WO2023218914A1 - Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel - Google Patents

Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel Download PDF

Info

Publication number
WO2023218914A1
WO2023218914A1 PCT/JP2023/016017 JP2023016017W WO2023218914A1 WO 2023218914 A1 WO2023218914 A1 WO 2023218914A1 JP 2023016017 W JP2023016017 W JP 2023016017W WO 2023218914 A1 WO2023218914 A1 WO 2023218914A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
carbon
vacuum degassing
decarburization
degassing equipment
Prior art date
Application number
PCT/JP2023/016017
Other languages
French (fr)
Japanese (ja)
Inventor
祐汰 大東
伸司 富山
拓幸 島本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2023218914A1 publication Critical patent/WO2023218914A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • the present disclosure relates to a control device for vacuum degassing equipment, a method for controlling vacuum degassing equipment, an operating method, and a method for manufacturing molten steel.
  • the carbon concentration in molten steel is not directly measured, but only indirectly estimated from the concentrations of carbon monoxide and carbon dioxide in the exhaust gas.
  • operators tend to decarburize for too long due to concerns that the carbon concentration will be out of specification.
  • Methods for estimating the carbon concentration in molten steel can be roughly divided into two.
  • One method is to physically consider the details of the decarburization reaction in vacuum degassing equipment and construct a decarburization reaction model (for example, Non-Patent Document 1).
  • the other method is to estimate the carbon concentration in molten steel by calculating the amount of decarburization from the flow rate and measured values (for example, measured values of component concentrations) of exhaust gas discharged from vacuum degassing equipment during processing.
  • Patent Document 3 discloses a method of correcting an estimated value of carbon concentration in molten steel using the difference between the decarburization rate calculated from a decarburization reaction model based on observer theory and the decarburization rate calculated from exhaust gas measurement values. Disclose.
  • the decarburization reaction model proposed in Non-Patent Document 1 introduces an additional pressure parameter to formulate CO bubble generation inside molten steel, but this value is determined from the results of basic experiments. There is.
  • Non-Patent Document 2 points out, it has not been verified that there is no problem in using the same value of the additional pressure parameter in an actual vacuum degassing facility.
  • vacuum degassing equipment differs in equipment shape and operating conditions, and model parameters are also expected to vary. Therefore, even if the decarburization reaction model proposed in Non-Patent Document 1 is introduced, the carbon concentration in molten steel cannot be estimated with high precision if the device shape or operating conditions are different.
  • Patent Document 1 and Patent Document 2 determine the parameters of the decarburization reaction model from the exhaust gas measurement values that reflect the decarburization performance, so that, for example, the model parameters that match the equipment shape and operating conditions are determined. can be set.
  • the errors included in the exhaust gas measurements are directly reflected in the model parameters, there is a need for a method to further improve the accuracy of the estimated value of the carbon concentration in molten steel.
  • Patent Document 3 corrects the estimated value of the carbon concentration in molten steel based on the difference between the decarburization rate calculated from the decarburization reaction model and the decarburization rate calculated from the exhaust gas measurement value. , it is assumed that the decarburization reaction model is accurate. Therefore, since errors in the decarburization reaction model are reflected in the estimation results, a method is required to further improve the accuracy of the estimated value of the carbon concentration in molten steel.
  • the purpose of the present disclosure which was made in view of the above circumstances, is to provide a control device for vacuum degassing equipment, a method for controlling vacuum degassing equipment, and a method for controlling vacuum degassing equipment that accurately estimates the carbon concentration in molten steel and ends decarburization treatment at an appropriate timing.
  • the object of the present invention is to provide an operating method and a method for producing molten steel.
  • a control device for vacuum degassing equipment includes: A control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment, Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an operation information input section into which information regarding auxiliary materials input during execution of decarburization processing is input; a component calculation unit that estimates a carbon concentration in molten steel of the molten steel based on information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value; Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount discharged from the vacuum degassing equipment and the estimated carbon content of
  • the method further includes a decarburization process control unit that terminates the decarburization process when the carbon concentration in the molten steel corrected by the correction parameter reaches a target value.
  • the correction calculation unit calculates the correction parameter based on an evaluation function based on the difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
  • the evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. Contains the term of the square value of the difference from the speed.
  • the evaluation function includes the correction parameter of the exhaust gas measurement value, which is set as a correction coefficient by which the value before correction is multiplied.
  • a method for controlling vacuum degassing equipment includes: A method for controlling vacuum degassing equipment, which is executed by a control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment, the method comprising: Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an input step in which information regarding auxiliary materials input during execution of decarburization processing is input; a component calculation step of estimating the carbon concentration in the molten steel based on the information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value; Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount
  • a correction calculation step of calculating a correction parameter for correcting the carbon concentration in the molten steel
  • a decarburization treatment termination step of terminating the decarburization treatment when the molten steel carbon concentration of the molten steel corrected by the correction parameter reaches a target value.
  • the correction calculation step calculates the correction parameter based on an evaluation function based on the difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
  • the evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. Contains the term of the square value of the difference from the speed.
  • the evaluation function includes the correction parameter of the exhaust gas measurement value, which is set as a correction coefficient by which the value before correction is multiplied.
  • the operating method according to an embodiment of the present disclosure includes: The vacuum degassing equipment is operated by executing the vacuum degassing equipment control method according to any one of (5) to (7).
  • (10) A method for manufacturing molten steel according to an embodiment of the present disclosure,
  • the molten steel is refined in a vacuum degassing facility operated by the operating method of (9) to produce the refined molten steel.
  • the method of the present disclosure it is possible to simultaneously correct errors included in the decarburization reaction model, the exhaust gas measurement value, and the amount of carbon in the exhaust gas calculated from the decarburization reaction model. Therefore, it is possible to estimate the carbon concentration in molten steel with high accuracy, finish the decarburization process at an appropriate timing according to the carbon concentration standard, and shorten the decarburization process time.
  • a method for controlling gas equipment, a method for operating it, and a method for producing molten steel can be provided.
  • FIG. 1 is a block diagram showing the configuration of a control device for vacuum degassing equipment, which is an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing the flow of decarburization control processing according to an embodiment of the present disclosure.
  • FIG. 3 is a time series calculation result of the exhaust gas carbon amount correction coefficient ⁇ , which is a correction parameter in the embodiment of the present disclosure.
  • FIG. 4 is a time-series calculation result of a correction value ⁇ CV of carbon concentration in molten steel in a vacuum chamber, which is a correction parameter in an example of the present disclosure.
  • the vacuum degassing equipment will be described as an RH vacuum degassing equipment, but it is not limited to the RH vacuum degassing equipment.
  • the control method described below also applies to equipment that has only one immersion pipe that is immersed in a vacuum tank and a ladle and sucks up the molten steel into the vacuum tank, or equipment (equipment) that does not have a vacuum tank and puts the surface of the molten steel in the ladle in a vacuum state. can be carried out.
  • FIG. 1 is a block diagram showing the configuration of a control device 10 according to an embodiment of the present disclosure.
  • the control device 10 is the control device 10 of the vacuum degassing equipment 100, and controls the operation of the vacuum degassing equipment 100.
  • the vacuum degassing facility 100 performs decarburization treatment by placing at least molten steel in a reduced pressure environment.
  • the vacuum degassing facility 100 is operated by the control device 10 executing a control method for the vacuum degassing facility 100 described later. That is, as a method of operating the vacuum degassing facility 100, control of the vacuum degassing facility 100 is executed.
  • the vacuum degassing equipment 100 constitutes a part of molten steel manufacturing equipment.
  • a method for producing molten steel is executed in a molten steel production facility, and includes refining molten steel in a vacuum degassing facility 100 to produce refined molten steel.
  • the control device 10 includes an operation information input section 11, a component calculation section 12, a correction calculation section 13, and a decarburization processing control section 14.
  • the operation information input unit 11 acquires information regarding operations using the vacuum degassing equipment 100.
  • the operation information input unit 11 includes information regarding the weight and component concentration of molten steel before decarburization, and the flow rate and component concentration of exhaust gas discharged from the vacuum degassing equipment 100 during the decarburization process. Operational performance values, including measurement results, and information regarding auxiliary materials input during the decarburization process are input.
  • the component calculation unit 12 estimates the carbon concentration in molten steel based on the operation information acquired by the operation information input unit 11. In the present embodiment, the component calculation unit 12 estimates the carbon concentration in the molten steel based on information regarding the weight and component concentration of the molten steel before decarburization treatment, and operational performance values.
  • the correction calculation unit 13 calculates a correction parameter for correcting the estimated value of the amount of carbon discharged from the vacuum degassing equipment 100 and the estimated carbon concentration in molten steel.
  • the correction calculation unit 13 calculates the amount of carbon emitted from the vacuum degassing equipment 100 based on the estimated carbon concentration in molten steel, the measurement results of the exhaust gas flow rate and component concentration, and the carbon balance calculation results.
  • a correction parameter for correcting the estimated value of the amount and the estimated carbon concentration in molten steel is calculated.
  • the decarburization process control unit 14 ends the decarburization process when the carbon concentration in molten steel corrected by the correction parameter reaches the target value.
  • the control device 10 is configured by, for example, an information processing device such as a computer.
  • the control device 10 has an operation information input section 11, a component calculation section 12, a correction calculation section 13, and a decarburization processing control section 14 by executing a program by an arithmetic processing device such as a CPU (Central Processing Unit) of an information processing device. It may be configured to function as a.
  • an arithmetic processing device such as a CPU (Central Processing Unit) of an information processing device. It may be configured to function as a.
  • CPU Central Processing Unit
  • the vacuum degassing equipment 100 may have a known configuration. As mentioned above, an RH vacuum degassing facility is used in this embodiment.
  • the RH vacuum degassing equipment includes, for example, a vacuum tank and a ladle, which are connected by two immersion tubes.
  • the vacuum chamber is connected to an exhaust duct, through which the gas inside the vacuum chamber is exhausted to reduce the pressure in the vacuum chamber and suck up the molten steel in the ladle. Then, by blowing inert gas through piping from one side of the immersion tube, the molten steel flows back between the vacuum tank and the ladle. Further, in order to accelerate the decarburization process, oxygen may be blown from a blowing lance installed in the vacuum chamber.
  • the control device 10 having such a configuration estimates the carbon concentration in molten steel with high accuracy by executing the decarburization control process described below. By performing highly accurate estimation, it is possible to avoid performing the decarburization process for an excessively long time due to concerns that the carbon concentration may deviate from the standard, and as a result, the decarburization process time can be shortened.
  • the flow of the decarburization control process which is an embodiment of the present disclosure, will be described below with reference to FIG. 2.
  • FIG. 2 is a flowchart showing the flow of the decarburization control process executed by the control device 10. The flowchart shown in FIG. 2 starts at the timing when a command to execute the decarburization process is input, and the process of step S1 is performed.
  • the operation information input unit 11 acquires the weight of molten steel measured before the start of the decarburization process and the component concentration obtained by component analysis.
  • the components whose concentration is to be measured include C, Si, Mn, P, S, Al, Cu, Nb, and Ti.
  • the operation information input unit 11 may also acquire the measurement results of the molten steel temperature. In the example of FIG. 2, temperature is also acquired. Thereby, the process of step S1 is completed, and the decarburization control process proceeds to the process of step S2.
  • the operation information input unit 11 acquires the operation performance value during the decarburization process. Items necessary for calculation in the component calculation section 12 and correction calculation section 13 are acquired as the operation performance value.
  • the operation information input unit 11 acquires the measurement results of the flow rate and component concentration of exhaust gas discharged from the vacuum degassing equipment 100 as operation performance values. Further, in this embodiment, the operation information input unit 11 acquires information regarding auxiliary raw materials that are input during execution of the decarburization process.
  • the information regarding the auxiliary raw materials is, for example, the type and input amount of the auxiliary raw materials.
  • step S2 information such as the pressure of the vacuum chamber, the flow rate of inert gas for reflux, and the flow rate of oxygen from the top blowing lance during the decarburization process may be input to the operation information input section 11.
  • the operation information input unit 11 may also acquire estimated values of molten steel components including an estimated value of carbon concentration in molten steel.
  • step S1 and step S2 correspond to input steps.
  • the component calculation unit 12 calculates (estimates) the carbon concentration in molten steel according to a preset decarburization reaction model.
  • the component calculation unit 12 acquires input information such as operational performance values every predetermined period or continuously, and estimates the carbon concentration in molten steel every predetermined period or continuously.
  • the requirements for the decarburization reaction model used by the component calculation unit 12 are that the carbon concentration in the molten steel can be estimated at predetermined intervals or continuously, and that the decarburization rate, that is, the rate of change of the carbon concentration in the molten steel, is such that the decarburization rate in the portion where the decarburization reaction occurs.
  • the part where the decarburization reaction occurs corresponds to a vacuum chamber in the RH vacuum degassing equipment. These two points are conditions that a general decarburization reaction model naturally satisfies.
  • the decarburization reaction model of the following equations (1) and (2) is assumed, assuming that the molten steel concentrations in the vacuum tank and the ladle are in a completely mixed state, respectively. is used.
  • Equation (2) explicitly indicates that the decarburization reaction capacity coefficient depends on the carbon concentration in the molten steel in the vacuum chamber.
  • the subscript L indicates the physical quantity of molten steel in the ladle.
  • the subscript V indicates the physical quantity of molten steel in the vacuum chamber.
  • C V indicates the carbon concentration [ppm] in molten steel in a vacuum chamber.
  • the subscript i is used to identify a specific decarburization reaction site. Specific examples of the decarburization reaction site include the surface of molten steel and bubbles of inert gas for reflux.
  • step S3 corresponds to a component calculation step.
  • the correction calculation unit 13 calculates the amount of carbon in the exhaust gas from the measurement results of the flow rate and component concentration of the exhaust gas. Considering that carbon emitted from molten steel takes the form of CO or CO2 , the amount of carbon in exhaust gas per unit time is expressed by the following formula (3). Further, the cumulative total of the amount of emitted carbon from the start of the process (time 0) to time t is expressed by the following formula (4).
  • q C,OG (t) is the amount of carbon in the exhaust gas per unit time at time t [kg/s].
  • m C is the molar mass of carbon [g/mol].
  • V off (t) is the volumetric flow rate [Nm 3 /s] of exhaust gas at time t.
  • r CO (t) is the CO concentration [vol%] in the exhaust gas at time t.
  • r CO2 (t) is the CO 2 concentration [vol%] in the exhaust gas at time t.
  • Q C,OG (t) is the cumulative amount of carbon emissions [kg] from time 0 to t.
  • the correction calculation unit 13 performs the calculation of equation (3) after removing or reducing the known error. For example, if the CO concentration measurement value and CO 2 concentration measurement value take a non-zero value even when measurement is not performed (if the zero point is shifted), calculate the shift of the zero point from the measured value. The subtracted value may be used in the calculation. This completes the process of step S4.
  • Step S3 and Step S4 are completed, the decarburization control process proceeds to Step S5.
  • the process of step S4 can be executed independently from the process of step S3, and step S3 and step S4 may be executed in parallel as in this embodiment. However, the process is not limited to parallel processing, and step S3 and step S4 may be executed in order, and in this case, there is no limitation on which one comes first (the order of execution).
  • the cumulative total of the amount of carbon in molten steel and the amount of carbon emitted from molten steel is the sum of the amount of carbon in molten steel before decarburization and the amount of carbon contained in auxiliary materials input during treatment. be equivalent to.
  • the correction calculation unit 13 calculates the deviation from the mass conservation law as a carbon balance calculation, and assumes that this deviation is due to errors included in both the decarburization reaction model and the exhaust gas measurement value. Set parameters to correct each error.
  • the correction calculation unit 13 determines the correction parameters of the calculation results in the processes of step S3 and step S4 so that the law of conservation of mass is satisfied.
  • the vacuum tank molten steel carbon concentration correction value ⁇ C V [ppm] is a correction parameter of the decarburization reaction model.
  • the exhaust gas carbon amount correction coefficient ⁇ is a correction parameter for the exhaust gas measurement value.
  • the carbon concentration in the vacuum tank molten steel is corrected to C V + ⁇ C V by adding a correction value ⁇ C V for the carbon concentration in the vacuum tank molten steel.
  • the amount of carbon in the exhaust gas per unit time is multiplied by the amount of carbon in the exhaust gas correction coefficient ⁇ to be corrected to ⁇ q C,OG (t).
  • the cumulative total of the exhaust carbon amount is multiplied by the exhaust gas carbon amount correction coefficient ⁇ to be corrected to ⁇ Q C,OG (t).
  • the correction parameters ⁇ and correction value ⁇ C V for carbon concentration in exhaust gas are determined as a solution to the optimization problem shown in equation (5) below.
  • Q C,IN is the total [kg] of the amount of carbon in the molten steel before decarburization treatment and the amount of carbon contained in the auxiliary raw materials input during the treatment.
  • Q C, ST is the amount of carbon in molten steel [kg].
  • the difference between QC ,IN and QC ,ST includes the amount of decrease in the amount of carbon in the molten steel.
  • deC ( ⁇ C V ) is the decarburization rate [kg/s] calculated by the component calculation unit 12 from the decarburization reaction model.
  • ⁇ ave is a standard value of ⁇ based on operational performance values.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 are weighting coefficients, which are set by the user, for example.
  • Q C,ST ( ⁇ C V ) is defined by equation (6).
  • deC( ⁇ C V ) is defined by equation (7).
  • the first term in equation (5) represents deviation from the law of conservation of mass for carbon. When the law of conservation of mass is completely satisfied, the first term becomes 0.
  • the second term in equation (5) represents the discrepancy between the amount of carbon in the exhaust gas per unit time and the decarburization rate calculated from the decarburization reaction model. When the amount of carbon in the exhaust gas per unit time and the decarburization rate calculated from the decarburization reaction model match, the second term becomes 0.
  • the third and fourth terms in equation (5) are terms for preventing the correction parameter from taking an extreme value.
  • the third term is the sum of the square value of the difference between ⁇ and ⁇ ave .
  • the standard value ⁇ ave can be determined, for example, by calculating the average of the exhaust gas carbon amount correction coefficient ⁇ for a predetermined charge that has been processed most recently.
  • the predetermined number of times is preferably a plurality of times, and is not limited to a specific value.
  • the correction calculation unit 13 calculates the correction parameters by minimizing the evaluation function, which is Equation (5), but an evaluation function that maximizes it may be used. In other words, the correction calculation unit 13 may obtain correction parameters that minimize or maximize the evaluation function.
  • the exhaust gas carbon content correction coefficient ⁇ is different from the vacuum tank molten steel carbon concentration correction value ⁇ C V to be added, and is preferably set as a correction coefficient by which the value before correction is multiplied.
  • the amount of carbon in the exhaust gas per unit time can be calculated by using the correction value ⁇ q C,OG [kg/s] for the amount of carbon in the exhaust gas per unit time instead of the correction coefficient ⁇ for the amount of carbon in the exhaust gas as a correction parameter for the measured value of the exhaust gas. Even if q C,OG (t)+ ⁇ q C,OG is processed, the accuracy of carbon concentration estimation cannot be improved. It is known that the error width of the exhaust gas measurement value fluctuates greatly as time passes during the decarburization process.
  • the exhaust gas carbon amount correction coefficient ⁇ is used as the added correction value ( ⁇ q C,OG ), error removal may be insufficient depending on the timing of progress of the applied decarburization process. Furthermore, it is difficult to change the correction value in accordance with the timing of the progress of the decarburization process. Therefore, as in the present embodiment, it is preferable that the exhaust gas carbon amount correction coefficient ⁇ is set as a correction coefficient by which the value before correction is multiplied.
  • the evaluation function is not limited to the above equation (5), and for example, a correction coefficient a V for the carbon concentration in the vacuum tank molten steel can be used instead of the correction value ⁇ C V for the carbon concentration in the vacuum tank molten steel.
  • the carbon concentration in the vacuum tank molten steel is multiplied by the vacuum tank molten steel carbon concentration correction coefficient a V and corrected to a V ⁇ C V.
  • the correction parameters ⁇ which are the correction coefficient ⁇ for carbon content in exhaust gas and the correction coefficient ⁇ V for carbon concentration in molten steel in the vacuum chamber, are determined as a solution to the optimization problem shown in the following equation (8).
  • aV is 1 when there is no need to correct the estimated value of carbon concentration in molten steel based on the decarburization reaction model.
  • the fourth term in equation (8) is the sum of the square value of the difference between a V and 1.
  • Q C,ST ′(a V ) is defined by equation (9).
  • deC'(a V ) is defined by equation (10).
  • step S5 corresponds to a correction calculation step.
  • step S6 the carbon concentration in molten steel is updated by adding the correction value ⁇ C V for the carbon concentration in the vacuum tank molten steel obtained in step S5 to the estimated value of the carbon concentration in molten steel obtained in step S3. Thereby, the process of step S6 is completed, and the decarburization control process proceeds to the process of step S7.
  • step S7 the decarburization process control unit 14 determines whether the carbon concentration in molten steel determined in step S6 has reached a predetermined target value (below the target value). If the corrected carbon concentration in molten steel is higher than the target value, the process returns to step S2, and the processes from step S2 onwards are repeated using the newly input operation performance value. On the other hand, when the corrected carbon concentration in molten steel becomes equal to or lower than the target value, the decarburization process ends.
  • step S7 corresponds to the step of terminating the decarburization process.
  • control device 10 of the vacuum degassing facility 100 the control method, the operating method, and the method of manufacturing molten steel of the vacuum degassing facility 100 according to the present embodiment are based on the decarburization reaction model and the steps described above. It is possible to assume both errors in the exhaust gas measurement value and to correct these errors simultaneously. Therefore, the control device 10 of the vacuum degassing equipment 100 is capable of estimating the carbon concentration in molten steel with high accuracy, completing the decarburization process at an appropriate timing according to the carbon concentration standard, and shortening the decarburization process time.
  • a method for controlling the vacuum degassing facility 100, a method for operating it, and a method for producing molten steel can be provided.
  • decarburization treatment was performed using RH vacuum degassing equipment to produce ultra-low carbon molten steel with a standard upper limit of carbon concentration of 25 ppm.
  • a portion of the molten steel was taken as a sample, and the carbon concentration in the molten steel of this sample was actually measured. Termination of decarburization is at the operator's discretion.
  • the carbon concentration in molten steel was estimated using the invention method and the comparative method. In the invention method, the carbon concentration in molten steel was estimated as in the above embodiment. Table 1 shows the results of comparing the estimated values at the end of the decarburization treatment with the actual values. Here, the carbon concentration in molten steel was estimated using two different methods for comparison.
  • One method is to calculate the decarburization amount from the exhaust gas measurement value and estimate the carbon concentration (exhaust gas model in Table 1). However, the amount of decarburization calculated from the exhaust gas measurement value is multiplied by ⁇ ave , which is the average value of the correction coefficient ⁇ for the amount of carbon in the exhaust gas determined from the operational results of the verification charge and the charges processed at the same time. It is being done.
  • Another method is to estimate the carbon concentration in molten steel using only the decarburization reaction model (decarburization reaction model in Table 1). The latter decarburization reaction model is also used in the calculation for estimating the carbon concentration in molten steel using the invented method.
  • FIG. 3 shows the change over time of the exhaust gas carbon amount correction coefficient ⁇ , which is the correction parameter calculated using the verification charge A in Table 1.
  • FIG. 4 shows the change over time of the correction value ⁇ CV of carbon concentration in molten steel in a vacuum chamber, which is a correction parameter calculated using verification charge A in Table 1.
  • the invention method estimates a value closer to the actually measured value of the carbon concentration in molten steel than the comparative method. From this, it was confirmed that the invented method, which assumes errors in both the decarburization reaction model and the exhaust gas measurement values and corrects them, is effective in improving the accuracy of estimating the carbon concentration in molten steel.
  • Control device 11 Operation information input section 12 Component calculation section 13 Correction calculation section 14 Decarburization processing control section 100 Vacuum degassing equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Provided is a control device, etc., for vacuum degassing equipment in which the carbon concentration in molten steel is estimated with high precision and a decarburization treatment is to be ended at an appropriate timing. The control device (10) for vacuum degassing equipment comprises: an operational information input unit (11) into which are input information about the weight of the molten steel and the component concentration therein prior to the decarburization treatment, and information about operational result values and auxiliary raw materials during execution of the decarburization treatment; a component calculation unit (12) which estimates the carbon concentration in the molten steel; a correction calculation unit (13) which computes correction parameters for correcting the estimated carbon concentration in the molten steel and the estimated value of the amount of carbon emitted from the vacuum degassing equipment; and a decarburization treatment control unit (14) which ends the decarburization treatment when the carbon concentration, in the molten steel, corrected using the correction parameters, has reached a target value.

Description

真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operating method, and method for producing molten steel
 本開示は真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法に関する。 The present disclosure relates to a control device for vacuum degassing equipment, a method for controlling vacuum degassing equipment, an operating method, and a method for manufacturing molten steel.
 製鋼プロセスでは、炭素をはじめとする溶銑中の不純物を取り除き、有用な合金成分を添加することで溶鋼成分の調整を行う。特に炭素については、真空脱ガス設備を用いて溶鋼を真空環境下におくことで脱炭を促進し、溶鋼中炭素濃度が10ppmを下回るような極低炭素鋼を生産することが可能である。 In the steelmaking process, impurities in hot metal such as carbon are removed and the composition of molten steel is adjusted by adding useful alloying components. In particular, regarding carbon, decarburization is promoted by placing molten steel in a vacuum environment using vacuum degassing equipment, and it is possible to produce ultra-low carbon steel in which the carbon concentration in the molten steel is less than 10 ppm.
 ここで、真空脱ガス処理において、溶鋼中炭素濃度は、直接的に測定されるのでなく、排ガス中の一酸化炭素と二酸化炭素の濃度から間接的に推定されるのみである。極低炭素鋼の生産において、操業者は炭素濃度の規格外れを懸念して、過剰に長く脱炭処理を行う傾向がある。 Here, in the vacuum degassing process, the carbon concentration in molten steel is not directly measured, but only indirectly estimated from the concentrations of carbon monoxide and carbon dioxide in the exhaust gas. In the production of ultra-low carbon steel, operators tend to decarburize for too long due to concerns that the carbon concentration will be out of specification.
 過剰な脱炭処理による処理時間の長期化を解決するためには、処理中の溶鋼中炭素濃度を高精度に推定することが効果的であり、これまでにも様々な方法が提案されている。溶鋼中炭素濃度の推定方法は2つに大別することが可能である。1つは真空脱ガス設備における脱炭反応の詳細を物理的に考察し、脱炭反応モデルを構築する方法である(例えば非特許文献1)。もう1つは、処理中に真空脱ガス設備から排出される排ガスの流量及び計測値(例えば成分濃度の計測値)から脱炭量を計算し、溶鋼中炭素濃度を推定する方法である。また、両者の組み合わせとして、脱炭反応モデルのパラメータを排ガス計測値から決定して、決定されたパラメータを有する脱炭反応モデルを用いて溶鋼中炭素濃度を推定する方法が提案されている(例えば特許文献1及び特許文献2)。 In order to solve the problem of prolonged processing time due to excessive decarburization, it is effective to estimate the carbon concentration in molten steel with high accuracy, and various methods have been proposed so far. . Methods for estimating the carbon concentration in molten steel can be roughly divided into two. One method is to physically consider the details of the decarburization reaction in vacuum degassing equipment and construct a decarburization reaction model (for example, Non-Patent Document 1). The other method is to estimate the carbon concentration in molten steel by calculating the amount of decarburization from the flow rate and measured values (for example, measured values of component concentrations) of exhaust gas discharged from vacuum degassing equipment during processing. In addition, as a combination of the two, a method has been proposed in which the parameters of a decarburization reaction model are determined from the exhaust gas measurement values, and the carbon concentration in molten steel is estimated using the decarburization reaction model with the determined parameters (for example, Patent Document 1 and Patent Document 2).
 また、例えば特許文献3は、オブザーバ理論に基づき脱炭反応モデルから計算される脱炭速度と排ガス計測値から計算される脱炭速度の差を用いて溶鋼中炭素濃度の推定値を補正する方法を開示する。 Furthermore, for example, Patent Document 3 discloses a method of correcting an estimated value of carbon concentration in molten steel using the difference between the decarburization rate calculated from a decarburization reaction model based on observer theory and the decarburization rate calculated from exhaust gas measurement values. Disclose.
特開2005-330512号公報Japanese Patent Application Publication No. 2005-330512 特開2015-101742号公報Japanese Patent Application Publication No. 2015-101742 特開2006-104521号公報Japanese Patent Application Publication No. 2006-104521
 物理的考察から脱炭反応モデルを構築する場合に、脱炭反応の詳細を表現しようとするとモデルパラメータの決定が困難であることが多い。例えば非特許文献1で提案されている脱炭反応モデルは、溶鋼内部でのCO気泡生成を定式化するための付加圧力パラメータが導入されているが、この値を基礎実験の結果から決定している。非特許文献2が指摘するように、実際の真空脱ガス設備で同じ付加圧力パラメータの値を使用して問題ないことについての検証はされていない。また、真空脱ガス設備は、装置形状及び操業条件がそれぞれ異なっており、モデルパラメータも変動すると考えられる。そのため、非特許文献1で提案されている脱炭反応モデルを導入しても、装置形状又は操業条件が異なっていれば、高精度な溶鋼中炭素濃度の推定はできない。 When building a decarburization reaction model from physical considerations, it is often difficult to determine model parameters when trying to express the details of the decarburization reaction. For example, the decarburization reaction model proposed in Non-Patent Document 1 introduces an additional pressure parameter to formulate CO bubble generation inside molten steel, but this value is determined from the results of basic experiments. There is. As Non-Patent Document 2 points out, it has not been verified that there is no problem in using the same value of the additional pressure parameter in an actual vacuum degassing facility. In addition, vacuum degassing equipment differs in equipment shape and operating conditions, and model parameters are also expected to vary. Therefore, even if the decarburization reaction model proposed in Non-Patent Document 1 is introduced, the carbon concentration in molten steel cannot be estimated with high precision if the device shape or operating conditions are different.
 特許文献1及び特許文献2の技術は、上記のように、脱炭の実績を反映する排ガス計測値から脱炭反応モデルのパラメータを決定することで、例えば装置形状及び操業条件に合ったモデルパラメータを設定することができる。しかし、排ガス計測値に含まれる誤差がそのままモデルパラメータに反映されるため、溶鋼中炭素濃度の推定値の精度をさらに高める方法が求められている。 As mentioned above, the technologies of Patent Document 1 and Patent Document 2 determine the parameters of the decarburization reaction model from the exhaust gas measurement values that reflect the decarburization performance, so that, for example, the model parameters that match the equipment shape and operating conditions are determined. can be set. However, since the errors included in the exhaust gas measurements are directly reflected in the model parameters, there is a need for a method to further improve the accuracy of the estimated value of the carbon concentration in molten steel.
 特許文献3の技術は、上記のように、脱炭反応モデルから計算される脱炭速度と排ガス計測値から計算される脱炭速度の差に基づいて溶鋼中炭素濃度の推定値を補正するが、脱炭反応モデルが正確であることを前提とする。したがって、脱炭反応モデルの誤差が推定結果に反映されるため、溶鋼中炭素濃度の推定値の精度をさらに高める方法が求められている。 As described above, the technology of Patent Document 3 corrects the estimated value of the carbon concentration in molten steel based on the difference between the decarburization rate calculated from the decarburization reaction model and the decarburization rate calculated from the exhaust gas measurement value. , it is assumed that the decarburization reaction model is accurate. Therefore, since errors in the decarburization reaction model are reflected in the estimation results, a method is required to further improve the accuracy of the estimated value of the carbon concentration in molten steel.
 このように、従来技術では、脱炭反応モデルの誤差及び排ガス計測値に含まれる誤差があり得るところ、少なくとも一方については正確であることを前提として計算を行う。従来技術は、どちらかの誤差を無視して溶鋼中炭素濃度を推定するため、溶鋼中炭素濃度の推定の精度が不十分であるという課題がある。 As described above, in the conventional technology, although there may be errors in the decarburization reaction model and errors included in the exhaust gas measurement values, calculations are performed on the assumption that at least one of them is accurate. The conventional technology estimates the carbon concentration in molten steel while ignoring either of the errors, so there is a problem that the accuracy of estimating the carbon concentration in molten steel is insufficient.
 かかる事情に鑑みてなされた本開示の目的は、溶鋼中炭素濃度を高精度に推定し、脱炭処理を適切なタイミングに終了させる真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法を提供することにある。 The purpose of the present disclosure, which was made in view of the above circumstances, is to provide a control device for vacuum degassing equipment, a method for controlling vacuum degassing equipment, and a method for controlling vacuum degassing equipment that accurately estimates the carbon concentration in molten steel and ends decarburization treatment at an appropriate timing. The object of the present invention is to provide an operating method and a method for producing molten steel.
 (1)本開示の一実施形態に係る真空脱ガス設備の制御装置は、
 溶鋼を減圧環境下に置くことで脱炭処理を行う真空脱ガス設備の動作を制御する、真空脱ガス設備の制御装置であって、
 前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記脱炭処理の実行中における前記真空脱ガス設備から排出される排ガスの流量及び成分濃度の計測結果を含む操業実績値、前記脱炭処理の実行中に投入される副原料に関する情報、が入力される操業情報入力部と、
 前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記操業実績値に基づいて、前記溶鋼の溶鋼中炭素濃度を推定する成分計算部と、
 推定された前記溶鋼の溶鋼中炭素濃度、前記排ガスの流量及び成分濃度の計測結果及び炭素の収支計算結果に基づいて、前記真空脱ガス設備から排出された炭素量の推定値及び推定された前記溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する補正計算部と、
 前記補正パラメータにより補正された前記溶鋼の溶鋼中炭素濃度が目標値に達した場合に前記脱炭処理を終了させる脱炭処理制御部と、を備える。
(1) A control device for vacuum degassing equipment according to an embodiment of the present disclosure includes:
A control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment,
Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an operation information input section into which information regarding auxiliary materials input during execution of decarburization processing is input;
a component calculation unit that estimates a carbon concentration in molten steel of the molten steel based on information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value;
Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount discharged from the vacuum degassing equipment and the estimated carbon content of the molten steel. a correction calculation unit that calculates a correction parameter for correcting the carbon concentration in molten steel;
The method further includes a decarburization process control unit that terminates the decarburization process when the carbon concentration in the molten steel corrected by the correction parameter reaches a target value.
 (2)本開示の一実施形態として、(1)において、
 前記補正計算部は、溶鋼中炭素量の減少量と、排ガス中炭素量との差に基づく評価関数に基づいて前記補正パラメータを算出する。
(2) As an embodiment of the present disclosure, in (1),
The correction calculation unit calculates the correction parameter based on an evaluation function based on the difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
 (3)本開示の一実施形態として、(2)において、
 前記評価関数は、前記溶鋼中炭素量と、前記副原料に含まれる炭素量から前記排ガス中炭素量を差し引くことで計算される2乗値の項及び単位時間当たりの排ガス中炭素量と脱炭速度との差の2乗値の項を含む。
(3) As an embodiment of the present disclosure, in (2),
The evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. Contains the term of the square value of the difference from the speed.
 (4)本開示の一実施形態として、(2)又は(3)において、
 前記評価関数は、補正前の値に乗じる補正係数として設定される排ガス計測値の前記補正パラメータを有する。
(4) As an embodiment of the present disclosure, in (2) or (3),
The evaluation function includes the correction parameter of the exhaust gas measurement value, which is set as a correction coefficient by which the value before correction is multiplied.
 (5)本開示の一実施形態に係る真空脱ガス設備の制御方法は、
 溶鋼を減圧環境下に置くことで脱炭処理を行う真空脱ガス設備の動作を制御する真空脱ガス設備の制御装置が実行する、真空脱ガス設備の制御方法であって、
 前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記脱炭処理の実行中における前記真空脱ガス設備から排出される排ガスの流量及び成分濃度の計測結果を含む操業実績値、前記脱炭処理の実行中に投入される副原料に関する情報、が入力される入力ステップと、
 前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記操業実績値に基づいて、前記溶鋼の溶鋼中炭素濃度を推定する成分計算ステップと、
 推定された前記溶鋼の溶鋼中炭素濃度、前記排ガスの流量及び成分濃度の計測結果及び炭素の収支計算結果に基づいて、前記真空脱ガス設備から排出された炭素量の推定値及び推定された前記溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する補正計算ステップと、
 前記補正パラメータにより補正された前記溶鋼の溶鋼中炭素濃度が目標値に達した場合に前記脱炭処理を終了させる脱炭処理終了ステップと、を含む。
(5) A method for controlling vacuum degassing equipment according to an embodiment of the present disclosure includes:
A method for controlling vacuum degassing equipment, which is executed by a control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment, the method comprising:
Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an input step in which information regarding auxiliary materials input during execution of decarburization processing is input;
a component calculation step of estimating the carbon concentration in the molten steel based on the information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value;
Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount discharged from the vacuum degassing equipment and the estimated carbon content of the molten steel. a correction calculation step of calculating a correction parameter for correcting the carbon concentration in the molten steel;
and a decarburization treatment termination step of terminating the decarburization treatment when the molten steel carbon concentration of the molten steel corrected by the correction parameter reaches a target value.
 (6)本開示の一実施形態として、(5)において、
 前記補正計算ステップは、溶鋼中炭素量の減少量と、排ガス中炭素量との差に基づく評価関数に基づいて前記補正パラメータを算出する。
(6) As an embodiment of the present disclosure, in (5),
The correction calculation step calculates the correction parameter based on an evaluation function based on the difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
 (7)本開示の一実施形態として、(6)において、
 前記評価関数は、前記溶鋼中炭素量と、前記副原料に含まれる炭素量から前記排ガス中炭素量を差し引くことで計算される2乗値の項及び単位時間当たりの排ガス中炭素量と脱炭速度との差の2乗値の項を含む。
(7) As an embodiment of the present disclosure, in (6),
The evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. Contains the term of the square value of the difference from the speed.
 (8)本開示の一実施形態として、(6)又は(7)において、
 前記評価関数は、補正前の値に乗じる補正係数として設定される排ガス計測値の前記補正パラメータを有する。
(8) As an embodiment of the present disclosure, in (6) or (7),
The evaluation function includes the correction parameter of the exhaust gas measurement value, which is set as a correction coefficient by which the value before correction is multiplied.
 (9)本開示の一実施形態に係る操業方法は、
 (5)から(7)のいずれかの真空脱ガス設備の制御方法を実行して、前記真空脱ガス設備を操業する。
(9) The operating method according to an embodiment of the present disclosure includes:
The vacuum degassing equipment is operated by executing the vacuum degassing equipment control method according to any one of (5) to (7).
 (10)本開示の一実施形態に係る溶鋼の製造方法は、
 (9)の操業方法によって操業される真空脱ガス設備において前記溶鋼を精錬して、精錬された前記溶鋼を製造する。
(10) A method for manufacturing molten steel according to an embodiment of the present disclosure,
The molten steel is refined in a vacuum degassing facility operated by the operating method of (9) to produce the refined molten steel.
 本開示の手法によれば、脱炭反応モデルと排ガス計測値及びそれから計算される排ガス中炭素量に含まれる誤差を同時に補正することができる。そのため、溶鋼中炭素濃度を高精度に推定することでき、炭素濃度規格に対して適切なタイミングに脱炭処理を終了させ、脱炭処理時間を短縮可能な真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法を提供することができる。 According to the method of the present disclosure, it is possible to simultaneously correct errors included in the decarburization reaction model, the exhaust gas measurement value, and the amount of carbon in the exhaust gas calculated from the decarburization reaction model. Therefore, it is possible to estimate the carbon concentration in molten steel with high accuracy, finish the decarburization process at an appropriate timing according to the carbon concentration standard, and shorten the decarburization process time. A method for controlling gas equipment, a method for operating it, and a method for producing molten steel can be provided.
図1は、本開示の一実施形態である真空脱ガス設備の制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a control device for vacuum degassing equipment, which is an embodiment of the present disclosure. 図2は、本開示の一実施形態である脱炭制御処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of decarburization control processing according to an embodiment of the present disclosure. 図3は、本開示の実施例における補正パラメータである排ガス中炭素量補正係数αの時系列計算結果である。FIG. 3 is a time series calculation result of the exhaust gas carbon amount correction coefficient α, which is a correction parameter in the embodiment of the present disclosure. 図4は、本開示の実施例における補正パラメータである真空槽溶鋼中炭素濃度補正値ΔCの時系列計算結果である。FIG. 4 is a time-series calculation result of a correction value ΔCV of carbon concentration in molten steel in a vacuum chamber, which is a correction parameter in an example of the present disclosure.
 以下、図面を参照して本開示の実施形態に係る真空脱ガス設備の制御装置及び制御方法が説明される。本実施形態において、真空脱ガス設備は、RH真空脱ガス設備であるとして説明するが、RH真空脱ガス設備に限られるものでない。真空槽と取鍋に浸漬して溶鋼真空槽に吸い上げる浸漬管を1本だけ持つ設備又は真空槽を持たず取鍋内溶鋼表面を真空状態にする設備(装置)についても以下に説明する制御方法を実施することができる。 Hereinafter, a control device and control method for vacuum degassing equipment according to an embodiment of the present disclosure will be described with reference to the drawings. In this embodiment, the vacuum degassing equipment will be described as an RH vacuum degassing equipment, but it is not limited to the RH vacuum degassing equipment. The control method described below also applies to equipment that has only one immersion pipe that is immersed in a vacuum tank and a ladle and sucks up the molten steel into the vacuum tank, or equipment (equipment) that does not have a vacuum tank and puts the surface of the molten steel in the ladle in a vacuum state. can be carried out.
[構成]
 図1は、本開示の一実施形態に係る制御装置10の構成を示すブロック図である。制御装置10は、真空脱ガス設備100の制御装置10であって、真空脱ガス設備100の動作を制御する。真空脱ガス設備100では、少なくとも溶鋼を減圧環境下に置くことで脱炭処理を行う。本実施形態において、制御装置10が後述する真空脱ガス設備100の制御方法を実行することによって、真空脱ガス設備100が操業される。つまり、真空脱ガス設備100の操業方法として、真空脱ガス設備100の制御が実行される。また、本実施形態において、真空脱ガス設備100は溶鋼の製造設備の一部を構成する。溶鋼の製造設備において溶鋼の製造方法が実行され、溶鋼の製造方法は、真空脱ガス設備100において溶鋼を精錬して、精錬された溶鋼を製造することを含む。
[composition]
FIG. 1 is a block diagram showing the configuration of a control device 10 according to an embodiment of the present disclosure. The control device 10 is the control device 10 of the vacuum degassing equipment 100, and controls the operation of the vacuum degassing equipment 100. The vacuum degassing facility 100 performs decarburization treatment by placing at least molten steel in a reduced pressure environment. In this embodiment, the vacuum degassing facility 100 is operated by the control device 10 executing a control method for the vacuum degassing facility 100 described later. That is, as a method of operating the vacuum degassing facility 100, control of the vacuum degassing facility 100 is executed. Further, in this embodiment, the vacuum degassing equipment 100 constitutes a part of molten steel manufacturing equipment. A method for producing molten steel is executed in a molten steel production facility, and includes refining molten steel in a vacuum degassing facility 100 to produce refined molten steel.
 図1に示すように、制御装置10は、操業情報入力部11、成分計算部12、補正計算部13及び脱炭処理制御部14を備える。 As shown in FIG. 1, the control device 10 includes an operation information input section 11, a component calculation section 12, a correction calculation section 13, and a decarburization processing control section 14.
 操業情報入力部11は真空脱ガス設備100を用いる操業についての情報を取得する。本実施形態において、操業情報入力部11には、脱炭処理の前における溶鋼の重量及び成分濃度に関する情報、脱炭処理の実行中における真空脱ガス設備100から排出される排ガスの流量及び成分濃度の計測結果を含む操業実績値、脱炭処理の実行中に投入される副原料に関する情報、が入力される。 The operation information input unit 11 acquires information regarding operations using the vacuum degassing equipment 100. In the present embodiment, the operation information input unit 11 includes information regarding the weight and component concentration of molten steel before decarburization, and the flow rate and component concentration of exhaust gas discharged from the vacuum degassing equipment 100 during the decarburization process. Operational performance values, including measurement results, and information regarding auxiliary materials input during the decarburization process are input.
 成分計算部12は、操業情報入力部11が取得した操業情報に基づいて、溶鋼の溶鋼中炭素濃度を推定する。本実施形態において、成分計算部12は、脱炭処理の前における溶鋼の重量及び成分濃度に関する情報、操業実績値に基づいて、溶鋼の溶鋼中炭素濃度を推定する。 The component calculation unit 12 estimates the carbon concentration in molten steel based on the operation information acquired by the operation information input unit 11. In the present embodiment, the component calculation unit 12 estimates the carbon concentration in the molten steel based on information regarding the weight and component concentration of the molten steel before decarburization treatment, and operational performance values.
 補正計算部13は、真空脱ガス設備100から排出された炭素量の推定値及び推定された溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する。本実施形態において、補正計算部13は、推定された溶鋼の溶鋼中炭素濃度、排ガスの流量及び成分濃度の計測結果及び炭素の収支計算結果に基づいて、真空脱ガス設備100から排出された炭素量の推定値及び推定された溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する。 The correction calculation unit 13 calculates a correction parameter for correcting the estimated value of the amount of carbon discharged from the vacuum degassing equipment 100 and the estimated carbon concentration in molten steel. In the present embodiment, the correction calculation unit 13 calculates the amount of carbon emitted from the vacuum degassing equipment 100 based on the estimated carbon concentration in molten steel, the measurement results of the exhaust gas flow rate and component concentration, and the carbon balance calculation results. A correction parameter for correcting the estimated value of the amount and the estimated carbon concentration in molten steel is calculated.
 脱炭処理制御部14は、補正パラメータにより補正された溶鋼中炭素濃度が目標値に達した場合に脱炭処理を終了させる。 The decarburization process control unit 14 ends the decarburization process when the carbon concentration in molten steel corrected by the correction parameter reaches the target value.
 制御装置10は、例えばコンピュータ等の情報処理装置によって構成される。制御装置10は、情報処理装置のCPU(Central Processing Unit)等の演算処理装置がプログラムを実行することにより、操業情報入力部11、成分計算部12、補正計算部13及び脱炭処理制御部14として機能する構成であってよい。 The control device 10 is configured by, for example, an information processing device such as a computer. The control device 10 has an operation information input section 11, a component calculation section 12, a correction calculation section 13, and a decarburization processing control section 14 by executing a program by an arithmetic processing device such as a CPU (Central Processing Unit) of an information processing device. It may be configured to function as a.
 真空脱ガス設備100は公知の構成であってよい。上記のように、本実施形態においてRH真空脱ガス設備が用いられる。RH真空脱ガス設備は、例えば真空槽と取鍋を備え、その間が2本の浸漬管でつながっている。真空槽は排気ダクトとつながっており、ここを通して真空槽内部の気体を排気することで真空槽を減圧し、取鍋内の溶鋼を吸い上げる。そして、浸漬管の片方から配管を通して不活性ガスを吹き込むことで、溶鋼は真空槽と取鍋の間を還流する。また、脱炭処理を促進させる目的で、真空槽に設置された吹き込みランスから酸素を吹き込む場合がある。 The vacuum degassing equipment 100 may have a known configuration. As mentioned above, an RH vacuum degassing facility is used in this embodiment. The RH vacuum degassing equipment includes, for example, a vacuum tank and a ladle, which are connected by two immersion tubes. The vacuum chamber is connected to an exhaust duct, through which the gas inside the vacuum chamber is exhausted to reduce the pressure in the vacuum chamber and suck up the molten steel in the ladle. Then, by blowing inert gas through piping from one side of the immersion tube, the molten steel flows back between the vacuum tank and the ladle. Further, in order to accelerate the decarburization process, oxygen may be blown from a blowing lance installed in the vacuum chamber.
 このような構成を有する制御装置10は、以下に示す脱炭制御処理を実行することにより、溶鋼中炭素濃度を高精度で推定する。高精度な推定が行われることで、炭素濃度の規格外れを懸念して過剰に長く脱炭処理を行うことを回避でき、結果として脱炭処理時間を短縮することができる。以下、図2を参照して、本開示の一実施形態である脱炭制御処理の流れが説明される。 The control device 10 having such a configuration estimates the carbon concentration in molten steel with high accuracy by executing the decarburization control process described below. By performing highly accurate estimation, it is possible to avoid performing the decarburization process for an excessively long time due to concerns that the carbon concentration may deviate from the standard, and as a result, the decarburization process time can be shortened. The flow of the decarburization control process, which is an embodiment of the present disclosure, will be described below with reference to FIG. 2.
[脱炭制御処理]
 図2は、制御装置10が実行する脱炭制御処理の流れを示すフローチャートである。図2に示すフローチャートは、脱炭処理の実行命令が入力されたタイミングで開始となり、ステップS1の処理が行われる。
[Decarburization control treatment]
FIG. 2 is a flowchart showing the flow of the decarburization control process executed by the control device 10. The flowchart shown in FIG. 2 starts at the timing when a command to execute the decarburization process is input, and the process of step S1 is performed.
 ステップS1の処理では、操業情報入力部11が、脱炭処理開始前において計測された溶鋼重量及び成分分析によって得られた成分濃度を取得する。濃度を測定する成分としては、C、Si、Mn、P、S、Al、Cu、Nb、Ti等を例示できる。また、成分計算部12における計算で必要であれば、操業情報入力部11は溶鋼温度の計測結果も取得してよい。図2の例では温度も取得される。これにより、ステップS1の処理が完了し、脱炭制御処理はステップS2の処理に進む。 In the process of step S1, the operation information input unit 11 acquires the weight of molten steel measured before the start of the decarburization process and the component concentration obtained by component analysis. Examples of the components whose concentration is to be measured include C, Si, Mn, P, S, Al, Cu, Nb, and Ti. Further, if necessary for the calculation in the component calculation unit 12, the operation information input unit 11 may also acquire the measurement results of the molten steel temperature. In the example of FIG. 2, temperature is also acquired. Thereby, the process of step S1 is completed, and the decarburization control process proceeds to the process of step S2.
 ステップS2の処理では、操業情報入力部11が脱炭処理中の操業実績値を取得する。操業実績値は成分計算部12及び補正計算部13における計算に必要な項目が取得される。本実施形態において、操業情報入力部11は、真空脱ガス設備100から排出される排ガスの流量及び成分濃度の計測結果を、操業実績値として取得する。また、本実施形態において、操業情報入力部11は、脱炭処理の実行中に投入される副原料に関する情報を取得する。副原料に関する情報は、具体例として副原料の種類及び投入量である。さらに、脱炭処理中における、真空槽の圧力、還流用の不活性ガスの流量、上吹きランスからの酸素流量などの情報が操業情報入力部11に入力されてよい。後述するステップS6の後でステップS2の処理が実行される場合に、操業情報入力部11は、溶鋼中炭素濃度推定値を始めとする溶鋼成分の推定値も取得してよい。これにより、ステップS2の処理が完了し、脱炭制御処理はステップS3及びステップS4の処理に進む。ここで、ステップS1及びステップS2は入力ステップに対応する。 In the process of step S2, the operation information input unit 11 acquires the operation performance value during the decarburization process. Items necessary for calculation in the component calculation section 12 and correction calculation section 13 are acquired as the operation performance value. In this embodiment, the operation information input unit 11 acquires the measurement results of the flow rate and component concentration of exhaust gas discharged from the vacuum degassing equipment 100 as operation performance values. Further, in this embodiment, the operation information input unit 11 acquires information regarding auxiliary raw materials that are input during execution of the decarburization process. The information regarding the auxiliary raw materials is, for example, the type and input amount of the auxiliary raw materials. Further, information such as the pressure of the vacuum chamber, the flow rate of inert gas for reflux, and the flow rate of oxygen from the top blowing lance during the decarburization process may be input to the operation information input section 11. When the process of step S2 is executed after step S6, which will be described later, the operation information input unit 11 may also acquire estimated values of molten steel components including an estimated value of carbon concentration in molten steel. Thereby, the process of step S2 is completed, and the decarburization control process proceeds to the processes of step S3 and step S4. Here, step S1 and step S2 correspond to input steps.
 ステップS3の処理では、成分計算部12が、あらかじめ設定された脱炭反応モデルに従って溶鋼中炭素濃度を計算(推定)する。本実施形態において、成分計算部12は、所定周期ごと又は連続的に操業実績値などの入力情報を取得して、溶鋼の溶鋼中炭素濃度を所定周期ごと又は連続的に推定する。成分計算部12が用いる脱炭反応モデルの要件は、所定周期ごと又は連続的に溶鋼中炭素濃度を推定できることと、脱炭速度すなわち溶鋼中炭素濃度の変化速度が、脱炭反応が生じる部分の溶鋼中炭素濃度の関数として表現されることの2点である。脱炭反応が生じる部分は、RH真空脱ガス設備においては真空槽が対応する。この2点は一般的な脱炭反応モデルが当然に満足する条件である。 In the process of step S3, the component calculation unit 12 calculates (estimates) the carbon concentration in molten steel according to a preset decarburization reaction model. In the present embodiment, the component calculation unit 12 acquires input information such as operational performance values every predetermined period or continuously, and estimates the carbon concentration in molten steel every predetermined period or continuously. The requirements for the decarburization reaction model used by the component calculation unit 12 are that the carbon concentration in the molten steel can be estimated at predetermined intervals or continuously, and that the decarburization rate, that is, the rate of change of the carbon concentration in the molten steel, is such that the decarburization rate in the portion where the decarburization reaction occurs There are two points that can be expressed as a function of carbon concentration in molten steel. The part where the decarburization reaction occurs corresponds to a vacuum chamber in the RH vacuum degassing equipment. These two points are conditions that a general decarburization reaction model naturally satisfies.
 本実施形態において、RH真空脱ガス設備における脱炭処理中に、真空槽及び取鍋内における溶鋼濃度がそれぞれ完全混合状態であるとして、下記式(1)及び式(2)の脱炭反応モデルが用いられる。 In this embodiment, during the decarburization process in the RH vacuum degassing equipment, the decarburization reaction model of the following equations (1) and (2) is assumed, assuming that the molten steel concentrations in the vacuum tank and the ladle are in a completely mixed state, respectively. is used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、wは溶鋼質量[kg]である。Cは溶鋼中炭素濃度[ppm]である。Qは溶鋼還流速度[kg/s]である。akは脱炭反応容量係数[kg/s]である。Cは真空槽における溶鋼中炭素濃度の平衡値[ppm]である。Calloyは投入副原料中の炭素重量の溶鋼中炭素濃度換算値[ppm]である。式(2)において脱炭反応容量係数は真空槽における溶鋼中の炭素濃度に依存することを明示的に示している。また、添字Lは取鍋における溶鋼の物理量であることを示す。添字Vは真空槽における溶鋼の物理量であることを示す。例えばCは真空槽溶鋼中炭素濃度[ppm]を示す。添字iは具体的な脱炭反応サイトを識別するために用いられる。具体的な脱炭反応サイトとして、例えば溶鋼表面、還流用不活性ガス気泡などが挙げられる。 Here, w is the mass of molten steel [kg]. C is the carbon concentration in molten steel [ppm]. Q is the molten steel reflux rate [kg/s]. ak is the decarburization reaction capacity coefficient [kg/s]. CE is the equilibrium value [ppm] of the carbon concentration in molten steel in the vacuum chamber. C alloy is the carbon concentration conversion value [ppm] in molten steel of the weight of carbon in the input auxiliary raw material. Equation (2) explicitly indicates that the decarburization reaction capacity coefficient depends on the carbon concentration in the molten steel in the vacuum chamber. Moreover, the subscript L indicates the physical quantity of molten steel in the ladle. The subscript V indicates the physical quantity of molten steel in the vacuum chamber. For example, C V indicates the carbon concentration [ppm] in molten steel in a vacuum chamber. The subscript i is used to identify a specific decarburization reaction site. Specific examples of the decarburization reaction site include the surface of molten steel and bubbles of inert gas for reflux.
 排ガスとして排出される炭素量は式(2)の第2項で計算される。また、式(1)及び式(2)より微小時間あたりの溶鋼中炭素濃度の変化量を計算し、現在の溶鋼中炭素濃度から差し引くことで微小時間後の溶鋼中炭素濃度が計算される。これにより、ステップS3の処理は完了する。ここで、ステップS3は成分計算ステップに対応する。 The amount of carbon emitted as exhaust gas is calculated using the second term of equation (2). Further, by calculating the amount of change in the carbon concentration in molten steel per minute time from equations (1) and (2) and subtracting it from the current carbon concentration in molten steel, the carbon concentration in molten steel after a minute time is calculated. Thereby, the process of step S3 is completed. Here, step S3 corresponds to a component calculation step.
 ステップS4の処理では、補正計算部13が排ガスの流量及び成分濃度の計測結果から排ガス中炭素量を計算する。溶鋼から排出される炭素がCO又はCOの形を取ることを踏まえると、単位時間当たりの排ガス中炭素量は下記式(3)となる。また、処理開始(時刻0)から時刻tまでの、排出炭素量の累計は下記式(4)となる。 In the process of step S4, the correction calculation unit 13 calculates the amount of carbon in the exhaust gas from the measurement results of the flow rate and component concentration of the exhaust gas. Considering that carbon emitted from molten steel takes the form of CO or CO2 , the amount of carbon in exhaust gas per unit time is expressed by the following formula (3). Further, the cumulative total of the amount of emitted carbon from the start of the process (time 0) to time t is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、qC,OG(t)は時刻tにおける単位時間当たりの排ガス中炭素量[kg/s]である。mは炭素のモル質量[g/mol]である。Voff(t)は時刻tにおける排ガスの体積流量[Nm/s]である。rCO(t)は時刻tにおける排ガス中CO濃度[vol%]である。rCO2(t)は時刻tにおける排ガス中CO濃度[vol%]である。QC,OG(t)は時刻0からtまでの排出炭素量の累計[kg]である。 Here, q C,OG (t) is the amount of carbon in the exhaust gas per unit time at time t [kg/s]. m C is the molar mass of carbon [g/mol]. V off (t) is the volumetric flow rate [Nm 3 /s] of exhaust gas at time t. r CO (t) is the CO concentration [vol%] in the exhaust gas at time t. r CO2 (t) is the CO 2 concentration [vol%] in the exhaust gas at time t. Q C,OG (t) is the cumulative amount of carbon emissions [kg] from time 0 to t.
 ここで、排ガスの流量及び成分濃度の計測結果に既知の誤差が含まれる場合に、補正計算部13が既知の誤差を除去又は低減してから式(3)の計算を実行することが好ましい。例えばCO濃度計測値及びCO濃度計測値が、計測を行っていない時間にも非零の値を取るような場合に(ゼロ点がずれている場合に)、計測値からゼロ点のずれを差し引いた値が計算に用いられてよい。これにより、ステップS4の処理は完了する。ステップS3及びステップS4が完了すると、脱炭制御処理はステップS5の処理に進む。ここで、ステップS4の処理はステップS3の処理から独立して実行可能であり、本実施形態のようにステップS3とステップS4とが並行して実行されてよい。ただし、並行処理に限定されず、ステップS3とステップS4とが順に実行されてよく、このとき、どちらが先か(実行順)も限定されない。 Here, when a known error is included in the measurement results of the exhaust gas flow rate and component concentration, it is preferable that the correction calculation unit 13 performs the calculation of equation (3) after removing or reducing the known error. For example, if the CO concentration measurement value and CO 2 concentration measurement value take a non-zero value even when measurement is not performed (if the zero point is shifted), calculate the shift of the zero point from the measured value. The subtracted value may be used in the calculation. This completes the process of step S4. When Step S3 and Step S4 are completed, the decarburization control process proceeds to Step S5. Here, the process of step S4 can be executed independently from the process of step S3, and step S3 and step S4 may be executed in parallel as in this embodiment. However, the process is not limited to parallel processing, and step S3 and step S4 may be executed in order, and in this case, there is no limitation on which one comes first (the order of execution).
 ここで、質量保存則より、溶鋼中炭素量と溶鋼からの排出炭素量の累計の合計は、脱炭処理前の溶鋼中炭素量と処理中に投入された副原料に含まれる炭素量の合計に等しい。しかし、一般に、ステップS3で推定された溶鋼中炭素濃度に基づく溶鋼中炭素量とステップS4で推定された排出炭素量の累計を使用した計算は、質量保存則を満足しない。本実施形態において、補正計算部13は、この質量保存則からの乖離を炭素の収支計算として求めて、この乖離が脱炭反応モデル及び排ガス計測値のどちらにも誤差が含まれることによるとして、それぞれの誤差を補正するパラメータを設定する。 According to the law of conservation of mass, the cumulative total of the amount of carbon in molten steel and the amount of carbon emitted from molten steel is the sum of the amount of carbon in molten steel before decarburization and the amount of carbon contained in auxiliary materials input during treatment. be equivalent to. However, in general, the calculation using the cumulative amount of carbon in molten steel based on the carbon concentration in molten steel estimated in step S3 and the amount of emitted carbon estimated in step S4 does not satisfy the law of conservation of mass. In this embodiment, the correction calculation unit 13 calculates the deviation from the mass conservation law as a carbon balance calculation, and assumes that this deviation is due to errors included in both the decarburization reaction model and the exhaust gas measurement value. Set parameters to correct each error.
 ステップS5の処理では、質量保存則が満足されるように、補正計算部13がステップS3及びステップS4の処理における計算結果の補正パラメータを決定する。真空槽溶鋼中炭素濃度補正値ΔC[ppm]は、脱炭反応モデルの補正パラメータである。また、排ガス中炭素量補正係数αは、排ガス計測値の補正パラメータである。これらの補正パラメータにより、ステップS3及びステップS4の処理における計算結果は以下の通り補正される。 In the process of step S5, the correction calculation unit 13 determines the correction parameters of the calculation results in the processes of step S3 and step S4 so that the law of conservation of mass is satisfied. The vacuum tank molten steel carbon concentration correction value ΔC V [ppm] is a correction parameter of the decarburization reaction model. Further, the exhaust gas carbon amount correction coefficient α is a correction parameter for the exhaust gas measurement value. Using these correction parameters, the calculation results in the processes of step S3 and step S4 are corrected as follows.
 まず、真空槽溶鋼中炭素濃度は、真空槽溶鋼中炭素濃度補正値ΔCを加えて、C+ΔCに補正される。単位時間当たりの排ガス中炭素量は、排ガス中炭素量補正係数αを乗じて、αqC、OG(t)に補正される。また、排出炭素量の累計は、排ガス中炭素量補正係数αを乗じて、αQC、OG(t)に補正される。補正パラメータである排ガス中炭素量補正係数α及び真空槽溶鋼中炭素濃度補正値ΔCは、下記式(5)に示される最適化問題の解として決定される。 First, the carbon concentration in the vacuum tank molten steel is corrected to C V +ΔC V by adding a correction value ΔC V for the carbon concentration in the vacuum tank molten steel. The amount of carbon in the exhaust gas per unit time is multiplied by the amount of carbon in the exhaust gas correction coefficient α to be corrected to αq C,OG (t). Further, the cumulative total of the exhaust carbon amount is multiplied by the exhaust gas carbon amount correction coefficient α to be corrected to αQ C,OG (t). The correction parameters α and correction value ΔC V for carbon concentration in exhaust gas are determined as a solution to the optimization problem shown in equation (5) below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、QC,INは脱炭処理前の溶鋼中炭素量と処理中に投入された副原料に含まれる炭素量の合計[kg]である。QC,STは溶鋼中炭素量[kg]である。QC,INとQC,STとの差分は溶鋼中炭素量の減少量を含む。また、さらにαQC、OG(t)との差分をとることは、その減少量と排ガス中炭素量(排出炭素量の累計)との差を評価することに対応する。deC(ΔC)は成分計算部12によって脱炭反応モデルから計算される脱炭速度[kg/s]である。αaveは、操業実績値に基づくαの標準値である。σ、σ、σ及びσは重みづけ係数であって、例えばユーザによって設定される。QC、ST(ΔC)は式(6)で定義される。また、deC(ΔC)は式(7)で定義される。 Here, Q C,IN is the total [kg] of the amount of carbon in the molten steel before decarburization treatment and the amount of carbon contained in the auxiliary raw materials input during the treatment. Q C, ST is the amount of carbon in molten steel [kg]. The difference between QC ,IN and QC ,ST includes the amount of decrease in the amount of carbon in the molten steel. Furthermore, taking the difference from αQ C,OG (t) corresponds to evaluating the difference between the amount of decrease and the amount of carbon in the exhaust gas (cumulative amount of emitted carbon). deC (ΔC V ) is the decarburization rate [kg/s] calculated by the component calculation unit 12 from the decarburization reaction model. α ave is a standard value of α based on operational performance values. σ 1 , σ 2 , σ 3 and σ 4 are weighting coefficients, which are set by the user, for example. Q C,ST (ΔC V ) is defined by equation (6). Further, deC(ΔC V ) is defined by equation (7).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(5)の第1項は、炭素についての質量保存則からの乖離を表す。質量保存則が完全に満たされる場合に、第1項は0になる。式(5)の第2項は、単位時間当たりの排ガス中炭素量と脱炭反応モデルから計算される脱炭速度との乖離を表す。単位時間当たりの排ガス中炭素量と脱炭反応モデルから計算される脱炭速度が一致する場合に、第2項は0になる。式(5)の第3項及び第4項は補正パラメータが極端な値をとることを予防するための項である。まず、排ガス中炭素量補正係数αについて、排ガス計測装置の劣化及び計測環境の悪化は1回の真空脱ガス処理時間よりも十分長い時間スケールで進行していくため、連続する真空脱ガス処理においては標準値(αave)と概ね同じ値を取り続けると期待される。そのため、第3項はαとαaveの差分の2乗値を加算したものとなっている。標準値であるαaveは、例えば直近で処理が行われた所定回のチャージについて排ガス中炭素量補正係数αの平均を計算することで決定することができる。所定回は、複数回であることが好ましく、特定の値に限定されない。また、真空槽溶鋼中炭素濃度補正値ΔCについて、脱炭反応モデルの誤差は小さいと期待される。そのため、第4項はΔCの2乗値を加算したものとなっている。本実施形態において、補正計算部13は評価関数である式(5)を最小化することで補正パラメータを計算するが、最大化するような評価関数が用いられてよい。つまり、補正計算部13は、評価関数を最小化又は最大化するような補正パラメータを求めてよい。 The first term in equation (5) represents deviation from the law of conservation of mass for carbon. When the law of conservation of mass is completely satisfied, the first term becomes 0. The second term in equation (5) represents the discrepancy between the amount of carbon in the exhaust gas per unit time and the decarburization rate calculated from the decarburization reaction model. When the amount of carbon in the exhaust gas per unit time and the decarburization rate calculated from the decarburization reaction model match, the second term becomes 0. The third and fourth terms in equation (5) are terms for preventing the correction parameter from taking an extreme value. First, regarding the carbon content correction coefficient α in exhaust gas, since deterioration of the exhaust gas measuring device and deterioration of the measurement environment progress on a sufficiently longer time scale than the time of one vacuum degassing treatment, continuous vacuum degassing treatment is expected to continue taking approximately the same value as the standard value (α ave ). Therefore, the third term is the sum of the square value of the difference between α and α ave . The standard value α ave can be determined, for example, by calculating the average of the exhaust gas carbon amount correction coefficient α for a predetermined charge that has been processed most recently. The predetermined number of times is preferably a plurality of times, and is not limited to a specific value. Furthermore, the error of the decarburization reaction model is expected to be small regarding the correction value ΔC V of carbon concentration in molten steel in a vacuum chamber. Therefore, the fourth term is the sum of the square value of ΔCV . In this embodiment, the correction calculation unit 13 calculates the correction parameters by minimizing the evaluation function, which is Equation (5), but an evaluation function that maximizes it may be used. In other words, the correction calculation unit 13 may obtain correction parameters that minimize or maximize the evaluation function.
 ここで、排ガス中炭素量補正係数αは、加算される真空槽溶鋼中炭素濃度補正値ΔCと異なり、補正前の値に乗じる補正係数として設定されることが好ましい。例えば排ガス計測値の補正パラメータとして排ガス中炭素量補正係数αの代わりに単位時間当たりの排ガス中炭素量補正値ΔqC,OG[kg/s]を使って、単位時間当たりの排ガス中炭素量をqC,OG(t)+ΔqC,OGとする処理を行っても、炭素濃度推定の精度を高めることができない。排ガス計測値の誤差は、脱炭処理の時間経過とともに誤差の幅が大きく変動することが知られている。そのため、排ガス中炭素量補正係数αを加算される補正値(ΔqC,OG)とする場合に、適用する脱炭処理の進行のタイミングによっては誤差除去が不十分になり得る。また、脱炭処理の進行のタイミングに合わせて補正値を変化させることは困難である。そのため、本実施形態のように、排ガス中炭素量補正係数αは、補正前の値に乗じる補正係数として設定されることが好ましい。 Here, the exhaust gas carbon content correction coefficient α is different from the vacuum tank molten steel carbon concentration correction value ΔC V to be added, and is preferably set as a correction coefficient by which the value before correction is multiplied. For example, the amount of carbon in the exhaust gas per unit time can be calculated by using the correction value Δq C,OG [kg/s] for the amount of carbon in the exhaust gas per unit time instead of the correction coefficient α for the amount of carbon in the exhaust gas as a correction parameter for the measured value of the exhaust gas. Even if q C,OG (t)+Δq C,OG is processed, the accuracy of carbon concentration estimation cannot be improved. It is known that the error width of the exhaust gas measurement value fluctuates greatly as time passes during the decarburization process. Therefore, when the exhaust gas carbon amount correction coefficient α is used as the added correction value (Δq C,OG ), error removal may be insufficient depending on the timing of progress of the applied decarburization process. Furthermore, it is difficult to change the correction value in accordance with the timing of the progress of the decarburization process. Therefore, as in the present embodiment, it is preferable that the exhaust gas carbon amount correction coefficient α is set as a correction coefficient by which the value before correction is multiplied.
 また、評価関数は上記の式(5)に限定されず、例えば真空槽溶鋼中炭素濃度補正値ΔCの代わりに真空槽溶鋼中炭素濃度補正係数aを用いることができる。このとき、真空槽溶鋼中炭素濃度は、真空槽溶鋼中炭素濃度補正係数aを乗じて、a・Cに補正される。そして、補正パラメータである排ガス中炭素量補正係数α及び真空槽溶鋼中炭素濃度補正係数aは、下記式(8)に示される最適化問題の解として決定される。 Further, the evaluation function is not limited to the above equation (5), and for example, a correction coefficient a V for the carbon concentration in the vacuum tank molten steel can be used instead of the correction value ΔC V for the carbon concentration in the vacuum tank molten steel. At this time, the carbon concentration in the vacuum tank molten steel is multiplied by the vacuum tank molten steel carbon concentration correction coefficient a V and corrected to a V ·C V. Then, the correction parameters α, which are the correction coefficient α for carbon content in exhaust gas and the correction coefficient αV for carbon concentration in molten steel in the vacuum chamber, are determined as a solution to the optimization problem shown in the following equation (8).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 脱炭反応モデルによる溶鋼中炭素濃度推定値を補正する必要がない場合にaが1になる。式(8)の第4項はaと1の差分の2乗値を加算したものとなっている。QC,ST´(a)は式(9)で定義される。また、deC´(a)は式(10)で定義される。 aV is 1 when there is no need to correct the estimated value of carbon concentration in molten steel based on the decarburization reaction model. The fourth term in equation (8) is the sum of the square value of the difference between a V and 1. Q C,ST ′(a V ) is defined by equation (9). Further, deC'(a V ) is defined by equation (10).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(5)及び式(8)の評価関数を用いる最小化問題は、公知の非線形最適化法を用いて解くことができる。以下では、式(5)の評価関数が使用されるとして説明する。補正計算部13は、式(5)の最小化問題を解くことで補正パラメータ(排ガス中炭素量補正係数α及び真空槽溶鋼中炭素濃度補正値ΔC)を決定する。これにより、ステップS5の処理が完了し、脱炭制御処理はステップS6の処理に進む。ここで、ステップS5は補正計算ステップに対応する。 The minimization problem using the evaluation functions of equations (5) and (8) can be solved using a known nonlinear optimization method. In the following description, it will be assumed that the evaluation function of equation (5) is used. The correction calculation unit 13 determines the correction parameters (the carbon content correction coefficient α in the exhaust gas and the carbon concentration correction value ΔC V in the vacuum tank molten steel) by solving the minimization problem of Equation (5). Thereby, the process of step S5 is completed, and the decarburization control process proceeds to the process of step S6. Here, step S5 corresponds to a correction calculation step.
 ステップS6の処理では、ステップS3で求めた溶鋼中炭素濃度の推定値に、ステップS5で求めた真空槽溶鋼中炭素濃度補正値ΔCを加えることで溶鋼中炭素濃度を更新する。これにより、ステップS6の処理が完了し、脱炭制御処理はステップS7の処理に進む。 In the process of step S6, the carbon concentration in molten steel is updated by adding the correction value ΔC V for the carbon concentration in the vacuum tank molten steel obtained in step S5 to the estimated value of the carbon concentration in molten steel obtained in step S3. Thereby, the process of step S6 is completed, and the decarburization control process proceeds to the process of step S7.
 ステップS7の処理では、脱炭処理制御部14が、ステップS6で求めた溶鋼中炭素濃度が、あらかじめ定められた目標値に達したか(目標値以下となったか)を判定する。補正された溶鋼中炭素濃度が目標値より高い場合は、ステップS2の処理に戻り、新たに入力される操業実績値を使用してステップS2以降の処理を繰り返す。一方で、補正された溶鋼中炭素濃度が目標値以下となった場合に、脱炭処理は終了する。ここで、ステップS7は脱炭処理終了ステップに対応する。 In the process of step S7, the decarburization process control unit 14 determines whether the carbon concentration in molten steel determined in step S6 has reached a predetermined target value (below the target value). If the corrected carbon concentration in molten steel is higher than the target value, the process returns to step S2, and the processes from step S2 onwards are repeated using the newly input operation performance value. On the other hand, when the corrected carbon concentration in molten steel becomes equal to or lower than the target value, the decarburization process ends. Here, step S7 corresponds to the step of terminating the decarburization process.
 以上のように、本実施形態に係る真空脱ガス設備100の制御装置10、真空脱ガス設備100の制御方法、操業方法及び溶鋼の製造方法は、上記の構成及び工程によって、脱炭反応モデルと排ガス計測値の両方の誤差を想定し、これらの誤差を同時に補正することができる。そのため、溶鋼中炭素濃度を高精度に推定することでき、炭素濃度規格に対して適切なタイミングに脱炭処理を終了させ、脱炭処理時間を短縮可能な真空脱ガス設備100の制御装置10、真空脱ガス設備100の制御方法、操業方法及び溶鋼の製造方法を提供することができる。 As described above, the control device 10 of the vacuum degassing facility 100, the control method, the operating method, and the method of manufacturing molten steel of the vacuum degassing facility 100 according to the present embodiment are based on the decarburization reaction model and the steps described above. It is possible to assume both errors in the exhaust gas measurement value and to correct these errors simultaneously. Therefore, the control device 10 of the vacuum degassing equipment 100 is capable of estimating the carbon concentration in molten steel with high accuracy, completing the decarburization process at an appropriate timing according to the carbon concentration standard, and shortening the decarburization process time. A method for controlling the vacuum degassing facility 100, a method for operating it, and a method for producing molten steel can be provided.
(実施例)
 以下、本開示の効果を実施例に基づいて具体的に説明するが、本開示は実施例の内容に限定されるものではない。
(Example)
Hereinafter, the effects of the present disclosure will be specifically explained based on Examples, but the present disclosure is not limited to the contents of the Examples.
 本実施例として、RH真空脱ガス設備を使用して脱炭処理が行われて、炭素濃度の規格上限が25ppmである極低炭素溶鋼が製造された。脱炭処理終了時に溶鋼の一部分がサンプルとして採取されて、このサンプルの溶鋼中炭素濃度が実測された。脱炭処理の終了は操業者の判断によるものである。また、発明法及び比較法により溶鋼中炭素濃度が推定された。発明法は、上記の実施形態のように溶鋼中炭素濃度を推定した。表1は脱炭処理終了時の推定値を実測値と比較した結果を示す。ここで、比較法として2種類の方法で溶鋼中炭素濃度が推定された。1つは、排ガス計測値から脱炭量を計算し、炭素濃度を推定する方法である(表1における排ガスモデル)。ただし、検証チャージ及びこれらと同時期に処理されたチャージの操業実績から求められた排ガス中炭素量補正係数αの平均値であるαaveを排ガス計測値から計算される脱炭量に乗じる処理が行われている。もう1つの方法は、脱炭反応モデルのみを使用して溶鋼中炭素濃度を推定する方法である(表1における脱炭反応モデル)。後者の脱炭反応モデルは発明法の溶鋼中炭素濃度推定計算においても使用されている。 In this example, decarburization treatment was performed using RH vacuum degassing equipment to produce ultra-low carbon molten steel with a standard upper limit of carbon concentration of 25 ppm. At the end of the decarburization process, a portion of the molten steel was taken as a sample, and the carbon concentration in the molten steel of this sample was actually measured. Termination of decarburization is at the operator's discretion. Furthermore, the carbon concentration in molten steel was estimated using the invention method and the comparative method. In the invention method, the carbon concentration in molten steel was estimated as in the above embodiment. Table 1 shows the results of comparing the estimated values at the end of the decarburization treatment with the actual values. Here, the carbon concentration in molten steel was estimated using two different methods for comparison. One method is to calculate the decarburization amount from the exhaust gas measurement value and estimate the carbon concentration (exhaust gas model in Table 1). However, the amount of decarburization calculated from the exhaust gas measurement value is multiplied by α ave , which is the average value of the correction coefficient α for the amount of carbon in the exhaust gas determined from the operational results of the verification charge and the charges processed at the same time. It is being done. Another method is to estimate the carbon concentration in molten steel using only the decarburization reaction model (decarburization reaction model in Table 1). The latter decarburization reaction model is also used in the calculation for estimating the carbon concentration in molten steel using the invented method.
 図3は表1の検証チャージAで計算された補正パラメータである排ガス中炭素量補正係数αの時間変化を示す。また、図4は表1の検証チャージAで計算された補正パラメータである真空槽溶鋼中炭素濃度補正値ΔCの時間変化を示す。 FIG. 3 shows the change over time of the exhaust gas carbon amount correction coefficient α, which is the correction parameter calculated using the verification charge A in Table 1. Further, FIG. 4 shows the change over time of the correction value ΔCV of carbon concentration in molten steel in a vacuum chamber, which is a correction parameter calculated using verification charge A in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、発明法は比較法に比べて溶鋼中炭素濃度の実測値に近い値を推定している。このことから、脱炭反応モデル及び排ガス計測値の両方の誤差を想定し、これらを補正する発明法が溶鋼中炭素濃度推定の高精度化に効果的であることが確認された。 As shown in Table 1, the invention method estimates a value closer to the actually measured value of the carbon concentration in molten steel than the comparative method. From this, it was confirmed that the invented method, which assumes errors in both the decarburization reaction model and the exhaust gas measurement values and corrects them, is effective in improving the accuracy of estimating the carbon concentration in molten steel.
 本開示の実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments of the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should therefore be noted that these variations or modifications are included within the scope of this disclosure. For example, the functions included in each component or each step can be rearranged to avoid logical contradictions, and multiple components or steps can be combined or divided into one. It is. Embodiments according to the present disclosure can also be realized as a storage medium recording a program executed by a processor included in the device. It is to be understood that these are also encompassed within the scope of the present disclosure.
 10 制御装置
 11 操業情報入力部
 12 成分計算部
 13 補正計算部
 14 脱炭処理制御部
 100 真空脱ガス設備
10 Control device 11 Operation information input section 12 Component calculation section 13 Correction calculation section 14 Decarburization processing control section 100 Vacuum degassing equipment

Claims (10)

  1.  溶鋼を減圧環境下に置くことで脱炭処理を行う真空脱ガス設備の動作を制御する、真空脱ガス設備の制御装置であって、
     前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記脱炭処理の実行中における前記真空脱ガス設備から排出される排ガスの流量及び成分濃度の計測結果を含む操業実績値、前記脱炭処理の実行中に投入される副原料に関する情報、が入力される操業情報入力部と、
     前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記操業実績値に基づいて、前記溶鋼の溶鋼中炭素濃度を推定する成分計算部と、
     推定された前記溶鋼の溶鋼中炭素濃度、前記排ガスの流量及び成分濃度の計測結果及び炭素の収支計算結果に基づいて、前記真空脱ガス設備から排出された炭素量の推定値及び推定された前記溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する補正計算部と、
     前記補正パラメータにより補正された前記溶鋼の溶鋼中炭素濃度が目標値に達した場合に前記脱炭処理を終了させる脱炭処理制御部と、を備える、真空脱ガス設備の制御装置。
    A control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment,
    Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an operation information input section into which information regarding auxiliary materials input during execution of decarburization processing is input;
    a component calculation unit that estimates a carbon concentration in molten steel of the molten steel based on information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value;
    Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount discharged from the vacuum degassing equipment and the estimated carbon content of the molten steel. a correction calculation unit that calculates a correction parameter for correcting the carbon concentration in molten steel;
    A control device for vacuum degassing equipment, comprising: a decarburization processing control unit that terminates the decarburization processing when the carbon concentration in the molten steel corrected by the correction parameter reaches a target value.
  2.  前記補正計算部は、溶鋼中炭素量の減少量と、排ガス中炭素量との差に基づく評価関数に基づいて前記補正パラメータを算出する、請求項1に記載の真空脱ガス設備の制御装置。 The control device for vacuum degassing equipment according to claim 1, wherein the correction calculation unit calculates the correction parameter based on an evaluation function based on a difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
  3.  前記評価関数は、前記溶鋼中炭素量と、前記副原料に含まれる炭素量から前記排ガス中炭素量を差し引くことで計算される2乗値の項及び単位時間当たりの排ガス中炭素量と脱炭速度との差の2乗値の項を含む、請求項2に記載の真空脱ガス設備の制御装置。 The evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. 3. The control device for vacuum degassing equipment according to claim 2, comprising a term for the square value of the difference with the speed.
  4.  前記評価関数は、補正前の値に乗じる補正係数として設定される排ガス計測値の前記補正パラメータを有する、請求項2又は3に記載の真空脱ガス設備の制御装置。 The control device for vacuum degassing equipment according to claim 2 or 3, wherein the evaluation function has the correction parameter of the exhaust gas measurement value set as a correction coefficient by which the value before correction is multiplied.
  5.  溶鋼を減圧環境下に置くことで脱炭処理を行う真空脱ガス設備の動作を制御する真空脱ガス設備の制御装置が実行する、真空脱ガス設備の制御方法であって、
     前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記脱炭処理の実行中における前記真空脱ガス設備から排出される排ガスの流量及び成分濃度の計測結果を含む操業実績値、前記脱炭処理の実行中に投入される副原料に関する情報、が入力される入力ステップと、
     前記脱炭処理の前における前記溶鋼の重量及び成分濃度に関する情報、前記操業実績値に基づいて、前記溶鋼の溶鋼中炭素濃度を推定する成分計算ステップと、
     推定された前記溶鋼の溶鋼中炭素濃度、前記排ガスの流量及び成分濃度の計測結果及び炭素の収支計算結果に基づいて、前記真空脱ガス設備から排出された炭素量の推定値及び推定された前記溶鋼の溶鋼中炭素濃度を補正する補正パラメータを算出する補正計算ステップと、
     前記補正パラメータにより補正された前記溶鋼の溶鋼中炭素濃度が目標値に達した場合に前記脱炭処理を終了させる脱炭処理終了ステップと、を含む、真空脱ガス設備の制御方法。
    A method for controlling vacuum degassing equipment, which is executed by a control device for vacuum degassing equipment that controls the operation of vacuum degassing equipment that performs decarburization treatment by placing molten steel in a reduced pressure environment, the method comprising:
    Information regarding the weight and component concentration of the molten steel before the decarburization treatment, operational performance values including measurement results of the flow rate and component concentration of the exhaust gas discharged from the vacuum degassing equipment during the execution of the decarburization treatment; an input step in which information regarding auxiliary materials input during execution of decarburization processing is input;
    a component calculation step of estimating the carbon concentration in the molten steel based on the information regarding the weight and component concentration of the molten steel before the decarburization treatment and the operation performance value;
    Based on the estimated carbon concentration in the molten steel, the measurement results of the flow rate and component concentration of the exhaust gas, and the carbon balance calculation results, an estimated value of the carbon amount discharged from the vacuum degassing equipment and the estimated carbon content of the molten steel. a correction calculation step of calculating a correction parameter for correcting the carbon concentration in the molten steel;
    A method for controlling vacuum degassing equipment, comprising: a decarburization treatment termination step of terminating the decarburization treatment when the molten steel carbon concentration of the molten steel corrected by the correction parameter reaches a target value.
  6.  前記補正計算ステップは、溶鋼中炭素量の減少量と、排ガス中炭素量との差に基づく評価関数に基づいて前記補正パラメータを算出する、請求項5に記載の真空脱ガス設備の制御方法。 The method for controlling vacuum degassing equipment according to claim 5, wherein the correction calculation step calculates the correction parameter based on an evaluation function based on the difference between the amount of decrease in the amount of carbon in molten steel and the amount of carbon in exhaust gas.
  7.  前記評価関数は、前記溶鋼中炭素量と、前記副原料に含まれる炭素量から前記排ガス中炭素量を差し引くことで計算される2乗値の項及び単位時間当たりの排ガス中炭素量と脱炭速度との差の2乗値の項を含む、請求項6に記載の真空脱ガス設備の制御方法。 The evaluation function is based on the carbon content in the molten steel, a square value term calculated by subtracting the carbon content in the exhaust gas from the carbon content in the auxiliary raw material, the carbon content in the exhaust gas per unit time, and decarburization. 7. The method of controlling vacuum degassing equipment according to claim 6, comprising a term of the square value of the difference between the speed and the speed.
  8.  前記評価関数は、補正前の値に乗じる補正係数として設定される排ガス計測値の前記補正パラメータを有する、請求項6又は7に記載の真空脱ガス設備の制御方法。 The method for controlling vacuum degassing equipment according to claim 6 or 7, wherein the evaluation function has the correction parameter of the exhaust gas measurement value set as a correction coefficient by which the value before correction is multiplied.
  9.  請求項5から7のいずれか一項に記載の真空脱ガス設備の制御方法を実行して、前記真空脱ガス設備を操業する、操業方法。 An operating method for operating the vacuum degassing facility by executing the method for controlling the vacuum degassing facility according to any one of claims 5 to 7.
  10.  請求項9に記載の操業方法によって操業される真空脱ガス設備において前記溶鋼を精錬して、精錬された前記溶鋼を製造する、溶鋼の製造方法。 A method for producing molten steel, comprising refining the molten steel in a vacuum degassing facility operated by the operating method according to claim 9 to produce the refined molten steel.
PCT/JP2023/016017 2022-05-09 2023-04-21 Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel WO2023218914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077104 2022-05-09
JP2022077104A JP2023166207A (en) 2022-05-09 2022-05-09 Control device for vacuum degassing facility, control method for vacuum degassing facility, operation method, and production method for molten steel

Publications (1)

Publication Number Publication Date
WO2023218914A1 true WO2023218914A1 (en) 2023-11-16

Family

ID=88730303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016017 WO2023218914A1 (en) 2022-05-09 2023-04-21 Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel

Country Status (3)

Country Link
JP (1) JP2023166207A (en)
TW (1) TW202407108A (en)
WO (1) WO2023218914A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272913A (en) * 1996-04-05 1997-10-21 Nippon Steel Corp Method for estimating carbon concentration in molten steel
JPH11279625A (en) * 1998-03-31 1999-10-12 Nkk Corp Manufacture of super-low carbon steel
JP2017115216A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 Molten metal component estimation device and molten metal component estimation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272913A (en) * 1996-04-05 1997-10-21 Nippon Steel Corp Method for estimating carbon concentration in molten steel
JPH11279625A (en) * 1998-03-31 1999-10-12 Nkk Corp Manufacture of super-low carbon steel
JP2017115216A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 Molten metal component estimation device and molten metal component estimation method

Also Published As

Publication number Publication date
JP2023166207A (en) 2023-11-21
TW202407108A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP6583594B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP5527180B2 (en) Converter blowing method and converter blowing system
JP2012136767A (en) Method for estimating phosphorus concentration in converter
WO2023218914A1 (en) Control device for vacuum degassing equipment, control method for vacuum degassing equipment, operation method, and manufacturing method for molten steel
TWI488973B (en) Compensating apparatus, method and method for refining iron
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP2009144244A (en) Refining method of high-chromium ferritic stainless steel for reducing carbon
JP3659070B2 (en) Estimating molten steel temperature and carbon concentration during converter blowing, and converter blowing process
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
KR101570582B1 (en) Vacuum Oxygen decarburization apparatus of chromium comprising melting steel and vacuum oxygen decarburization method using the apparatus
WO2023218915A1 (en) State estimation method for vacuum degasification process, operation method, molten steel manufacturing method, and state estimation device for vacuum degasification process
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JPH01242711A (en) Method for controlling converter blowing
JP4110676B2 (en) Converter blowing control method and converter blowing control device
RU2803908C1 (en) Method for detecting end point of decarburization, device for determining end point of decarburization, method for performing secondary refining operation for steel production and method for producing molten steel
JP2012149341A (en) Estimation method of molten metal component and estimation apparatus of molten metal component
JP6235197B2 (en) Converter operation method
JPWO2023095647A5 (en)
KR101588092B1 (en) Apparatus and method for predicting aluminum quantity in vacuum oxygen decarburization
JPH06256840A (en) Vacuum degassing refining method
JPH07118730A (en) Method for controlling end point of vacuum decarburization for molten steel
JP2005206877A (en) Method for estimating carbon concentration at blowing time in converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803396

Country of ref document: EP

Kind code of ref document: A1