの経過時間が、溶鋼環流時間tNとして実測される。さらに、今回の2つの浸漬管を溶鋼16の環流に使用した際に環流中の溶鋼16に添加した合金鉄の量が、合金鉄添加量JNとして実測される。 Among the terms of the above equation (8), the dip tube inner diameter variation d gN , the molten steel reflux time t N , and the alloyed iron addition amount J N are the results of the decarburization treatment of the molten steel 16 using the vacuum degassing apparatus 1. It can be obtained by using the operation data and the measured inner diameters before and after replacement of the two dip tubes (the rising side dip tube 3a and the descending side dip tube 3b) to be exchanged every time the molten steel 16 is charged. Specifically, each inner diameter measurement value in the unused state (state immediately after replacement) of the two dip pipes exchanged after the previous decarburization process of the molten steel 16 is completed, and the current decarburization process of the molten steel 16 is completed. After that, the measured values of the inner diameter change d gN of the dip tube are obtained by using the measured values of the inner diameters of the two dip tubes to be replaced after use (the state immediately before the replacement) and taking the difference between the measured values of the inner diameters. A value is obtained. Further, the elapsed time from the start of using the two dip pipes this time for the circulation of the molten steel 16 to the end of the use is measured as the molten steel circulation time t N. Further, the amount of alloy iron added to the molten steel 16 in the reflux when the two dip tubes this time are used for the reflux of the molten steel 16 is actually measured as the alloy iron addition amount J N.

上述したような浸漬管の内径測定、溶鋼環流の時間測定、および合金鉄の添加量測定を各々N回(Nは正の整数)行い、N回目の測定結果である浸漬管内径変化量dgNと、溶鋼環流時間tNと、合金鉄添加量JNとを式(8)に代入する。これにより、式(8)は、浸漬管内磨耗量daと浸漬管内径減少量dbとを二変数とする一次関数式となる。上述したようにN回(N=1,2,3,・・・)行った浸漬管の内径測定、溶鋼環流の時間測定、および合金鉄の添加量測定の各々に対応して、上記二変数の一次関数式をN個、導出する。これらN個の一次関数式をもとに、最小二乗法によって、最適な浸漬管内磨耗量daと浸漬管内径減少量dbとを求める。このようにして求めた最適な浸漬管内磨耗量daと浸漬管内径減少量dbとを、上述した式(8)に代入する。この結果、式(8)は、最適な浸漬管内磨耗量daと浸漬管内径減少量dbとを係数とし、溶鋼環流時間tNと合金鉄添加量JNとを変数として、浸漬管内径変化量dgNを算出する演算式となる。このような式(8)によって表される浸漬管内径変化量dgNは、上述した式(3)に示されるように、1チャージ分の溶鋼16の環流に伴う浸漬管内径dの変化量として、溶鋼環流量Qの演算式に含まれる。すなわち、真空槽3の本来の浸漬管内径dに浸漬管内径変化量dgNを加えた項(d+dgN)を含む式(3)は、1チャージ分の溶鋼16の環流に伴う浸漬管内径dの変化(チャージ毎の浸漬管内径変化)を加味して溶鋼環流量Qを算出する演算式となる。なお、式(8)の変数としての溶鋼環流時間tNおよび合金鉄添加量JNは、例えば、図1に示した入力部13によって、溶鋼16のチャージ毎に制御部15に入力される。 The above-described measurement of the inner diameter of the dip tube, the time measurement of the molten steel reflux, and the measurement of the amount of addition of alloy iron are performed N times (N is a positive integer), and the dip tube inner diameter change d gN as the Nth measurement result. And the molten steel reflux time t N and the alloy iron addition amount J N are substituted into the equation (8). As a result, the equation (8) becomes a linear function equation having the dip tube wear amount d a and the dip tube inner diameter reduction amount d b as two variables. As described above, the two variables described above correspond to each of the inner diameter measurement of the dip tube performed N times (N = 1, 2, 3,...), The time measurement of the molten steel reflux, and the addition amount measurement of the iron alloy. N linear function equations are derived. Based on these N linear function equations, an optimum dip tube wear amount d a and dip tube inner diameter reduction amount d b are obtained by the least square method. The optimum dip tube wear d a and dip tube inner diameter reduction d b obtained in this way are substituted into the above-described equation (8). As a result, the equation (8) shows that the dip tube inner diameter d a and the dip tube inner diameter decrease d b are used as coefficients, and the molten steel reflux time t N and the alloy iron addition amount J N are variables. This is an arithmetic expression for calculating the change amount d gN . The dip tube inner diameter change amount d gN represented by the equation (8) is a change amount of the dip tube inner diameter d associated with the recirculation of the molten steel 16 for one charge, as shown in the above-described equation (3). And included in the calculation formula of the flow rate Q of the molten steel ring. That is, the equation (3) including the term (d + d gN ) obtained by adding the dip tube inner diameter variation d gN to the original dip tube inner diameter d of the vacuum chamber 3 is the dip tube inner diameter d accompanying the reflux of the molten steel 16 for one charge. This is an arithmetic expression for calculating the flow rate Q of the molten steel ring in consideration of the change (change in the inner diameter of the dip tube for each charge). Note that the molten steel reflux time t N and the alloy iron addition amount J N as variables of the equation (8) are input to the control unit 15 every time the molten steel 16 is charged by the input unit 13 shown in FIG.

(溶鋼の脱炭処理方法)
つぎに、本発明の実施の形態にかかる溶鋼の脱炭処理方法について説明する。図3は、本発明の実施の形態にかかる溶鋼の脱炭処理方法の一例を示すフローチャートである。本実施の形態にかかる溶鋼の脱炭処理方法では、取鍋2内の溶鋼16に真空槽3の2つの浸漬管を浸漬し、大気圧よりも低い減圧下において、これら2つの浸漬管を通じ取鍋2と真空槽3との間で溶鋼16を環流させつつ溶鋼16の脱炭処理を行う真空脱ガス装置1(図1参照)を用い、溶鋼16のチャージ毎に、図3に示すステップS101〜S109が順次行われる。
(Method for decarburizing molten steel)
Below, the decarburization processing method of the molten steel concerning embodiment of this invention is demonstrated. FIG. 3 is a flowchart showing an example of a method for decarburizing molten steel according to the embodiment of the present invention. In the molten steel decarburizing treatment method according to the present embodiment, the two dip tubes of the vacuum chamber 3 are immersed in the molten steel 16 in the ladle 2 and are taken through these two dip tubes under a reduced pressure lower than the atmospheric pressure. Step S101 shown in FIG. 3 is performed every time the molten steel 16 is charged using the vacuum degassing apparatus 1 (see FIG. 1) that performs the decarburization process of the molten steel 16 while circulating the molten steel 16 between the pan 2 and the vacuum chamber 3. To S109 are sequentially performed.

すなわち、本実施の形態にかかる溶鋼の脱炭処理方法において、真空脱ガス装置1は、図3に示すように、まず、1チャージ分の溶鋼16の脱炭処理を開始する(ステップS101)。ステップS101において、真空脱ガス装置1は、取鍋2内に収容された1チャージ分の溶鋼16を受け入れる。ついで、真空槽3は、この取鍋2内の溶鋼16に2つの浸漬管すなわち上昇側浸漬管3aおよび下降側浸漬管3bを浸漬する。この状態において、制御部15は、真空槽3の内部ガスを吸引して外部に排出するように真空排気装置4を制御する。真空排気装置4は、制御部15の制御に基づいて、真空槽3の内部ガスを排気管3cから外部に排出し、これにより、真空槽3内の圧力を略真空状態に減圧する。この結果、取鍋2内の溶鋼16は、上昇側浸漬管3aおよび下降側浸漬管3bを通じて真空槽3内に吸引される。このタイミングに、制御部15は、弁開動作をガス弁6に行わせる。これに伴い、環流用ガス供給管5は、上昇側浸漬管3a内の溶鋼16に環流用ガスを供給する。これによって生じるエアリフトポンプ作用により、溶鋼16は、上昇側浸漬管3aを通じて取鍋2側から真空槽3側へ上昇する。真空槽3内の溶鋼16は、大気圧よりも低い減圧下で脱炭処理される。真空槽3内の溶鋼16は、下降側浸漬管3bを通じて真空槽3側から取鍋2側へ下降する。このように、溶鋼16は、上昇側浸漬管3aおよび下降側浸漬管3bを通じて取鍋2と真空槽3との間で環流しつつ、真空槽3内の減圧空間に順次曝されて連続的に脱炭処理される。   That is, in the molten steel decarburizing method according to the present embodiment, the vacuum degassing apparatus 1 first starts decarburizing processing of the molten steel 16 for one charge as shown in FIG. 3 (step S101). In step S <b> 101, the vacuum degassing apparatus 1 receives the molten steel 16 for one charge accommodated in the ladle 2. Next, the vacuum chamber 3 immerses two dip tubes, that is, the ascending side dip tube 3 a and the descending side dip tube 3 b in the molten steel 16 in the ladle 2. In this state, the control unit 15 controls the vacuum exhaust device 4 so as to suck the internal gas in the vacuum chamber 3 and discharge it to the outside. The vacuum evacuation device 4 discharges the internal gas of the vacuum chamber 3 from the exhaust pipe 3c to the outside based on the control of the control unit 15, thereby reducing the pressure in the vacuum chamber 3 to a substantially vacuum state. As a result, the molten steel 16 in the ladle 2 is sucked into the vacuum chamber 3 through the ascending side dip tube 3a and the descending side dip tube 3b. At this timing, the control unit 15 causes the gas valve 6 to perform a valve opening operation. Accordingly, the reflux gas supply pipe 5 supplies the reflux gas to the molten steel 16 in the ascending-side dip pipe 3a. Due to the air lift pump action caused by this, the molten steel 16 rises from the ladle 2 side to the vacuum chamber 3 side through the ascending side dip tube 3a. The molten steel 16 in the vacuum chamber 3 is decarburized under a reduced pressure lower than the atmospheric pressure. The molten steel 16 in the vacuum chamber 3 descends from the vacuum chamber 3 side to the ladle 2 side through the descending side dip tube 3b. In this way, the molten steel 16 is continuously exposed to the reduced pressure space in the vacuum chamber 3 while continuously circulating between the ladle 2 and the vacuum chamber 3 through the ascending-side dip tube 3a and the descending-side dip tube 3b. Decarburized.

続いて、真空脱ガス装置1は、真空槽3からの排ガス流量Gを計測する(ステップS102)。ステップS102において、排ガス流量計10は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの流量を計測する。排ガス流量計10は、この計測した排ガス流量Gを示す電気信号を制御部15に送信する。   Subsequently, the vacuum degassing apparatus 1 measures the exhaust gas flow rate G from the vacuum chamber 3 (step S102). In step S102, the exhaust gas flow meter 10 measures the flow rate of exhaust gas discharged from the vacuum chamber 3 to the outside through the exhaust pipe 3c when the molten steel 16 is decarburized. The exhaust gas flow meter 10 transmits an electrical signal indicating the measured exhaust gas flow rate G to the control unit 15.

ついで、真空脱ガス装置1は、真空槽3からの排ガス中の一酸化炭素(CO)濃度および二酸化炭素(CO2)濃度を計測する(ステップS103)。ステップS103において、排ガス成分分析計11は、溶鋼16の脱炭処理の際に真空槽3から排気管3cを通じて外部に排出される排ガスの成分分析を行う。この成分分析の結果をもとに、排ガス成分分析計11は、この排ガス中の一酸化炭素濃度(排ガスCO濃度[CO])および二酸化炭素濃度(排ガスCO2濃度[CO2])を計測する。排ガス成分分析計11は、計測した排ガスCO濃度[CO]および排ガスCO2濃度[CO2]を示す電気信号を制御部15に送信する。 Next, the vacuum degassing apparatus 1 measures the carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration in the exhaust gas from the vacuum chamber 3 (step S103). In step S103, the exhaust gas component analyzer 11 performs a component analysis of the exhaust gas discharged from the vacuum chamber 3 through the exhaust pipe 3c when the molten steel 16 is decarburized. Based on the result of this component analysis, the exhaust gas component analyzer 11 measures the carbon monoxide concentration (exhaust gas CO concentration [CO]) and carbon dioxide concentration (exhaust gas CO 2 concentration [CO 2 ]) in the exhaust gas. . The exhaust gas component analyzer 11 transmits an electrical signal indicating the measured exhaust gas CO concentration [CO] and exhaust gas CO 2 concentration [CO 2 ] to the control unit 15.

つぎに、真空脱ガス装置1は、計測した排ガス流量Gと排ガスCO濃度[CO]と排ガスCO2濃度[CO2]とを用いて、溶鋼16の脱炭速度を算出する(ステップS104)。ステップS104において、制御部15は、排ガス流量計10からの入力信号に基づく排ガス流量Gと、排ガス成分分析計11からの入力信号に基づく排ガスCO濃度[CO]および排ガスCO2濃度[CO2]とを取得する。制御部15は、取得した排ガス流量Gと排ガスCO濃度[CO]と排ガスCO2濃度[CO2]とを用い、式(4)に基づいて排ガス炭素流量GCを算出する。ついで、制御部15は、この算出した排ガス炭素流量GCと入力部13によって入力された溶鋼重量Wとを用い、式(2)に基づいて溶鋼16の脱炭速度d[C]/dtを算出する。 Next, the vacuum degassing apparatus 1 calculates the decarburization speed of the molten steel 16 using the measured exhaust gas flow rate G, exhaust gas CO concentration [CO], and exhaust gas CO 2 concentration [CO 2 ] (step S104). In step S < b > 104, the control unit 15 controls the exhaust gas flow rate G based on the input signal from the exhaust gas flow meter 10 and the exhaust gas CO concentration [CO] and exhaust gas CO 2 concentration [CO 2 ] based on the input signal from the exhaust gas component analyzer 11. And get. Control unit 15, using the obtained exhaust gas flow rate G and the exhaust gas CO concentration [CO] and flue gas CO 2 concentration [CO 2], calculates the exhaust carbon flow rate G C according to equation (4). Next, the control unit 15 uses the calculated exhaust gas carbon flow rate G C and the molten steel weight W input by the input unit 13 to calculate the decarburization speed d [C] / dt of the molten steel 16 based on the equation (2). calculate.

続いて、真空脱ガス装置1は、ステップS104によって算出した溶鋼16の脱炭速度d[C]/dtが所定速度以下であるか否かを判断する(ステップS105)。ステップS105において、制御部15は、上述したように式(2)に基づいて算出した脱炭速度d[C]/dtと、予め設定された所定速度とを比較処理する。脱炭速度d[C]/dtが所定速度を超過すると制御部15が判断した場合(ステップS105,No)、真空脱ガス装置1は、上述したステップS102に戻り、このステップS102以降の処理ステップを繰り返す。   Subsequently, the vacuum degassing apparatus 1 determines whether or not the decarburization speed d [C] / dt of the molten steel 16 calculated in step S104 is equal to or lower than a predetermined speed (step S105). In step S105, the control unit 15 compares the decarburization speed d [C] / dt calculated based on Expression (2) as described above with a predetermined speed set in advance. When the control unit 15 determines that the decarburization speed d [C] / dt exceeds the predetermined speed (No at Step S105), the vacuum degassing apparatus 1 returns to Step S102 described above, and the processing steps after Step S102 repeat.

一方、脱炭速度d[C]/dtが所定速度以下であると制御部15が判断した場合(ステップS105,Yes)、真空脱ガス装置1は、溶鋼温度Tおよび溶鋼酸素濃度[O]を計測する(ステップS106)。ステップS106において、測定プローブ12は、制御部15の制御に基づき駆動して、溶鋼温度Tおよび溶鋼酸素濃度[O]を計測する。この際、測定プローブ12は、取鍋2内の溶鋼16に浸漬し、この溶鋼16の温度(溶鋼温度T)と、この溶鋼16中の酸素濃度(溶鋼酸素濃度[O])とを計測する。測定プローブ12は、計測した溶鋼温度Tおよび溶鋼酸素濃度[O]を示す電気信号を制御部15に送信する。   On the other hand, when the control unit 15 determines that the decarburization speed d [C] / dt is equal to or lower than the predetermined speed (step S105, Yes), the vacuum degassing apparatus 1 sets the molten steel temperature T and the molten steel oxygen concentration [O]. Measurement is performed (step S106). In step S106, the measurement probe 12 is driven based on the control of the control unit 15, and measures the molten steel temperature T and the molten steel oxygen concentration [O]. At this time, the measurement probe 12 is immersed in the molten steel 16 in the ladle 2 and measures the temperature of the molten steel 16 (molten steel temperature T) and the oxygen concentration in the molten steel 16 (molten steel oxygen concentration [O]). . The measurement probe 12 transmits an electrical signal indicating the measured molten steel temperature T and molten steel oxygen concentration [O] to the control unit 15.

つぎに、真空脱ガス装置1は、溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化を加味して、溶鋼炭素濃度[C]を推定する(ステップS107)。ステップS107において、制御部15は、入力部13によって入力された溶鋼環流時間tNと溶鋼16の環流時の合金鉄添加量JNとを用い、式(8)に基づいて、溶鋼16の環流に伴う浸漬管内径変化量dgNを算出する。ついで、制御部15は、この算出した浸漬管内径変化量dgNと、入力部13によって入力された浸漬管内径dと、環流用ガス流量計7によって計測された環流用ガス流量Fと、槽内真空度計9によって計測された真空槽内圧力Pと、大気圧Paとを用い、式(3)に基づいて、取鍋2と真空槽3との間における溶鋼環流量Qを算出する。これにより、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して溶鋼環流量Qを算出する。その後、制御部15は、算出した溶鋼環流量Qと、溶鋼16の脱炭処理における溶鋼16中の炭素に関する物質収支式(式(1))と、溶鋼16の脱炭速度d[C]/dtと、真空槽3内における溶鋼16の脱炭反応を表す槽内反応モデル式(式(5))とをもとに、溶鋼16中の炭素濃度を推定する。この際、制御部15は、式(1)の物質収支式と式(2)の脱炭速度の演算式と式(5)の槽内反応モデル式とをもとに導出した溶鋼炭素濃度[C]の推定式(式(7))に基づき、溶鋼温度Tと溶鋼酸素濃度[O]と溶鋼環流量Qとを用いて溶鋼16中の炭素濃度を推定する。詳細には、制御部15は、ステップS106によって計測した溶鋼温度Tを用い、式(6)に基づいて、溶鋼16の脱炭処理における炭素と酸素との反応の平衡定数Kを算出する。ついで、制御部15は、上述したように算出した溶鋼環流量Qおよび平衡定数Kと、槽内真空度計9からの真空槽内圧力Pと、ステップS106によって計測した溶鋼酸素濃度[O]と、記憶部14から読み出した補正係数Bと、排ガス炭素流量GCとを用い、式(7)に基づいて溶鋼炭素濃度[C]を算出する。この演算処理において、制御部15は、脱炭速度d[C]/dtが所定速度以下であるという条件を満足する際の排ガス炭素流量GCを用いる。以上の演算処理により、制御部15は、溶鋼16の環流に伴う浸漬管内径dの変化を加味して、推定される溶鋼炭素濃度[C]を算出する。 Next, the vacuum degassing apparatus 1 estimates the molten steel carbon concentration [C] in consideration of the change in the dip tube inner diameter d of the vacuum chamber 3 accompanying the reflux of the molten steel 16 (step S107). In step S107, the control unit 15 uses the molten steel recirculation time t N input by the input unit 13 and the alloy iron addition amount J N during the recirculation of the molten steel 16, and the recirculation of the molten steel 16 based on the equation (8). The dip tube inner diameter change amount d gN is calculated. The control unit 15 then calculates the calculated dip tube inner diameter change d gN , the dip tube inner diameter d input by the input unit 13, the recirculation gas flow rate F measured by the recirculation gas flow meter 7, and the tank The molten steel ring flow rate Q between the ladle 2 and the vacuum chamber 3 is calculated based on the equation (3) using the vacuum chamber internal pressure P measured by the internal vacuum gauge 9 and the atmospheric pressure Pa. Thereby, the control part 15 calculates the molten steel ring flow volume Q in consideration of the change of the immersion pipe inner diameter d accompanying the reflux of the molten steel 16. Thereafter, the control unit 15 calculates the calculated molten steel ring flow rate Q, the material balance equation (equation (1)) regarding the carbon in the molten steel 16 in the decarburization process of the molten steel 16, and the decarburization speed d [C] / The carbon concentration in the molten steel 16 is estimated based on dt and a reaction model equation (equation (5)) representing the decarburization reaction of the molten steel 16 in the vacuum chamber 3. At this time, the control unit 15 calculates the molten steel carbon concentration derived from the mass balance equation of the equation (1), the decarburization rate calculation equation of the equation (2), and the reaction model equation in the tank of the equation (5) [ Based on the estimation formula (formula (7)) of C], the carbon concentration in the molten steel 16 is estimated using the molten steel temperature T, the molten steel oxygen concentration [O], and the molten steel ring flow rate Q. Specifically, the control unit 15 calculates the equilibrium constant K of the reaction between carbon and oxygen in the decarburization process of the molten steel 16 based on the equation (6) using the molten steel temperature T measured in step S106. Subsequently, the control unit 15 calculates the molten steel ring flow rate Q and the equilibrium constant K calculated as described above, the pressure P in the vacuum chamber from the vacuum gauge 9 in the tank, and the molten steel oxygen concentration [O] measured in step S106. Then, using the correction coefficient B read from the storage unit 14 and the exhaust gas carbon flow rate G C , the molten steel carbon concentration [C] is calculated based on the equation (7). In this processing, the control unit 15, the decarburization speed d [C] / dt is used exhaust carbon flow rate G C when satisfying the condition that is less than a predetermined speed. Through the above arithmetic processing, the control unit 15 calculates the estimated molten steel carbon concentration [C] by taking into account the change in the dip tube inner diameter d accompanying the reflux of the molten steel 16.

ステップS107を実行後、真空脱ガス装置1は、ステップS107によって推定した溶鋼炭素濃度[C]が目標値に達したか否かを判断する(ステップS108)。ステップS108において、制御部15は、上述したように式(7)に基づいて算出した溶鋼炭素濃度[C](推定値)と、溶鋼16中の目標とする炭素濃度(目標値)とを比較処理する。なお、制御部15は、例えば、入力部13によって入力された溶鋼16のオーダ情報等をもとに、溶鋼16の要求仕様等に応じた炭素濃度の目標値を予め設定する。この比較処理の結果、溶鋼炭素濃度[C]が目標値に達していないと制御部15が判断した場合(ステップS108,No)、真空脱ガス装置1は、上述したステップS106に戻り、このステップS106以降の処理ステップを適宜繰り返す。   After executing Step S107, the vacuum degassing apparatus 1 determines whether or not the molten steel carbon concentration [C] estimated in Step S107 has reached the target value (Step S108). In step S108, the control unit 15 compares the molten steel carbon concentration [C] (estimated value) calculated based on the equation (7) as described above with the target carbon concentration (target value) in the molten steel 16. To process. The control unit 15 presets a target value of the carbon concentration according to the required specifications of the molten steel 16 based on, for example, order information of the molten steel 16 input by the input unit 13. As a result of this comparison processing, when the control unit 15 determines that the molten steel carbon concentration [C] has not reached the target value (No at Step S108), the vacuum degassing apparatus 1 returns to Step S106 described above, and this step The processing steps after S106 are repeated as appropriate.

一方、溶鋼炭素濃度[C]が目標値に達したと制御部15が判断した場合(ステップS108,Yes)、真空脱ガス装置1は、溶鋼16の脱炭処理を終了する(ステップS109)。ステップS109において、制御部15は、ステップS107によって推定した溶鋼炭素濃度[C]が上述した目標値に達したタイミングに、溶鋼16の脱炭処理を終了させる各種制御動作を行う。具体的には、制御部15は、溶鋼16に脱酸材を投入するように脱酸材投入部8を制御し、この制御を通して、溶鋼16の脱炭処理を終了させる。これに加えて、制御部15は、真空槽3の内部ガスの吸引動作を停止するように真空排気装置4を制御し、これにより、真空槽3内の圧力を大気圧に戻す。また、制御部15は、弁閉動作をガス弁6に行わせ、これにより、環流用ガス供給管5から上昇側浸漬管3a内への環流用ガスの供給を停止する。   On the other hand, when the control unit 15 determines that the molten steel carbon concentration [C] has reached the target value (step S108, Yes), the vacuum degassing apparatus 1 ends the decarburization process of the molten steel 16 (step S109). In step S109, the control part 15 performs various control operation | movement which complete | finishes the decarburization process of the molten steel 16 at the timing when the molten steel carbon concentration [C] estimated by step S107 reached the target value mentioned above. Specifically, the control unit 15 controls the deoxidizing material feeding unit 8 so as to feed the deoxidizing material into the molten steel 16, and the decarburizing process of the molten steel 16 is terminated through this control. In addition to this, the control unit 15 controls the vacuum exhaust device 4 to stop the suction operation of the internal gas in the vacuum chamber 3, thereby returning the pressure in the vacuum chamber 3 to atmospheric pressure. Further, the control unit 15 causes the gas valve 6 to perform the valve closing operation, and thereby stops the supply of the recirculation gas from the recirculation gas supply pipe 5 into the ascending-side dip pipe 3a.

(実施例)
つぎに、本発明の実施例について説明する。本実施例では、図1に示した真空脱ガス装置1を用い、図3に示したステップS101〜S109の各処理ステップに沿って、溶鋼16の脱炭処理を行った。この際、上述した式(1)〜(8)に基づいて演算処理を行うことにより、溶鋼16の脱炭処理の際における溶鋼炭素濃度[C]を推定した。特に、取鍋2と真空槽3との間における溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化量(浸漬管内径変化量dgN)を式(8)に基づいて算出し、算出した浸漬管内径変化量dgNを式(3)に適用して溶鋼環流量Qを算出した。このように浸漬管内径変化量dgNを加味した溶鋼環流量Qを式(7)に適用して、溶鋼16の脱炭処理終了時における溶鋼炭素濃度[C]の推定値を算出した。
(Example)
Next, examples of the present invention will be described. In this example, the vacuum degassing apparatus 1 shown in FIG. 1 was used, and the decarburization process of the molten steel 16 was performed along each processing step of steps S101 to S109 shown in FIG. Under the present circumstances, the molten steel carbon concentration [C] in the case of the decarburization process of the molten steel 16 was estimated by performing arithmetic processing based on Formula (1)-(8) mentioned above. In particular, the amount of change in the dip tube inner diameter d of the vacuum chamber 3 accompanying the reflux of the molten steel 16 between the ladle 2 and the vacuum chamber 3 (the dip tube inner diameter change amount d gN ) is calculated based on the equation (8). The molten steel ring flow rate Q was calculated by applying the calculated dip tube inner diameter change d gN to the equation (3). In this way, the molten steel ring flow rate Q including the dip tube inner diameter variation d gN was applied to the equation (7), and the estimated value of the molten steel carbon concentration [C] at the end of the decarburization treatment of the molten steel 16 was calculated.

一方、本実施例に対する比較例として、上述した溶鋼16の環流に伴う真空槽3の浸漬管内径dの変化量を加味せずに、溶鋼炭素濃度[C]を推定した。すなわち、式(3)から浸漬管内径変化量dgNの項を除去し、これにより、溶鋼16の環流によらず浸漬管内径dを一定値として、溶鋼環流量Qを算出し、この溶鋼環流量Qを式(7)に適用して溶鋼16の脱炭処理終了時における溶鋼炭素濃度[C]の推定値を算出した。なお、比較例の条件は、浸漬管内径dの変化量を加味せずに溶鋼炭素濃度[C]を推定すること以外、本実施例と同じとした。 On the other hand, as a comparative example with respect to the present example, the molten steel carbon concentration [C] was estimated without taking into account the amount of change in the dip tube inner diameter d of the vacuum chamber 3 accompanying the above-described reflux of the molten steel 16. That is, the term of the dip tube inner diameter change amount d gN is removed from the equation (3), thereby calculating the molten steel ring flow rate Q with the dip tube inner diameter d being a constant value regardless of the circulation of the molten steel 16, and this molten steel ring. The estimated value of the molten steel carbon concentration [C] at the end of the decarburization treatment of the molten steel 16 was calculated by applying the flow rate Q to the equation (7). The conditions of the comparative example were the same as those of this example except that the molten steel carbon concentration [C] was estimated without taking into account the amount of change in the dip tube inner diameter d.

真空脱ガス装置1による脱炭処理終了後の溶鋼16から、その一部分をサンプルとして採取し、このサンプルの溶鋼炭素濃度[C]を実測した。この溶鋼炭素濃度[C]の実測値と、本実施例および比較例における溶鋼炭素濃度[C]の各推定値との比較結果を表1に示す。   A portion of the molten steel 16 after the decarburization treatment by the vacuum degassing apparatus 1 was taken as a sample, and the molten steel carbon concentration [C] of this sample was measured. Table 1 shows a comparison result between the actually measured value of the molten steel carbon concentration [C] and each estimated value of the molten steel carbon concentration [C] in the present example and the comparative example.

Figure 0006007887
Figure 0006007887

表1に示すように、本実施例による溶鋼炭素濃度[C]の推定値は、比較例による溶鋼炭素濃度[C]の推定値に比して、脱炭処理終了後の溶鋼炭素濃度[C]の実測値に近い値となった。このことから、溶鋼16の環流に伴う浸漬管内径変化量dgNを加味することにより、溶鋼16の脱炭処理の際における溶鋼炭素濃度[C]の推定精度を、浸漬管内径変化量dgNを加味しない場合に比して向上できることが明らかとなった。 As shown in Table 1, the estimated value of the molten steel carbon concentration [C] according to this example is higher than the estimated value of the molten steel carbon concentration [C] according to the comparative example. The value was close to the actual measured value. Therefore, by adding the dip tube inner diameter variation d gN accompanying reflux of molten steel 16, the estimation accuracy of the molten steel carbon concentration at the time of decarburization treatment of the molten steel 16 [C], the dip tube inner diameter variation d gN It has become clear that it can be improved as compared with the case where no is added.

以上、説明したように、本発明の実施の形態では、取鍋内の溶鋼に真空槽の浸漬管を浸漬し、大気圧よりも低い減圧下において浸漬管を通じ取鍋と真空槽との間で溶鋼を環流させつつ溶鋼の脱炭処理を行う際、取鍋と真空槽との間における溶鋼環流量を、溶鋼の環流に伴う浸漬管の内径変化を加味して算出し、この算出した溶鋼環流量と、脱炭処理における溶鋼中の炭素に関する物質収支式と、溶鋼の脱炭速度と、真空槽内における溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、溶鋼炭素濃度を推定し、この推定した溶鋼炭素濃度が所定の目標値に達したタイミングに、この溶鋼の脱炭処理を終了している。   As described above, in the embodiment of the present invention, the dip tube of the vacuum vessel is immersed in the molten steel in the ladle, and between the ladle and the vacuum vessel through the dip tube under a reduced pressure lower than the atmospheric pressure. When the molten steel is decarburized while circulating the molten steel, the molten steel ring flow rate between the ladle and the vacuum chamber is calculated taking into account the inner diameter change of the dip tube accompanying the molten steel circulation, and this calculated molten steel ring Based on the flow rate, the mass balance equation for carbon in the molten steel in the decarburization process, the decarburization rate of the molten steel, and the reaction model in the tank representing the decarburization reaction of the molten steel in the vacuum tank, Then, the decarburization process of the molten steel is finished at a timing when the estimated molten steel carbon concentration reaches a predetermined target value.

このため、溶鋼の環流に伴って実際に変化することが想定される浸漬管内径の変化量を加味して、演算処理時の浸漬管内径を、実操業上の浸漬管内径に近づけるように補正し、この補正後の浸漬管内径に応じて溶鋼炭素濃度の推定値を算出することができる。これにより、浸漬管内径を一定値に固定して溶鋼炭素濃度を推定していた従来技術に比べ、溶鋼の脱炭処理の実操業における溶鋼炭素濃度の実績値に近い溶鋼炭素濃度の推定値を得ることができる。この結果、従来技術に比べて溶鋼炭素濃度の推定精度を向上することができ、高精度に得られた溶鋼炭素濃度の推定値に基づいて、溶鋼の脱炭処理を適切なタイミングに終了することができる。   For this reason, taking into account the amount of change in the inner diameter of the dip tube that is expected to change as the molten steel circulates, the dip tube inner diameter at the time of processing is corrected to be closer to the actual dip tube inner diameter. Then, the estimated value of the molten steel carbon concentration can be calculated according to the corrected dip tube inner diameter. As a result, compared to the conventional technology that estimates the molten steel carbon concentration by fixing the inner diameter of the dip tube, the estimated value of the molten steel carbon concentration is close to the actual value of the molten steel carbon concentration in the actual operation of the decarburization treatment of the molten steel. Can be obtained. As a result, it is possible to improve the estimation accuracy of the molten steel carbon concentration compared to the prior art, and to finish the decarburization processing of the molten steel at an appropriate timing based on the estimated value of the molten steel carbon concentration obtained with high accuracy. Can do.

本発明を溶鋼の脱炭処理に適用することにより、チャージ毎に溶鋼の脱炭処理を適切なタイミングに終了できることから、溶鋼の脱炭処理の過剰な継続を抑制して、溶鋼の脱炭処理時間の短縮を促進することができる。この結果、溶鋼に要求される炭素濃度の規格値を外すことなく、目標とする低炭素濃度の溶鋼を効率よく製造できるとともに、溶鋼の脱炭処理に要するユーティリティコストの削減を図ることができる。   By applying the present invention to the decarburization treatment of molten steel, the decarburization treatment of the molten steel can be terminated at an appropriate timing for each charge, so that excessive continuation of the decarburization treatment of the molten steel is suppressed, and the decarburization treatment of the molten steel Shortening of time can be promoted. As a result, it is possible to efficiently produce the target low carbon concentration molten steel without deviating from the standard value of the carbon concentration required for the molten steel, and it is possible to reduce the utility cost required for the decarburization treatment of the molten steel.

なお、上述した実施の形態では、脱炭処理に必要な酸素を溶存酸素として含有する溶鋼16を用いていたが、本発明は、これに限定されるものではない。例えば、真空脱ガス装置1の真空槽3に酸素吹付け羽口または酸素吹付けランス等の酸素供給機構を適宜設け、真空槽3内の溶鋼16に対し、脱炭処理に必要な酸素を吹き込み、これにより、この溶鋼16の脱炭処理を行ってもよい。この場合、制御部15は、溶鋼16の脱炭処理の終了タイミングに、真空槽3の酸素供給機構による溶鋼16への酸素供給を停止するように構成されてもよい。   In addition, in embodiment mentioned above, although the molten steel 16 which contains oxygen required for a decarburization process as dissolved oxygen was used, this invention is not limited to this. For example, an oxygen supply mechanism such as an oxygen blowing tuyere or an oxygen blowing lance is appropriately provided in the vacuum chamber 3 of the vacuum degassing apparatus 1, and oxygen necessary for decarburization treatment is blown into the molten steel 16 in the vacuum chamber 3. Thus, the molten steel 16 may be decarburized. In this case, the control unit 15 may be configured to stop the oxygen supply to the molten steel 16 by the oxygen supply mechanism of the vacuum chamber 3 at the end timing of the decarburization process of the molten steel 16.

また、上述した実施の形態では、2つの浸漬管を備えたRH方式の真空脱ガス装置1を例示したが、本発明は、これに限定されるものではない。すなわち、本発明は、単一の浸漬管を有するDH方式の真空脱ガス装置に適用することも可能である。   Moreover, in embodiment mentioned above, although the RH-type vacuum degassing apparatus 1 provided with two dip tubes was illustrated, this invention is not limited to this. That is, the present invention can also be applied to a DH vacuum degassing apparatus having a single dip tube.

さらに、上述した実施の形態では、真空槽3からの排ガスの流量を計測した後、この排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測していたが、本発明は、これに限定されるものではない。本発明において、真空槽3からの排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測した後、この排ガスの流量を計測してもよいし、これら一酸化炭素濃度、二酸化炭素濃度、および排ガスの流量を同時に計測してもよい。   Further, in the embodiment described above, after measuring the flow rate of the exhaust gas from the vacuum chamber 3, the carbon monoxide concentration and the carbon dioxide concentration in the exhaust gas are measured, but the present invention is limited to this. It is not a thing. In the present invention, after measuring the carbon monoxide concentration and the carbon dioxide concentration in the exhaust gas from the vacuum chamber 3, the flow rate of the exhaust gas may be measured, or the carbon monoxide concentration, the carbon dioxide concentration, and the exhaust gas The flow rate may be measured simultaneously.

また、上述した実施の形態または実施例により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。   In addition, the present invention is not limited by the above-described embodiment or example, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined. In addition, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are included in the present invention.

1 真空脱ガス装置
2 取鍋
3 真空槽
3a 上昇側浸漬管
3b 下降側浸漬管
3c 排気管
4 真空排気装置
5 環流用ガス供給管
6 ガス弁
7 環流用ガス流量計
8 脱酸材投入部
9 槽内真空度計
10 排ガス流量計
11 排ガス成分分析計
12 測定プローブ
13 入力部
14 記憶部
15 制御部
16 溶鋼
DESCRIPTION OF SYMBOLS 1 Vacuum degassing apparatus 2 Ladle 3 Vacuum tank 3a Ascending side immersion pipe 3b Decreasing side immersion pipe 3c Exhaust pipe 4 Vacuum exhaust apparatus 5 Recirculation gas supply pipe 6 Gas valve 7 Recirculation gas flow meter 8 Deoxidation material input part 9 In-tank vacuum gauge 10 Exhaust gas flow meter 11 Exhaust gas component analyzer 12 Measurement probe 13 Input unit 14 Storage unit 15 Control unit 16 Molten steel

Claims (6)

取鍋内の溶鋼に浸漬する浸漬管を有し、大気圧よりも低い減圧下で前記浸漬管を通じ前記取鍋から前記溶鋼を吸引して前記溶鋼の脱炭処理を行う真空槽と、
前記脱炭処理の際に前記浸漬管を通じ前記取鍋と前記真空槽との間で環流する前記溶鋼の環流量を、前記溶鋼の環流に伴う前記浸漬管の内径の増減変化を加味して算出し、算出した前記溶鋼の環流量と、前記脱炭処理における前記溶鋼中の炭素に関する物質収支式と、前記溶鋼の脱炭速度と、前記真空槽内における前記溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、前記溶鋼中の炭素濃度を推定し、推定した前記炭素濃度が所定の目標値に達したタイミングに前記脱炭処理を終了させる制御部と、
を備えたことを特徴とする真空脱ガス装置。
A vacuum tank that has a dip tube immersed in the molten steel in the ladle, and performs decarburization treatment of the molten steel by sucking the molten steel from the ladle through the dip tube under a reduced pressure lower than atmospheric pressure;
The flow rate of the molten steel circulating between the ladle and the vacuum tank through the dip tube during the decarburization treatment is calculated by taking into account the change in the inner diameter of the dip tube accompanying the reflux of the molten steel. And the calculated flow rate of the molten steel, the material balance equation regarding the carbon in the molten steel in the decarburization process, the decarburization rate of the molten steel, and the decarburization reaction of the molten steel in the vacuum chamber Based on the reaction model formula, a carbon concentration in the molten steel is estimated, and a controller that terminates the decarburization process at a timing when the estimated carbon concentration reaches a predetermined target value;
A vacuum degassing apparatus comprising:
前記溶鋼の温度と前記溶鋼中の酸素濃度とを計測する温度濃度計測部をさらに備え、
前記制御部は、前記物質収支式と前記脱炭速度の演算式と前記槽内反応モデル式とをもとに導出した前記溶鋼中の炭素濃度の推定式に基づき、前記溶鋼の温度と前記酸素濃度と前記溶鋼の環流量とを用いて前記溶鋼中の炭素濃度を推定することを特徴とする請求項1に記載の真空脱ガス装置。
A temperature concentration measuring unit for measuring the temperature of the molten steel and the oxygen concentration in the molten steel;
The control unit is configured to calculate the temperature of the molten steel and the oxygen based on an estimation formula of the carbon concentration in the molten steel derived based on the mass balance equation, the decarburization rate calculation formula, and the reaction model formula in the tank. The vacuum degassing apparatus according to claim 1, wherein the carbon concentration in the molten steel is estimated using the concentration and the ring flow rate of the molten steel.
前記脱炭処理の際に前記真空槽から排出される排ガスの流量を計測する排ガス流量計と、
前記排ガスの成分分析を行って、前記排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測する排ガス成分分析計と、
をさらに備え、
前記制御部は、前記排ガスの流量と前記一酸化炭素濃度と前記二酸化炭素濃度とを用いて、前記溶鋼の脱炭速度を算出し、算出した前記脱炭速度が所定速度以下であるか否かを判断し、前記脱炭速度が前記所定速度以下である場合、前記溶鋼中の炭素濃度を推定することを特徴とする請求項1または2に記載の真空脱ガス装置。
An exhaust gas flow meter for measuring the flow rate of exhaust gas discharged from the vacuum chamber during the decarburization treatment;
An exhaust gas component analyzer that performs a component analysis of the exhaust gas and measures a carbon monoxide concentration and a carbon dioxide concentration in the exhaust gas;
Further comprising
The control unit calculates a decarburization rate of the molten steel using the flow rate of the exhaust gas, the carbon monoxide concentration, and the carbon dioxide concentration, and whether the calculated decarburization rate is equal to or less than a predetermined rate. The vacuum degassing apparatus according to claim 1 or 2, wherein the carbon concentration in the molten steel is estimated when the decarburization speed is equal to or less than the predetermined speed.
取鍋内の溶鋼に真空槽の浸漬管を浸漬し、大気圧よりも低い減圧下において前記浸漬管を通じ前記取鍋と前記真空槽との間で前記溶鋼を環流させつつ前記溶鋼の脱炭処理を行う真空脱ガス装置を用いた溶鋼の脱炭処理方法において、
前記取鍋と前記真空槽との間における前記溶鋼の環流量を、前記溶鋼の環流に伴う前記浸漬管の内径の増減変化を加味して算出し、算出した前記溶鋼の環流量と、前記脱炭処理における前記溶鋼中の炭素に関する物質収支式と、前記溶鋼の脱炭速度と、前記真空槽内における前記溶鋼の脱炭反応を表す槽内反応モデル式とをもとに、前記溶鋼中の炭素濃度を推定する溶鋼炭素濃度推定ステップと、
前記溶鋼炭素濃度推定ステップによって推定した前記炭素濃度が所定の目標値に達したタイミングに前記脱炭処理を終了する脱炭処理終了ステップと、
を含むことを特徴とする溶鋼の脱炭処理方法。
A dip tube of a vacuum tank is immersed in the molten steel in the ladle, and the molten steel is decarburized while circulating the molten steel between the ladle and the vacuum tank through the dip tube under a reduced pressure lower than atmospheric pressure. In the decarburization processing method of the molten steel using the vacuum degassing device that performs
The flow rate of the molten steel between the ladle and the vacuum chamber is calculated by taking into account the change in the inner diameter of the dip tube accompanying the flow of the molten steel, the calculated flow rate of the molten steel, Based on the material balance equation for carbon in the molten steel in the carbon treatment, the decarburization rate of the molten steel, and the reaction model equation in the tank representing the decarburization reaction of the molten steel in the vacuum tank, A molten steel carbon concentration estimation step for estimating the carbon concentration;
A decarburization processing end step of ending the decarburization processing at a timing when the carbon concentration estimated by the molten steel carbon concentration estimation step reaches a predetermined target value;
A decarburization processing method for molten steel, comprising:
前記溶鋼の温度と前記溶鋼中の酸素濃度とを計測する温度濃度計測ステップをさらに含み、
前記溶鋼炭素濃度推定ステップは、前記物質収支式と前記脱炭速度の演算式と前記槽内反応モデル式とをもとに導出した前記溶鋼中の炭素濃度の推定式に基づき、前記溶鋼の温度と前記酸素濃度と前記溶鋼の環流量とを用いて前記溶鋼中の炭素濃度を推定することを特徴とする請求項4に記載の溶鋼の脱炭処理方法。
A temperature concentration measuring step of measuring the temperature of the molten steel and the oxygen concentration in the molten steel,
The molten steel carbon concentration estimation step is based on the estimation formula of the carbon concentration in the molten steel derived based on the mass balance equation, the calculation formula of the decarburization rate, and the reaction model equation in the tank, and the temperature of the molten steel. The method for decarburizing molten steel according to claim 4, wherein the carbon concentration in the molten steel is estimated using the oxygen concentration and the ring flow rate of the molten steel.
前記脱炭処理の際に前記真空槽から排出される排ガスの流量を計測する排ガス流量計測ステップと、
前記排ガスの成分分析を行って、前記排ガス中の一酸化炭素濃度および二酸化炭素濃度を計測する排ガス成分濃度計測ステップと、
前記排ガスの流量と前記一酸化炭素濃度と前記二酸化炭素濃度とを用いて、前記溶鋼の脱炭速度を算出する脱炭速度算出ステップと、
前記脱炭速度算出ステップによって算出した前記脱炭速度が所定速度以下であるか否かを判断する判断ステップと、
をさらに含み、
前記溶鋼炭素濃度推定ステップは、前記脱炭速度が前記所定速度以下である場合に前記溶鋼中の炭素濃度を推定することを特徴とする請求項4または5に記載の溶鋼の脱炭処理方法。
An exhaust gas flow rate measuring step for measuring a flow rate of exhaust gas discharged from the vacuum chamber during the decarburization treatment;
An exhaust gas component concentration measurement step of performing a component analysis of the exhaust gas and measuring a carbon monoxide concentration and a carbon dioxide concentration in the exhaust gas;
A decarburization rate calculating step of calculating a decarburization rate of the molten steel using the flow rate of the exhaust gas, the carbon monoxide concentration, and the carbon dioxide concentration;
A determination step of determining whether or not the decarburization speed calculated by the decarburization speed calculation step is a predetermined speed or less;
Further including
6. The method for decarburizing molten steel according to claim 4 or 5, wherein the molten steel carbon concentration estimating step estimates the carbon concentration in the molten steel when the decarburizing speed is equal to or lower than the predetermined speed.
JP2013241385A 2013-11-21 2013-11-21 Vacuum degassing apparatus and method for decarburizing molten steel using the same Active JP6007887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241385A JP6007887B2 (en) 2013-11-21 2013-11-21 Vacuum degassing apparatus and method for decarburizing molten steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241385A JP6007887B2 (en) 2013-11-21 2013-11-21 Vacuum degassing apparatus and method for decarburizing molten steel using the same

Publications (2)

Publication Number Publication Date
JP2015101742A JP2015101742A (en) 2015-06-04
JP6007887B2 true JP6007887B2 (en) 2016-10-19

Family

ID=53377714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241385A Active JP6007887B2 (en) 2013-11-21 2013-11-21 Vacuum degassing apparatus and method for decarburizing molten steel using the same

Country Status (1)

Country Link
JP (1) JP6007887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803908C1 (en) * 2020-02-06 2023-09-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for detecting end point of decarburization, device for determining end point of decarburization, method for performing secondary refining operation for steel production and method for producing molten steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022014906A2 (en) 2020-02-06 2022-09-27 Jfe Steel Corp DECARBURATION END POINT DETERMINATION METHOD, DECARBURATION END POINT DETERMINATION DEVICE, SECONDARY REFINING OPERATION METHOD FOR STEEL MANUFACTURING AND METHOD FOR PRODUCING CAST STEEL
JP7376795B2 (en) 2020-03-24 2023-11-09 日本製鉄株式会社 Molten steel decarburization method in RH vacuum degassing equipment
CN115537489B (en) * 2022-09-19 2024-02-09 首钢京唐钢铁联合有限责任公司 Smelting method of ultra-low carbon steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985643B2 (en) * 1994-02-28 1999-12-06 日本鋼管株式会社 Method of estimating carbon concentration in molten steel using RH type vacuum chamber
JP3287204B2 (en) * 1996-01-24 2002-06-04 日本鋼管株式会社 End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP3415997B2 (en) * 1996-07-08 2003-06-09 新日本製鐵株式会社 Guidance method for vacuum decarburization treatment of melting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803908C1 (en) * 2020-02-06 2023-09-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for detecting end point of decarburization, device for determining end point of decarburization, method for performing secondary refining operation for steel production and method for producing molten steel

Also Published As

Publication number Publication date
JP2015101742A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP6822148B2 (en) Dehydrogenation refining method for molten steel
JP6540773B2 (en) Vacuum degassing method and vacuum degassing apparatus
KR101246213B1 (en) Method for predicting dissolved oxygen quantity in vacuum degassing process
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
JP3987149B2 (en) Method and apparatus for refining chromium-containing steel
JP2014189799A (en) METHOD FOR CONTROLLING DEBRIS COMPOSITION OF Ca-CONTAINING ALUMINUM-KILLED STEEL
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
JP7069999B2 (en) Converter parameter derivation device, converter parameter derivation method, and program
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel
JPH02101110A (en) Method for assuming carbon concentration in vacuum degassing refining
JPH11279625A (en) Manufacture of super-low carbon steel
JPH06306443A (en) Method for melting extra low carbon steel by vacuum refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6007887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250