JP4075834B2 - Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel - Google Patents

Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel Download PDF

Info

Publication number
JP4075834B2
JP4075834B2 JP2004095893A JP2004095893A JP4075834B2 JP 4075834 B2 JP4075834 B2 JP 4075834B2 JP 2004095893 A JP2004095893 A JP 2004095893A JP 2004095893 A JP2004095893 A JP 2004095893A JP 4075834 B2 JP4075834 B2 JP 4075834B2
Authority
JP
Japan
Prior art keywords
molten steel
concentration
gas
inert gas
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004095893A
Other languages
Japanese (ja)
Other versions
JP2005281750A (en
Inventor
善彦 樋口
光裕 沼田
宏 北田
信博 村上
健一 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004095893A priority Critical patent/JP4075834B2/en
Publication of JP2005281750A publication Critical patent/JP2005281750A/en
Application granted granted Critical
Publication of JP4075834B2 publication Critical patent/JP4075834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、溶鋼の成分濃度の推定方法及び極低炭素鋼の製造方法に関する。具体的には、本発明は、溶鋼の真空脱ガス装置を用いて溶鋼を製造する際に、真空脱ガス処理を行われている溶鋼の成分濃度を高精度で推定する方法と、この方法を利用して極低炭素鋼を低コストで製造する方法とに関する。   The present invention relates to a method for estimating the component concentration of molten steel and a method for producing ultra-low carbon steel. Specifically, the present invention relates to a method for accurately estimating the component concentration of molten steel being subjected to vacuum degassing when producing molten steel using a vacuum degassing apparatus for molten steel, and this method. The present invention relates to a method for manufacturing ultra-low carbon steel at low cost.

真空脱ガス装置を備える真空精錬炉を用いて脱ガス処理を行う場合(以下の説明では、この脱ガス処理が脱炭である場合を例にとる)、規格成分である炭素濃度の上限値及び下限値を外れないように成分調整を行うことは、製品の品質保証上、極めて重要である。また、炭素濃度の上限値よりもやや低い炭素濃度に達した時点で直ちに真空脱ガス処理を終了することができれば、脱ガス処理時間の短縮につながり、処理コストの抑制及び生産性の向上の両面で極めて有効である。   When degassing is performed using a vacuum smelting furnace equipped with a vacuum degassing apparatus (in the following description, the case where this degassing is decarburization is taken as an example), the upper limit value of the carbon concentration as a standard component and It is extremely important for product quality assurance to adjust the components so as not to deviate from the lower limit. Moreover, if the vacuum degassing process can be terminated immediately when a carbon concentration slightly lower than the upper limit value of the carbon concentration is reached, it will lead to shortening of the degassing process time, thereby reducing the processing cost and improving the productivity. It is extremely effective.

このためには、当然のことながら、真空脱ガス処理中における溶鋼の炭素濃度を高精度で推定することが求められる。これまでにも、以下に列記するように、真空脱ガス処理中における溶鋼の炭素濃度を推定する方法が知られている。   For this purpose, as a matter of course, it is required to accurately estimate the carbon concentration of the molten steel during the vacuum degassing treatment. There have been known methods for estimating the carbon concentration of molten steel during vacuum degassing treatment as listed below.

特許文献1には、真空脱ガス処理前あるいはこの処理の途中で溶鋼をサンプリングし、このサンプルの炭素濃度の分析値を基準として用い、サンプル採取時点から現在までの炭素濃度の推移を、フィッティングで定める脱炭速度定数を用いた演算により推定する発明が開示されている。   In Patent Document 1, molten steel is sampled before or during the vacuum degassing process, and the analytical value of the carbon concentration of this sample is used as a reference. An invention is disclosed in which estimation is performed by calculation using a predetermined decarburization rate constant.

また、特許文献2には、真空脱ガス処理前あるいはこの処理の途中での溶鋼サンプルの炭素濃度の分析値を用いることなく、排ガス情報に基づいて現在の炭素濃度を推定する発明が開示されている。
特開平6−256840号公報 特開平9−202913公報
Patent Document 2 discloses an invention for estimating a current carbon concentration based on exhaust gas information without using an analysis value of a carbon concentration of a molten steel sample before or during the vacuum degassing process. Yes.
JP-A-6-256840 JP-A-9-202913

特許文献1、2により開示された発明には、以下に説明するような課題があり、真空脱ガス処理中における溶鋼の炭素濃度を高精度で推定することはできない。
特許文献1により開示された発明では、脱炭速度定数をフィッティングで求めるため、現に処理しているヒート固有の条件がフィッティングのばらつきを逸脱した場合にこれを検出して修正することができない。このため、この発明では、炭素濃度の推定に誤差が生じる可能性が高い。
The inventions disclosed in Patent Documents 1 and 2 have problems as described below, and the carbon concentration of molten steel during vacuum degassing cannot be estimated with high accuracy.
In the invention disclosed in Patent Document 1, since the decarburization rate constant is obtained by fitting, it is impossible to detect and correct this when the heat-specific conditions currently processed deviate from the fitting variation. For this reason, in the present invention, there is a high possibility that an error occurs in the estimation of the carbon concentration.

特許文献2により開示された発明は、時々刻々測定される排ガス情報に基づいて溶鋼の炭素濃度を推定するため、特許文献1により開示された発明よりは高精度で炭素濃度を推定できる可能性がある。しかし、特許文献2の図1にも開示されるように、真空槽の内部で脱炭により発生するCO、CO2ガスを希釈可能なガスは、真空槽の下部に装着された上昇管側に偏在する環流ガスのみである。このため、希釈された排ガスの組成は、溶鋼の炭素濃度との間に十分な相関性を有するものとはいい難い。したがって、特許文献2により開示された発明によっても、十分な推定精度を得ることはできず、炭素濃度の推定に誤差が生じる可能性がある。 Since the invention disclosed by patent document 2 estimates the carbon concentration of molten steel based on the exhaust gas information measured every moment, there is a possibility that the carbon concentration can be estimated with higher accuracy than the invention disclosed by patent document 1. is there. However, as disclosed in FIG. 1 of Patent Document 2, the gas capable of diluting the CO and CO 2 gas generated by decarburization inside the vacuum chamber is supplied to the riser side mounted at the lower portion of the vacuum chamber. Only unevenly distributed reflux gas. For this reason, it is difficult to say that the composition of the diluted exhaust gas has a sufficient correlation with the carbon concentration of the molten steel. Therefore, even with the invention disclosed in Patent Document 2, sufficient estimation accuracy cannot be obtained, and an error may occur in the estimation of the carbon concentration.

本発明は、このような従来の技術が有する課題に鑑みてなされたものであり、真空脱ガス装置を用いた真空精錬炉を用いて真空脱ガス処理を行う際に、溶鋼の炭素濃度等の成分濃度を高精度で推定する方法と、この方法を用いて極低炭素鋼を製造する方法とを提供することを目的とする。   The present invention has been made in view of the problems of such conventional techniques, and when performing vacuum degassing using a vacuum refining furnace using a vacuum degassing apparatus, the carbon concentration of molten steel, etc. It aims at providing the method of estimating a component density | concentration with high precision, and the method of manufacturing ultra-low carbon steel using this method.

本発明は、真空槽の下部に設けられた浸漬管を取鍋に収容された溶鋼に浸漬しながら溶鋼の脱ガス処理を行う際に、真空槽の内部に溶鋼に吹き込まれる攪拌用の不活性ガス又は環流用の不活性ガスとは異なる不活性ガスを、この攪拌用の不活性ガス又は環流用の不活性ガスから独立して吹き込み、真空槽の内部で、溶鋼から離脱した排ガスに含まれる脱ガス成分を独立して吹き込まれた不活性ガスによって希釈混合し、この希釈混合された脱ガス成分濃度の分析値を用いて、溶鋼に含まれる成分の濃度を推定することを特徴とする溶鋼の成分濃度の推定方法である。 The present invention is an inert gas stirrer that is blown into the molten steel inside the vacuum tank when degassing the molten steel while immersing the dip tube provided in the lower part of the vacuum tank in the molten steel accommodated in the ladle. An inert gas different from the gas or the inert gas for reflux is blown independently from the inert gas for stirring or the inert gas for reflux , and is contained in the exhaust gas separated from the molten steel inside the vacuum chamber. The molten steel is characterized in that the degassed component is diluted and mixed with an inert gas blown independently, and the concentration of the component contained in the molten steel is estimated by using the analysis value of the concentration of the degassed and mixed degassed component. This is a method for estimating the concentration of components.

本発明に係る溶鋼の成分濃度の推定方法では、混合用の不活性ガスが、真空槽の天蓋又は側面に配置されたランスから吹き込まれることが望ましい。
これらの本発明にかかる溶鋼の成分濃度の推定方法では、溶鋼に含まれる成分の濃度が、混合用の不活性ガスによって希釈混合された脱ガス成分の濃度の分析値を用いて、推定されることが望ましい。
In the method for estimating the component concentration of molten steel according to the present invention, it is desirable that the inert gas for mixing is blown from a lance disposed on the canopy or side surface of the vacuum chamber.
In the method for estimating the component concentration of the molten steel according to the present invention, the concentration of the component contained in the molten steel is estimated using the analysis value of the concentration of the degassed component diluted and mixed with the inert gas for mixing. It is desirable.

これらの本発明に係る溶鋼の成分濃度の推定方法では、脱ガス成分がCOガス及び/又はCO2ガスであるとともに溶鋼に含まれる成分が炭素であることが、例示される。
これらの本発明に係る溶鋼の成分濃度の推定方法では、溶鋼に含まれる炭素の濃度が、(a)希釈混合されたCOガス及び/又はCO2ガスの濃度から各時刻における脱炭速度を求め、求めた各時刻における脱炭速度を用いて濃度に換算した脱炭積算量を算出し、真空脱ガス処理前又は該処理中における炭素濃度の分析値から脱炭積算量を減ずること、又は(b)希釈混合されたCOガス及び/又はCO2ガスの濃度から各時刻における脱炭速度を求め、求めた各時刻における脱炭速度にバランスする脱炭速度定数及び炭素濃度の組合せを求めることによって、推定されることが望ましい。
In the method for estimating the component concentration of the molten steel according to the present invention, it is exemplified that the degassing component is CO gas and / or CO 2 gas and the component contained in the molten steel is carbon.
In these methods for estimating the component concentration of molten steel according to the present invention, the concentration of carbon contained in the molten steel is obtained by (a) determining the decarburization rate at each time from the concentration of diluted CO gas and / or CO 2 gas. Calculating the integrated amount of decarburization converted to the concentration using the decarburization rate at each time obtained, and subtracting the integrated amount of decarburization from the analytical value of the carbon concentration before or during the vacuum degassing process, or ( b) By determining the decarburization rate at each time from the concentration of the diluted and mixed CO gas and / or CO 2 gas, and determining the combination of the decarburization rate constant and the carbon concentration that balances the determined decarburization rate at each time It is desirable to be estimated.

これらの本発明に係る溶鋼の成分濃度の推定方法では、溶鋼には、真空槽の内部へ独立して吹き込まれる混合用の不活性ガスとともに、攪拌用の不活性ガス又は環流用の不活性ガスが吹き込まれる。   In these molten steel component concentration estimation methods according to the present invention, the molten steel is mixed with an inert gas for mixing that is blown into the vacuum chamber independently, and an inert gas for stirring or an inert gas for refluxing. Is blown.

また、これらの本発明に係る溶鋼の成分濃度の推定方法では、浸漬管の設置数が1本又は2本である。
別の観点からは、本発明は、上述した本発明に係る溶鋼の成分濃度の推定方法によって溶鋼の炭素濃度を推定する工程を含むことを特徴とする極低炭素鋼の製造方法である。
Moreover, in the estimation method of the component concentration of the molten steel which concerns on these this invention, the number of installation of a dip tube is one or two.
From another point of view, the present invention is a method for producing an ultra-low carbon steel characterized by including a step of estimating the carbon concentration of molten steel by the above-described method of estimating the component concentration of molten steel according to the present invention.

本発明によれば、真空脱ガス処理装置を用いて真空脱ガス処理を行う際に、真空槽の内部に混合用の不活性ガスを独立して吹き込み、真空槽の内部で、溶鋼から離脱した排ガスに含まれる脱ガス成分を独立して吹き込まれた混合用の不活性ガスによって希釈混合するため、排ガスの分析値の代表性が向上し、これにより、溶鋼の炭素濃度等の成分濃度を高精度で推定することが可能となる。このため、本発明によれば、真空脱ガス処理時間の短縮によるコストの削減が可能となる。   According to the present invention, when performing vacuum degassing using a vacuum degassing apparatus, an inert gas for mixing is independently blown into the vacuum chamber, and the molten steel is detached from the molten steel inside the vacuum chamber. Since the degassing components contained in the exhaust gas are diluted and mixed with an inert gas for mixing that is blown independently, the representativeness of the analysis value of the exhaust gas is improved, thereby increasing the concentration of components such as carbon concentration in the molten steel. It is possible to estimate with accuracy. For this reason, according to this invention, it becomes possible to reduce the cost by shortening the vacuum degassing processing time.

以下、本発明に係る溶鋼の成分濃度の推定方法及び極低炭素鋼の製造方法を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。なお、以降の説明では、脱ガスが脱炭であり、脱ガス成分がCOガス及び/又はCO2ガスであるとともに真空脱ガス装置がRH真空脱ガス装置である場合を例にとる。
本実施の形態では、高炉から運搬された溶銑を転炉にて脱炭処理した溶鋼の真空処理を対象とする。この溶銑は、周知慣用の様々な溶銑予備処理を行われて転炉に注銑され、転炉により脱炭吹錬された後に取鍋へ出鋼される。取鍋へ出鋼された溶鋼は、二次精錬設備に運搬され、RH真空脱ガス装置により脱炭処理を施される。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the method for estimating the component concentration of molten steel and the method for producing ultra low carbon steel according to the present invention will be described in detail below with reference to the accompanying drawings. In the following description, the case where degassing is decarburization, the degassing component is CO gas and / or CO 2 gas, and the vacuum degassing apparatus is an RH vacuum degassing apparatus is taken as an example.
In the present embodiment, the object is vacuum processing of molten steel obtained by decarburizing hot metal transported from a blast furnace in a converter. The hot metal is subjected to various known and common hot metal pretreatments, poured into a converter, decarburized and blown by the converter, and then discharged into a ladle. The molten steel delivered to the ladle is transported to a secondary refining facility and subjected to decarburization processing by an RH vacuum degassing device.

このRH真空脱炭処理では、真空槽の下部に二本設けられた浸漬管である上昇管及び下降管を取鍋に収容された溶鋼に浸漬し、真空槽内を排気するとともに上昇管の内面から環流用の不活性ガスを導入して、取鍋に収容された溶鋼を真空槽の内部へリフトアップする。リフトアップされた溶鋼は、真空槽の内部で脱炭反応により炭素濃度を低減され、下降管を介して取鍋へ戻る循環流を形成する。このようにして溶鋼の脱炭処理が行われる。   In this RH vacuum decarburization treatment, a riser pipe and a downfall pipe, which are two immersion pipes provided at the lower part of the vacuum tank, are immersed in molten steel contained in a ladle, the inside of the vacuum tank is exhausted, and the inner surface of the riser pipe Then, an inert gas for reflux is introduced, and the molten steel accommodated in the ladle is lifted up to the inside of the vacuum chamber. The lifted molten steel is reduced in carbon concentration by a decarburization reaction inside the vacuum chamber, and forms a circulating flow returning to the ladle through the downcomer. In this way, the decarburization treatment of the molten steel is performed.

このRH真空脱ガス装置では、環流用の不活性ガスの流量、真空槽の内部の圧力、発生する排ガス中のCOガス、CO2ガスの濃度等は、慣用される測定器を用いることにより連続的又は間欠的に測定かつ記録することができる。なお、排ガス中の分析成分は、COガス、CO2ガスのみに限るものではなく、これ以外の成分も分析値として利用してもよい。 In this RH vacuum degassing apparatus, the flow rate of the inert gas for recirculation, the pressure inside the vacuum chamber, the concentration of CO gas in the generated exhaust gas, CO 2 gas, etc. are continuously obtained by using a commonly used measuring instrument. Can be measured and recorded automatically or intermittently. The analysis components in the exhaust gas are not limited to CO gas and CO 2 gas, and other components may be used as analysis values.

また、この脱炭処理の際に、本実施の形態では、真空槽の天蓋(側面でもよい)に混合用の不活性ガスをこの真空槽の内部に単独で(独立して)吹き込むためのランスを昇降自在に配置しておき、このランスから混合用の不活性ガスを溶鋼に単独で上吹きして吹き付けることにより溶鋼から離脱した排ガスに含まれるCOガス及び/又はCO2ガスを真空槽の内部で希釈混合する。なお、溶鋼には、当然のことながら、この不活性ガスとは異なる攪拌用の不活性ガス又は環流用の不活性ガスが吹き込まれている。 Further, in the present embodiment, during this decarburization treatment, a lance for blowing an inert gas for mixing into the inside of the vacuum chamber alone (independently) into the canopy (which may be a side surface) of the vacuum chamber. The CO 2 gas and / or CO 2 gas contained in the exhaust gas separated from the molten steel by blowing the inert gas for mixing on the molten steel alone and spraying from the lance to the molten steel. Dilute and mix inside. In addition, naturally, the inert gas for stirring different from this inert gas or the inert gas for reflux are blown in into molten steel.

そして、本実施の形態では、希釈混合されたCOガス及び/又はCO2ガスの分析値を用いて溶鋼に含まれる炭素濃度を推定する。以下に、溶鋼の炭素濃度の推定手順A〜Cを例示する。 In the present embodiment, to estimate the concentration of carbon contained in the molten steel with the analysis of CO gas and / or CO 2 gas diluted mixture. Below, estimation procedure AC of the carbon concentration of molten steel is illustrated.

(手順A)
希釈混合されたCOガス及び/又はCO2ガスの濃度から各時刻における脱炭速度を求め、求めた各時刻における脱炭速度を用いて濃度に換算した脱炭積算量を算出し、真空脱ガス処理前又はこの処理中における炭素濃度の分析値から脱炭積算量を減ずる。具体的には、
(i)真空脱ガス処理中の時刻tiにおける排ガスの分析を行って排ガス中のCO分率CO,i、CO2分率CO2,iを測定する。
(Procedure A)
The decarburization rate at each time is obtained from the concentration of the diluted and mixed CO gas and / or CO 2 gas, and the integrated amount of decarburization converted into the concentration using the decarburization rate at each obtained time is calculated. The accumulated amount of decarburization is subtracted from the analytical value of the carbon concentration before or during the treatment. In particular,
(I) The exhaust gas at time ti during the vacuum degassing process is analyzed to measure the CO fraction CO, i and the CO 2 fraction CO 2 , i in the exhaust gas.

(ii)時刻tiにおける排ガス流量を、排ガス流量計を用いて測定すること、排ガス中に流量が既知のトレーサーガスが含有されるように導入しトレーサーガス濃度と既知のトレーサーガス流量とから算出すること、あるいは、排ガスに含有されるインプットガス量を経験的に定めることにより、求める。このようにして求めた時刻tiにおける排ガス流量は適当な方法によって標準状態に換算した体積流量Qex,i(Nm/s)に換算する。 (Ii) Measure the exhaust gas flow rate at time ti using an exhaust gas flow meter, and calculate from the tracer gas concentration and the known tracer gas flow rate by introducing the exhaust gas so as to contain a known tracer gas in the exhaust gas. Or by empirically determining the amount of input gas contained in the exhaust gas. The exhaust gas flow rate at time ti thus determined is converted into a volume flow rate Qex, i (Nm 3 / s) converted into a standard state by an appropriate method.

(iii)上述した(i)項により求めた排ガス中のCO分率CO,i及びCO2分率CO2,iの和と、(ii)項により求めた排ガス流量Qex,iの積(CO,i+CO2,i)・Qex,iを求める。 (Iii) The product of the sum of the CO fraction CO, i and the CO 2 fraction CO 2 , i in the exhaust gas determined by the above-mentioned item (i) and the exhaust gas flow rate Qex, i determined by the item (ii) (CO , I + CO 2 , i) · Qex, i is obtained.

(iv)時刻tiにおける単位時間当りの脱炭速度dCdt,i(kg/s)を比例定数Aを用いて下記(1)式より求める。
dCdt,i=A・(12/22.4)・(CO,i+CO2,i)・Qex,i
・・・(1)
なお、この(1)式では、(12/22.4)により単位換算を行っているため、通常の使用では比例定数Aは1.0でよいが、排ガス温度計や排ガス流量計の測定値の誤差が生じる場合には比例定数Aを微調整してもよい。
(Iv) The decarburization rate dCdt, i (kg / s) per unit time at time ti is obtained from the following equation (1) using the proportionality constant A.
dCdt, i = A · (12 / 22.4) · (CO, i + CO 2 , i) · Qex, i
... (1)
In the equation (1), since unit conversion is performed by (12 / 22.4), the proportional constant A may be 1.0 in normal use, but the measured value of the exhaust gas thermometer or exhaust gas flow meter. If this error occurs, the proportionality constant A may be finely adjusted.

(v)真空脱ガス処理前又はこの処理中に得た溶鋼の炭素濃度Co(%)に対して、濃度Coとなった時刻から時刻tiまでのdCdt,iを積算して、濃度に換算した脱炭積算量を算出する。そして、例えば(2)式に示すように、真空脱ガス処理前又はこの処理中における炭素濃度の分析値から脱炭積算量を減ずることによって、現在の炭素濃度Ci(%)を算出する。  (V) The dCdt, i from the time when the concentration becomes Co to the time ti is added to the carbon concentration Co (%) of the molten steel obtained before or during the vacuum degassing treatment, and converted into a concentration. Calculate the amount of decarburization. For example, as shown in the equation (2), the current carbon concentration Ci (%) is calculated by subtracting the integrated amount of decarburization from the analysis value of the carbon concentration before or during the vacuum degassing process.

C,i=Co−ΣdCdt,i×dt,i×100/W ・・・(2)
なお、(2)式におけるdt,iは時刻tiでの演算時間刻みを示し、Wは溶鋼量(kg)を示す。また、排ガス情報にタイムラグがある場合は、その分を補正して計算してもよい。
C, i = Co−ΣdCdt, i × dt, i × 100 / W (2)
In the equation (2), dt, i represents the calculation time increment at time ti, and W represents the molten steel amount (kg). Further, when there is a time lag in the exhaust gas information, it may be calculated by correcting that amount.

そして、この手順Aに関して、本発明の効果を確認するために、単純に上昇管から環流用の不活性ガス(Arガス)のみを吹き込む従来法((a)法)、この(a)法に加えて真空槽の下部の側面羽口より不活性ガスを吹き込んで排ガスを希釈混合する本発明法((b)法)、又は、真空槽の上部に位置する天蓋に昇降自在にランスを設け、ランス先端のガス噴出孔から真空槽の略中央部へ向けて混合用の不活性ガスを吹き込んで排ガスを希釈混合する本発明法((c)法)の三法について、RH脱炭処理中におよそ溶鋼の炭素濃度が20ppm(0.002%)となった時期に鋼中のサンプルを採取し分析して得た炭素濃度と、(a)〜(c)法により算出した推定炭素濃度との差である推定誤差(ppm)を求め、推定誤差の標準偏差σを求めた。   And in order to confirm the effect of this invention regarding this procedure A, the conventional method ((a) method) which inject | pours only the inert gas (Ar gas) for a recirculation | reflux simply from a riser pipe | tube, to this (a) method In addition, the present method of diluting and mixing the exhaust gas by blowing inert gas from the side tuyeres at the bottom of the vacuum chamber (method (b)), or a lance that can be raised and lowered on the canopy located at the top of the vacuum chamber, During the RH decarburization process, three methods of the present invention (method (c)) in which an inert gas for mixing is blown from the gas ejection hole at the tip of the lance toward the substantially central portion of the vacuum chamber to dilute and mix the exhaust gas. The carbon concentration obtained by collecting and analyzing a sample in steel when the carbon concentration of the molten steel reaches 20 ppm (0.002%), and the estimated carbon concentration calculated by the methods (a) to (c) Estimate error (ppm), which is the difference, and calculate standard deviation σ I was determined.

なお、図1は(a)法を実施する状況を示す説明図であり、図2は(b)法を実施する状況を示す説明図であり、さらに図3は(c)法を実施する状況を示す説明図である。
図1〜図3に示すように、真空槽1の下部に設けられた浸漬管2を取鍋3に収容された溶鋼4に浸漬しながら溶鋼4の脱ガス処理を行う。浸漬管2のうちの一方の上昇管2aの側壁から環流用の不活性ガス(Arガス)が吹き込まれ、これにより、溶鋼4は取鍋3から真空槽1の内部へリフトアップされ、真空槽1の内部で脱ガスされる。脱ガスされた溶鋼4は、浸漬管2のうちの他方の下降管2bから取鍋3へ戻る循環流を形成する。なお、真空槽1の上部側壁には真空排気系5が接続されており、ここに設けられた排ガス分析系6により排ガス成分の分析が行われている。
FIG. 1 is an explanatory diagram showing a situation in which the method (a) is performed, FIG. 2 is an explanatory diagram showing a situation in which the method (b) is implemented, and FIG. 3 is a situation in which the method (c) is implemented. It is explanatory drawing which shows.
As shown in FIGS. 1 to 3, the molten steel 4 is degassed while the dip tube 2 provided at the lower part of the vacuum chamber 1 is immersed in the molten steel 4 accommodated in the pan 3. An inert gas (Ar gas) for recirculation is blown from the side wall of one riser pipe 2a of the dip pipe 2, whereby the molten steel 4 is lifted from the ladle 3 to the inside of the vacuum tank 1, and the vacuum tank 1 is degassed. The degassed molten steel 4 forms a circulating flow from the other descending pipe 2 b of the dip pipe 2 to the ladle 3. An evacuation system 5 is connected to the upper side wall of the vacuum chamber 1, and an exhaust gas component is analyzed by an exhaust gas analysis system 6 provided here.

また、図2では、真空槽1の側壁に不活性ガスを吹き込むための吹き込み装置(図示しない)が装着されており、真空槽1の内部へ不活性ガスを独立して吹き込むことができるように構成されている。   Further, in FIG. 2, a blowing device (not shown) for blowing an inert gas is attached to the side wall of the vacuum chamber 1 so that the inert gas can be blown into the vacuum chamber 1 independently. It is configured.

さらに、図3では、真空槽1の天蓋1aの中心に、下方へ向けて混合用の不活性ガスを単独で吹き込むためのランス7を昇降自在に配置しておき、このランス7から真空槽1の内部に混合用の不活性ガスを単独で吹き込み、これにより、真空槽1の内部で、溶鋼4から離脱した排ガスに含まれる脱ガス成分を独立して吹き込まれた混合用の不活性ガスによって希釈混合する。   Further, in FIG. 3, a lance 7 for independently blowing an inert gas for mixing downward is arranged at the center of the canopy 1 a of the vacuum chamber 1 so as to be movable up and down. An inert gas for mixing alone is blown into the inside of the vacuum chamber, whereby the degassing component contained in the exhaust gas separated from the molten steel 4 is independently blown inside the vacuum chamber 1 by the inert gas for mixing. Dilute and mix.

その結果、(a)法では、推定誤差の標準偏差σは5.5ppmと非常に大きく炭素濃度の十分な推定精度が得られなかった。このように標準偏差σが大きくなった原因は、(a)法によると真空槽1内へ溶鋼4とともに吹き込まれた環流用の不活性ガスが真空槽1内で偏在するために排ガス中のCOガス、CO2ガスの濃度の代表性に問題が生じる。 As a result, in the method (a), the standard deviation σ of the estimation error was very large as 5.5 ppm, and sufficient estimation accuracy of the carbon concentration could not be obtained. The reason why the standard deviation σ is increased in this way is that, according to the method (a), the inert gas for recirculation blown into the vacuum chamber 1 together with the molten steel 4 is unevenly distributed in the vacuum chamber 1, so that the CO in the exhaust gas A problem arises in the representativeness of the concentration of gas and CO 2 gas.

また、本実施の形態の方法である(b)法によると、推定誤差の標準偏差σは4.2ppmと(a)法よりは改善された。これは、真空槽1の側面羽口から不活性ガスを導入することによる混合性の改善効果に起因すると考えられる。   Further, according to the method (b) which is the method of the present embodiment, the standard deviation σ of the estimation error is 4.2 ppm, which is improved from the method (a). This is considered due to the effect of improving the mixing property by introducing an inert gas from the side tuyere of the vacuum chamber 1.

これに対し、本実施の望ましい形態の方法である(c)法によると、推定誤差の標準偏差は2.5ppmまで顕著に低減された。これは、真空槽1の内部中央部に昇降自在に配置した、不活性ガスを単独で(独立して)吹き込むためのランス7から混合用の不活性ガスを溶鋼4に単独で上吹きして吹き付けることにより、排ガス中のCOガス、CO2ガスの濃度の代表性が著しく改善されるためである。このようにして、手順Aについて、(c)法の優位性を確認できた。 On the other hand, according to the method (c), which is a method of the present preferred embodiment, the standard deviation of the estimation error was significantly reduced to 2.5 ppm. This is because the inert gas for mixing is blown up alone into the molten steel 4 from the lance 7 which is disposed in the central portion of the vacuum chamber 1 so as to be movable up and down and blows the inert gas alone (independently). This is because the representativeness of the concentration of CO gas and CO 2 gas in the exhaust gas is remarkably improved by spraying. Thus, the superiority of the method (c) was confirmed for the procedure A.

(手順B)
手順Bとして、上述した手順Aのように真空脱ガス処理を行う前の炭素濃度の分析値を用いるのではなく、概ね炭素濃度を80〜100ppm程度のタイミングでサンプル採取を行い、この分析値をCoとして手順Aと同様にして炭素濃度を推定した。
(Procedure B)
Instead of using the analytical value of the carbon concentration before the vacuum degassing treatment as in the above-mentioned procedure A as the procedure B, the sample is collected approximately at a timing of about 80 to 100 ppm of the carbon concentration. The carbon concentration was estimated in the same manner as Procedure A as Co.

その結果、推定誤差の標準偏差σは、上述した(a)法では5.1ppmであり、本発明法である(b)法で3.9ppmであるのに対し、本発明法の望ましい方法である(c)法では2.3ppmとなり、手順Bについても(c)法の優位性を確認できた。   As a result, the standard deviation σ of the estimation error is 5.1 ppm in the method (a) described above, and 3.9 ppm in the method (b) which is the method of the present invention, whereas it is a desirable method of the method of the present invention. In a certain method (c), it was 2.3 ppm, and the superiority of the method (c) was confirmed for procedure B.

(手順C)
希釈混合されたCOガス及び/又はCO2ガスの濃度から各時刻における脱炭速度を求め、求めた各時刻における脱炭速度にバランスする脱炭速度定数及び炭素濃度の組合せを求めること
(i)真空脱ガス処理中の時刻tiにおける排ガスの分析を行って排ガス中のCO分率CO,i、CO2分率CO2,iを測定する。
(Procedure C)
Obtaining the decarburization rate at each time from the concentration of the diluted and mixed CO gas and / or CO 2 gas, and obtaining a combination of the decarburization rate constant and the carbon concentration that balances the decarburization rate at each obtained time The exhaust gas at time ti during the vacuum degassing process is analyzed to measure the CO fraction CO, i, CO 2 fraction CO 2 , i in the exhaust gas.

(ii)時刻tiにおける排ガス流量を、排ガス流量計6を用いて測定すること、排ガス中に流量が既知のトレーサーガスが含有されるように導入しトレーサーガス濃度と既知のトレーサーガス流量とから算出すること、あるいは、排ガスに含有されるインプットガス量を経験的に定めることにより、求める。このようにして求めた
時刻tiにおける排ガス流量は適当な方法によって標準状態に換算した体積流量Qex,i(Nm/s)に換算する。
(Ii) Measure the exhaust gas flow rate at time ti using the exhaust gas flow meter 6, and introduce the tracer gas with a known flow rate contained in the exhaust gas, and calculate it from the tracer gas concentration and the known tracer gas flow rate. Or by empirically determining the amount of input gas contained in the exhaust gas. The exhaust gas flow rate at time ti determined in this way is converted to a volume flow rate Qex, i (Nm 3 / s) converted to a standard state by an appropriate method.

(iii)上述した(i)項により求めた排ガス中のCO分率CO,i及びCO2分率CO2,iの和と、(ii)項により求めた排ガス流量Qex,iの積(CO,i+CO2,i)・Qexを求める。 (Iii) The product of the sum of the CO fraction CO, i and the CO 2 fraction CO 2 , i in the exhaust gas determined by the above-mentioned item (i) and the exhaust gas flow rate Qex, i determined by the item (ii) (CO , I + CO 2 , i) · Qex is obtained.

(iv)時刻tiにおける単位時間当りの脱炭速度dCdt,i(kg/s)を比例定数Aを用いて下記(3)式より求める。
dCdt,i=A・(CO,i+CO2,i)・Qex
・・・(3)
(v)脱ガス処理中の炭素濃度をC(%)とし、平衡炭素濃度をCe(%)とすると、脱炭速度は一般的な(4)式で表される。時刻tiにおける単位時間当りの脱炭速度dCdti(kg/s)は(−dC/dt),iであるから時刻tiでの脱炭速度定数Kiを用いて(6)式で表される。真空脱ガス処理前又はこの処理中に得た溶鋼4中の炭素濃度Co(%)に対して、この炭素濃度となった時刻から時刻tiまでのdCdti,iを積算し、現在の炭素濃度Ci(%)を、例えば(4)〜(6)式を用いて算出する。
(Iv) The decarburization rate dCdt, i (kg / s) per unit time at time ti is obtained from the following equation (3) using the proportionality constant A.
dCdt, i = A · (CO, i + CO 2 , i) · Qex
... (3)
(V) When the carbon concentration during the degassing treatment is C (%) and the equilibrium carbon concentration is Ce (%), the decarburization rate is expressed by the general formula (4). Since the decarburization rate dCdti (kg / s) per unit time at time ti is (−dC / dt), i, it is expressed by equation (6) using the decarburization rate constant Ki at time ti. The dCdti, i from the time when the carbon concentration is reached to the time ti is added to the carbon concentration Co (%) in the molten steel 4 obtained before or during the vacuum degassing treatment, and the current carbon concentration Ci (%) Is calculated using, for example, equations (4) to (6).

dC/dt=−K×(C−Ce) ・・・・・(4)
Ce=Keq/(P×O) ・・・・・(5)
dCdt,i=Ki×(C,i−Ce,i/100)×W ・・・(6)
(4)〜(6)式において、Keqは平衡定数を示し、Pは真空槽1の内部の圧力を示し、Oは鋼中のO濃度を示す。なお、計算を簡単にするために、必要に応じてCe=0としてもよい。
dC / dt = −K × (C−Ce) (4)
Ce = Keq / (P × O) (5)
dCdt, i = Ki × (C, i−Ce, i / 100) × W (6)
In equations (4) to (6), Keq represents an equilibrium constant, P represents the pressure inside the vacuum chamber 1, and O represents the O concentration in the steel. In order to simplify the calculation, Ce = 0 may be set as necessary.

(vi)(3)式及び(6)式は、いずれも、単位時間当りの脱炭速度であり、両者は一致するから(7)式又は(8)式が得られる。(8)式の右辺は、溶鋼重量及び排ガス情報のみにより構成されているから測定により既値である。そのため、これらをそれぞれγ、iとおくと、γ、iと一致するK、iとC、iの組合せを求めることにより、溶鋼4中のC濃度C、iを算出できる。例えば、K、iを適当な手段で見積もることにより、(9)式によりC、iを算出することができる。  (Vi) Equations (3) and (6) are both decarburization rates per unit time, and since they coincide, Equation (7) or Equation (8) is obtained. Since the right side of the equation (8) is constituted only by the molten steel weight and the exhaust gas information, it is an existing value by measurement. Therefore, if these are set as γ and i, respectively, C combinations C and i in the molten steel 4 can be calculated by obtaining a combination of K, i, C, and i that matches γ and i. For example, C and i can be calculated by equation (9) by estimating K and i by an appropriate means.

A×(CO,i+CO2,i)・Qex,i=K,i×(C,i/100)×W
・・・・・(7)
K,i×(C,i−Ce,i)=A×(100/W)×(CO,i+CO2,i)・
Qex,i=γ,i ・・・・・(8)
C,i=Ce,i+γ,i/K,i ・・・・・・(9)
(vii)K、iとC、iの組合せの求め方は、一様ではなく、様々な方法を採用することができる。例えば、操業条件を代入するための関数形を設定し、いわゆる経験式を用いてK、iを推定すればCiを算出することができる。また、関数形で用いる係数を経験的に、例えば統計的処理によって求めてもよい。
A × (CO, i + CO 2 , i) · Qex, i = K, i × (C, i / 100) × W
(7)
K, i × (C, i−Ce, i) = A × (100 / W) × (CO, i + CO 2 , i).
Qex, i = γ, i (8)
C, i = Ce, i + γ, i / K, i (9)
(Vii) The method of obtaining the combination of K, i and C, i is not uniform, and various methods can be adopted. For example, Ci can be calculated by setting a function form for substituting operation conditions and estimating K and i using a so-called empirical formula. The coefficient used in the function form may be obtained empirically, for example, by statistical processing.

例えば、脱ガス装置としてRH脱ガス処理装置を用いた場合の一例を以下に示す。RH脱ガス処理装置における脱炭速度定数Kは、溶鋼4の環流速度Qと真空槽1の内部の脱C反応の容量係数akを用いて(10)式で表現することができる。   For example, an example in which an RH degassing apparatus is used as the degassing apparatus is shown below. The decarburization rate constant K in the RH degassing apparatus can be expressed by the equation (10) using the reflux rate Q of the molten steel 4 and the capacity coefficient ak of the de-C reaction inside the vacuum chamber 1.

K=(Q/W)×ak/(Q+ak) ・・・・・(10)
なお、環流速度Qは真空度、浸漬管径、環流ガス流量等の関数として実験式が一般的に公知であり、当業者であればそれらの実験式の一つを用いて時刻tiにおける環流ガス流量Qiを計算することができる。
K = (Q / W) × ak / (Q + ak) (10)
The circulatory velocity Q is generally known as an empirical formula as a function of the degree of vacuum, the diameter of the dip tube, the flow rate of the circulated gas, etc. The flow rate Qi can be calculated.

(10)式を(9)式に代入し整理すると、C、iを計算する(11)式が得られ、時刻tiにおけるQ、iやak,iを適当な方法で定めればC、iを算出することができる。   Substituting equation (10) into equation (9) and rearranging results in equation (11) for calculating C and i. If Q, i, ak, and i at time ti are determined by an appropriate method, C, i Can be calculated.

C、i=Ce、i+γ、i×(Q,i+ak,i)/{(Q,i/W)×ak,i}・・・・・(11)
例えば、ak,iは以下の実験式を用いて計算することができる。
ak,i=α・[C],iβ・[O],iγ・P,iδ・Qar,iε
・・・・・(12)
ただし、α、β、γ、δ、εは定数であり、[C],i、[O],iは時刻tiでの溶鋼中炭素濃度、酸素濃度であり、Pは真空雰囲気圧力を示す。
C, i = Ce, i + γ, i × (Q, i + ak, i) / {(Q, i / W) × ak, i} (11)
For example, ak, i can be calculated using the following empirical formula.
ak, i = α · [C], · [O], i γ · P, i δ · Qar, i ε
(12)
However, α, β, γ, δ, and ε are constants, [C], i, [O], i are the carbon concentration and oxygen concentration in the molten steel at time ti, and P indicates the vacuum atmosphere pressure.

ここで、定数は予め実測値を用いて統計的処理等により定めておくことができる。(11)式と(12)式とを連立し、測定値として[O],i、Pi、Qar,iを代入すると、時刻tiにおける[C],iが計算可能となる。実験式(12)としてべき乗形式の例を示したが、実測値を表現することが可能であれば、実験式の表現形式は何ら限定を要さない。   Here, the constant can be determined in advance by statistical processing or the like using an actual measurement value. If the equations (11) and (12) are combined and [O], i, Pi, Qar, i are substituted as measured values, [C], i at the time ti can be calculated. Although an example of the exponentiation format is shown as the empirical formula (12), the expression format of the empirical formula is not limited at all as long as the actual measurement value can be expressed.

本実施の形態では、このようにして、溶鋼4に含まれるCの濃度を推定する。この際、上述した(c)法に示す本発明法によれば、手順A〜Cのいずれの推定手順によっても、推定誤差が顕著に低減されるという著しい作用効果を奏する。   In the present embodiment, the concentration of C contained in the molten steel 4 is estimated in this way. At this time, according to the method of the present invention shown in the method (c) described above, the estimation error is remarkably reduced by any of the estimation procedures of the procedures A to C.

そして、本実施の形態では、このようにして推定された溶鋼4のC濃度を用いて極低炭素鋼を製造すれば、真空脱ガス処理中の炭素濃度を高精度で推定することができるため、炭素濃度の上限値よりもやや低い炭素濃度に達した時点で直ちに真空脱ガス処理を終了することができる。このため、脱ガス処理時間の大幅な短縮を図ることができ、処理コストの抑制及び生産性の向上をともに図ることができる。   And in this Embodiment, if ultra-low carbon steel is manufactured using the C concentration of the molten steel 4 estimated in this way, the carbon concentration during the vacuum degassing process can be estimated with high accuracy. The vacuum degassing process can be terminated immediately when a carbon concentration slightly lower than the upper limit value of the carbon concentration is reached. For this reason, the degassing processing time can be greatly shortened, and the processing cost can be suppressed and the productivity can be improved.

そして、所定の脱炭処理を施されて製造された溶鋼4は、その後、適宜合金添加等によりさらに成分調整を行われた後、例えば連続鋳造される。
なお、これまでの説明では、浸漬管の本数が2本のRH脱ガス処理装置に本発明を適用した場合について説明したが、本発明は浸漬管の本数が1本のDH脱ガス処理装置に対しても適用可能であることから、この点についても説明する。
And the molten steel 4 manufactured by performing a predetermined decarburizing process is then subjected to, for example, continuous casting after further component adjustment by appropriately adding an alloy or the like.
In the above description, the case where the present invention is applied to an RH degassing apparatus having two dip tubes has been described. However, the present invention is applied to a DH degassing apparatus having one dip tube. Since this is also applicable, this point will also be described.

図4は、DH脱ガス処理装置に対して本発明を適用した状況を模式的に示す説明図である。
真空槽1の下部に設けられた浸漬管2を取鍋3に収容された溶鋼4に浸漬しながら溶鋼4の脱ガス処理を行う。取鍋3の底部羽口3aから環流用の不活性ガス(Arガス)が吹き込まれ、これにより、溶鋼4は取鍋3から真空槽1の内部へリフトアップされ、真空槽1の内部で脱ガスされる。脱ガスされた溶鋼4は、浸漬管2から取鍋3へ戻る循環流を形成する。
FIG. 4 is an explanatory view schematically showing a situation where the present invention is applied to a DH degassing apparatus.
The degassing treatment of the molten steel 4 is performed while immersing the dip tube 2 provided in the lower part of the vacuum chamber 1 in the molten steel 4 accommodated in the pan 3. An inert gas (Ar gas) for recirculation is blown from the bottom tuyere 3 a of the ladle 3, so that the molten steel 4 is lifted up from the ladle 3 to the inside of the vacuum chamber 1, and is removed inside the vacuum chamber 1. Gas. The degassed molten steel 4 forms a circulating flow that returns from the dip tube 2 to the ladle 3.

また、図4では、真空槽1の天蓋1aの中心に、下方へ向けて混合用の不活性ガスを単独で吹き込むためのランス7を昇降自在に配置しておき、このランス7から真空槽1の内部に混合用の不活性ガスを単独で吹き込み、これにより、真空槽1の内部で、溶鋼4から離脱した排ガスに含まれる脱ガス成分を独立して吹き込まれた混合用の不活性ガスによって希釈混合する。   Further, in FIG. 4, a lance 7 for blowing an inert gas for mixing alone downward is arranged at the center of the canopy 1 a of the vacuum chamber 1 so as to be movable up and down. An inert gas for mixing alone is blown into the inside of the vacuum chamber, whereby the degassing component contained in the exhaust gas separated from the molten steel 4 is independently blown inside the vacuum chamber 1 by the inert gas for mixing. Dilute and mix.

このように、浸漬管の本数が1本であるDH脱ガス処理装置では、明確な溶鋼4の環流速度Qを定め難い。このため、事前に脱炭速度定数を、攪拌用の不活性ガス流量Qar、真空槽1の内部の圧力P、及びその他適当な変数の関数として(13)式のように定量化しておく。これにより、(14)式に示すようにして時刻tiの炭素濃度C、iを推定することができる。   As described above, in the DH degassing apparatus having one dip tube, it is difficult to determine a clear circulation velocity Q of the molten steel 4. For this reason, the decarburization rate constant is quantified in advance as a function of the inert gas flow rate Qar for stirring, the pressure P inside the vacuum chamber 1 and other appropriate variables as shown in the equation (13). Thereby, the carbon concentrations C and i at the time ti can be estimated as shown in the equation (14).

K=f(Qar、P、var1、var2、var3、・・・)
・・・・・(13)
C、i=Ce、i+γ、i/K,i ・・・・・(14)
そして、上述した(a)〜(c)法により、溶鋼4の炭素濃度を推定した。その結果、(a)法での推定誤差の標準偏差σは5.2ppmと非常に大きく十分な炭素濃度の推定ができなかった。このように標準偏差σが大きくなった原因は、排ガス中のCOガス、CO2ガスの濃度の代表性に問題があるためと考えられる。単純に取鍋底部から環流用の不活性ガスのみを真空槽1の内部に吹き込むために環流用の不活性ガスが偏在することから、代表性の問題が発生する。
K = f (Qar, P, var1, var2, var3,...)
(13)
C, i = Ce, i + γ, i / K, i (14)
And the carbon concentration of the molten steel 4 was estimated by the method (a)-(c) mentioned above. As a result, the standard deviation σ of the estimation error in method (a) was very large at 5.2 ppm, and a sufficient carbon concentration could not be estimated. The reason why the standard deviation σ is increased in this way is considered to be because there is a problem in the representativeness of the concentration of CO gas and CO 2 gas in the exhaust gas. Since only the inert gas for recirculation is blown into the inside of the vacuum chamber 1 simply from the bottom of the ladle, the problem of representativeness arises because the inert gas for recirculation is unevenly distributed.

また、(b)法では、推定誤差の標準偏差σは4.0ppmと(a)法に比較すると改善された。これは、真空槽1の側面羽口から不活性ガスを真空槽1内へ吹き込むことによる混合性の改善効果に起因するものであると考えられる。   In the method (b), the standard deviation σ of the estimation error was 4.0 ppm, which was improved as compared with the method (a). This is considered to be caused by the effect of improving the mixing property by blowing the inert gas into the vacuum chamber 1 from the side tuyere of the vacuum chamber 1.

これに対し、(c)法では、推定誤差の標準偏差が2.4ppmに顕著に改善された。これは、真空槽1の内部中央部に昇降自在に配置した、混合用の不活性ガスを単独で(独立して)吹き込むためのランス7から不活性ガスを溶鋼4に上吹きして吹き付けることにより、排ガス中のCOガス、CO2ガス濃度の代表性が著しく改善されるためであると考えられる。 On the other hand, in the method (c), the standard deviation of the estimation error was remarkably improved to 2.4 ppm. This is performed by blowing an inert gas on the molten steel 4 from a lance 7 which is disposed in the central part of the vacuum chamber 1 so as to be movable up and down and independently (independently) for blowing the inert gas for mixing. This is considered to be because the representativeness of the CO gas and CO 2 gas concentrations in the exhaust gas is remarkably improved.

なお、真空槽1の内部へ単独で吹き込む混合用の不活性ガスの望ましい流量は、環流用の不活性ガスの流量の0.5倍以上である。これ未満では混合効果が小さく、排ガスの成分の代表性の改善効果が小さいからであり、さらに望ましくは1.0倍以上である。このような観点からは、混合用の不活性ガスの流量の上限を定める必要はないが、操業コスト削減及び真空排気系への負荷抑制の観点から、混合用の不活性ガスの流量の上限は10倍とすることが望ましく、より望ましい上限は6倍である。   In addition, the desirable flow rate of the inert gas for mixing blown into the inside of the vacuum chamber 1 is 0.5 times or more the flow rate of the inert gas for reflux. If it is less than this, the mixing effect is small, and the effect of improving the representativeness of the components of the exhaust gas is small, and more desirably 1.0 times or more. From this point of view, it is not necessary to set the upper limit of the flow rate of the inert gas for mixing, but from the viewpoint of reducing the operating cost and suppressing the load on the vacuum exhaust system, the upper limit of the flow rate of the inert gas for mixing is The upper limit is desirably 10 times, and a more desirable upper limit is 6 times.

また、混合用の不活性ガスの吹き出し位置は、真空槽1の壁近傍よりも中央部が好ましく、望ましくは真空槽1の内部の直径の1/2以内の領域であることが望ましい。真空槽1の内壁の近傍から混合用の不活性ガスを吹き込むと、排ガスの濃度の代表性の向上効果が減少するからである。   Further, the blowing position of the inert gas for mixing is preferably in the central portion rather than in the vicinity of the wall of the vacuum chamber 1, and desirably in a region within ½ of the diameter inside the vacuum chamber 1. This is because if the inert gas for mixing is blown from the vicinity of the inner wall of the vacuum chamber 1, the effect of improving the representativeness of the concentration of exhaust gas is reduced.

また、混合用の不活性ガスの吹き出し高さは、真空槽1の内部の天蓋1aと溶鋼4の湯面との間が好ましいが、望ましくは、天蓋1aと溶鋼4の湯面の中間高さよりも上方であることが望ましい。これよりも下方であると、混合用の不活性ガスによる排ガスの濃度の代表性の向上効果が減少するからである。さらに望ましくは、天蓋1aと溶鋼4の湯面との間の距離をXとしたとき、内天蓋からX/3の高さより上方である。   The blowing height of the inert gas for mixing is preferably between the canopy 1a inside the vacuum chamber 1 and the molten steel 4 surface, but is desirably higher than the intermediate height between the canopy 1a and the molten steel 4 surface. It is desirable that the upper side is also upward. This is because if it is lower than this, the effect of improving the representativeness of the exhaust gas concentration by the inert gas for mixing decreases. More desirably, when the distance between the canopy 1a and the molten steel 4 is X, the distance is higher than the height of X / 3 from the inner canopy.

以上のように、本発明法によれば、推定手順A〜Cのいずれに関しても、推定誤差を顕著に低減できる。
このようにして、本実施の形態によれば、真空脱ガス装置を用いた真空精錬炉を用いて真空脱ガス処理を行う際に、溶鋼4のC濃度等の成分濃度を高精度で推定することができ、これにより、極低炭素鋼を確実に製造することができた。
As described above, according to the method of the present invention, the estimation error can be significantly reduced in any of the estimation procedures A to C.
Thus, according to this embodiment, when performing vacuum degassing using a vacuum smelting furnace using a vacuum degassing apparatus, the component concentration such as C concentration of molten steel 4 is estimated with high accuracy. As a result, ultra-low carbon steel could be reliably produced.

さらに、本発明を実施例を参照しながら詳細に説明する。
高炉から出銑された溶銑をトピードカーに移して転炉工場に輸送した後、脱珪、脱硫及び脱りん等の溶銑予備処理を一つ以上行った後、この溶銑を250トン転炉に装入して脱炭吹錬を行った。
Further, the present invention will be described in detail with reference to examples.
After the hot metal discharged from the blast furnace was transferred to a topped car and transported to a converter plant, one or more hot metal pretreatments such as desiliconization, desulfurization, and dephosphorization were performed, and this hot metal was charged into a 250-ton converter. Then decarburization blowing was performed.

脱炭吹錬により得られた溶鋼を転炉出鋼孔から取鍋へ出鋼し、溶鋼を収容した取鍋を二次精錬設備(RH真空脱ガス装置)へ移送し、脱ガス処理を行った。なお、転炉吹錬後の炭素濃度は0.04%とし、RH脱ガス装置においておおよそ炭素濃度0.002%まで脱炭した際の、RH真空脱ガス処理中の排ガス情報を演算器に取り込んで、溶鋼の炭素濃度の推定値を算出した。そして、RH真空脱ガス装置による脱炭の終了時に溶鋼サンプルを採取し、その分析値の推定誤差の標準偏差を調査した。なお、RH真空脱ガス装置の浸漬管の径は0.75m、環流用の不活性ガスの流量は2000NL/min、真空槽の内部の到達真空度は133MPaの条件で真空脱炭処理を行った。   The molten steel obtained by decarburization blowing is discharged from the converter outlet hole to the ladle, and the ladle containing the molten steel is transferred to the secondary refining equipment (RH vacuum degassing device) for degassing treatment. It was. The carbon concentration after the converter blowing is 0.04%, and the exhaust gas information during the RH vacuum degassing process when the decarburization is performed to approximately 0.002% in the RH degassing apparatus is taken into the calculator. Thus, an estimated value of the carbon concentration of the molten steel was calculated. And the molten steel sample was extract | collected at the time of completion | finish of the decarburization by RH vacuum degassing apparatus, and the standard deviation of the estimation error of the analytical value was investigated. The RH vacuum degassing apparatus was vacuum decarburized under the conditions that the diameter of the dip tube was 0.75 m, the flow rate of the inert gas for reflux was 2000 NL / min, and the ultimate vacuum inside the vacuum chamber was 133 MPa. .

本実施例では、真空槽内に混合用の不活性ガスを吹き込まない場合(方法a)、真空槽に収容された溶鋼の浴面の直上部側面から混合用の不活性ガスを吹き込んだ場合(方法b)、さらには真空槽の上方の天蓋にランスを設けて混合用の不活性ガスを吹き込んだ場合(方法c)とで比較調査を行った。混合用の不活性ガスとしてはいずれも4000NL/minの窒素ガスを用いた。   In this example, when the inert gas for mixing is not blown into the vacuum chamber (Method a), when the inert gas for mixing is blown from the upper side surface of the bath surface of the molten steel accommodated in the vacuum chamber ( The method b) was compared with a case where a lance was provided on the canopy above the vacuum chamber and an inert gas for mixing was blown (method c). As the inert gas for mixing, 4000 NL / min nitrogen gas was used.

まず、極低炭素鋼の推定誤差の標準偏差σの実績を調査した結果を表1に示す。また結果を表2にまとめて示す。   First, Table 1 shows the results of investigating the results of the standard deviation σ of the estimation error of extremely low carbon steel. The results are summarized in Table 2.

Figure 0004075834
Figure 0004075834

Figure 0004075834
Figure 0004075834

この実績から溶鋼のC濃度の上限が28ppmの極低炭素鋼を成分外れを生ずることなく溶製するように狙い炭素濃度を定めた。標準偏差σが大きい場合には成分外れの可能性が高いために狙いC濃度を低めに設定せざるを得ず、その結果脱炭時間は長めとなる。   From this result, the carbon concentration was determined with the aim of melting an ultra-low carbon steel having an upper limit of 28 ppm of the C concentration of molten steel without causing desorption. When the standard deviation σ is large, there is a high possibility of component removal, so the target C concentration must be set low, and as a result, the decarburization time becomes longer.

上記の狙いで脱炭処理時間の短縮効果を確認したところ、方法aに対して方法bでは1.8min短縮できたのに対し、方法cでは4.8minの短縮が可能となった。
また、方法aでの脱炭処理コストを1.0としたときのコスト指数を調査した結果、方法bではコスト指数は0.89であった。それに対し、方法cでは時間短縮効果も大きくコスト指数は0.70と大幅に低減することができた。
When the effect of shortening the decarburization treatment time was confirmed with the above-mentioned aim, it was shortened by 1.8 minutes in the method b with respect to the method a, but it was possible to shorten it by 4.8 minutes in the method c.
Moreover, as a result of investigating the cost index when the decarburization treatment cost in method a was 1.0, the cost index in method b was 0.89. On the other hand, method c has a large time shortening effect, and the cost index can be greatly reduced to 0.70.

以上のように本発明法は、真空処理時間の短縮により溶製コストを大幅に低減できる方法である。   As described above, the method of the present invention is a method that can greatly reduce the melting cost by shortening the vacuum processing time.

実施例1と同様の試験を行い、手順Cにより溶鋼の炭素濃度の推定を行った。まず、推定誤差の標準偏差については表3の結果が得られた。これをもとに炭素濃度が28ppm以下である極低炭素鋼の処理時間の短縮効果を調査した。結果を表4にまとめて示す。   The same test as in Example 1 was performed, and the carbon concentration of the molten steel was estimated by Procedure C. First, the results in Table 3 were obtained for the standard deviation of the estimation error. Based on this, the effect of shortening the treatment time of ultra-low carbon steel having a carbon concentration of 28 ppm or less was investigated. The results are summarized in Table 4.

Figure 0004075834
Figure 0004075834

Figure 0004075834
Figure 0004075834

その結果、方法aに対して方法bでは1.9min、方法cでは5.0minの短縮が可能となった。これに伴い、方法aを1.0とした場合のコスト指数を求めたところ、方法bでは0.87、方法cでは0.68となり、本発明法は時間短縮及びコスト低減効果を発揮できることが確認できた。   As a result, the method a can be shortened by 1.9 min in the method b and 5.0 min in the method c. As a result, the cost index when method a is set to 1.0 is 0.87 in method b and 0.68 in method c, and the method of the present invention can exhibit time reduction and cost reduction effects. It could be confirmed.

真空槽の下部に1本の大型浸漬管を用いたDH真空脱ガス装置を用いて実施例1と同様の実験を行った。本実施例では浸漬管径は2.0mであり、取鍋底部から攪拌ガスとしてArガスを1000NL/min流し、真空槽の内部の到達圧力を133Paとした。溶鋼の炭素濃度の推定方法として実施例1と同様の手順Bを採用した。
まず、推定誤差の標準偏差については表5の結果が得られた。これを元に炭素濃度が28ppm以下である極低炭素鋼の処理時間の短縮効果を調査した。結果を表6にまとめて示す。
The same experiment as in Example 1 was performed using a DH vacuum degassing apparatus using one large dip tube at the bottom of the vacuum chamber. In this example, the dip tube diameter was 2.0 m, Ar gas was flowed at 1000 NL / min as a stirring gas from the bottom of the ladle, and the ultimate pressure inside the vacuum chamber was 133 Pa. The procedure B similar to Example 1 was employ | adopted as the estimation method of the carbon concentration of molten steel.
First, the results of Table 5 were obtained for the standard deviation of the estimation error. Based on this, the effect of shortening the treatment time of ultra-low carbon steel having a carbon concentration of 28 ppm or less was investigated. The results are summarized in Table 6.

Figure 0004075834
Figure 0004075834

Figure 0004075834
Figure 0004075834

その結果、方法aに対して方法bでは1.9min、方法cでは5.0minの短縮が可能となった。これに伴い、方法aを1.0とした場合のコスト指数を求めたところ、方法bでは0.88、方法cでは0.69となり、方法cは顕著な時間短縮及びコスト低減効果を発揮できることが確認できた。   As a result, the method a can be shortened by 1.9 min in the method b and 5.0 min in the method c. Along with this, the cost index when method a is set to 1.0 is 0.88 for method b and 0.69 for method c, and method c can exhibit significant time reduction and cost reduction effects. Was confirmed.

以上のように、本発明により、真空処理時間の短縮により溶製コストを大幅に低減できることがわかる。   As described above, according to the present invention, it can be seen that the melting cost can be significantly reduced by shortening the vacuum processing time.

(a)法を実施する状況を示す説明図である。(A) It is explanatory drawing which shows the condition which enforces a method. (b)法を実施する状況を示す説明図である。(B) It is explanatory drawing which shows the condition which enforces a method. (c)法を実施する状況を示す説明図である。(C) It is explanatory drawing which shows the condition which enforces a method. DH脱ガス処理装置に対して本発明を適用した状況を模式的に示す説明図である。It is explanatory drawing which shows typically the condition which applied this invention with respect to DH degassing processing apparatus.

符号の説明Explanation of symbols

1 真空槽
1a 天蓋
2 浸漬管
2a 上昇管
2b 下降管
3 取鍋
4 溶鋼
5 真空排気系
6 排ガス分析系
7 ランス
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 1a Canopy 2 Immersion pipe 2a Rise pipe 2b Downcomer pipe 3 Ladle 4 Molten steel 5 Vacuum exhaust system 6 Exhaust gas analysis system 7 Lance

Claims (9)

真空槽の下部に設けられた浸漬管を取鍋に収容された溶鋼に浸漬しながら該溶鋼の脱ガス処理を行う際に、前記真空槽の内部に前記溶鋼に吹き込まれる攪拌用の不活性ガス又は環流用の不活性ガスとは異なる不活性ガスを、該攪拌用の不活性ガス又は環流用の不活性ガスから独立して吹き込み、該真空槽の内部で、前記溶鋼から離脱した排ガスに含まれる脱ガス成分を前記独立して吹き込まれた不活性ガスによって希釈混合し、該希釈混合された脱ガス成分濃度の分析値を用いて、前記溶鋼に含まれる成分の濃度を推定することを特徴とする溶鋼の成分濃度の推定方法。 An inert gas for stirring that is blown into the molten steel when the degassing of the molten steel is performed while immersing the dip tube provided in the lower part of the vacuum tank in the molten steel contained in the ladle. Or, an inert gas different from the inert gas for recirculation is blown independently from the inert gas for agitation or the inert gas for recirculation, and is contained in the exhaust gas separated from the molten steel inside the vacuum chamber. degassing components were mixed and diluted with an inert gas blown the independently being, characterized by using an analytical value of degassing component concentration which is the diluted mixture, to estimate the concentration of the components contained in the molten steel A method for estimating the component concentration of molten steel. 前記不活性ガスは、前記真空槽の天蓋又は側面に配置されたランスから吹き込まれる請求項1に記載された溶鋼の成分濃度の推定方法。   The said inert gas is an estimation method of the component concentration of the molten steel described in Claim 1 blown from the lance arrange | positioned at the canopy or side surface of the said vacuum chamber. 前記溶鋼に含まれる成分の濃度は、前記不活性ガスによって希釈混合された前記脱ガス成分の濃度の分析値を用いて、推定される請求項1又は請求項2に記載された溶鋼の成分濃度の推定方法。 The concentration of the component contained in the molten steel is estimated by using the analysis value of the concentration of the degassed component diluted and mixed with the inert gas. Estimation method. 前記脱ガス成分はCOガス及び/又はCOガスであるとともに前記溶鋼に含まれる成分は炭素である請求項1から請求項3までのいずれか1項に記載された溶鋼の成分濃度の推定方法。 Estimation method of the degassing component CO gas and / or CO 2 component contained in the molten steel as well as a gas component concentration of the molten steel according to any one of claims 1 is a carbon to claim 3 . 前記溶鋼に含まれる炭素の濃度は、希釈混合された前記COガス及び/又はCOガスの濃度から各時刻における脱炭速度を求め、求めた該各時刻における脱炭速度を用いて濃度に換算した脱炭積算量を算出し、真空脱ガス処理前又は該処理中における炭素濃度の分析値から該脱炭積算量を減ずることによって、推定される請求項4に記載された溶鋼の成分濃度の推定方法。 The concentration of carbon contained in the molten steel is obtained by calculating the decarburization rate at each time from the concentration of the diluted and mixed CO gas and / or CO 2 gas, and converted into the concentration using the obtained decarburization rate at each time. The calculated decarburization integrated amount is calculated, and the component concentration of the molten steel according to claim 4 is estimated by subtracting the integrated decarburization amount from the analysis value of the carbon concentration before or during the vacuum degassing process. Estimation method. 前記溶鋼に含まれる炭素の濃度は、希釈混合された前記COガス及び/又はCOガスの濃度から各時刻における脱炭速度を求め、求めた該各時刻における脱炭速度にバランスする脱炭速度定数及び炭素濃度の組合せを求めることによって、推定される請求項4に記載された溶鋼の成分濃度の推定方法。 The concentration of carbon contained in the molten steel is determined by determining the decarburization speed at each time from the concentration of the diluted and mixed CO gas and / or CO 2 gas, and the decarburization speed balanced with the obtained decarburization speed at each time. The estimation method of the component concentration of the molten steel of Claim 4 estimated by calculating | requiring the combination of a constant and carbon concentration. 前記溶鋼には、攪拌用不活性ガス又は環流用不活性ガスが吹き込まれる請求項1から請求項6までのいずれか1項に記載された溶鋼の成分濃度の推定方法。   The method for estimating the component concentration of molten steel according to any one of claims 1 to 6, wherein an inert gas for stirring or an inert gas for reflux is blown into the molten steel. 前記浸漬管の設置数は1本又は2本である請求項1から請求項7までのいずれか1項に記載された溶鋼の成分濃度の推定方法。   The method for estimating the component concentration of molten steel according to any one of claims 1 to 7, wherein the number of said dip tubes is one or two. 請求項1から請求項8までのいずれか1項に記載された溶鋼の成分濃度の推定方法によって溶鋼の炭素濃度を推定する工程を含むことを特徴とする極低炭素鋼の製造方法。 A method for producing an ultra-low carbon steel, comprising a step of estimating a carbon concentration of molten steel by the method for estimating a component concentration of molten steel according to any one of claims 1 to 8.
JP2004095893A 2004-03-29 2004-03-29 Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel Expired - Lifetime JP4075834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095893A JP4075834B2 (en) 2004-03-29 2004-03-29 Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095893A JP4075834B2 (en) 2004-03-29 2004-03-29 Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JP2005281750A JP2005281750A (en) 2005-10-13
JP4075834B2 true JP4075834B2 (en) 2008-04-16

Family

ID=35180472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095893A Expired - Lifetime JP4075834B2 (en) 2004-03-29 2004-03-29 Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP4075834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783318B1 (en) 2014-11-28 2015-09-24 Jfeスチール株式会社 Trace carbon quantitative analyzer and trace carbon quantitative analysis method

Also Published As

Publication number Publication date
JP2005281750A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
CN110607415A (en) Method for measuring slag discharge amount of converter by using low-silicon aluminum killed steel
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JPH09202913A (en) Method for controlling carbon concentration at end point in rh vacuum degassing apparatus and device for controlling carbon concentration
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
US8092572B2 (en) Method of regulating the output of carbon monoxide in a metallurgical melting process
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JP5884182B2 (en) Method for controlling inclusion composition of Ca-containing aluminum killed steel
JP6540773B2 (en) Vacuum degassing method and vacuum degassing apparatus
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
JP5387012B2 (en) Control method of carbon concentration in molten steel in RH degassing refining
JP4816513B2 (en) Molten steel component estimation method
JP7318821B2 (en) Method for deoxidizing and refining molten steel, method for manufacturing steel material, and steel material thereof
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JP6989067B1 (en) Refining method of molten steel
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
WO2022009630A1 (en) Method for refining molten steel
JP5760982B2 (en) Method for refining molten steel
KR19990049608A (en) Refining Method of Ultra-low Carbon Steel According to Carbon Monoxide Concentration
JPH02209417A (en) Degassing refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350