JPH11279625A - Manufacture of super-low carbon steel - Google Patents

Manufacture of super-low carbon steel

Info

Publication number
JPH11279625A
JPH11279625A JP10182598A JP10182598A JPH11279625A JP H11279625 A JPH11279625 A JP H11279625A JP 10182598 A JP10182598 A JP 10182598A JP 10182598 A JP10182598 A JP 10182598A JP H11279625 A JPH11279625 A JP H11279625A
Authority
JP
Japan
Prior art keywords
molten steel
carbon concentration
estimated
time
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10182598A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Isobe
善充 磯部
Masachika Fukuda
正親 福田
Eiji Sakurai
栄司 櫻井
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10182598A priority Critical patent/JPH11279625A/en
Publication of JPH11279625A publication Critical patent/JPH11279625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a super-low carbon steel having a carbon concentration close to the target value. SOLUTION: An arithmetic unit 15 in which an analysis value of an exhaust gas analyzer 9 and a measured value of an exhaust gas flow meter 10 are inputted operates the estimated value of the carbon concentration in a molten steel from these values, considering the delay time of each measured value. The sampling of the molten steel is performed by a molten steel sampling device 11, and the carbon content in the molten steel is analyzed by a carbon concentration in molten steel analyzer 13. The arithmetic unit 15 corrects the estimated value of the carbon concentration in the molten steel considering the time when the molten steel sampling device 11 performs the sampling. The arithmetic unit 15 corrects the estimated value of the carbon concentration of the molten steel, and then, determines the coefficients of the regression formula from these corrected values by substituting the carbon concentration in the molten steel in the regression formula expressed by the time function. The estimated carbon concentration in the molten steel considering the delay time due to the analysis is calculated from the obtained regression formula, and the decarburizing is completed when the carbon concentration reaches the final target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、RH真空脱ガス装
置を用いて極低炭素鋼を製造する方法に関するものであ
り、さらに詳しくは、極低炭素鋼を製造する場合の脱炭
終了時点を正確に決定することにより、目標値に近い炭
素量を有する極低炭素鋼を製造する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel using an RH vacuum degassing apparatus. The present invention relates to a method for producing an ultra-low carbon steel having a carbon amount close to a target value by accurately determining.

【0002】[0002]

【従来の技術】極低炭素鋼を製造する場合には、転炉で
吹錬した溶鋼をRH真空脱ガス装置に移送し、真空脱ガ
スにより溶鋼中の炭素を低下させて目標とする炭素含有
量とすることが行われている。
2. Description of the Related Art In the case of producing ultra-low carbon steel, molten steel blown in a converter is transferred to an RH vacuum degassing apparatus, and the carbon content in the molten steel is reduced by vacuum degassing so that the target carbon content is reduced. The amount is going to be done.

【0003】従来、RH真空脱ガス処理における溶鋼中
炭素量の推定、及び脱炭処理終了時点の決定方法として
は、 予め同一設備を用いて同一の操業条件の下で脱炭処理
を行う。 溶鋼中炭素濃度と脱炭速度をモデル式により推定する
こととし、溶鋼中炭素濃度の経時化からこのモデル式に
必要な定数を求める。 定数が求められて決定されたモデル式を用いて溶鋼中
炭素濃度の予測を行い、脱炭終了時点を判定する。とい
う手順で行う方法が一般的であった。
Conventionally, as a method of estimating the amount of carbon in molten steel in RH vacuum degassing and determining the end of decarburization, decarburization is performed in advance using the same equipment under the same operating conditions. The carbon concentration in the molten steel and the decarburization rate are estimated by a model formula, and the constants necessary for this model formula are obtained from the aging of the carbon concentration in the molten steel. The carbon concentration in the molten steel is predicted by using the model formula determined by determining the constant, and the end point of the decarburization is determined. In general, the procedure was as follows.

【0004】このような方法の例として、特開平7−1
18730号公報に開示されている方法がある。これ
は、真空排気開始後、任意の時期に溶鋼を採取し、採取
した溶鋼試料の炭素分析値と、同時期に測定した溶鋼の
温度、固体電解質を用いた酸素濃度センサによる酸素濃
度の値に基づき、差分法を用いたモデル式を決定して、
このモデル式により目標炭素濃度が達成される時間を推
定するものである。
An example of such a method is disclosed in Japanese Patent Laid-Open No. 7-1.
There is a method disclosed in Japanese Patent No. 18730. This means that the molten steel is sampled at an arbitrary time after the start of evacuation, and the carbon analysis value of the sampled molten steel, the temperature of the molten steel measured at the same time, and the oxygen concentration value obtained by an oxygen concentration sensor using a solid electrolyte are measured. Based on the model formula using the difference method,
This model formula estimates the time at which the target carbon concentration is achieved.

【0005】また、前記、の工程よりなる従来技術
の例としては、特開平5−239540号公報に開示さ
れている方法がある。これは、精錬中の操業実績値(環
流ガス流量、真空度、合金投入実績、排ガス成分実績
等)をリアルタイムに入力して、操業中の溶鋼炭素濃
度、酸素濃度等をモデル式により刻々推定し、かつ、製
錬中に1回以上溶鋼サンプルを採取してその分析値によ
り前記モデル式を修正して溶鋼中炭素濃度の推定を行う
ことにより、目標炭素濃度が達成される時間を推定する
ものである。
As an example of the prior art including the above-mentioned steps, there is a method disclosed in Japanese Patent Application Laid-Open No. Hei 5-239540. In this method, the actual operation values during refining (reflux gas flow rate, vacuum degree, alloy input results, exhaust gas component results, etc.) are input in real time, and the carbon concentration of molten steel, oxygen concentration, etc. during operation are estimated every moment using a model formula. And estimating the time at which the target carbon concentration is achieved by collecting the molten steel sample at least once during smelting and correcting the model formula based on the analysis value to estimate the carbon concentration in the molten steel. It is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
7−118730号公報に開示されているように、前記
、、の工程を有する方法では、予めモデル式に必
要な定数を定めておくために、実際の操業状態の変化に
は追従できず、鋼中炭素濃度の推定値に誤差が生じると
いう問題点がある。また、排ガス流量及び排ガス分析値
の測定において、測定器が真空槽から離れた位置にある
こと、分析計においては、これに加え測定の応答遅れが
大きいことにより、実際に測定される値は遅れを伴って
いるが、モデル式にはこれらの遅れが考慮されていない
ため、鋼中炭素濃度の推定値に誤差が生じるという問題
点がある。
However, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-118730, in the method having the above-mentioned steps, in order to preliminarily set a constant required for a model equation, There is a problem that it is impossible to follow a change in the actual operation state, and an error occurs in the estimated value of the carbon concentration in the steel. Also, in measuring exhaust gas flow rate and exhaust gas analysis values, the actual measurement value is delayed due to the fact that the measuring instrument is located at a position away from the vacuum chamber and the analyzer has a large response delay. However, since these delays are not taken into account in the model equation, there is a problem that an error occurs in the estimated value of the carbon concentration in steel.

【0007】特開平5−239540号公報に開示され
ている方法は、の工程を有していないため、実際の操
業状態に追従できないという問題はないが、やはり、測
定系統の遅れをモデル式で考慮していないため、鋼中炭
素濃度の推定値に誤差が生じるという問題は避けられな
い。
The method disclosed in Japanese Patent Application Laid-Open No. Hei 5-239540 has no problem that it cannot follow the actual operation state because it does not have the steps described above. Since this is not taken into account, the problem of an error in the estimated value of the carbon concentration in steel is inevitable.

【0008】本発明はこのような事情に鑑みてなされた
もので、鋼中炭素濃度を正確に予測し、精錬終了時刻を
正確に予測することにより、目標炭素濃度に近い炭素濃
度を有する極低炭素鋼を製造する方法を提供することを
課題とする。
[0008] The present invention has been made in view of such circumstances, and by accurately predicting the carbon concentration in steel and accurately predicting the end time of refining, extremely low carbon having a carbon concentration close to the target carbon concentration. It is an object to provide a method for producing carbon steel.

【0009】[0009]

【課題を解決するための手段】前記課題は、RH真空脱
ガス装置を用いて極低炭素鋼を製造する方法であって、 (a) 溶鋼重量、溶鋼初期炭素濃度、検出遅れを考慮した
排ガス流量、分析時間遅れを考慮したCO、CO2濃度
から、炭素マスバランスにより溶鋼中炭素濃度の推定を
行う工程 (b) 前記(a)の工程中で、1回以上溶鋼試料を採取し、
採取した溶鋼試料の分析値に基づき、分析遅れ時間を考
慮して、前記(a)の工程で推定された溶鋼中炭素濃度推
定値の補正を行う工程 (c) 前記(a)、(b)の工程によって推定された溶鋼中炭素
濃度推定値から、溶鋼中炭素濃度推定値を時間の関数で
ある回帰式として求める工程 (d) 前記(c)の工程で求められた回帰式を用いて、排ガ
ス流量及び排ガス分析値の遅れ時間を補償した溶鋼中炭
素濃度推定値を求め、この推定値が目標終点炭素濃度と
なった時点で処理を終了する工程 を有してなることを特徴とする極低炭素鋼の製造方法に
より解決される。
The object of the present invention is to provide a method for producing ultra-low carbon steel using an RH vacuum degassing apparatus, which comprises the following steps: (a) Exhaust gas in consideration of molten steel weight, initial carbon concentration of molten steel, and detection delay flow rate, CO considering the analysis time delay, from the CO 2 concentration, in a process of the process for estimating the carbon concentration in the molten steel by a carbon mass balance (b) the (a), the molten steel sample was taken one or more times,
Based on the analysis values of the sampled molten steel, considering the analysis delay time, the step of correcting the estimated carbon concentration in the molten steel estimated in the step (a) (c) the (a), (b) From the estimated carbon concentration in the molten steel estimated by the step of, the step of obtaining the estimated carbon concentration in the molten steel as a regression equation that is a function of time (d) using the regression equation obtained in the step (c), Obtaining an estimated carbon concentration in molten steel that compensates for the delay time of the exhaust gas flow rate and the exhaust gas analysis value, and terminating the process when the estimated value reaches the target end-point carbon concentration. The problem is solved by a method for producing low carbon steel.

【0010】本手段においては、(a)の工程、(b)の工程
において、検出遅れ時間、分析遅れ時間を考慮して溶鋼
中炭素濃度の推定及びその補正を行っているので、溶鋼
中炭素濃度を正確に測定することができる。そして、こ
のようにして求められた溶鋼中炭素濃度推定値から、溶
鋼中炭素濃度推定値を時間の関数である回帰式として求
め、この回帰式から排ガス流量及び排ガス分析値の遅れ
時間を補償した溶鋼中炭素濃度推定値を求め、この推定
値が目標終点炭素濃度となった時点を脱炭処理終了の時
点としている。回帰式は、(a)の工程又は(b)の工程が行
われる毎に求められる。すなわち、(c)、(d)の工程は、
(a)又は(b)の工程が行われる毎に引き続いて行われる。
しかしながら、(b)の工程が行われる以前には、必ずし
も(a)の工程の後に(c)、(d)の工程を行う必要が無い。
(b)の工程が行われる前に脱炭が終了することは無いの
で、(c)、(d)の工程は、(b)の工程が少なくとも1回行
われた後から開始しても十分である。このように、本手
段によれば、精錬終了時の溶鋼中炭素含有量を目標値に
近づけることができる。
In this means, in the steps (a) and (b), the estimation and correction of the carbon concentration in the molten steel are performed in consideration of the detection delay time and the analysis delay time. The concentration can be measured accurately. From the estimated carbon concentration in the molten steel thus obtained, the estimated carbon concentration in the molten steel was obtained as a regression equation that is a function of time, and the regression equation compensated for the exhaust gas flow rate and the delay time of the exhaust gas analysis value. An estimated carbon concentration in the molten steel is obtained, and the time when the estimated value reaches the target end-point carbon concentration is defined as the end of the decarburization process. The regression equation is obtained every time the step (a) or the step (b) is performed. That is, the steps (c) and (d) are:
Each time the step (a) or (b) is performed, it is performed successively.
However, before the step (b) is performed, it is not always necessary to perform the steps (c) and (d) after the step (a).
Since the decarburization does not end before the step (b) is performed, the steps (c) and (d) may be sufficiently started even after the step (b) has been performed at least once. It is. Thus, according to this means, the carbon content in molten steel at the end of refining can be made closer to the target value.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態の例を
図を用いて説明する。図1は、本発明の実施の形態を実
施するための設備の一例を示す図である。図1におい
て、1は溶鋼が収容された取鍋、2は溶鋼、3はRH脱
ガス装置の真空槽本体、4は上昇側浸漬管、5は下降側
浸漬管、6は環流用アルゴンガス供給管、7は排気管、
8は排ガス分析前処理設備、9は排ガス分析計、10は
排ガス流量計、11は溶鋼サンプリング装置、12は溶
鋼サンプリング制御装置、13は溶鋼炭素濃度分析計、
14は操業制御装置、15は演算装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an example of equipment for implementing an embodiment of the present invention. In FIG. 1, 1 is a ladle containing molten steel, 2 is molten steel, 3 is a vacuum tank body of an RH degassing device, 4 is an ascending side immersion pipe, 5 is a descending side immersion pipe, and 6 is a supply of argon gas for reflux. Pipe, 7 is an exhaust pipe,
8 is an exhaust gas analysis pretreatment facility, 9 is an exhaust gas analyzer, 10 is an exhaust gas flow meter, 11 is a molten steel sampling device, 12 is a molten steel sampling control device, 13 is a molten steel carbon concentration analyzer,
14 is an operation control device, and 15 is a calculation device.

【0012】真空脱ガス装置の真空槽本体3の下部に
は、上昇側浸漬管4と下降側浸漬管5が取付けられてお
り、それらの先端部が取鍋1内の溶鋼2に浸漬されてい
る。真空槽本体3は、排気管7を介して真空排気装置
(図示せず)に接続され、その層内は真空状態となって
いる。排気管7には、排ガス流量を測定する排ガス流量
計10と、排ガス分析前処理装置8が設けられており、
排ガス分析前処理装置8は排ガス分析計9に接続されて
いる。
An ascending-side immersion pipe 4 and a descending-side immersion pipe 5 are attached to a lower portion of the vacuum tank main body 3 of the vacuum degassing apparatus, and their tips are immersed in molten steel 2 in a ladle 1. I have. The vacuum chamber main body 3 is connected to a vacuum exhaust device (not shown) via an exhaust pipe 7, and the inside of the layer is in a vacuum state. The exhaust pipe 7 is provided with an exhaust gas flowmeter 10 for measuring the exhaust gas flow rate and an exhaust gas analysis pretreatment device 8.
The exhaust gas analysis pretreatment device 8 is connected to an exhaust gas analyzer 9.

【0013】真空精錬においては、上昇側浸漬管4に設
けられた環流用アルゴンガス供給管6からアルゴンガス
を吹き込むことにより、真空槽本体3内の溶鋼2を矢印
で示すように循環させる。このとき、真空槽本体3内は
真空状態となっており、真空脱炭処理が行われる。
In the vacuum refining, the molten steel 2 in the vacuum vessel main body 3 is circulated as indicated by an arrow by blowing argon gas from a reflux argon gas supply pipe 6 provided in the rising side immersion pipe 4. At this time, the inside of the vacuum chamber main body 3 is in a vacuum state, and a vacuum decarburization process is performed.

【0014】排気管7内を流れる排ガス流量は、排ガス
流量計10で測定されるが、この測定値と真空槽本体3
内で発生するガス量の実際値との間には、真空槽本体3
から排ガス流量計10の位置まで排ガスが流れる時間だ
けの輸送遅れが生じる。
The flow rate of the exhaust gas flowing through the exhaust pipe 7 is measured by an exhaust gas flow meter 10.
Between the actual value of the amount of gas generated in the vacuum chamber body 3
There is a transport delay due to the time during which the exhaust gas flows from the exhaust gas flow meter 10 to the position of the exhaust gas flow meter 10.

【0015】また、排ガスの成分(CO、CO2)は、
排ガス分析計9で分析されるが、この測定値と、真空槽
本体3内で発生するガス中の排ガスの成分値との間に
は、排気管7中の排ガスの輸送時間、排ガス分析前処理
装置8の処理時間、排ガス分析計9の応答時間に対応す
る遅れが生じる。
The components of the exhaust gas (CO, CO 2 )
The gas is analyzed by the exhaust gas analyzer 9, and between this measured value and the component value of the exhaust gas in the gas generated in the vacuum chamber main body 3, the transport time of the exhaust gas in the exhaust pipe 7, the exhaust gas analysis pretreatment A delay corresponding to the processing time of the device 8 and the response time of the exhaust gas analyzer 9 occurs.

【0016】排ガス分析計9の分析値と排ガス流量計1
0の測定値は、演算装置15に入力され、演算装置15
は、各測定値の遅れ時間を考慮して、これらの値から溶
鋼炭素濃度の推定値を演算する。
The analysis values of the exhaust gas analyzer 9 and the exhaust gas flow meter 1
The measured value of 0 is input to the arithmetic unit 15 and the arithmetic unit 15
Calculates the estimated value of the molten steel carbon concentration from these values in consideration of the delay time of each measured value.

【0017】製錬中の決められたタイミングで1回以
上、溶鋼サンプリング装置11により溶鋼のサンプリン
グを行い、溶鋼炭素濃度分析計13で溶鋼中炭素量を分
析する。分析値は演算装置15に送られる。演算装置1
5は、溶鋼サンプリング装置11がサンプリングを行っ
た時刻を考慮して、前記溶鋼炭素濃度の推定値を修正す
る。
At a predetermined timing during smelting, the molten steel is sampled by the molten steel sampling device 11 at least once, and the carbon content in the molten steel is analyzed by the molten steel carbon concentration analyzer 13. The analysis value is sent to the arithmetic unit 15. Arithmetic unit 1
5 corrects the estimated value of the molten steel carbon concentration in consideration of the time at which the molten steel sampling device 11 performs sampling.

【0018】演算装置15は溶鋼炭素濃度の推定値を修
正した後、これらの修正値を、溶鋼炭素濃度を時間の関
数で表わした回帰式に当てはめて回帰式の係数を決定す
る。そして、求められた回帰式から、溶鋼炭素濃度が目
標終点濃度になる時刻を算出し、その時刻を脱炭処理終
了時点とする。
After correcting the estimated values of the molten steel carbon concentration, the arithmetic unit 15 applies these corrected values to a regression equation expressing the molten steel carbon concentration as a function of time to determine the coefficients of the regression equation. Then, a time at which the molten steel carbon concentration reaches the target end-point concentration is calculated from the obtained regression equation, and the time is set as the end point of the decarburization process.

【0019】以下、これらの制御に使用される数値計算
の例について詳細に説明する。まず、溶鋼中のC重量の
初期値を以下の式により計算する。 Wc(0)=(Ws・[C](0))・k3 …(1) ここで、 Wc(0):溶鋼中のC重量の初期値 [Kg] Ws:溶鋼重量初期値 [Ton] [C](0):溶鋼中C分析値の初期値 [ppm] k3:係数 (0.001)
Hereinafter, examples of numerical calculations used for these controls will be described in detail. First, the initial value of the C weight in molten steel is calculated by the following equation. Wc (0) = (Ws · [C] (0)) · k 3 (1) where Wc (0): Initial value of C weight in molten steel [Kg] Ws: Initial value of molten steel weight [Ton] [C] (0): Initial value of C analysis value in molten steel [ppm] k 3 : Coefficient (0.001)

【0020】次に、各時刻における溶鋼中炭素濃度推定
量[C](i)を以下のように計算する。 ΔWc(i)=(k1・CO(i-τ1)+k2・CO2(i-τ2))・F(i-τ3)・τ0 …(2) ここで、 ΔWc(i):時刻iにおける脱炭量推定量 [Kg] CO(i):時刻iにおける排ガス中CO分析値(溶鋼面基
準) [%] CO2(i):時刻iにおける排ガス中CO2分析値(溶鋼面
基準) [%] F(i):時刻iにおける排ガス流量(溶鋼面基準) [Kg/
h] k1:CO濃度変換係数 (1.063×10-6) k2:CO2濃度変換係数 (1.063×10-6) τ0:計算周期 [sec] τ1:COの分析遅れ時間 (τ0で正規化) τ2:CO2の分析遅れ時間 (τ0で正規化) τ3:排ガス流量の検出遅れ時間 (τ0で正規化) である。また、時刻iもτ0で正規化され、何回目の計
算かを示す値となっている。
Next, the estimated carbon concentration in molten steel [C] (i) at each time is calculated as follows. ΔWc (i) = (k 1 · CO (i−τ 1 ) + k 2 · CO 2 (i−τ 2 )) · F (i−τ 3 ) · τ 0 (2) where ΔWc (i ): Estimated amount of decarburization at time i [Kg] CO (i): Analysis value of CO in exhaust gas at time i (based on molten steel surface) [%] CO 2 (i): Analysis value of CO 2 in exhaust gas at time i ( F (i): Exhaust gas flow rate at time i (based on molten steel surface) [Kg /
h] k 1 : CO concentration conversion coefficient (1.063 × 10 −6 ) k 2 : CO 2 concentration conversion coefficient (1.063 × 10 −6 ) τ 0 : Calculation cycle [sec] τ 1 : CO analysis delay time (τ 0 Τ 2 : CO 2 analysis delay time (normalized by τ 0 ) τ 3 : exhaust gas flow detection delay time (normalized by τ 0 ). The time i is also normalized by τ 0 , and is a value indicating the number of calculations.

【0021】Wc(i)=Wc(i-1)-ΔWc(i) …(3) [C](i)=(Wc(i)/Ws)・k4 …(4) ここで、Wc(i):時刻iにおける溶鋼中のC重量推定値
[Kg] [C](i):時刻iにおける溶鋼中C濃度推定値 [ppm] k4:変換係数 (1000.0) このようにして、計算周期τ0ごとに溶鋼中C濃度推定
値[C](i)を求める。
Wc (i) = Wc (i−1) −ΔWc (i) (3) [C] (i) = (Wc (i) / Ws) · kFour …(Four)  Here, Wc (i): estimated value of C weight in molten steel at time i
 [Kg] [C] (i): Estimated value of C concentration in molten steel at time i [ppm] kFour: Conversion coefficient (1000.0) Thus, the calculation cycle τ0Of C concentration in molten steel for each case
Find the value [C] (i).

【0022】図2に、精錬開始からの時刻を横軸に、溶
鋼中炭素濃度[C]を縦軸にとった図を示す。図2におい
て、a〜iまでの点が、このようにして推定された溶鋼
中C濃度[C](i)を示している。
FIG. 2 is a diagram in which the time from the start of refining is plotted on the horizontal axis and the carbon concentration in molten steel [C] is plotted on the vertical axis. In FIG. 2, points a to i indicate the C concentration [C] (i) in the molten steel estimated in this manner.

【0023】製錬中、決められたタイミング(図2で溶
鋼サンプリングと記載された時点)で溶鋼のサンプリン
グを行い、溶鋼中の炭素濃度を分析して入力する(図2
において迅速分析値入力と記載された時点)。計算周期
τ0で正規化された溶鋼のサンプリング時刻をnAとし
(すなわち、nA回目の計算時点でサンプリングが行われ
たものとする)、その分析値を[C]'(nA) (ppm)とする
と、タイミングnAにおける溶鋼中C重量推定値を以下の
式により計算し、修正する。 Wc(nA)=(Ws・[C]'(nA))・k5 …(5) ここに、 k5:[C]分析値重量変換係数 (0.001) である。
During the smelting, the molten steel is sampled at a predetermined timing (at the time indicated as molten steel sampling in FIG. 2), and the carbon concentration in the molten steel is analyzed and input (FIG. 2).
At the time point described as rapid analysis value input). The sampling time of the molten steel normalized at the calculation cycle τ 0 is defined as nA (that is, sampling is performed at the time of the nAth calculation), and the analysis value is expressed as [C] ′ (nA) (ppm). Then, the estimated value of C weight in molten steel at timing nA is calculated and corrected by the following equation. Wc (nA) = (Ws · [C] ′ (nA)) · k 5 (5) where k 5 : [C] analysis value weight conversion coefficient (0.001).

【0024】図2においては、g点がnA回目のサンプリ
ング時点(溶鋼サンプリング時点)に当たるので、迅速
分析値(溶鋼中C濃度分析値)入力の結果、g点である
と推定されていた溶鋼中C濃度が、迅速分析値である
g’に置き換えられている。
In FIG. 2, since the point g corresponds to the nA sampling time (the molten steel sampling time), as a result of inputting the rapid analysis value (the analysis value of the C concentration in the molten steel), the g point is assumed to be the g point. The C concentration has been replaced by g ', a rapid analysis.

【0025】迅速分析値が入力された後には、溶鋼中C
濃度の推定値は、以下のようにして計算される。 ΔWc(j)=(k1・CO(j-τ1)+k2・CO2(j-τ2)・F(j-τ3)・τ0 …(6) Wc(j)=Wc(j-1)-ΔWc(j) …(7) [C](j)=(Wc(j)/Ws)・k4 …(8) ただし、j=nA+1,nA+2,… である。
After the rapid analysis values have been entered, the C
The concentration estimate is calculated as follows. ΔWc (j) = (k 1・ CO (j−τ 1 ) + k 2・ CO 2 (j−τ 2 ) ・ F (j−τ 3 ) ・ τ 0 … (6) Wc (j) = Wc ( j−1) −ΔWc (j) (7) [C] (j) = (Wc (j) / Ws) · k 4 (8) where j = nA + 1, nA + 2,. .

【0026】図2においては、(6)〜(8)式に基づいて、
g’〜l’までの溶鋼中C濃度の推定値が計算されてい
る。現在時刻は、図2において現在と記された時点にあ
るが、分析計等の遅れのため、得られている最新の溶鋼
中C濃度推定値はl’までである。
In FIG. 2, based on equations (6) to (8),
The estimated values of the C concentration in the molten steel from g ′ to l ′ have been calculated. The current time is the time indicated as “current” in FIG. 2, but the latest estimated value of the C concentration in molten steel obtained is up to l ′ due to the delay of the analyzer and the like.

【0027】このようにして、求められた新しい溶鋼中
C濃度推定値g’〜l’を用いて、溶鋼中C濃度推定値
[C]"(i) [ppm]を時間の関数として表わす。すなわち、
関数形として、 [C]"(i)=α・exp(-β・i)+γ …(9) を仮定し、得られたデータg’〜l’を(9)式に当ては
め、最小2乗法により、係数α、β、γを求める。ただ
し、(9)式において、iはτ0で正規化された計算回数で
あり、(2)式等におけるiと同じ意味を持つ。この回帰
式の計算は、計算周期τ0毎及び迅速分析値入力時に行
われる。ただし、迅速分析値が最初に入力される前に
は、回帰式の計算や、以下に述べる終点判定は必ずしも
行う必要はない。迅速分析値が入力される前に脱炭終了
となることは、通常の操業ではありえないからである。
The estimated C concentration in molten steel is calculated using the new estimated C concentration g ′ to l ′ in molten steel thus obtained.
[C] "(i) [ppm] as a function of time, ie
Assuming that [C] "(i) = α · exp (−β · i) + γ (9) as a function form, the obtained data g ′ to l ′ are applied to equation (9), and the minimum 2 The coefficients α, β, and γ are obtained by a multiplication method, where i is the number of calculations normalized by τ 0 in Expression (9), and has the same meaning as i in Expression (2) and the like. Is calculated at every calculation cycle τ 0 and at the time of rapid analysis value input. However, before the rapid analysis value is input for the first time, it is not always necessary to perform the calculation of the regression equation and the end point determination described below. This is because the end of decarburization before rapid analysis values are input cannot be a normal operation.

【0028】(9)式において係数が決定されて関数形が
定まると、得られている最新の溶鋼中C濃度l’以後の
溶鋼中C濃度の推定値A〜Fが計算可能となる。図2に
おいては、Fが終点C濃度目標値に一致しているので、
[C]"(i)がFとなる時点が脱炭処理終了時点となる。新
しく溶鋼中炭素濃度が計算される毎に(9)式における係
数を計算し、(9)式を用いて以後の溶鋼中炭素濃度を計
算し、現在の溶鋼中炭素濃度が目標終点濃度となった時
点で脱炭処理終了とする。
When the coefficient is determined in equation (9) and the function form is determined, it is possible to calculate the estimated values A to F of the C concentration in the molten steel after the latest obtained C concentration l 'in the molten steel. In FIG. 2, since F is equal to the end point C concentration target value,
[C] "The point at which (i) becomes F is the end point of the decarburization treatment. Each time the carbon concentration in the molten steel is newly calculated, the coefficient in equation (9) is calculated, and the coefficient is calculated using equation (9). Is calculated, and when the current carbon concentration in the molten steel reaches the target end-point concentration, the decarburization process is terminated.

【0029】なお、以上の説明においては、溶鋼サンプ
リングを1回行う例について説明したが、複数回のサン
プリングを行う場合は、常に最新のサンプリングにおけ
る溶鋼中C濃度分析値を用いて(6)〜(9)式の計算を行
い、これらに基づいて脱炭終了時点を決定すればよい。
In the above description, an example in which molten steel sampling is performed once has been described. However, when performing multiple samplings, the analysis of the C concentration in molten steel in the latest sampling is always used. Equation (9) may be calculated, and the end point of decarburization may be determined based on these calculations.

【0030】[0030]

【発明の効果】以上説明したように、本発明において
は、溶鋼重量、溶鋼初期炭素濃度、検出遅れを考慮した
排ガス流量、分析時間遅れを考慮したCO、CO2濃度
から、炭素マスバランスにより溶鋼中炭素濃度の推定を
行い、その間に1回以上溶鋼試料を採取し、採取した溶
鋼試料の分析値に基づき、分析遅れ時間を考慮して、推
定された溶鋼中炭素濃度推定値の補正を行うと共に、推
定された溶鋼中炭素濃度推定値から、溶鋼中炭素濃度推
定値を時間の関数である回帰式として求め、この回帰式
から排ガス流量及び排ガス分析値の遅れ時間を補償した
溶鋼中炭素濃度推定値を求め、この推定値が目標終点炭
素濃度になった時点を脱炭処理終了の時点としているの
で、分析等の遅れ時間が考慮されたモデルを使用してい
ることになり、終点炭素濃度の目標値への的中率を向上
させることができる。それにより、過剰な脱炭処理によ
る処理時間の延長を防止し、かつ溶鋼の品質の向上を図
ることができる。
As described in the foregoing, in the present invention, molten steel weight, the molten steel initial carbon concentration, exhaust gas flow rate in consideration of the detection delay, CO considering the analysis time delay, from the CO 2 concentration, the molten steel by a carbon mass balance The medium carbon concentration is estimated, during which time the molten steel sample is collected at least once, and the estimated molten steel carbon concentration estimation value is corrected based on the analysis value of the collected molten steel sample in consideration of the analysis delay time. At the same time, the estimated carbon concentration in the molten steel is estimated from the estimated carbon concentration in the molten steel as a regression equation that is a function of time, and the carbon concentration in the molten steel compensated for the exhaust gas flow rate and the delay time of the exhaust gas analysis value from the regression equation. An estimated value is obtained, and the time when the estimated value reaches the target end-point carbon concentration is set as the end of the decarburization process. It is possible to improve the predictive value of the target value of the oxygen concentration. Thereby, it is possible to prevent the treatment time from being prolonged due to the excessive decarburization treatment and to improve the quality of the molten steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を実施するための設備の一
例を示す図である。
FIG. 1 is a diagram showing an example of equipment for carrying out an embodiment of the present invention.

【図2】精錬開始からの経過時間と、溶鋼中炭素濃度
[C]との関係を示す図である。
Fig. 2 Elapsed time from the start of refining and carbon concentration in molten steel
FIG. 6 is a diagram showing a relationship with [C].

【符号の説明】[Explanation of symbols]

1…取鍋 2…溶鋼 3…RH脱ガス装置の真空槽本体 4…上昇側浸漬管 5…下降側浸漬管 6…環流用アルゴンガス供給管 7…排気管 8…排ガス分析前処理設備 9…排ガス分析計 10…排ガス流量計 11…溶鋼サンプリング装置 12…溶鋼サンプリング制御装置 13…溶鋼炭素濃度分析計 14…操業制御装置 15…演算装置 DESCRIPTION OF SYMBOLS 1 ... Ladle 2 ... Molten steel 3 ... Vacuum tank main body of RH degassing device 4 ... Upside dipping tube 5 ... Downside dipping tube 6 ... Argon gas supply pipe for reflux 7 ... Exhaust pipe 8 ... Pretreatment equipment for exhaust gas analysis 9 ... Exhaust gas analyzer 10 ... Exhaust gas flow meter 11 ... Metal steel sampling device 12 ... Metal steel sampling control device 13 ... Metal steel carbon concentration analyzer 14 ... Operation control device 15 ... Computing device

フロントページの続き (72)発明者 村井 剛 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Continuation of the front page (72) Inventor Tsuyoshi Murai 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH真空脱ガス装置を用いて極低炭素鋼
を製造する方法であって、以下の工程を有してなること
を特徴とする極低炭素鋼の製造方法。 (a) 溶鋼重量、溶鋼初期炭素濃度、検出遅れを考慮した
排ガス流量、分析時間遅れを考慮したCO、CO2濃度
から、炭素マスバランスにより溶鋼中炭素濃度の推定を
行う工程 (b) 前記(a)の工程中で、1回以上溶鋼試料を採取し、
採取した溶鋼試料の分析値に基づき、分析遅れ時間を考
慮して、前記(a)の工程で推定された溶鋼中炭素濃度推
定値の補正を行う工程 (c) 前記(a)、(b)の工程によって推定された溶鋼中炭素
濃度推定値から、溶鋼中炭素濃度推定値を時間の関数で
ある回帰式として求める工程 (d) 前記(c)の工程で求められた回帰式を用いて、排ガ
ス流量及び排ガス分析値の遅れ時間を補償した溶鋼中炭
素濃度推定値を求め、この推定値が目標終点炭素濃度と
なった時点で処理を終了する工程
1. A method for producing an ultra-low carbon steel using an RH vacuum degassing apparatus, comprising the following steps. (a) the molten steel by weight, the molten steel initial carbon concentration, exhaust gas flow rate in consideration of the detection delay, analysis CO considering a time delay from the CO 2 concentration, step to estimate the carbon concentration in the molten steel by a carbon mass balance (b) the ( In the process of a), take the molten steel sample at least once,
Based on the analysis values of the sampled molten steel, considering the analysis delay time, the step of correcting the estimated carbon concentration in the molten steel estimated in the step (a) (c) the (a), (b) From the estimated carbon concentration in the molten steel estimated by the step of, the step of obtaining the estimated carbon concentration in the molten steel as a regression equation that is a function of time (d) using the regression equation obtained in the step (c), A process of obtaining an estimated carbon concentration in molten steel that compensates for the delay time of the exhaust gas flow rate and the exhaust gas analysis value, and terminating the process when the estimated value reaches the target end-point carbon concentration.
JP10182598A 1998-03-31 1998-03-31 Manufacture of super-low carbon steel Pending JPH11279625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182598A JPH11279625A (en) 1998-03-31 1998-03-31 Manufacture of super-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10182598A JPH11279625A (en) 1998-03-31 1998-03-31 Manufacture of super-low carbon steel

Publications (1)

Publication Number Publication Date
JPH11279625A true JPH11279625A (en) 1999-10-12

Family

ID=14310896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182598A Pending JPH11279625A (en) 1998-03-31 1998-03-31 Manufacture of super-low carbon steel

Country Status (1)

Country Link
JP (1) JPH11279625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209385A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Ind Ltd Method and apparatus for vacuum-degassing molten steel and method for producing molten steel
JP2013112835A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Process for refining molten steel
WO2023218914A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209385A (en) * 2009-03-09 2010-09-24 Sumitomo Metal Ind Ltd Method and apparatus for vacuum-degassing molten steel and method for producing molten steel
JP2013112835A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Process for refining molten steel
WO2023218914A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel

Similar Documents

Publication Publication Date Title
US20130018508A1 (en) Control of the converter process by means of exhaust gas signals
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JPH11279625A (en) Manufacture of super-low carbon steel
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JP6989056B1 (en) Decarburization end point determination method, decarburization end point determination device, steelmaking secondary refining operation method, and molten steel manufacturing method
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JPH03134114A (en) Method for estimating carbon concentration in molten steel in rh refining
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
JPH1017918A (en) Guidance method for vacuum decarburizing treatment of molten material
KR970005385B1 (en) Control method of carbon concentration with low carbon steel
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel
JPH11172323A (en) Method for controlling carbon concentration in rh vacuum degassing treatment
JPH06330150A (en) Method for estimating and controlling carbon concentration in molten steel in vacuum degassing apparatus
JPS60169717A (en) Correcting method of measured value of flow rate of exhaust gas
JP2020132999A (en) Control device and control method for vacuum degassing facility
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
JP3678132B2 (en) Dehydrogenation refining method for molten steel
JP2002363635A (en) Method for determining decarburization terminating point in vacuum degassing apparatus
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
JP3126374B2 (en) Vacuum decarburization control method for molten steel